language: en | |
license: apache-2.0 | |
datasets: | |
- conll2003 | |
model-index: | |
- name: elastic/distilbert-base-uncased-finetuned-conll03-english | |
results: | |
- task: | |
type: token-classification | |
name: Token Classification | |
dataset: | |
name: conll2003 | |
type: conll2003 | |
config: conll2003 | |
split: validation | |
metrics: | |
- name: Accuracy | |
type: accuracy | |
value: 0.9854480753649896 | |
verified: true | |
- name: Precision | |
type: precision | |
value: 0.9880928983228512 | |
verified: true | |
- name: Recall | |
type: recall | |
value: 0.9895677847945542 | |
verified: true | |
- name: F1 | |
type: f1 | |
value: 0.9888297915932504 | |
verified: true | |
- name: loss | |
type: loss | |
value: 0.06707527488470078 | |
verified: true | |
[DistilBERT base uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned for NER using the [conll03 english dataset](https://huggingface.co/datasets/conll2003). Note that this model is **not** sensitive to capital letters — "english" is the same as "English". For the case sensitive version, please use [elastic/distilbert-base-cased-finetuned-conll03-english](https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english). | |
## Versions | |
- Transformers version: 4.3.1 | |
- Datasets version: 1.3.0 | |
## Training | |
``` | |
$ run_ner.py \ | |
--model_name_or_path distilbert-base-uncased \ | |
--label_all_tokens True \ | |
--return_entity_level_metrics True \ | |
--dataset_name conll2003 \ | |
--output_dir /tmp/distilbert-base-uncased-finetuned-conll03-english \ | |
--do_train \ | |
--do_eval | |
``` | |
After training, we update the labels to match the NER specific labels from the | |
dataset [conll2003](https://raw.githubusercontent.com/huggingface/datasets/1.3.0/datasets/conll2003/dataset_infos.json) | |