Edit model card

wav2vec2-2

This model is a fine-tuned version of jadasdn/wav2vec2-1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8353
  • Wer: 0.3593

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4516 0.5 500 0.4973 0.3748
0.4624 1.0 1000 0.4486 0.3958
0.5211 1.5 1500 0.5173 0.3916
0.5317 2.0 2000 0.4713 0.3992
0.4277 2.5 2500 0.4859 0.3888
0.4495 3.0 3000 0.4962 0.3862
0.3712 3.5 3500 0.5237 0.3899
0.3855 4.0 4000 0.4975 0.3850
0.3254 4.5 4500 0.5405 0.3897
0.331 5.0 5000 0.5255 0.3950
0.2907 5.5 5500 0.5646 0.3852
0.2949 6.0 6000 0.5782 0.3965
0.2521 6.5 6500 0.5563 0.3879
0.2663 7.0 7000 0.5627 0.3829
0.2342 7.5 7500 0.6145 0.3872
0.2374 8.0 8000 0.5860 0.3883
0.2099 8.5 8500 0.6920 0.3810
0.2133 9.0 9000 0.6354 0.3895
0.1887 9.5 9500 0.6618 0.3813
0.1924 10.0 10000 0.6522 0.3850
0.1728 10.5 10500 0.6324 0.3813
0.1797 11.0 11000 0.6637 0.3882
0.163 11.5 11500 0.6806 0.3799
0.1623 12.0 12000 0.6801 0.3811
0.149 12.5 12500 0.6723 0.3832
0.1493 13.0 13000 0.7032 0.3888
0.1389 13.5 13500 0.7294 0.3793
0.1383 14.0 14000 0.7311 0.3800
0.127 14.5 14500 0.7088 0.3773
0.127 15.0 15000 0.7352 0.3775
0.1159 15.5 15500 0.7886 0.3792
0.114 16.0 16000 0.7582 0.3802
0.1103 16.5 16500 0.7662 0.3717
0.1088 17.0 17000 0.7855 0.3704
0.1021 17.5 17500 0.7326 0.3717
0.104 18.0 18000 0.7518 0.3723
0.096 18.5 18500 0.7468 0.3743
0.0914 19.0 19000 0.7906 0.3741
0.0881 19.5 19500 0.7879 0.3740
0.0908 20.0 20000 0.8111 0.3676
0.0832 20.5 20500 0.8114 0.3681
0.0848 21.0 21000 0.8178 0.3651
0.0762 21.5 21500 0.8212 0.3686
0.0728 22.0 22000 0.8142 0.3673
0.074 22.5 22500 0.8177 0.3666
0.0691 23.0 23000 0.8323 0.3662
0.0689 23.5 23500 0.8020 0.3678
0.0643 24.0 24000 0.8145 0.3653
0.0647 24.5 24500 0.8376 0.3594
0.0654 25.0 25000 0.8307 0.3608
0.061 25.5 25500 0.8432 0.3600
0.0573 26.0 26000 0.8361 0.3629
0.0583 26.5 26500 0.8363 0.3625
0.054 27.0 27000 0.8277 0.3625
0.058 27.5 27500 0.8354 0.3614
0.0531 28.0 28000 0.8363 0.3595
0.0522 28.5 28500 0.8429 0.3588
0.0503 29.0 29000 0.8267 0.3595
0.0504 29.5 29500 0.8401 0.3597
0.0511 30.0 30000 0.8353 0.3593

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
17
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jadasdn/wav2vec2-2

Finetuned
jadasdn/wav2vec2-1
Finetuned
(1)
this model
Finetunes
1 model