Edit model card

wav2vec2-1

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8870
  • Wer: 0.3805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.6457 0.5 500 2.8866 0.9999
2.863 1.0 1000 2.8676 1.0
1.8085 1.5 1500 0.9396 0.6602
0.8828 2.0 2000 0.7278 0.5699
0.6659 2.5 2500 0.7000 0.5401
0.6085 3.0 3000 0.7143 0.4939
0.4878 3.5 3500 0.5845 0.4717
0.4888 4.0 4000 0.6201 0.4677
0.4022 4.5 4500 0.5984 0.4532
0.3947 5.0 5000 0.5874 0.4378
0.3415 5.5 5500 0.6486 0.4405
0.3413 6.0 6000 0.5988 0.4355
0.2903 6.5 6500 0.6584 0.4304
0.3046 7.0 7000 0.6602 0.4189
0.2625 7.5 7500 0.5924 0.4235
0.2625 8.0 8000 0.6541 0.4212
0.2341 8.5 8500 0.6365 0.4171
0.2384 9.0 9000 0.6095 0.4182
0.2052 9.5 9500 0.6675 0.4091
0.2124 10.0 10000 0.6524 0.4110
0.1915 10.5 10500 0.6877 0.4122
0.1922 11.0 11000 0.6857 0.4122
0.1719 11.5 11500 0.6881 0.4056
0.1811 12.0 12000 0.6832 0.4083
0.1554 12.5 12500 0.7378 0.4103
0.163 13.0 13000 0.6940 0.4019
0.1452 13.5 13500 0.6811 0.3993
0.1457 14.0 14000 0.7216 0.4007
0.1319 14.5 14500 0.7243 0.3996
0.1367 15.0 15000 0.7332 0.4006
0.118 15.5 15500 0.7609 0.4050
0.121 16.0 16000 0.7585 0.4021
0.1096 16.5 16500 0.7583 0.4003
0.112 17.0 17000 0.7928 0.4011
0.1063 17.5 17500 0.7794 0.4038
0.1009 18.0 18000 0.7474 0.3982
0.0931 18.5 18500 0.8143 0.3980
0.0943 19.0 19000 0.7873 0.4000
0.0847 19.5 19500 0.8064 0.3991
0.0831 20.0 20000 0.8564 0.3967
0.0821 20.5 20500 0.8632 0.3956
0.0807 21.0 21000 0.8250 0.3928
0.0748 21.5 21500 0.8389 0.3949
0.0751 22.0 22000 0.8355 0.3943
0.072 22.5 22500 0.8568 0.3930
0.0696 23.0 23000 0.8396 0.3912
0.0678 23.5 23500 0.8634 0.3901
0.0671 24.0 24000 0.8576 0.3880
0.063 24.5 24500 0.8303 0.3876
0.0575 25.0 25000 0.9125 0.3847
0.0572 25.5 25500 0.8745 0.3839
0.0572 26.0 26000 0.8714 0.3844
0.0533 26.5 26500 0.8824 0.3840
0.0496 27.0 27000 0.8993 0.3830
0.0525 27.5 27500 0.8818 0.3830
0.0514 28.0 28000 0.8874 0.3819
0.0464 28.5 28500 0.8947 0.3802
0.0473 29.0 29000 0.9028 0.3805
0.048 29.5 29500 0.8899 0.3801
0.0458 30.0 30000 0.8870 0.3805

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
9
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jadasdn/wav2vec2-1

Finetuned
(652)
this model
Finetunes
1 model