has-abi's picture
Update README.md
1e3cc90
|
raw
history blame
3.21 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: distilBERT-finetuned-resumes-sections
    results: []

distilBERT-finetuned-resumes-sections

This model is a fine-tuned version of Geotrend/distilbert-base-en-fr-cased on a private resume sections dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0487
  • F1: 0.9512
  • Roc Auc: 0.9729
  • Accuracy: 0.9482

Model description

This model classifies a resume section into 12 classes.

Possible classes for a resume section

awards, certificates, contact/name/title, education, interests, languages, para, professional_experiences, projects, skills, soft_skills, summary.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.058 1.0 1083 0.0457 0.9186 0.9494 0.9020
0.0277 2.0 2166 0.0393 0.9327 0.9614 0.9251
0.0154 3.0 3249 0.0333 0.9425 0.9671 0.9367
0.0104 4.0 4332 0.0408 0.9357 0.9645 0.9293
0.0084 5.0 5415 0.0405 0.9376 0.9643 0.9298
0.0065 6.0 6498 0.0419 0.9439 0.9699 0.9385
0.0051 7.0 7581 0.0450 0.9412 0.9674 0.9376
0.0034 8.0 8664 0.0406 0.9433 0.9684 0.9372
0.0035 9.0 9747 0.0441 0.9403 0.9664 0.9358
0.0024 10.0 10830 0.0492 0.9419 0.9678 0.9367
0.0026 11.0 11913 0.0470 0.9468 0.9708 0.9436
0.0022 12.0 12996 0.0514 0.9424 0.9679 0.9395
0.0013 13.0 14079 0.0458 0.9478 0.9715 0.9441
0.0019 14.0 15162 0.0494 0.9477 0.9711 0.9450
0.0007 15.0 16245 0.0492 0.9496 0.9719 0.9464
0.0009 16.0 17328 0.0487 0.9512 0.9729 0.9482
0.001 17.0 18411 0.0510 0.9480 0.9711 0.9441
0.0006 18.0 19494 0.0532 0.9477 0.9709 0.9441
0.0007 19.0 20577 0.0511 0.9487 0.9720 0.9445
0.0005 20.0 21660 0.0522 0.9471 0.9710 0.9436

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1