6e-5_4000eval / README.md
jadorantes2's picture
End of training
6782623 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - generated_from_trainer
datasets:
  - ami
metrics:
  - wer
model-index:
  - name: 6e-5_4000eval
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ami
          type: ami
          config: ihm
          split: None
          args: ihm
        metrics:
          - name: Wer
            type: wer
            value: 0.2470857142857143

Visualize in Weights & Biases

6e-5_4000eval

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the ami dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8508
  • Wer: 0.2471

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 7.5758 250 5.4590 0.9995
9.3761 15.1515 500 3.7020 0.9995
9.3761 22.7273 750 3.0706 0.9995
3.2176 30.3030 1000 3.0517 0.9995
3.2176 37.8788 1250 1.8920 0.7721
2.0444 45.4545 1500 1.3641 0.3488
2.0444 53.0303 1750 1.1031 0.2779
0.8363 60.6061 2000 1.1269 0.2679
0.8363 68.1818 2250 1.0291 0.2656
0.6824 75.7576 2500 0.9712 0.2629
0.6824 83.3333 2750 0.8902 0.2619
0.5956 90.9091 3000 0.8432 0.2441
0.5956 98.4848 3250 0.8714 0.2485
0.4071 106.0606 3500 0.8222 0.2478
0.4071 113.6364 3750 0.8398 0.2501
0.4479 121.2121 4000 0.8508 0.2471

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1