llama3.1-cpo-full / README.md
jbjeong91's picture
End of training
4e6a156 verified
metadata
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
  - alignment-handbook
  - trl
  - cpo
  - generated_from_trainer
  - trl
  - cpo
  - generated_from_trainer
datasets:
  - princeton-nlp/llama3-ultrafeedback
model-index:
  - name: llama3.1-cpo-full
    results: []

llama3.1-cpo-full

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6689
  • Rewards/chosen: -15.0012
  • Rewards/rejected: -15.8900
  • Rewards/accuracies: 0.6336
  • Rewards/margins: 0.8888
  • Logps/rejected: -158.8998
  • Logps/chosen: -150.0119
  • Logits/rejected: -0.3381
  • Logits/chosen: -0.3504
  • Nll Loss: 0.4161

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss
1.822 0.9238 100 1.7791 -14.6496 -15.4269 0.6034 0.7773 -154.2694 -146.4961 -0.4235 -0.4380 0.4058
1.5612 1.8476 200 1.6871 -15.1337 -15.9726 0.6379 0.8389 -159.7256 -151.3367 -0.3722 -0.3863 0.4197
1.3825 2.7714 300 1.6704 -15.1684 -16.0433 0.6293 0.8749 -160.4333 -151.6842 -0.3369 -0.3497 0.4209

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1