File size: 3,207 Bytes
740f719 e38517b 740f719 1e3cc90 e38517b 04b27d7 1e3cc90 740f719 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: distilBERT-finetuned-resumes-sections
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilBERT-finetuned-resumes-sections
This model is a fine-tuned version of [Geotrend/distilbert-base-en-fr-cased](https://huggingface.co/Geotrend/distilbert-base-en-fr-cased) on a private resume sections dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0487
- F1: 0.9512
- Roc Auc: 0.9729
- Accuracy: 0.9482
## Model description
This model classifies a resume section into 12 classes.
### Possible classes for a resume section
**awards**, **certificates**, **contact/name/title**, **education**, **interests**, **languages**, **para**, **professional_experiences**, **projects**, **skills**, **soft_skills**, **summary**.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
| 0.058 | 1.0 | 1083 | 0.0457 | 0.9186 | 0.9494 | 0.9020 |
| 0.0277 | 2.0 | 2166 | 0.0393 | 0.9327 | 0.9614 | 0.9251 |
| 0.0154 | 3.0 | 3249 | 0.0333 | 0.9425 | 0.9671 | 0.9367 |
| 0.0104 | 4.0 | 4332 | 0.0408 | 0.9357 | 0.9645 | 0.9293 |
| 0.0084 | 5.0 | 5415 | 0.0405 | 0.9376 | 0.9643 | 0.9298 |
| 0.0065 | 6.0 | 6498 | 0.0419 | 0.9439 | 0.9699 | 0.9385 |
| 0.0051 | 7.0 | 7581 | 0.0450 | 0.9412 | 0.9674 | 0.9376 |
| 0.0034 | 8.0 | 8664 | 0.0406 | 0.9433 | 0.9684 | 0.9372 |
| 0.0035 | 9.0 | 9747 | 0.0441 | 0.9403 | 0.9664 | 0.9358 |
| 0.0024 | 10.0 | 10830 | 0.0492 | 0.9419 | 0.9678 | 0.9367 |
| 0.0026 | 11.0 | 11913 | 0.0470 | 0.9468 | 0.9708 | 0.9436 |
| 0.0022 | 12.0 | 12996 | 0.0514 | 0.9424 | 0.9679 | 0.9395 |
| 0.0013 | 13.0 | 14079 | 0.0458 | 0.9478 | 0.9715 | 0.9441 |
| 0.0019 | 14.0 | 15162 | 0.0494 | 0.9477 | 0.9711 | 0.9450 |
| 0.0007 | 15.0 | 16245 | 0.0492 | 0.9496 | 0.9719 | 0.9464 |
| 0.0009 | 16.0 | 17328 | 0.0487 | 0.9512 | 0.9729 | 0.9482 |
| 0.001 | 17.0 | 18411 | 0.0510 | 0.9480 | 0.9711 | 0.9441 |
| 0.0006 | 18.0 | 19494 | 0.0532 | 0.9477 | 0.9709 | 0.9441 |
| 0.0007 | 19.0 | 20577 | 0.0511 | 0.9487 | 0.9720 | 0.9445 |
| 0.0005 | 20.0 | 21660 | 0.0522 | 0.9471 | 0.9710 | 0.9436 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|