--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - trl - cpo - generated_from_trainer - trl - cpo - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback model-index: - name: llama3.1-cpo-full results: [] --- # llama3.1-cpo-full This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set: - Loss: 1.6689 - Rewards/chosen: -15.0012 - Rewards/rejected: -15.8900 - Rewards/accuracies: 0.6336 - Rewards/margins: 0.8888 - Logps/rejected: -158.8998 - Logps/chosen: -150.0119 - Logits/rejected: -0.3381 - Logits/chosen: -0.3504 - Nll Loss: 0.4161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| | 1.822 | 0.9238 | 100 | 1.7791 | -14.6496 | -15.4269 | 0.6034 | 0.7773 | -154.2694 | -146.4961 | -0.4235 | -0.4380 | 0.4058 | | 1.5612 | 1.8476 | 200 | 1.6871 | -15.1337 | -15.9726 | 0.6379 | 0.8389 | -159.7256 | -151.3367 | -0.3722 | -0.3863 | 0.4197 | | 1.3825 | 2.7714 | 300 | 1.6704 | -15.1684 | -16.0433 | 0.6293 | 0.8749 | -160.4333 | -151.6842 | -0.3369 | -0.3497 | 0.4209 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.19.1