Edit model card

layoutlmv3-finetuned-letter_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the data_cartas_layoutv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1884
  • Precision: 0.7412
  • Recall: 0.8673
  • F1: 0.7993
  • Accuracy: 0.9632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.57 250 0.4503 0.2934 0.2242 0.2542 0.8928
0.5521 7.14 500 0.2833 0.4291 0.4639 0.4458 0.9209
0.5521 10.71 750 0.2116 0.5702 0.6753 0.6183 0.9437
0.173 14.29 1000 0.1786 0.6414 0.7835 0.7053 0.9562
0.173 17.86 1250 0.1772 0.6815 0.8492 0.7562 0.9581
0.077 21.43 1500 0.1737 0.7144 0.8737 0.7861 0.9616
0.077 25.0 1750 0.1768 0.7311 0.8724 0.7955 0.9615
0.0441 28.57 2000 0.1694 0.7726 0.8273 0.7990 0.9646
0.0441 32.14 2250 0.1874 0.7400 0.8621 0.7964 0.9620
0.0293 35.71 2500 0.1862 0.7321 0.8698 0.7951 0.9622
0.0293 39.29 2750 0.1887 0.7332 0.8711 0.7962 0.9620
0.0237 42.86 3000 0.1884 0.7412 0.8673 0.7993 0.9632

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results