--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer datasets: - ami metrics: - wer model-index: - name: 6e-5_4000eval results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ami type: ami config: ihm split: None args: ihm metrics: - name: Wer type: wer value: 0.2470857142857143 --- [Visualize in Weights & Biases](https://wandb.ai/jadorantes2-utep/%3Cmy-amazing-projecttokenizer6e-5eval4000%3E/runs/c41b6hhn) # 6e-5_4000eval This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the ami dataset. It achieves the following results on the evaluation set: - Loss: 0.8508 - Wer: 0.2471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:------:| | No log | 7.5758 | 250 | 5.4590 | 0.9995 | | 9.3761 | 15.1515 | 500 | 3.7020 | 0.9995 | | 9.3761 | 22.7273 | 750 | 3.0706 | 0.9995 | | 3.2176 | 30.3030 | 1000 | 3.0517 | 0.9995 | | 3.2176 | 37.8788 | 1250 | 1.8920 | 0.7721 | | 2.0444 | 45.4545 | 1500 | 1.3641 | 0.3488 | | 2.0444 | 53.0303 | 1750 | 1.1031 | 0.2779 | | 0.8363 | 60.6061 | 2000 | 1.1269 | 0.2679 | | 0.8363 | 68.1818 | 2250 | 1.0291 | 0.2656 | | 0.6824 | 75.7576 | 2500 | 0.9712 | 0.2629 | | 0.6824 | 83.3333 | 2750 | 0.8902 | 0.2619 | | 0.5956 | 90.9091 | 3000 | 0.8432 | 0.2441 | | 0.5956 | 98.4848 | 3250 | 0.8714 | 0.2485 | | 0.4071 | 106.0606 | 3500 | 0.8222 | 0.2478 | | 0.4071 | 113.6364 | 3750 | 0.8398 | 0.2501 | | 0.4479 | 121.2121 | 4000 | 0.8508 | 0.2471 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1