File size: 1,810 Bytes
d1d5174 1f6e8ce d1d5174 fd01248 d1d5174 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language: en
license: apache-2.0
datasets:
- conll2003
model-index:
- name: elastic/distilbert-base-uncased-finetuned-conll03-english
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.9854480753649896
verified: true
- name: Precision
type: precision
value: 0.9880928983228512
verified: true
- name: Recall
type: recall
value: 0.9895677847945542
verified: true
- name: F1
type: f1
value: 0.9888297915932504
verified: true
- name: loss
type: loss
value: 0.06707527488470078
verified: true
---
[DistilBERT base uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned for NER using the [conll03 english dataset](https://huggingface.co/datasets/conll2003). Note that this model is **not** sensitive to capital letters — "english" is the same as "English". For the case sensitive version, please use [elastic/distilbert-base-cased-finetuned-conll03-english](https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english).
## Versions
- Transformers version: 4.3.1
- Datasets version: 1.3.0
## Training
```
$ run_ner.py \
--model_name_or_path distilbert-base-uncased \
--label_all_tokens True \
--return_entity_level_metrics True \
--dataset_name conll2003 \
--output_dir /tmp/distilbert-base-uncased-finetuned-conll03-english \
--do_train \
--do_eval
```
After training, we update the labels to match the NER specific labels from the
dataset [conll2003](https://raw.githubusercontent.com/huggingface/datasets/1.3.0/datasets/conll2003/dataset_infos.json)
|