_id
stringlengths
4
9
text
stringlengths
260
10k
14924526
Febrile (fever-induced) seizures affect 3–5% of infants and young children. Despite the high incidence of febrile seizures, their contribution to the development of epilepsy later in life has remained controversial. Combining a new rat model of complex febrile seizures and patch clamp techniques, we determined that hyperthermia-induced seizures in the immature rat cause a selective presynaptic increase in inhibitory synaptic transmission in the hippocampus that lasts into adulthood. The long-lasting nature of these potent alterations in synaptic communication after febrile seizures does not support the prevalent view of the 'benign' nature of early-life febrile convulsions.
14934137
CD8(+) T cells are required for protective immunity against intracellular pathogens such as Listeria monocytogenes. In this study, we used class Ia MHC-deficient mice, which have a severe reduction in circulating CD8(+) T cells, to determine the protective capacity of class Ib MHC-restricted T cells during L. monocytogenes infection. The K(b-/-)D(b-/-) mutation was backcrossed onto a C.B10 (BALB/c congenic at H-2 locus with C57BL/10) background, because BALB/c mice are more susceptible to Listeria infection than other commonly studied mouse strains such as C57BL/6. C.B10 K(b-/-)D(b-/-) mice immunized with a sublethal dose of L. monocytogenes were fully protected against a subsequent lethal infection. Adoptive transfer of Listeria-immune splenocyte subsets into naive K(b-/-)D(b-/-) mice indicated that CD8(+) T cells were the major component of this protective immune response. A CD8(+) T cell line isolated from the spleen of a Listeria-infected class Ia MHC-deficient mouse was shown to specifically recognize Listeria-infected cells in vitro, as determined by IFN-gamma secretion and cytotoxicity assays. Adoptive transfer of this T cell line alone resulted in significant protection against L. monocytogenes challenge. These results suggest that even a limited number of class Ib MHC-restricted T cells are sufficient to generate the rapid recall response required for protection against secondary infection with L. monocytogenes.
14938990
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complicated genetic inheritance. Programmed death 1 (PD-1), a negative T cell regulator to maintain peripheral tolerance, induces negative signals to T cells during interaction with its ligands and is therefore a candidate gene in the development of SLE. In order to examine whether expression levels of PD-1 contribute to the pathogenesis of SLE, 30 patients with SLE and 30 controls were recruited and their PD-1 expression levels in peripheral blood mononuclear cells (PBMCs) were measured via flow cytometry and quantitative real-time-reverse transcription polymerase chain reaction (RT-PCR). Also, whether PD-1 expression levels are associated with the variant of the SNP rs36084323 and the SLE Disease Activity Index (SLEDAI) was studied in this work. The PD-1 expression levels of SLE patients were significantly increased compared with those of the healthy controls. The upregulated PD-1 expression levels in SLE patients were greatly associated with SLEDAI scores. No significant difference was found between PD-1 expression levels and SNP rs36084323. The results suggest that increased expression of PD-1 may correlate with the pathogenesis of SLE, upregulated PD-1 expression may be a biomarker for SLE diagnosis, and PD-1 inhibitor may be useful to SLE treatment.
14965508
Podocalyxin is the major sialoprotein in the glycocalyx of glomerular podocytes. Here we report on its extraglomerular localization, using a monospecific antibody which was obtained by affinity purification of IgG on nitrocellulose transfers of glomerular podocalyxin. By indirect immunofluorescence, podocalyxin was found in the blood vessels of several organs (lung, heart, kidney, small intestine, brain, pancreas, aorta, the periportal blood vessels in liver, and the central arteries of follicles of the spleen, but not in the endothelia that line the sinusoids of the latter organs). By immunoelectron microscopy--using immunogold conjugates in diffusion ("pre-embedding") and surface ("postembedding") procedures--podocalyxin was localized on the luminal membrane domain of endothelial cells, in a patchy distribution. The presence of podocalyxin was confirmed in SDS extracts of lung tissue by immunoblotting. We conclude that (a) podocalyxin is a widespread component of endothelial plasma membranes, (b) it is restricted to the luminal membrane domain, and (c) it is distributed unevenly on the endothelial cell surface.
14972169
Exposure during the organogenesis stage of the mouse embryo to the model teratogen, hydroxyurea (HU), induces curly tail and limb malformations. Oxidative stress contributes to the developmental toxicity of HU. Reactive oxygen species (ROS) interact with polyunsaturated bilipid membranes to form α,β-unsaturated reactive aldehydes; 4-hydroxy-2-nonenal (4-HNE), one of the most cytotoxic of these aldehydes, covalently adducts with proteins, lipids, and nucleic acids. The goal of the current study is to determine if HU exposure of CD1 mice on gestation day 9 generates region-specific 4-HNE-protein adducts in the embryo and to identify the proteins targeted. The formation of 4-HNE-protein adducts was elevated in the caudal region of control embryos; HU exposure further increased 4-HNE-protein adduct formation in this area. Interestingly, three of the 4-HNE-modified proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamate oxaloacetate transaminase 2, and aldolase 1, A isoform, are involved in energy metabolism. The formation of 4-HNE-GAPDH protein adducts reduced GAPDH enzymatic activity by 20% and attenuated lactate production by 40%. Furthermore, HU exposure induced the nuclear translocation of GAPDH in the caudal region of exposed embryos; this nuclear translocation may be associated with the reactivation of oxidized proteins involved in DNA repair, such as apurinic/apyrimidinic endonuclease-1, and the stimulation of E1A-associated P300 protein/creb-binding protein (p300/CBP) activity, initiating cell death in a p53-dependent pathway. We propose that GAPDH is a redox-sensitive target in the embryo and may play a role in a stress response during development.
14973286
A small proportion of patients with deep vein thrombosis develop recurrent venous thromboembolic complications or bleeding during anticoagulant treatment. These complications may occur more frequently if these patients have concomitant cancer. This prospective follow-up study sought to determine whether in thrombosis patients those with cancer have a higher risk for recurrent venous thromboembolism or bleeding during anticoagulant treatment than those without cancer. Of the 842 included patients, 181 had known cancer at entry. The 12-month cumulative incidence of recurrent thromboembolism in cancer patients was 20.7% (95% CI, 15.6%-25.8%) versus 6.8% (95% CI, 3.9%- 9.7%) in patients without cancer, for a hazard ratio of 3.2 (95% CI, 1.9-5.4) The 12-month cumulative incidence of major bleeding was 12.4% (95% CI, 6.5%-18.2%) in patients with cancer and 4.9% (95% CI, 2.5%-7.4%) in patients without cancer, for a hazard ratio of 2.2 (95% CI, 1.2-4.1). Recurrence and bleeding were both related to cancer severity and occurred predominantly during the first month of anticoagulant therapy but could not be explained by sub- or overanticoagulation. Cancer patients with venous thrombosis are more likely to develop recurrent thromboembolic complications and major bleeding during anticoagulant treatment than those without malignancy. These risks correlate with the extent of cancer. Possibilities for improvement using the current paradigms of anticoagulation seem limited and new treatment strategies should be developed.
15041758
OBJECTIVE To evaluate the effectiveness of integrated care for chronic physical diseases and depression in reducing disability and improving quality of life. DESIGN A randomised controlled trial of multi-condition collaborative care for depression and poorly controlled diabetes and/or risk factors for coronary heart disease compared with usual care among middle aged and elderly people SETTING Fourteen primary care clinics in Seattle, Washington. PARTICIPANTS Patients with diabetes or coronary heart disease, or both, and blood pressure above 140/90 mm Hg, low density lipoprotein concentration >3.37 mmol/L, or glycated haemoglobin 8.5% or higher, and PHQ-9 depression scores of ≥ 10. INTERVENTION A 12 month intervention to improve depression, glycaemic control, blood pressure, and lipid control by integrating a "treat to target" programme for diabetes and risk factors for coronary heart disease with collaborative care for depression. The intervention combined self management support, monitoring of disease control, and pharmacotherapy to control depression, hyperglycaemia, hypertension, and hyperlipidaemia. MAIN OUTCOME MEASURES Social role disability (Sheehan disability scale), global quality of life rating, and World Health Organization disability assessment schedule (WHODAS-2) scales to measure disabilities in activities of daily living (mobility, self care, household maintenance). RESULTS Of 214 patients enrolled (106 intervention and 108 usual care), disability and quality of life measures were obtained for 97 intervention patients at six months (92%) and 92 at 12 months (87%), and for 96 usual care patients at six months (89%) and 92 at 12 months (85%). Improvements from baseline on the Sheehan disability scale (-0.9, 95% confidence interval -1.5 to -0.2; P = 0.006) and global quality of life rating (0.7, 0.2 to 1.2; P = 0.005) were significantly greater at six and 12 months in patients in the intervention group. There was a trend toward greater improvement in disabilities in activities of daily living (-1.5, -3.3 to 0.4; P = 0.10). CONCLUSIONS Integrated care that covers chronic physical disease and comorbid depression can reduce social role disability and enhance global quality of life. Trial registration Clinical Trials NCT00468676.
15048300
BACKGROUND Data on absolute risks of outcomes and patterns of drug use in cost-effectiveness analyses are often based on randomised clinical trials (RCTs). The objective of this study was to evaluate the external validity of published cost-effectiveness studies by comparing the data used in these studies (typically based on RCTs) to observational data from actual clinical practice. Selective Cox-2 inhibitors (coxibs) were used as an example. METHODS AND FINDINGS The UK General Practice Research Database (GPRD) was used to estimate the exposure characteristics and individual probabilities of upper gastrointestinal (GI) events during current exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) or coxibs. A basic cost-effectiveness model was developed evaluating two alternative strategies: prescription of a conventional NSAID or coxib. Outcomes included upper GI events as recorded in GPRD and hospitalisation for upper GI events recorded in the national registry of hospitalisations (Hospital Episode Statistics) linked to GPRD. Prescription costs were based on the prescribed number of tables as recorded in GPRD and the 2006 cost data from the British National Formulary. The study population included over 1 million patients prescribed conventional NSAIDs or coxibs. Only a minority of patients used the drugs long-term and daily (34.5% of conventional NSAIDs and 44.2% of coxibs), whereas coxib RCTs required daily use for at least 6-9 months. The mean cost of preventing one upper GI event as recorded in GPRD was US$104k (ranging from US$64k with long-term daily use to US$182k with intermittent use) and US$298k for hospitalizations. The mean costs (for GPRD events) over calendar time were US$58k during 1990-1993 and US$174k during 2002-2005. Using RCT data rather than GPRD data for event probabilities, the mean cost was US$16k with the VIGOR RCT and US$20k with the CLASS RCT. CONCLUSIONS The published cost-effectiveness analyses of coxibs lacked external validity, did not represent patients in actual clinical practice, and should not have been used to inform prescribing policies. External validity should be an explicit requirement for cost-effectiveness analyses.
15058155
EBI2, aka GPR183, is a G-couple receptor originally identified in 1993 as one of main genes induced in Burkitt's lymphoma cell line BL41 by Epstein-Barr virus (EBV) infection. After it was reported in 2009 that the receptor played a key role in regulating B cell migration and responses, we initiated an effort in looking for its endogenous ligand. In 2011 we and another group reported the identification of 7α, 25-dihydroxyxcholesterol (7α, 25-OHC), an oxysterol, as the likely physiological ligand of EBI2. A few subsequently published studies further elucidated how 7α, 25-OHC bound to EBI2, and how a gradient of 7α, 25-OHC could be generated in vivo and regulated migration, activation, and functions of B cells, T cells, dendritic cells (DCs), monocytes/macrophages, and astrocytes. The identification of 7α, 25-OHC as a G protein-coupled receptor ligand revealed a previously unknown signaling system of oxysterols, a class of molecules which exert profound biological functions. Dysregulation of the synthesis or functions of these molecules is believed to contribute to inflammation and autoimmune diseases, cardiovascular diseases, neurodegenerative diseases, cancer as well as metabolic diseases such as diabetes, obesity, and dyslipidemia. Therefore EBI2 may represent a promising target for therapeutic interventions for human diseases.
15081770
We previously reported a strong IL4I1 gene expression in primary mediastinal B-cell lymphoma (PMBL) and recently identified the protein as a secreted L-phenylalanine oxidase, physiologically expressed by myeloid cells, which inhibits T-cell proliferation in vitro. Here, we analyzed the pattern of IL4I1 protein expression in 315 human lymphoid and non-lymphoid malignancies. Besides PMBL, IL4I1 expression in tumors was very frequent. IL4I1 was detected in tumor-associated macrophages from most of the tumors and in neoplastic cells from follicular lymphoma, classic and nodular lymphocyte predominant Hodgkin lymphomas and small lymphocytic lymphoma, three of which are germinal center derived. IL4I1-positive tumor cells were also detected in rare cases of solid cancers, mainly mesothelioma. The enzymatic activity paralleled protein expression, suggesting that IL4I1 is functional in vivo. Depending on the tumor type, IL4I1 may impact on different infiltrating lymphocyte populations with consequences on tumor evolution. In the particular case of follicular lymphoma cells, which are susceptible to antitumor cytotoxic T cells killing but depend on interactions with local T helper cells for survival, a high level of IL4I1 expression seems associated with the absence of bone marrow involvement and a better outcome. These findings plead for an evaluation of IL4I1 as a prognosis factor.
15113221
Pathway-specific therapy is the future of cancer management. The oncogenic phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in solid tumors; however, currently, no reliable test for PI3K pathway activation exists for human tumors. Taking advantage of the observation that loss of PTEN, the negative regulator of PI3K, results in robust activation of this pathway, we developed and validated a microarray gene expression signature for immunohistochemistry (IHC)-detectable PTEN loss in breast cancer (BC). The most significant signature gene was PTEN itself, indicating that PTEN mRNA levels are the primary determinant of PTEN protein levels in BC. Some PTEN IHC-positive BCs exhibited the signature of PTEN loss, which was associated to moderately reduced PTEN mRNA levels cooperating with specific types of PIK3CA mutations and/or amplification of HER2. This demonstrates that the signature is more sensitive than PTEN IHC for identifying tumors with pathway activation. In independent data sets of breast, prostate, and bladder carcinoma, prediction of pathway activity by the signature correlated significantly to poor patient outcome. Stathmin, encoded by the signature gene STMN1, was an accurate IHC marker of the signature and had prognostic significance in BC. Stathmin was also pathway-pharmacodynamic in vitro and in vivo. Thus, the signature or its components such as stathmin may be clinically useful tests for stratification of patients for anti-PI3K pathway therapy and monitoring therapeutic efficacy. This study indicates that aberrant PI3K pathway signaling is strongly associated with metastasis and poor survival across carcinoma types, highlighting the enormous potential impact on patient survival that pathway inhibition could achieve.
15128866
Metastatic melanoma is a rapidly progressing disease with high mortality rate and limited treatment options. Immunotherapy based on tumor-targeting cytotoxic T cell responses represents a promising strategy. To assist in its development, we examined the possibility and efficacy of using CD4+ cytotoxic T cells. The regulatory mechanisms controlling CD4+ T cell-mediated cytotoxicity were also investigated. We found that naturally occurring granzyme B and perforin-expressing CD4+ cytotoxic T cells can be recovered from metastatic melanoma patients at significantly elevated frequencies compared to those from healthy controls. These CD4+ cytotoxic T cells were also capable of killing autologous tumor cells harvested from metastatic melanoma, independent of CD8+ T cells or any other cell types. However, several restricting factors were observed. First, the cytolytic activity by CD4+ T cells required high MHC class II expression on melanoma cells, which was not satisfied in a subset of melanomas. Second, the granzyme B and perforin release by activated CD4+ cytotoxic T cells was reduced after coculturing with autologous melanoma cells, characterized by low LAMP-1 expression and low granzyme B and perforin secretion in the supernatant. This suggested that inhibitory mechanisms were present to suppress CD4+ cytotoxic T cells. Indeed, blockade of PD-1 and CTLA-4 had increased the cytolytic activity of CD4+ T cells but was only effective in MHC class II high but not MHC class II low melanomas. Together, our study showed that CD4+ T cell-mediated cytotoxicity could eliminate primary melanoma cells but the efficacy depended on MHC class II expression.
15135001
This paper highlights methods for using geospatial analysis to assess, enhance, and improve recruitment efforts to ensure representativeness in study populations. We apply these methods to the Measurement to Understand Reclassification of Disease of Cabarrus/Kannapolis (MURDOCK) study, a longitudinal population health study focused on the city of Kannapolis and Cabarrus County, NC. Although efforts have been made to recruit a participant registry that is representative of the 18 ZIP code catchment region inclusive of Cabarrus County and Kannapolis, bias in such recruitment is inevitable. Participants in the MURDOCK study are geospatially referenced at entry, providing information that can be used to monitor and guide recruitment efforts. MURDOCK participant population representativeness was assessed using chi-squared tests to compare the MURDOCK population with 2010 Census data, relative to both the entire 18 ZIP code catchment area and for individual Census tracts. A logistic regression model was fit to characterize Census tracts with low recruitment, defined by fewer than 56 participants from that tract. The distance to the site at which participants enrolled was calculated, and median distance to enrollment site was used in the logistic regression. Tracts with low recruitment rates contained higher minority and younger populations, suggesting specific strategies for improving recruitment in these areas. Areal units farther away from enrollment sites were also not well-sampled, despite being in the specified study area, indicating that distance traveled to enrollment may be a barrier. These results have implications for targeting recruitment efforts and representative samples more generally, including in other population-based studies.
15176526
Epidermal homeostasis depends on a balance between stem cell renewal and differentiation and is regulated by extrinsic signals from the extracellular matrix (ECM). A powerful approach to analysing the pathways involved is to engineer single-cell microenvironments in which individual variables are precisely and quantitatively controlled. Here, we employ micropatterned surfaces to identify the signalling pathways by which restricted ECM contact triggers human epidermal stem cells to initiate terminal differentiation. On small (20 μm diameter) circular islands, keratinocytes remained rounded, and differentiated at higher frequency than cells that could spread on large (50 μm diameter) islands. Differentiation did not depend on ECM composition or density. Rather, the actin cytoskeleton mediated shape-induced differentiation by regulating serum response factor (SRF) transcriptional activity. Knockdown of SRF or its co-factor MAL inhibited differentiation, whereas overexpression of MAL stimulated SRF activity and involucrin expression. SRF target genes FOS and JUNB were also required for differentiation: c-Fos mediated serum responsiveness, whereas JunB was regulated by actin and MAL. Our findings demonstrate how biophysical cues are transduced into transcriptional responses that determine epidermal cell fate.
15194125
This study investigated interobserver (two observers) and intrasubject (two measurements) reproducibility of QT dispersion from abnormal electrocardiograms in patients with previous myocardial infarction, and compared a user-interactive with an automatic measurement system. Standard 12-lead electrocardiograms, recorded at 25 mm.s-1, were randomly chosen from 70 patients following myocardial infarction. These were scanned into a personal computer, and specially designed software skeletonized and joined each image. The images were then available for user-interactive (mouse and computer screen), or automatic measurements using a specially designed algorithm. For all methods reproducibility of the RR interval was excellent (mean absolute errors 3-4 ms, relative errors 0.3-0.5%). Reproducibility of the mean QT interval was good; intrasubject error was 6 ms (relative error 1.4%), interobserver error was 7 ms (1.8%), and observers' vs automatic measurement errors were 10 and 11 ms (2.5, 2.8%). However QTc dispersion measurements had large errors for all methods; intrasubject error was 12 ms (17.3%), interobserver error was 15 ms (22.1%), and observers' vs automatic measurement were errors 30 and 28 ms (35.4, 31.9%). QT dispersion measurements rely on the most difficult to measure QT intervals, resulting in a problem of reproducibility. Any automatic system must not only recognize common T wave morphologies, but also these more difficult T waves, if it is to be useful for measuring QT dispersion. The poor reproducibility of QT dispersion limits its role as a useful clinical tool, particularly as a predictor of events.
15215393
Glioblastoma multiforme (GBM) is a particularly aggressive brain tumor and remains a clinically devastating disease. Despite innovative therapies for the treatment of GBM, there has been no significant increase in patient survival over the past decade. Enzymes that control epigenetic alterations are of considerable interest as targets for cancer therapy because of their critical roles in cellular processes that lead to oncogenesis. Several inhibitors of histone deacetylases (HDACs) have been developed and tested in GBM with moderate success. We found that treatment of GBM cells with HDAC inhibitors caused the accumulation of histone methylation, a modification removed by the lysine specific demethylase 1 (LSD1). This led us to examine the effects of simultaneously inhibiting HDACs and LSD1 as a potential combination therapy. We evaluated induction of apoptosis in GBM cell lines after combined inhibition of LSD1 and HDACs. LSD1 was inhibited by targeted short hairpin RNA or pharmacological means and inhibition of HDACs was achieved by treatment with either vorinostat or PCI-24781. Caspase-dependent apoptosis was significantly increased (>2-fold) in LSD1-knockdown GBM cells treated with HDAC inhibitors. Moreover, pharmacologically inhibiting LSD1 with the monoamine oxidase inhibitor tranylcypromine, in combination with HDAC inhibitors, led to synergistic apoptotic cell death in GBM cells; this did not occur in normal human astrocytes. Taken together, these results indicate that LSD1 and HDACs cooperate to regulate key pathways of cell death in GBM cell lines but not in normal counterparts, and they validate the combined use of LSD1 and HDAC inhibitors as a therapeutic approach for GBM.
15248287
Neutrophil apoptosis is a highly regulated process essential for inflammation resolution, the molecular mechanisms of which are only partially elucidated. In this study, we describe a survival pathway controlled by proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repairing of proliferating cells. We show that mature neutrophils, despite their inability to proliferate, express high levels of PCNA exclusively in their cytosol and constitutively associated with procaspases, presumably to prevent their activation. Notably, cytosolic PCNA abundance decreased during apoptosis, and increased during in vitro and in vivo exposure to the survival factor granulocyte colony-stimulating factor (G-CSF). Peptides derived from the cyclin-dependent kinase inhibitor p21, which compete with procaspases to bind PCNA, triggered neutrophil apoptosis thus demonstrating that specific modification of PCNA protein interactions affects neutrophil survival. Furthermore, PCNA overexpression rendered neutrophil-differentiated PLB985 myeloid cells significantly more resistant to TNF-related apoptosis-inducing ligand- or gliotoxin-induced apoptosis. Conversely, a decrease in PCNA expression after PCNA small interfering RNA transfection sensitized these cells to apoptosis. Finally, a mutation in the PCNA interdomain-connecting loop, the binding site for many partners, significantly decreased the PCNA-mediated antiapoptotic effect. These results identify PCNA as a regulator of neutrophil lifespan, thereby highlighting a novel target to potentially modulate pathological inflammation.
15274349
Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.
15282056
Phosphoenolpyruvate (PEP) is an important precursor for anaerobic production of succinate and malate. Although inactivating PEP/carbohydrate phosphotransferase systems (PTS) could increase PEP supply, the resulting strain had a low glucose utilization rate. In order to improve anaerobic glucose utilization rate for efficient production of succinate and malate, combinatorial modulation of galactose permease (galP) and glucokinase (glk) gene expression was carried out in chromosome of an Escherichia coli strain with inactivated PTS. Libraries of artificial regulatory parts, including promoter and messenger RNA stabilizing region (mRS), were firstly constructed in front of β-galactosidase gene (lacZ) in E. coli chromosome through λ-Red recombination. Most regulatory parts selected from mRS library had constitutive strengths under different cultivation conditions. A convenient one-step recombination method was then used to modulate galP and glk gene expression with different regulatory parts. Glucose utilization rates of strains modulated with either galP or glk all increased, and the rates had a positive relation with expression strength of both genes. Combinatorial modulation had a synergistic effect on glucose utilization rate. The highest rate (1.64 g/L h) was tenfold higher than PTS− strain and 39% higher than the wild-type E. coli. These modulated strains could be used for efficient anaerobic production of succinate and malate.
15319019
Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre’s database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre’s database. N348I increased in prevalence from below 1% in 368 treatmentnao ¨ve individuals to 12.1% in 1,009 treatment-experienced patients (p ¼ 7.7 3 10 � 12 ). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p , 0.001), the lamivudine resistance mutations M184V/I (p , 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p , 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p , 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wildtype HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions
15322518
Subunits of the SWI/SNF chromatin remodeling complex are mutated in a significant proportion of human cancers. Malignant rhabdoid tumors (MRTs) are lethal pediatric cancers characterized by a deficiency in the SWI/SNF subunit SMARCB1. Here, we employ an integrated molecular profiling and chemical biology approach to demonstrate that the receptor tyrosine kinases (RTKs) PDGFRα and FGFR1 are coactivated in MRT cells and that dual blockade of these receptors has synergistic efficacy. Inhibitor combinations targeting both receptors and the dual inhibitor ponatinib suppress the AKT and ERK1/2 pathways leading to apoptosis. MRT cells that have acquired resistance to the PDGFRα inhibitor pazopanib are susceptible to FGFR inhibitors. We show that PDGFRα levels are regulated by SMARCB1 expression, and assessment of clinical specimens documents the expression of both PDGFRα and FGFR1 in rhabdoid tumor patients. Our findings support a therapeutic approach in cancers with SWI/SNF deficiencies by exploiting RTK coactivation dependencies.
15381976
Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin, implying that ROS/MAPK signaling contributes to the relief of airway inflammation. Our findings indicate for the first time that morin alleviates airway inflammation in chronic asthma, which probably occurs via the oxidative stress-responsive MAPK pathway, highlighting a novel profile of morin as a potent agent for asthma management.
15414628
Legionella pneumophila, the causative agent of Legionnaires' pneumonia, resides in a distinct vacuole structure called Legionella-containing vacuole (LCV). The LCV resists fusion with the lysosome and permits efficient bacterial replication in host macrophages, which requires a Dot/Icm type IVB secretion system. Dot/Icm-translocated effector SdhA is critical for L. pneumophila intracellular growth and functions to prevent host cell death. Here, we show that the absence of SdhA resulted in elevated caspase-1 activation and IL-1β secretion as well as macrophage pyroptosis during Legionella infection. These inflammasome activation phenotypes were independent of the established flagellin-NAIP5-NLRC4 axis, but relied on the DNA-sensing AIM2 inflammasome. We further demonstrate that Legionella DNA was released into macrophage cytosol, and this effect was significantly exaggerated by the absence of SdhA. SdhA bears a functional Golgi-targeting GRIP domain that is required for preventing AIM2 inflammasome activation. Ectopically expressed SdhA formed a unique ring-shape membrane structure, further indicating a role in membrane trafficking and maintaining LCV membrane integrity. Our data together suggest a possible link, mediated by the function of SdhA, between LCV trafficking/maturation and suppression of host innate immune detection.
15425958
Interleukin-10 (IL-10) suppresses the maturation and cytokine production of dendritic cells (DCs), key regulators of adaptive immunity, and prevents the activation and polarization of naïve T cells towards protective gamma interferon-producing effectors. We hypothesized that human cytomegalovirus (HCMV) utilizes its viral IL-10 homolog (cmvIL-10) to attenuate DC functionality, thereby subverting the efficient induction of antiviral immune responses. RNA and protein analyses demonstrated that the cmvIL-10 gene was expressed with late gene kinetics. Treatment of immature DCs (iDCs) with supernatant from HCMV-infected cultures inhibited both the lipopolysaccharide-induced DC maturation and proinflammatory cytokine production. These inhibitory effects were specifically mediated through the IL-10 receptor and were not observed when DCs were treated with supernatant of cells infected with a cmvIL-10-knockout mutant. Incubation of iDCs with recombinant cmvIL-10 recapitulated the inhibition of maturation. Furthermore, cmvIL-10 had pronounced long-term effects on those DCs that could overcome this inhibition of maturation. It enhanced the migration of mature DCs (mDCs) towards the lymph node homing chemokine but greatly reduced their cytokine production. The inability of mDCs to secrete IL-12 was maintained, even when they were restimulated by the activated T-cell signal CD40 ligand in the absence of cmvIL-10. Importantly, cmvIL-10 potentiates these anti-inflammatory effects, at least partially, by inducing endogenous cellular IL-10 expression in DCs. Collectively, we show that cmvIL-10 causes long-term functional alterations at all stages of DC activation.
15435343
The inflammasome is a proteolysis complex that generates the active forms of the proinflammatory cytokines interleukin (IL)-1β and IL-18. Inflammasome activation is mediated by NLR proteins that respond to microbial and nonmicrobial stimuli. Among NLRs, NLRP3 senses the widest array of stimuli and enhances adaptive immunity. However, its role in antitumor immunity is unknown. Therefore, we evaluated the function of the NLRP3 inflammasome in the immune response using dendritic cell vaccination against the poorly immunogenic melanoma cell line B16-F10. Vaccination of Nlrp3(-/-) mice led to a relative 4-fold improvement in survival relative to control animals. Immunity depended on CD8(+) T cells and exhibited immune specificity and memory. Increased vaccine efficacy in Nlrp3(-/-) hosts did not reflect differences in dendritic cells but rather differences in myeloid-derived suppressor cells (MDSC). Although Nlrp3 was expressed in MDSCs, the absence of Nlrp3 did not alter either their functional capacity to inhibit T cells or their presence in peripheral lymphoid tissues. Instead, the absence of Nlrp3 caused a 5-fold reduction in the number of tumor-associated MDSCs found in host mice. Adoptive transfer experiments also showed that Nlrp3(-/-) MDSCs were less efficient in reaching the tumor site. Depleting MDSCs with an anti-Gr-1 antibody increased the survival of tumor-bearing wild-type mice but not Nlrp3(-/-) mice. We concluded that Nlrp3 was critical for accumulation of MDSCs in tumors and for inhibition of antitumor T-cell immunity after dendritic cell vaccination. Our findings establish an unexpected role for Nlrp3 in impeding antitumor immune responses, suggesting novel approaches to improve the response to antitumor vaccines by limiting Nlrp3 signaling.
15462523
Natural killer (NK) cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells from a patient's blood since they represent only 10% of the lymphocytes and are often dysfunctional. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T cells to prevent graft-versus-host reactions. Cytotoxic cell lines have been established from patients with clonal NK-cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. Except for the NK-92 cell line, though, none of the other six known NK cell lines has consistently and reproducibly shown high antitumor cytotoxicity. Only NK-92 cells can easily be genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through antibody-dependent cellular cytotoxicity. NK-92 is also the only cell line product that has been infused into patients with advanced cancer with clinical benefit and minimal side effects.
15476777
BACKGROUND Elderly and frail patients with cancer, although often treated with chemotherapy, are under-represented in clinical trials. We designed FOCUS2 to investigate reduced-dose chemotherapy options and to seek objective predictors of outcome in frail patients with advanced colorectal cancer. METHODS We undertook an open, 2 × 2 factorial trial in 61 UK centres for patients with previously untreated advanced colorectal cancer who were considered unfit for full-dose chemotherapy. After comprehensive health assessment (CHA), patients were randomly assigned by minimisation to: 48-h intravenous fluorouracil with levofolinate (group A); oxaliplatin and fluorouracil (group B); capecitabine (group C); or oxaliplatin and capecitabine (group D). Treatment allocation was not masked. Starting doses were 80% of standard doses, with discretionary escalation to full dose after 6 weeks. The two primary outcome measures were: addition of oxaliplatin ([A vs B] + [C vs D]), assessed with progression-free survival (PFS); and substitution of fluorouracil with capecitabine ([A vs C] + [B vs D]), assessed by change from baseline to 12 weeks in global quality of life (QoL). Analysis was by intention to treat. Baseline clinical and CHA data were modelled against outcomes with a novel composite measure, overall treatment utility (OTU). This study is registered, number ISRCTN21221452. FINDINGS 459 patients were randomly assigned (115 to each of groups A-C, 114 to group D). Factorial comparison of addition of oxaliplatin versus no addition suggested some improvement in PFS, but the finding was not significant (median 5·8 months [IQR 3·3-7·5] vs 4·5 months [2·8-6·4]; hazard ratio 0·84, 95% CI 0·69-1·01, p=0·07). Replacement of fluorouracil with capecitabine did not improve global QoL: 69 of 124 (56%) patients receiving fluorouracil reported improvement in global QoL compared with 69 of 123 (56%) receiving capecitabine. The risk of having any grade 3 or worse toxic effect was not significantly increased with oxaliplatin (83/219 [38%] vs 70/221 [32%]; p=0·17), but was higher with capecitabine than with fluorouracil (88/222 [40%] vs 65/218 [30%]; p=0·03). In multivariable analysis, fewer baseline symptoms (odds ratio 1·32, 95% CI 1·14-1·52), less widespread disease (1·51, 1·05-2·19), and use of oxaliplatin (0·57, 0·39-0·82) were predictive of better OTU. INTERPRETATION FOCUS2 shows that with an appropriate design, including reduced starting doses of chemotherapy, frail and elderly patients can participate in a randomised controlled trial. On balance, a combination including oxaliplatin was preferable to single-agent fluoropyrimidines, although the primary endpoint of PFS was not met. Capecitabine did not improve QoL compared with fluorouracil. Comprehensive baseline assessment holds promise as an objective predictor of treatment benefit. FUNDING Cancer Research UK and the Medical Research Council.
15482274
OBJECTIVE To determine whether ultrasound imaging can reduce the risk of failed lumbar punctures or epidural catheterisations, when compared with standard palpation methods, and whether ultrasound imaging can reduce traumatic procedures, insertion attempts, and needle redirections. DESIGN Systematic review and meta-analysis of randomised controlled trials. DATA SOURCES Ovid Medline, Embase, and Cochrane Central Register of Controlled Trials up to May 2012, without restriction by language or publication status. REVIEW METHODS Randomised trials that compared ultrasound imaging with standard methods (no imaging) in the performance of a lumbar puncture or epidural catheterisation were identified. RESULTS 14 studies with a total of 1334 patients were included (674 patients assigned to the ultrasound group, 660 to the control group). Five studies evaluated lumbar punctures and nine evaluated epidural catheterisations. Six of 624 procedures conducted in the ultrasound group failed; 44 of 610 procedures in the control group failed. Ultrasound imaging reduced the risk of failed procedures (risk ratio 0.21 (95% confidence interval 0.10 to 0.43), P<0.001). Risk reduction was similar when subgroup analysis was performed for lumbar punctures (risk ratio 0.19 (0.07 to 0.56), P=0.002) or epidural catheterisations (0.23 (0.09 to 0.60), P=0.003). Ultrasound imaging also significantly reduced the risk of traumatic procedures (risk ratio 0.27 (0.11 to 0.67), P=0.005), the number of insertion attempts (mean difference -0.44 (-0.64 to -0.24), P<0.001), and the number of needle redirections (mean difference -1.00 (-1.24 to -0.75), P<0.001). CONCLUSIONS Ultrasound imaging can reduce the risk of failed or traumatic lumbar punctures and epidural catheterisations, as well as the number of needle insertions and redirections. Ultrasound may be a useful adjunct for these procedures.
15488881
Humoral immunity depends on both rapid and long-term antibody production against invading pathogens. This is achieved by the generation of spatially distinct extrafollicular plasmablast and follicular germinal center (GC) B cell populations, but the signals that guide responding B cells to these alternative compartments have not been fully elucidated. Here, we show that expression of the orphan G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) by activated B cells was essential for their movement to extrafollicular sites and induction of early plasmablast responses. Conversely, downregulation of EBI2 enabled B cells to access the center of follicles and promoted efficient GC formation. EBI2 therefore provides a previously uncharacterized dimension to B cell migration that is crucial for coordinating rapid versus long-term antibody responses.
15491308
Human mesenchymal stem cells (MSCs) have therapeutic potential because of their ability to self-renew and differentiate into multiple tissues. However, senescence often occurs in MSCs when they are cultured in vitro and the molecular mechanisms underlying this effect remain unclear. In this study, we found that NAD-dependent protein deacetylase SIRT1 is differentially expressed in both human bone marrow-derived MSCs (B-MSCs) and adipose tissue-derived MSCs after increasing passages of cell culture. Using lentiviral shRNA we demonstrated that selective knockdown of SIRT1 in human MSCs at early passage slows down cell growth and accelerates cellular senescence. Conversely, overexpression of SIRT1 delays senescence in B-MSCs that have undergone prolonged in vitro culturing and the cells do not lose adipogenic and osteogenic potential. In addition, we found that the delayed accumulation of the protein p16 is involved in the effect of SIRT1. However, resveratrol, which has been used as an activator of SIRT1 deacetylase activity, only transiently promotes proliferation of B-MSCs. Our findings will help us understand the role of SIRT1 in the aging of normal diploid cells and may contribute to the prevention of human MSCs senescence thus benefiting MSCs-based tissue engineering and therapies.
15491404
The synapse is a highly organized cellular specialization whose structure and composition are reorganized, both positively and negatively, depending on the strength of input signals. The mechanisms orchestrating these changes are not well understood. A plausible locus for the reorganization of synapse components and structure is actin, because it serves as both cytoskeleton and scaffold for synapses and exists in a dynamic equilibrium between F-actin and G-actin that is modulated bidirectionally by cellular signaling. Using a new FRET-based imaging technique to monitor F-actin/G-actin equilibrium, we show here that tetanic stimulation causes a rapid, persistent shift of actin equilibrium toward F-actin in the dendritic spines of rat hippocampal neurons. This enlarges the spines and increases postsynaptic binding capacity. In contrast, prolonged low-frequency stimulation shifts the equilibrium toward G-actin, resulting in a loss of postsynaptic actin and of structure. This bidirectional regulation of actin is actively involved in protein assembly and disassembly and provides a substrate for bidirectional synaptic plasticity.
15493354
Recent findings challenge the concept that microglia solely function in disease states in the central nervous system (CNS). Rather than simply reacting to CNS injury, infection, or pathology, emerging lines of evidence indicate that microglia sculpt the structure of the CNS, refine neuronal circuitry and network connectivity, and contribute to plasticity. These physiological functions of microglia in the normal CNS begin during development and persist into maturity. Here, we develop a conceptual framework for functions of microglia beyond neuroinflammation and discuss the rich repertoire of signaling and communication motifs in microglia that are critical both in pathology and for the normal physiology of the CNS.
15512462
OBJECTIVE To compare the incidence of cancer among women with and without a history of pre-eclampsia. DESIGN Cohort study. SETTING Jerusalem perinatal study of women who delivered in three large hospitals in West Jerusalem during 1964-76. PARTICIPANTS 37 033 women. MAIN OUTCOME MEASURES Age adjusted and multivariable adjusted hazard ratios for cancer incidence for the entire cohort and for women who were primiparous at study entry. RESULTS Cancer developed in 91 women who had pre-eclampsia and 2204 who did not (hazard ratio 1.27, 95% confidence interval 1.03 to 1.57). The risk of site specific cancers was increased, particularly of the stomach, ovary epithelium, breast, and lung or larynx. The incidence of cancer of the stomach, breast, ovary, kidney, and lung or larynx was increased in primiparous women at study entry who had a history pre-eclampsia. CONCLUSIONS A history of pre-eclampsia is associated with increases in overall risk of cancer and incidence at several sites. This may be explained by environmental and genetic factors common to the development of pre-eclampsia and cancer in this population.
15521377
Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this "senescence associated secretory phenotype (SASP)" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.
15541119
Anticancer agents go through a process by which their antitumor activity, on the basis of the amount of tumor shrinkage they could generate, has been investigated. In the late 1970s, the International Union Against Cancer and the World Health Organization (WHO) introduced specific criteria for the codification of tumor response evaluation. In 1994, several organizations involved in clinical cancer research joined together to undertake the review of these response evaluation criteria on the basis of their experience and knowledge. After several years of intensive discussions, new guidelines are ready and will replace the previous WHO criteria. In parallel to this initiative, one of the participating groups developed a model by which response rates could be derived from unidimensional measurement of tumor lesions instead of the usual bidimensional approach. This new concept has been largely validated by the Response Evaluation Criteria in Solid Tumors (Recist) Group and integrated into the present guidelines. This special article provides some philosophic background to clarify the various purposes of response evaluation. It proposes a model by which a combined assessment of all existing lesions, characterized by target lesion (to be measured) and nontarget lesions, is used to extrapolate an overall response to treatment. Methods of assessing tumor lesions are better codified. All other aspects of response evaluation have been discussed, reviewed, and amended whenever suitable.
15548965
Ionotropic glutamate receptor (iGluR) subunits contain a large N-terminal domain (NTD) that precedes the agonist-binding domain (ABD) and participates in subunit oligomerization. In NMDA receptors (NMDARs), the NTDs of NR2A and NR2B subunits also form binding sites for the endogenous inhibitor Zn(2+) ion. Although these allosteric sites have been characterized in detail, the molecular mechanisms by which the NTDs communicate with the rest of the receptor to promote its inhibition remain unknown. Here, we identify the ABD dimer interface as a major structural determinant that permits coupling between the NTDs and the channel gate. The strength of this interface also controls proton inhibition, another form of allosteric modulation of NMDARs. Conformational rearrangements at the ABD dimer interface thus appear to be a key mechanism conserved in all iGluR subfamilies, but have evolved to fulfill different functions: fast desensitization at AMPA and kainate receptors, allosteric inhibition at NMDARs.
15559582
In a comparative study of pre- and postmenopausal women with benign and malignant breast disease, a number of differences were observed in circulating plasma prolactin and lipid concentrations. Plasma lipids, phospholipids, triglycerides, cholesterol and free fatty acids were all higher in blood obtained from breast cancer patients prior to surgery. HDL-Cholesterol levels were significantly lower in these patients. These differences remained when the patient groups were sub-divided according to menopausal status. Plasma prolactin concentrations were also found to be higher in cancer compared with non-cancer patients, this effect being more marked in premenopausal than in postmenopausal patients. Premenopausal patients with invasive or poorly differentiated disease had significantly higher prolactin levels than those with non-invasive disease. No correlations were found between plasma prolactin and any of the lipid fractions.
15561961
Hypercholesterolemia is associated with impairments in endothelium-dependent vascular relaxations. Paradoxically, endothelial production of nitrogen oxides is increased in early stages of hypercholesterolemia. Prior work has shown that oxidized low density lipoprotein (LDL) has both stimulatory and inhibitory effects on endothelial nitric oxide synthase expression (eNOS) and has focused on lysophosphatidyl choline (LPC) as a component of oxidized LDL which may modulate this effect. Another biologically active component of oxidized LDL is 13-hydroperoxyoctadecadienoic acid (13-HPODE), an oxidized form of linoleic acid. The purpose of this study was to determine the effect of HPODE on the expression of eNOS in bovine aortic endothelial cells (BAECs). Twenty four hour treatment of endothelial cells with HPODE caused a dose-dependent increase in eNOS mRNA levels as assessed by Northern analysis. The time response studies show that HPODE treatment significantly increased eNOS mRNA levels at 12 and 24 h. Concomitant with the increase in eNOS mRNA levels, 20 microM HPODE treatment significantly increased eNOS protein content and enzyme activity. Nuclear run-on studies indicated that the rate of transcription of eNOS gene was significantly elevated 4 h after HPODE treatment when compared to control cultures. Also, actinomycin D studies demonstrated that the half-life of eNOS mRNA was increased from 6 h to 12 h by HPODE treatment. Thus, HPODE-induced up-regulation of eNOS expression is mediated by both transcriptional and posttranscriptional mechanisms. These observations suggest that endothelial cells may attempt to compensate for oxidative injury by increasing expression of eNOS in early stages of hypercholesterolemia.
15570691
Activation of cyclin-dependent kinases 4 and 6 (cdk4/6) occurs in the majority of glioblastoma multiforme (GBM) tumors, and represents a promising molecular target for the development of small molecule inhibitors. In the current study, we investigated the molecular determinants and in vivo response of diverse GBM cell lines and xenografts to PD-0332991, a cdk4/6-specific inhibitor. In vitro testing of PD-0332991 against a panel of GBM cell lines revealed a potent G(1) cell cycle arrest and induction of senescence in each of 16 retinoblastoma protein (Rb)-proficient cell lines regardless of other genetic lesions, whereas 5 cell lines with homozygous inactivation of Rb were completely resistant to treatment. Short hairpin RNA depletion of Rb expression conferred resistance of GBM cells to PD-0332991, further demonstrating a requirement of Rb for sensitivity to cdk4/6 inhibition. PD-0332991 was found to efficiently cross the blood-brain barrier and proved highly effective in suppressing the growth of intracranial GBM xenograft tumors, including those that had recurred after initial therapy with temozolomide. Remarkably, no mice receiving PD-0332991 died as a result of disease progression while on therapy. Additionally, the combination of PD-0332991 and radiation therapy resulted in significantly increased survival benefit compared with either therapy alone. In total, our results support clinical trial evaluation of PD-0332991 against newly diagnosed as well as recurrent GBM, and indicate that Rb status is the primary determinant of potential benefit from this therapy.
15570962
We describe an approach for picking haplotype-tagging single nucleotide polymorphisms (htSNPs) that is presently being taken in two large nested case-control studies within a multiethnic cohort (MEC), which are engaged in a search for associations between risk of prostate and breast cancer and common genetic variations in candidate genes. Based on a preliminary sample of 70 control subjects chosen at random from each of the 5 ethnic groups in the MEC we estimate haplotype frequencies using a variant of the Excoffier-Slatkin E-M algorithm after genotyping a high density of SNPs selected every 3–5 kb in and surrounding a candidate gene. In order to evaluate the performance of a candidate set of htSNPS (which will be genotyped in the much larger case-control sample) we treat the haplotype frequencies estimate above as known, and carry out a formal calculation of the uncertainty of the number of copies of common haplotypes carried by an individual, summarizing this calculation as a coefficient of determination, R2h. A candidate set of htSNPS of a given size is chosen so as to maximize the minimum value of R2h over the common haplotypes, h.
15578265
Several lines of evidence suggest a role for the gut microbiome in type 1 diabetes. Treating diabetes-prone rodents with probiotics or antibiotics prevents the development of the disorder. Diabetes-prone rodents also have a distinctly different gut microbiome compared with healthy rodents. Recent studies in children with a high genetic risk for type 1 diabetes demonstrate significant differences in the gut microbiome between children who develop autoimmunity for the disease and those who remain healthy. However, the differences in microbiome composition between autoimmune and healthy children are not consistent across all studies because of the strong environmental influences on microbiome composition, particularly diet and geography. Controlling confounding factors of microbiome composition uncovers bacterial associations with disease. For example, in a human cohort from a single Finnish city where geography is confined, a strong association between one dominant bacterial species, Bacteroides dorei, and type 1 diabetes was discovered (Davis-Richardson et al. Front Microbiol 2014;5:678). Beyond this, recent DNA methylation analyses suggest that a thorough epigenetic analysis of the gut microbiome may be warranted. These studies suggest a testable model whereby a diet high in fat and gluten and low in resistant starch may be the primary driver of gut dysbiosis. This dysbiosis may cause a lack of butyrate production by gut bacteria, which, in turn, leads to the development of a permeable gut followed by autoimmunity. The bacterial community responsible for these changes in butyrate production may vary around the world, but bacteria of the genus Bacteroides are thought to play a key role.
15600979
EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention.
15615957
UNLABELLED Fruit and vegetable consumption has been inversely associated with the risk of chronic diseases including cancer and cardiovascular disease, with the beneficial effects attributed to a variety of protective antioxidants, carotenoids and phytonutrients. The objective of the present study was to determine the effect of supplementation with dehydrated concentrates from mixed fruit and vegetable juices (Juice Plus+R) on serum antioxidant and folate status, plasma homocysteine levels and markers for oxidative stress and DNA damage. Japanese subjects (n=60; age 27.8 yrs; BMI 22.1) were recruited to participate in a double-blind placebo controlled study and were randomized into 2 groups of 30, matched for sex, age, BMI and smoking status (39 males, 22 smokers; 21 females, 13 smokers). Subjects were given encapsulated supplements containing mixed fruit and vegetable juice concentrates or a matching placebo for 28 days, with blood and urine samples collected at baseline, day 14 and day 28 for analytical testing. Compared with the placebo, 28 day supplementation significantly increased the concentration of serum beta-carotene 528% (p<0.0001), lycopene 80.2% (p<0.0005), and alpha tocopherol 39.5% (p<0.0001). Serum folate increased 174.3% (p<0.0001) and correlated with a decrease in plasma homocysteine of -19.9% (p<0.03). Compared with baseline, measures of oxidative stress decreased with serum lipid peroxides declining -10.5% (p<0.02) and urine 8OHdG decreasing -21.1% (p<0.02). Evaluation of data from smokers only (n=17) after 28 days of active supplementation showed comparable changes. CONCLUSION In the absence of dietary modification, supplementation with the fruit and vegetable juice concentrate capsules proved to be a highly bioavailable source of phytonutrients. Important antioxidants were elevated to desirable levels associated with decreased risk of disease while markers of oxidative stress were reduced, and folate status improved with a concomitant decrease in homocysteine, and these benefits occurred to a similar extent in smokers when compared to non-smokers.
15655418
Long-term memory and synaptic plasticity are thought to require the synthesis of new proteins at activated synapses. The CPEB family of RNA binding proteins, including Drosophila Orb2, has been implicated in this process. The precise mechanism by which these molecules regulate memory formation is however poorly understood. We used gene targeting and site-specific transgenesis to specifically modify the endogenous orb2 gene in order to investigate its role in long-term memory formation. We show that the Orb2A and Orb2B isoforms, while both essential, have distinct functions in memory formation. These two isoforms have common glutamine-rich and RNA-binding domains, yet Orb2A uniquely requires the former and Orb2B the latter. We further show that Orb2A induces Orb2 complexes in a manner dependent upon both its glutamine-rich region and neuronal activity. We propose that Orb2B acts as a conventional CPEB to regulate transport and/or translation of specific mRNAs, whereas Orb2A acts in an unconventional manner to form stable Orb2 complexes that are essential for memory to persist.
15657779
Little is known about the expression and possible functions of unopposed gap junction hemichannels in the brain. Emerging evidence suggests that gap junction hemichannels can act as stand-alone functional channels in astrocytes. With immunocytochemistry, dye uptake, and HPLC measurements, we show that astrocytes in vitro express functional hemichannels that can mediate robust efflux of glutamate and aspartate. Functional hemichannels were confirmed by passage of extracellular lucifer yellow (LY) into astrocytes in nominal divalent cation-free solution (DCFS) and the ability to block this passage with gap junction blocking agents. Glutamate/aspartate release (or LY loading) in DCFS was blocked by multivalent cations (Ca2+, Ba2+, Sr2+, Mg2+, and La3+) and by gap junction blocking agents (carbenoxolone, octanol, heptanol, flufenamic acid, and 18alpha-glycyrrhetinic acid) with affinities close to those reported for blockade of gap junction intercellular communication. Glutamate efflux via hemichannels was also accompanied by greatly reduced glutamate uptake. Glutamate release in DCFS, however, was not significantly mediated by reversal of the glutamate transporter: release did not saturate and was not blocked by glutamate transporter blockers. Control experiments in DCFS precluded glutamate release by volume-sensitive anion channels, P2X7 purinergic receptor pores, or general purinergic receptor activation. Blocking intracellular Ca2+ mobilization by BAPTA-AM or thapsigargin did not inhibit glutamate release in DCFS. Divalent cation removal also induced glutamate release from intact CNS white matter (acutely isolated optic nerve) that was blocked by carbenoxolone, suggesting the existence of functional hemichannels in situ. Our results indicated that astrocyte hemichannels could influence CNS levels of extracellular glutamate with implications for normal and pathological brain function.
15659108
Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA-hRPA complexes. Human Rad52 bound ssDNA or ssDNA-hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA-hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52-ssDNA complexes. In contrast to the wild type protein, hRad52(RQK/AAA) and hRad52(1-212) mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.
15669393
Transient activation of estrogen receptors (ER) in the developing brain during a limited perinatal "window of time" is recognized as a key mechanism of defeminization of neural control of reproductive function and sexual behavior. Two major ER isoforms, alpha and beta, are present in neural circuits that govern ovarian cycle and sexual behavior. Using highly selective ER agonists, this study provides the first evidence for distinct contribution of individual ER isoforms to the process of estrogen dependent defeminization. Neonatal activation of the ERalpha in female rats resulted in abrogation of cyclic ovarian activity and female sexual behavior in adulthood. These effects are associated with male-like alterations in the morphology of the anteroventral periventricular (AVPV) and sexually dimorphic nucleus of the preoptic area (SDN-POA), as well as refractoriness to estrogen-mediated induction of sexual receptivity. Exposure to an ERbeta-selective agonist induced persistent estrus and had a strong defeminizing effect on the hypothalamic gonadotropin "surge generator" AVPV. However, neonatal ERbeta activation failed to alter female sexual behavior, responsiveness to estrogens and morphometric features of the behaviorally relevant SDN-POA. Thus, although co-present in several brain regions involved in the control of female reproductive function, ER isoforms convey different, and probably not synergistic, chemical signals in the course of neonatal sex-specific brain organization.
15678772
OBJECTIVE To determine whether exposure to low doses of ionising radiation in infancy affects cognitive function in adulthood. DESIGN Population based cohort study. SETTING Sweden. PARTICIPANTS 3094 men who had received radiation for cutaneous haemangioma before age 18 months during 1930-59. MAIN OUTCOME MEASURES Radiation dose to frontal and posterior parts of the brain, and association between dose and intellectual capacity at age 18 or 19 years based on cognitive tests (learning ability, logical reasoning, spatial recognition) and high school attendance. RESULTS The proportion of boys who attended high school decreased with increasing doses of radiation to both the frontal and the posterior parts of the brain from about 32% among those not exposed to around 17% in those who received > 250 mGy. For the frontal dose, the multivariate odds ratio was 0.47 (95% confidence interval 0.26 to 0.85, P for trend 0.0003) and for the posterior dose it was 0.59 (0.23 to 1.47, 0.0005). A negative dose-response relation was also evident for the three cognitive tests for learning ability and logical reasoning but not for the test of spatial recognition. CONCLUSIONS Low doses of ionising radiation to the brain in infancy influence cognitive abilities in adulthood.
15692098
Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.
15707049
Interstitial lung disease (ILD) is a common manifestation of systemic autoimmunity characterized by progressive inflammation or scarring of the lungs. Patients who develop these complications can exhibit significantly impaired gas exchange that may result in hypoxemia, pulmonary hypertension, and even death. Unfortunately, little is understood about how these diseases arise, including the role of specific defects in immune tolerance. Another key question is whether autoimmune responses targeting the lung parenchyma are critical to ILD pathogenesis, including that of isolated idiopathic forms. We show that a specific defect in central tolerance brought about by mutations in the autoimmune regulator gene (Aire) leads to an autoreactive T cell response to a lung antigen named vomeromodulin and the development of ILD. We found that a human patient and mice with defects in Aire develop similar lung pathology, demonstrating that the AIRE-deficient model of autoimmunity is a suitable translational system in which to unravel fundamental mechanisms of ILD pathogenesis.
15727984
Non-small cell lung cancer (NSCLC) cells with somatic mutations in K-ras recruit to the tumor a variety of cell types (hereafter collectively termed "stromal cells") that can promote or inhibit tumorigenesis by mechanisms that have not been fully elucidated. Here, we postulated that stromal cells in the tumor microenvironment alter the tumor cell secretome, including those proteins required for tumor growth and dissemination, and we developed an in vitro model to test this hypothesis. Coculturing a murine K-ras mutant lung adenocarcinoma cell line (LKR-13) with a murine lung stromal cell (macrophage, endothelial cell, or fibroblast) enhanced stromal cell migration, induced endothelial tube formation, increased LKR-13 cell proliferation, and regulated the secretion of proteins involved in angiogenesis, inflammation, cell proliferation, and epithelial-to-mesenchymal transition. Among these proteins, CXCL1 has been reported to promote NSCLC development, whereas interleukin-18 (IL-18) has an undefined role. Genetic and pharmacologic strategies to inhibit CXCL1 and IL-18 revealed that stromal cell migration, LKR-13 cell proliferation, and LKR-13 cell tumorigenicity required one or both of these proteins. We conclude that stromal cells enhanced LKR-13 cell tumorigenicity partly through their effects on the secretome of LKR-13 cells. Strategies to inhibit tumor/stromal cell interactions may be useful as therapeutic approaches in NSCLC patients.
15803282
The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine.
15816729
Although cellular tumor-suppression mechanisms are widely studied, little is known about mechanisms that act at the level of tissues to suppress the occurrence of aberrant cells in epithelia. We find that ectopic expression of transcription factors that specify cell fates causes abnormal epithelial cysts in Drosophila imaginal discs. Cysts do not form cell autonomously but result from the juxtaposition of two cell populations with divergent fates. Juxtaposition of wild-type and aberrantly specified cells induces enrichment of actomyosin at their entire shared interface, both at adherens junctions as well as along basolateral interfaces. Experimental validation of 3D vertex model simulations demonstrates that enhanced interface contractility is sufficient to explain many morphogenetic behaviors, which depend on cell cluster size. These range from cyst formation by intermediate-sized clusters to segregation of large cell populations by formation of smooth boundaries or apical constriction in small groups of cells. In addition, we find that single cells experiencing lateral interface contractility are eliminated from tissues by apoptosis. Cysts, which disrupt epithelial continuity, form when elimination of single, aberrantly specified cells fails and cells proliferate to intermediate cell cluster sizes. Thus, increased interface contractility functions as error correction mechanism eliminating single aberrant cells from tissues, but failure leads to the formation of large, potentially disease-promoting cysts. Our results provide a novel perspective on morphogenetic mechanisms, which arise from cell-fate heterogeneities within tissues and maintain or disrupt epithelial homeostasis.
15830352
In some organisms longevity, growth, and developmental rate are improved when they are maintained on a light/dark cycle, the period of which "resonates" optimally with the period of the endogenous circadian clock. However, to our knowledge no studies have demonstrated that reproductive fitness per se is improved by resonance between the endogenous clock and the environmental cycle. We tested the adaptive significance of circadian programming by measuring the relative fitness under competition between various strains of cyanobacteria expressing different circadian periods. Strains that had a circadian period similar to that of the light/dark cycle were favored under competition in a manner that indicates the action of soft selection.
15833835
Adult neural stem/progenitor (B1) cells within the walls of the lateral ventricles generate different types of neurons for the olfactory bulb (OB). The location of B1 cells determines the types of OB neurons they generate. Here we show that the majority of mouse B1 cell precursors are produced between embryonic days (E) 13.5 and 15.5 and remain largely quiescent until they become reactivated postnatally. Using a retroviral library carrying over 100,000 genetic tags, we found that B1 cells share a common progenitor with embryonic cells of the cortex, striatum, and septum, but this lineage relationship is lost before E15.5. The regional specification of B1 cells is evident as early as E11.5 and is spatially linked to the production of neurons that populate different areas of the forebrain. This study reveals an early embryonic regional specification of postnatal neural stem cells and the lineage relationship between them and embryonic progenitor cells.
15836115
Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo.
15856466
: Advances in stem cell research have triggered scores of studies in regenerative medicine in a large number of institutions and companies around the world. However, reproducibility and data exchange among laboratories or cell banks are constrained by the lack of a standardized format for experiments. To enhance information flow in stem cell and derivative cell research, here we propose a minimum information standard to describe cellular assay data to facilitate practical regenerative medicine. Based on the existing Minimum Information About a Cellular Assay, we developed Minimum Information About a Cellular Assay for Regenerative Medicine (MIACARM), which allows for the description of advanced cellular experiments with defined taxonomy of human cell types. By using controlled terms, such as ontologies, MIACARM will provide a platform for cellular assay data exchange among cell banks or registries that have been established at more than 20 sites in the world. SIGNIFICANCE Currently, there are more than 20 human cell information storage sites around the world. However, reproducibility and data exchange among different laboratories or cell information providers are usually inadequate or nonexistent because of the lack of a standardized format for experiments. This study, which is the fruit of collaborative work by scientists at stem cell banks and cellular information registries worldwide, including those in the U.S., the U.K., Europe, and Japan, proposes new minimum information guidelines, Minimum Information About a Cellular Assay for Regenerative Medicine (MIACARM), for cellular assay data deposition. MIACARM is intended to promote data exchange and facilitation of practical regenerative medicine.
15879931
Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.
15889329
Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.
15907458
In this protocol, we describe how to isolate keratinocytes from adult mouse epidermis, fractionate them into different sub-populations on the basis of cell surface markers and examine their function in an in vivo skin reconstitution assay with disaggregated neonatal dermal cells. We also describe how the isolated keratinocytes can be subjected to clonal analysis in vitro and in vivo and how to enrich for hair follicle-inducing dermal papilla cells in the dermal preparation. Using these approaches, it is possible to compare the capacity of different populations of adult epidermal stem cells to proliferate and to generate progeny that differentiate along the different epidermal lineages. Isolating, fractionating and grafting cells for the skin reconstitution assay is normally spread over 2 d. Clonal growth in culture is assessed after 14 d, while evaluation of the grafts is carried out after 4–5 weeks.
15925931
BACKGROUND Whole-body magnetic resonance angiography (WB-MRA) has shown its potential for the non-invasive assessment of nearly the entire arterial vasculature within one examination. Since the presence of extra-cardiac atherosclerosis is associated with an increased risk of coronary events, our goal was to establish the relationship between WB-MRA findings, including a systemic atherosclerosis score index, and the presence of significant coronary artery disease (CAD). METHODS WB-MRA was performed on a 1.5T scanner in 50 patients scheduled to undergo elective cardiac catheterization for suspected CAD. In each patient, 40 extra-cardiac vessel segments were evaluated and assigned scores according to their luminal narrowing. The atherosclerosis score index (ASI) was generated as the ratio of summed scores to analyzable segments. RESULTS ASI was higher in patients with significant (> 50% stenosis) CAD (n = 27) vs. patients without CAD (n = 22; 1.56 vs. 1.28, p = 0.004). ASI correlated with PROCAM (R = 0.57, p < 0.001) and Framingham (R = 0.36, p = 0.01) risk scores as estimates of the 10-year risk of coronary events. A ROC derived ASI of > 1.54 predicted significant CAD with a sensitivity of 59%, specificity of 86% and a positive predictive value of 84%. Logistic regression revealed ASI > 1.54 as the strongest independent predictor for CAD with a 11-fold increase in likelihood to suffer from significant coronary disease. On the contrary, while 15/27 (55%) of patients with CAD exhibited at least one extra-cardiac stenosis > 50%, only 3/22 (14%) of those patients without CAD did (p = 0.003). The likelihood for an extra-cardiac stenosis when CAD is present differed between vascular territories and ranged from 15% for a carotid stenosis to 44% for a stenosis in the lower extremities. CONCLUSION This study provides important new evidence for the close association of extra-cardiac and coronary atherosclerosis. The novel findings that a WB-MRA derived systemic atherosclerosis score index is not only associated with established cardiovascular risk scores but is also predictive of significant CAD suggest its potential prognostic implications and underline the importance to screen for coronary disease in patients with extra-cardiac manifestations of atherosclerosis.
15945975
Genetic reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells or iPSCs) by over-expression of specific genes has been accomplished using mouse and human cells. However, it is still unclear how similar human iPSCs are to human Embryonic Stem Cells (hESCs). Here, we describe the transcriptional profile of human iPSCs generated without viral vectors or genomic insertions, revealing that these cells are in general similar to hESCs but with significant differences. For the generation of human iPSCs without viral vectors or genomic insertions, pluripotent factors Oct4 and Nanog were cloned in episomal vectors and transfected into human fetal neural progenitor cells. The transient expression of these two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described here revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference. Moreover, the episomal reprogramming strategy represents a safe way to generate human iPSCs for clinical purposes and basic research.
15946643
Metastasis and chemoresistance in cancer are linked phenomena, but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are primed for survival in metastatic sites. CXCL1/2 attract CD11b(+)Gr1(+) myeloid cells into the tumor, which produce chemokines including S100A8/9 that enhance cancer cell survival. Although chemotherapeutic agents kill cancer cells, these treatments trigger a parallel stromal reaction leading to TNF-α production by endothelial and other stromal cells. TNF-α via NF-kB heightens the CXCL1/2 expression in cancer cells, thus amplifying the CXCL1/2-S100A8/9 loop and causing chemoresistance. CXCR2 blockers break this cycle, augmenting the efficacy of chemotherapy against breast tumors and particularly against metastasis. This network of endothelial-carcinoma-myeloid signaling interactions provides a mechanism linking chemoresistance and metastasis, with opportunities for intervention.
15953181
Receiver operating characteristic (ROC) curves are used to describe and compare the performance of diagnostic technology and diagnostic algorithms. This paper refines the statistical comparison of the areas under two ROC curves derived from the same set of patients by taking into account the correlation between the areas that is induced by the paired nature of the data. The correspondence between the area under an ROC curve and the Wilcoxon statistic is used and underlying Gaussian distributions (binormal) are assumed to provide a table that converts the observed correlations in paired ratings of images into a correlation between the two ROC areas. This between-area correlation can be used to reduce the standard error (uncertainty) about the observed difference in areas. This correction for pairing, analogous to that used in the paired t-test, can produce a considerable increase in the statistical sensitivity (power) of the comparison. For studies involving multiple readers, this method provides a measure of a component of the sampling variation that is otherwise difficult to obtain.
15955172
An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor. Concomitant inactivation of Arf and Rb led to mammalian muscle cell cycle reentry, loss of differentiation properties, and upregulation of cytokinetic machinery. Single postmitotic myocytes were isolated by laser micro-dissection-catapulting, and transient suppression of Arf and Rb yielded myoblast colonies that retained the ability to differentiate and fuse into myofibers upon transplantation in vivo. These results show that differentiation of mammalian cells is reversed by inactivation of Arf and Rb and support the hypothesis that Arf evolved at the expense of regeneration.
15968271
OBJECTIVE Our objective is to estimate and compare the prevalence of selected adverse consequences associated with unmet need for assistance among a socioeconomically and medically vulnerable subgroup of the older adult population, those who are dually eligible for Medicare and Medicaid, with those eligible for Medicare only. METHOD Using data from the National Health and Aging Trends Study (NHATS), a representative survey of the older Medicare population, we calculated the prevalence of disability-related need for assistance with self-care, household tasks, and mobility activities and the prevalence of adverse consequences of unmet need by dually eligible and Medicare only status. RESULTS Over 2 million community-dwelling older persons experienced an adverse consequence due to unmet need for assistance with self-care (e.g., soiled their clothes), over 2 million experienced adverse consequences due to unmet need for assistance with household tasks (e.g., went without groceries), and over 3 million persons experienced at least one adverse consequence of unmet need for assistance with mobility-related activities (e.g., had to stay in bed) in the month prior to the NHATS interview. Dually eligible persons experienced higher rates of 6 of the 11 adverse consequences studied and were more likely to have at least one adverse consequence in all 3 domains than others. DISCUSSION Several care models are emerging with the goal of integrating medical care, behavioral health, and long-term services for the dual eligible population. Indicators of adverse consequences of unmet need could be used to monitor the quality and adequacy of such care systems.
15972906
T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward.
15975146
The fungal pathogen, Cryptococcus neoformans, has been shown to undergo replicative aging. Old cells are characterized by advanced generational age and phenotypic changes that appear to mediate enhanced resistance to host and antifungal-based killing. As a consequence of this age-associated resilience, old cells accumulate during chronic infection. Based on these findings, we hypothesized that shifting the generational age of a pathogenic yeast population would alter its vulnerability to the host and affect its virulence. SIR2 is a well-conserved histone deacetylase, and a pivotal target for the development of anti-aging drugs. We tested its effect on C. neoformans' replicative lifespan (RLS). First, a mutant C. neoformans strain (sir2Δ) was generated, and confirmed a predicted shortened RLS in sir2Δ cells consistent with its known role in aging. Next, RLS analysis showed that treatment of C. neoformans with Sir2p-agonists resulted in a significantly prolonged RLS, whereas treatment with a Sir2p-antagonist shortened RLS. RLS modulating effects were dependent on SIR2 and not observed in sir2Δ cells. Because SIR2 loss resulted in a slightly impaired fitness, effects of genetic RLS modulation on virulence could not be compared with wild type cells. Instead we chose to chemically modulate RLS, and investigated the effect of Sir2p modulating drugs on C. neoformans cells in a Galleria mellonella infection model. Consistent with our hypothesis that shifts in the generational age of the infecting yeast population alters its vulnerability to host cells, we observed decreased virulence of C. neoformans in the Galleria host when RLS was prolonged by treatment with Sir2p agonists. In contrast, treatment with a Sir2p antagonist, which shortens RLS enhanced virulence in Galleria. In addition, combination of Sir2p agonists with antifungal therapy enhanced the antifungal's effect. Importantly, no difference in virulence was observed with drug treatment when sir2Δ cells were used for infection, which confirmed target specificity and ruled out non-specific effects of the drugs on the Galleria host. Thus, this study suggests that RLS modulating drugs, such as Sir2p agonists, shift lifespan and vulnerability of the fungal population, and should be further investigated as a potential class of novel antifungal drug targets that can enhance antifungal efficacy.
15981174
To generate transgenic mice that express Cre-recombinase exclusively in the megakaryocytic lineage, we modified a mouse bacterial artificial chromosome (BAC) clone by homologous recombination and replaced the first exon of the platelet factor 4 (Pf4), also called CXCL4, with a codon-improved Cre cDNA. Several strains expressing the transgene were obtained and one strain, Q3, was studied in detail. Crossing Q3 mice with the ROSA26-lacZ reporter strain showed that Cre-recombinase activity was confined to megakaryocytes. These results were further verified by crossing the Q3 mice with a strain containing loxP-flanked integrin beta1. Excision of this conditional allele in megakaryocytes was complete at the DNA level, and platelets were virtually devoid of the integrin beta1 protein. The Pf4-Cre transgenic strain will be a valuable tool to study megakaryopoiesis, platelet formation, and platelet function.
15983148
Nervous system function requires proper development of two functional and morphological domains of neurons, axons and dendrites. Although both these domains are equally important for signal transmission, our understanding of dendrite development remains relatively poor. Here, we show that in C. elegans the Wnt ligand, LIN-44, and its Frizzled receptor, LIN-17, regulate dendrite development of the PQR oxygen sensory neuron. In lin-44 and lin-17 mutants, PQR dendrites fail to form, display stunted growth, or are misrouted. Manipulation of temporal and spatial expression of LIN-44, combined with cell-ablation experiments, indicates that this molecule is patterned during embryogenesis and acts as an attractive cue to define the site from which the dendrite emerges. Genetic interaction between lin-44 and lin-17 suggests that the LIN-44 signal is transmitted through the LIN-17 receptor, which acts cell autonomously in PQR. Furthermore, we provide evidence that LIN-17 interacts with another Wnt molecule, EGL-20, and functions in parallel to MIG-1/Frizzled in this process. Taken together, our results reveal a crucial role for Wnt and Frizzled molecules in regulating dendrite development in vivo.
15984735
OBJECTIVE To evaluate the association between migraine and cardiovascular disease, including stroke, myocardial infarction, and death due to cardiovascular disease. DESIGN Systematic review and meta-analysis. DATA SOURCES Electronic databases (PubMed, Embase, Cochrane Library) and reference lists of included studies and reviews published until January 2009. Selection criteria Case-control and cohort studies investigating the association between any migraine or specific migraine subtypes and cardiovascular disease. Review methods Two investigators independently assessed eligibility of identified studies in a two step approach. Disagreements were resolved by consensus. Studies were grouped according to a priori categories on migraine and cardiovascular disease. DATA EXTRACTION Two investigators extracted data. Pooled relative risks and 95% confidence intervals were calculated. RESULTS Studies were heterogeneous for participant characteristics and definition of cardiovascular disease. Nine studies investigated the association between any migraine and ischaemic stroke (pooled relative risk 1.73, 95% confidence interval 1.31 to 2.29). Additional analyses indicated a significantly higher risk among people who had migraine with aura (2.16, 1.53 to 3.03) compared with people who had migraine without aura (1.23, 0.90 to 1.69; meta-regression for aura status P=0.02). Furthermore, results suggested a greater risk among women (2.08, 1.13 to 3.84) compared with men (1.37, 0.89 to 2.11). Age less than 45 years, smoking, and oral contraceptive use further increased the risk. Eight studies investigated the association between migraine and myocardial infarction (1.12, 0.95 to 1.32) and five between migraine and death due to cardiovascular disease (1.03, 0.79 to 1.34). Only one study investigated the association between women who had migraine with aura and myocardial infarction and death due to cardiovascular disease, showing a twofold increased risk. CONCLUSION Migraine is associated with a twofold increased risk of ischaemic stroke, which is only apparent among people who have migraine with aura. Our results also suggest a higher risk among women and risk was further magnified for people with migraine who were aged less than 45, smokers, and women who used oral contraceptives. We did not find an overall association between any migraine and myocardial infarction or death due to cardiovascular disease. Too few studies are available to reliably evaluate the impact of modifying factors, such as migraine aura, on these associations.
15997009
BACKGROUND Treatment regimens for active tuberculosis (TB) that are intermittent, or use rifampin during only the initial phase, offer practical advantages, but their efficacy has been questioned. We conducted a systematic review of treatment regimens for active TB, to assess the effect of duration and intermittency of rifampin use on TB treatment outcomes. METHODS AND FINDINGS PubMed, Embase, and the Cochrane CENTRAL database for clinical trials were searched for randomized controlled trials, published in English, French, or Spanish, between 1965 and June 2008. Selected studies utilized standardized treatment with rifampin-containing regimens. Studies reported bacteriologically confirmed failure and/or relapse in previously untreated patients with bacteriologically confirmed pulmonary TB. Pooled cumulative incidences of treatment outcomes and association with risk factors were computed with stratified random effects meta-analyses. Meta-regression was performed using a negative binomial regression model. A total of 57 trials with 312 arms and 21,472 participants were included in the analysis. Regimens utilizing rifampin only for the first 1-2 mo had significantly higher rates of failure, relapse, and acquired drug resistance, as compared to regimens that used rifampin for 6 mo. This was particularly evident when there was initial drug resistance to isoniazid, streptomycin, or both. On the other hand, there was little evidence of difference in failure or relapse with daily or intermittent schedules of treatment administration, although there was insufficient published evidence of the efficacy of twice-weekly rifampin administration throughout therapy. CONCLUSIONS TB treatment outcomes were significantly worse with shorter duration of rifampin, or with initial drug resistance to isoniazid and/or streptomycin. Treatment outcomes were similar with all intermittent schedules evaluated, but there is insufficient evidence to support administration of treatment twice weekly throughout therapy.
16016673
PURPOSE This study aims to provide a better set of DNA methylation markers in urine sediments for sensitive and specific detection of bladder cancer. EXPERIMENTAL DESIGN Fifty-nine tumor-associated genes were profiled in three bladder cancer cell lines, a small cohort of cancer biopsies and urine sediments by methylation-specific PCR. Twenty-one candidate genes were then profiled in urine sediments from 132 bladder cancer patients (8 cases for stage 0a; 68 cases for stage I; 50 cases for stage II; 4 cases for stages III; and 2 cases for stage IV), 23 age-matched patients with noncancerous urinary lesions, 6 neurologic diseases, and 7 healthy volunteers. RESULTS Despite six incidences of four genes reported in 3 of 23 noncancerous urinary lesion patients analyzed, cancer-specific hypermethylation in urine sediments were reported for 15 genes (P < 0.05). Methylation assessment of an 11-gene set (SALL3, CFTR, ABCC6, HPR1, RASSF1A, MT1A, RUNX3, ITGA4, BCL2, ALX4, MYOD1, DRM, CDH13, BMP3B, CCNA1, RPRM, MINT1, and BRCA1) confirmed the existing diagnosis of 121 among 132 bladder cancer cases (sensitivity, 91.7%) with 87% accuracy. Significantly, more than 75% of stage 0a and 88% of stage I disease were detected, indicating its value in the early diagnosis of bladder cancer. Interestingly, the cluster of reported methylation markers used in the U.S. bladder cancers is distinctly different from that identified in this study, suggesting a possible epigenetic disparity between the American and Chinese cases. CONCLUSIONS Methylation profiling of an 11-gene set in urine sediments provides a sensitive and specific detection of bladder cancer.
16066726
Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated with disorganized necrotic granulomas, although the precise roles of TNF signaling preceding this endpoint remain undefined. We monitored transparent Mycobacterium marinum-infected zebrafish live to conduct a stepwise dissection of how TNF signaling operates in mycobacterial pathogenesis. We found that loss of TNF signaling caused increased mortality even when only innate immunity was operant. In the absence of TNF, intracellular bacterial growth and granuloma formation were accelerated and was followed by necrotic death of overladen macrophages and granuloma breakdown. Thus, TNF is not required for tuberculous granuloma formation, but maintains granuloma integrity indirectly by restricting mycobacterial growth within macrophages and preventing their necrosis.
16086778
The biological antagonism between Notch and Numb controls the proliferative/differentiative balance in development and homeostasis. Although altered Notch signaling has been linked to human diseases, including cancer, evidence for a substantial involvement of Notch in human tumors has remained elusive. Here, we show that Numb-mediated control on Notch signaling is lost in ∼50% of human mammary carcinomas, due to specific Numb ubiquitination and proteasomal degradation. Mechanistically, Numb operates as an oncosuppressor, as its ectopic expression in Numb-negative, but not in Numb-positive, tumor cells inhibits proliferation. Increased Notch signaling is observed in Numb-negative tumors, but reverts to basal levels after enforced expression of Numb. Conversely, Numb silencing increases Notch signaling in normal breast cells and in Numb-positive breast tumors. Finally, growth suppression of Numb-negative, but not Numb-positive, breast tumors can be achieved by pharmacological inhibition of Notch. Thus, the Numb/Notch biological antagonism is relevant to the homeostasis of the normal mammary parenchyma and its subversion contributes to human mammary carcinogenesis.
16090672
Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the 'cortical' interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells.
16098747
Evaluate known breast cancer risk factors in relation to breast density. We examined factors in relation to breast density in 144,018 New Hampshire (NH) women with at least one mammogram recorded in a statewide mammography registry. Mammographic breast density was measured by radiologists using the BI-RADS classification; risk factors of interest were obtained from patient intake forms and questionnaires. Initial analyses showed a strong inverse influence of age and body mass index (BMI) on breast density. In addition, women with late age at menarche, late age at first birth, premenopausal women, and those currently using hormone therapy (HT) tended to have higher breast density, while those with greater parity tended to have less dense breasts. Analyses stratified on age and BMI suggested interactions, which were formally assessed in a multivariable model. The impact of current HT use, relative to nonuse, differed across age groups, with an inverse association in younger women, and a positive association in older women (p < 0.0001 for the interaction). The positive effects of age at menarche and age at first birth, and the inverse influence of parity were less apparent in women with low BMI than in those with high BMI (p = 0.04, p < 0.0001 and p = 0.01, respectively, for the interactions). We also noted stronger positive effects for age at first birth in postmenopausal women (p = 0.004 for the interaction). The multivariable model indicated a slight positive influence of family history of breast cancer. The influence of age at menarche and reproductive factors on breast density is less evident in women with high BMI. Density is reduced in young women using HT, but increased in HT users of age 50 or more.
16108876
Repression of competition within groups joins kin selection as the second major force in the history of life shaping the evolution of cooperation. When opportunities for competition against neighbors are limited within groups, individuals can increase their own success only by enhancing the efficiency and productivity of their group. Thus, characters that repress competition within groups promote cooperation and enhance group success. Leigh first expressed this idea in the context of fair meiosis, in which each chromosome has an equal chance of transmission via gametes. Randomized success means that each part of the genome can increase its own success only by enhancing the total number of progeny and thus increasing the success of the group. Alexander used this insight about repression of competition in fair meiosis to develop his theories for the evolution of human sociality. Alexander argued that human social structures spread when they repress competition within groups and promote successful group-against-group competition. Buss introduced a new example with his suggestion that metazoan success depended on repression of competition between cellular lineages. Maynard Smith synthesized different lines of thought on repression of competition. In this paper, I develop simple mathematical models to illustrate the main processes by which repression of competition evolves. With the concepts made clear, I then explain the history of the idea. I finish by summarizing many new developments in this subject and the most promising lines for future study.
16119973
IBD is characterized by uncontrolled immune responses in inflamed mucosa, with dominance of IL-17-producing cells and deficiency of Treg cells. The aim of this study was to explore the effect and mechanisms of RA, the ligand of RARalpha, on immune responses in human and murine colitis. Colonic biopsies from patients with UC were cultured and treated with RA as the agonist of RARalpha or LE135 as the antagonist of RARalpha. Expressions of IL-17 and FOXP3 were detected by immunohistochemistry. Murine colitis was induced by intrarectal administration with TNBS at Day 1. Mice were then i.p.-treated with RA or LE135 daily for 7 days. Cytokine levels in the cultures of mouse LPMCs were measured. Expressions of FOXP3 and IL-17 in colon tissues or MLN were detected by immunohistological analysis. Body weight and colon inflammation were evaluated. RA treatment up-regulated FOXP3 expression and down-regulated IL-17 expression in colon biopsies of patients and in colon tissues and MLN of mice with colitis compared with controls. LPMCs from RA-treated mice produced lower levels of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-17) but more regulatory cytokines (IL-10, TGF-beta) compared with that of untreated mice. LE135 showed the opposite effect of RA. Furthermore, RA ameliorated TNBS-induced colitis in a dose-dependent manner, as seen by improved body weight and colon inflammation. RA down-regulates colon inflammatory responses in patients with IBD in vitro and in murine colitis in vivo, representing a potential therapeutic approach in IBD treatment.
16120395
Tight regulation of the expression of mRNAs encoding iron uptake proteins is essential to control iron homeostasis and avoid intracellular iron toxicity. We show that many mRNAs encoding iron uptake or iron mobilization proteins are expressed in iron-replete conditions in the absence of the S. cerevisiae RNase III ortholog Rnt1p or of the nuclear exosome component Rrp6p. Extended forms of these mRNAs accumulate in the absence of Rnt1p or of the 5'-->3' exonucleases Xrn1p and Rat1p, showing that multiple degradative pathways contribute to the surveillance of aberrant forms of these transcripts. RNase III-deficient cells are hypersensitive to high iron concentrations, suggesting that Rnt1p-mediated RNA surveillance is required to prevent iron toxicity. These results show that RNA surveillance through multiple ribonucleolytic pathways plays a role in iron homeostasis in yeast to avoid the potentially toxic effects of the expression of the iron starvation response in iron-replete conditions.
16128711
Adherens junctions (AJs) in epithelial cells are constantly turning over to modulate adhesion properties under various physiological and developmental contexts, but how such AJ dynamics are regulated during the apical-basal polarization of primary epithelia remains unclear. Here, we used new and genetically validated GFP markers of Drosophila E-cadherin (DE-cadherin, hereafter referred to as DE-Cad) and β-catenin (Armadillo, Arm) to quantitatively assay the in vivo dynamics of biosynthetic turnover and membrane redistribution by fluorescence recovery after photobleaching (FRAP) assays. Our data showed that membrane DE-Cad and Arm in AJs of polarizing epithelial cells had much faster biosynthetic turnover than in polarized cells. Fast biosynthetic turnover of membrane DE-Cad is independent of actin- and dynamin-based trafficking, but is microtubule-dependent. Furthermore, Arm in AJs of polarizing cells showed a faster and diffusion-based membrane redistribution that was both quantitatively and qualitatively different from the slower and exchange-based DE-Cad membrane distribution, indicating that the association of Arm with DE-Cad is more dynamic in polarizing cells, and only becomes stable in polarized epithelial cells. Consistently, biochemical assays showed that the binding of Arm to DE-Cad is weaker in polarizing cells than in polarized cells. Our data revealed that the molecular interaction between DE-Cad and Arm is modulated during apical-basal polarization, suggesting a new mechanism that might be crucial for establishing apical-basal polarity through regulating the AJ dynamics.
16167746
mRNA polyadenylation is an essential step for the maturation of almost all eukaryotic mRNAs, and is tightly coupled with termination of transcription in defining the 3'-end of genes. Large numbers of human and mouse genes harbor alternative polyadenylation sites [poly(A) sites] that lead to mRNA variants containing different 3'-untranslated regions (UTRs) and/or encoding distinct protein sequences. Here, we examined the conservation and divergence of different types of alternative poly(A) sites across human, mouse, rat and chicken. We found that the 3'-most poly(A) sites tend to be more conserved than upstream ones, whereas poly(A) sites located upstream of the 3'-most exon, also termed intronic poly(A) sites, tend to be much less conserved. Genes with longer evolutionary history are more likely to have alternative polyadenylation, suggesting gain of poly(A) sites through evolution. We also found that nonconserved poly(A) sites are associated with transposable elements (TEs) to a much greater extent than conserved ones, albeit less frequently utilized. Different classes of TEs have different characteristics in their association with poly(A) sites via exaptation of TE sequences into polyadenylation elements. Our results establish a conservation pattern for alternative poly(A) sites in several vertebrate species, and indicate that the 3'-end of genes can be dynamically modified by TEs through evolution.
16172576
BACKGROUND High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections. METHODS AND PRINCIPAL FINDINGS We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively). Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level. CONCLUSIONS AND SIGNIFICANCE Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.
16180601
OBJECTIVE Serum soluble corin has been associated with stroke. However, whether it is associated with stroke prognosis has not yet been studied. Therefore, we aimed to study the association of serum soluble corin with risk of poor outcomes within 3 months after stroke. METHODS We followed 522 stroke patients for 3 months to identify major disability, death and vascular events. Serum soluble corin was measured at baseline for all participants. Logistic regression was used to examine the associations of baseline serum soluble corin with outcomes of stroke, adjusting for age, sex, baseline NIHSS score, hours from onset to hospitalization, smoking, drinking, hypertension, diabetes, coronary heart disease, atrial fibrillation, family history of stroke, and stroke subtype. RESULTS Patients with high corin had a significantly lower crude risk for the composite outcome of major disability or death (OR = 0.64, 95%CI: 0.43-0.96) than patients with low corin (the lowest tertile). After adjustment for age and baseline NIHSS score, patients with high corin still had a significantly lower risk for the composite outcome of major disability or death (OR = 0.60, 95%CI: 0.36-0.99). This association became bottom line significant after additionally adjusting for other conventional factors (OR = 0.61, P = 0.058). No association was found between serum soluble corin and other composite outcomes. CONCLUSION Serum soluble corin deficiency predicted risk for major disability within 3 months after stroke, independent of baseline neurological deficient. Our results may indicate a probable role of corin in stroke prognosis.
16201748
BACKGROUND Different molecular alterations have been described in endometrioid endometrial carcinoma (EECA). Among them the most frequently altered is loss of the PTEN protein, a tumor suppressor gene. The purpose of this study was to evaluate the expression pattern of PTEN gene in normal, hyperplastic and neoplastic endometrium. METHODS In a study in a referral gynecologic hospital in Tehran, Iran, immunohistochemical (IHC) evaluation of PTEN was performed on 87 consecutive specimens to the following three groups; group A- normal proliferative endometrium(n = 29); group B- hyperplastic endometrium [including simple hyperplasia without atypia(n = 21) and complex hyperplasia with atypia (n = 8)] and group C- EECA(n = 29). Immunostaining of cells was analyzed by arbitrary quantitative methods according to both slide's area staining and intensity of color reaction. RESULTS PTEN immunoreactivity was present in all normal proliferative endometrium, all simple hyperplasia, 75% of atypical complex hyperplasia and in 48% of EECA (P < 0.001). The intensity of PTEN reaction was significantly higher in group with proliferative endometrium than hyperplastic endometrium and EECA (P < 0.001). CONCLUSION PTEN expression was significantly higher in cyclical endometrium than in atypical hyperplasia and endometrioid carcinoma.
16204011
BACKGROUND Despite recent achievements to reduce child mortality, neonatal deaths continue to remain high, accounting for 41% of all deaths in children under five years of age worldwide, of which over 90% occur in low- and middle-income countries (LMICs). Infections are a leading cause of death and limitations in care seeking for ill neonates contribute to high mortality rates. As estimates for care-seeking behaviors in LMICs have not been studied, this review describes care seeking for neonatal illnesses in LMICs, with particular attention to type of care sought. METHODS AND FINDINGS We conducted a systematic literature review of studies that reported the proportion of caregivers that sought care for ill or suspected ill neonates in LMICs. The initial search yielded 784 studies, of which 22 studies described relevant data from community household surveys, facility-based surveys, and intervention trials. The majority of studies were from South Asia (n = 17/22), set in rural areas (n = 17/22), and published within the last 4 years (n = 18/22). Of the 9,098 neonates who were ill or suspected to be ill, 4,320 caregivers sought some type of care, including care from a health facility (n = 370) or provider (n = 1,813). Care seeking ranged between 10% and 100% among caregivers with a median of 59%. Care seeking from a health care provider yielded a similar range and median, while care seeking at a health care facility ranged between 1% and 100%, with a median of 20%. Care-seeking estimates were limited by the few studies conducted in urban settings and regions other than South Asia. There was a lack of consistency regarding illness, care-seeking, and care provider definitions. CONCLUSIONS There is a paucity of data regarding newborn care-seeking behaviors; in South Asia, care seeking is low for newborn illness, especially in terms of care sought from health care facilities and medically trained providers. There is a need for representative data to describe care-seeking patterns in different geographic regions and better understand mechanisms to enhance care seeking during this vulnerable time period.
16208091
Incorporation of GluR1-containing AMPA receptors into synapses is essential to several forms of neural plasticity, including long-term potentiation (LTP). Numerous signaling pathways that trigger this process have been identified, but the direct modifications of GluR1 that control its incorporation into synapses are unclear. Here, we show that phosphorylation of GluR1 by PKC at a highly conserved serine 818 residue is increased during LTP and critical for LTP expression. GluR1 is phosphorylated by PKC at this site in vitro and in vivo. In addition, acute phosphorylation at GluR1 S818 by PKC, as well as a phosphomimetic mutation, promotes GluR1 synaptic incorporation. Conversely, preventing GluR1 S818 phosphorylation reduces LTP and blocks PKC-driven synaptic incorporation of GluR1. We conclude that the phosphorylation of GluR1 S818 by PKC is a critical event in the plasticity-driven synaptic incorporation of AMPA receptors.
16233471
The average lifespan of humans is increasing, and with it the percentage of people entering the 65 and older age group is growing rapidly and will continue to do so in the next 20 years. Within this age group, cardiovascular disease will remain the leading cause of death, and the cost associated with treatment will continue to increase. Aging is an inevitable part of life and unfortunately poses the largest risk factor for cardiovascular disease. Although numerous studies in the cardiovascular field have considered both young and aged humans, there are still many unanswered questions as to how the genetic pathways that regulate aging in model organisms influence cardiovascular aging. Likewise, in the molecular biology of aging field, few studies fully assess the role of these aging pathways in cardiovascular health. Fortunately, this gap is beginning to close, and these two fields are merging together. We provide an overview of some of the key genes involved in regulating lifespan and health span, including sirtuins, AMP-activated protein kinase, mammalian target of rapamycin, and insulin-like growth factor 1 and their roles regulating cardiovascular health. We then discuss a series of review articles that will appear in succession and provide a more comprehensive analysis of studies carried out linking genes of aging and cardiovascular health, and perspectives of future directions of these two intimately linked fields.
16242975
In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs.
16256507
CONTEXT Adequate vitamin D status for optimum bone health has received increased recognition in recent years; however, the ideal intake is not known. Serum 25-hydroxyvitamin D is the generally accepted indicator of vitamin D status, but no universal reference level has been reached. OBJECTIVE To investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis, as determined by serum intact parathyroid hormone (PTH). DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of 2310 healthy Icelandic adults who were divided equally into 3 age groups (30-45 years, 50-65 years, or 70-85 years) and recruited from February 2001 to January 2003. They were administered a semi-quantitative food frequency questionnaire, which assessed vitamin D and calcium intake. Participants were further divided into groups according to calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d) and serum 25-hydroxyvitamin D level (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL). MAIN OUTCOME MEASURE Serum intact PTH as determined by calcium intake and vitamin D. RESULTS A total of 944 healthy participants completed all parts of the study. After adjusting for relevant factors, serum PTH was lowest in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL but highest in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. At the low serum 25-hydroxyvitamin D level (<10 ng/mL), calcium intake of less than 800 mg/d vs more than 1200 mg/d was significantly associated with higher serum PTH (P = .04); and at a calcium intake of more than 1200 mg/d, there was a significant difference between the lowest and highest vitamin D groups (P = .04). CONCLUSIONS As long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary for adequate vitamin D status in northern climates.
16267205
Sex differences in longevity and aging are seen throughout the animal kingdom. These are likely to result, in part, from sex differences in endocrinology. In the nematode Caenorhabditis elegans, males are the longer-lived sex. Here we explore the possibility that sex differences in insulin/insulin-like growth factor 1 (IGF-1) and steroid endocrinology contribute to this sex difference in aging by studying C. elegans populations in liquid culture. We report that in hermaphrodite populations, mutational loss of the DAF-12 steroid receptor affected life span as in previous plate-culture studies: mutant longevity is suppressed in a weak daf-2 insulin/IGF-1 receptor mutant but enhanced in a stronger daf-2 mutant. However, in males, mutation of daf-12 had little effect on aging in either weak or strong daf-2 mutants. Moreover, while mutation of daf-12 marginally reduced life span in daf-2(+) hermaphrodites, as in plate-cultured populations, it did not in daf-2(+) males. These results could imply that in C. elegans, as in mammals, sex differences in steroid endocrinology contribute to sex differences in aging.
16280642
Podosomes (also termed invadopodia in cancer cells) are actin-rich adhesion structures with matrix degradation activity that develop in various cell types. Despite their significant physiological importance, the molecular mechanism of podosome formation is largely unknown. In this study, we investigated the molecular mechanisms of podosome formation. The expression of various phosphoinositide-binding domains revealed that the podosomes in Src-transformed NIH3T3 (NIH-src) cells are enriched with PtdIns(3,4)P2, suggesting an important role of this phosphoinositide in podosome formation. Live-cell imaging analysis revealed that Src-expression stimulated podosome formation at focal adhesions of NIH3T3 cells after PtdIns(3,4)P2 accumulation. The adaptor protein Tks5/FISH, which is essential for podosome formation, was found to form a complex with Grb2 at adhesion sites in an Src-dependent manner. Further, it was found that N-WASP bound all SH3 domains of Tks5/FISH, which facilitated circular podosome formation. These results indicate that augmentation of the N-WASP-Arp2/3 signal was accomplished on the platform of Tks5/FISH-Grb2 complex at focal adhesions, which is stabilized by PtdIns(3,4)P2.
16284655
Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap-junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long-term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice.
16287725
Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency.
16319097
Endocytic mechanisms control the lipid and protein composition of the plasma membrane, thereby regulating how cells interact with their environments. Here, we review what is known about mammalian endocytic mechanisms, with focus on the cellular proteins that control these events. We discuss the well-studied clathrin-mediated endocytic mechanisms and dissect endocytic pathways that proceed independently of clathrin. These clathrin-independent pathways include the CLIC/GEEC endocytic pathway, arf6-dependent endocytosis, flotillin-dependent endocytosis, macropinocytosis, circular doral ruffles, phagocytosis, and trans-endocytosis. We also critically review the role of caveolae and caveolin1 in endocytosis. We highlight the roles of lipids, membrane curvature-modulating proteins, small G proteins, actin, and dynamin in endocytic pathways. We discuss the functional relevance of distinct endocytic pathways and emphasize the importance of studying these pathways to understand human disease processes.
16322674
BACKGROUND Birth size, perhaps a proxy for prenatal environment, might be a correlate of subsequent breast cancer risk, but findings from epidemiological studies have been inconsistent. We re-analysed individual participant data from published and unpublished studies to obtain more precise estimates of the magnitude and shape of the birth size-breast cancer association. METHODS AND FINDINGS Studies were identified through computer-assisted and manual searches, and personal communication with investigators. Individual participant data from 32 studies, comprising 22,058 breast cancer cases, were obtained. Random effect models were used, if appropriate, to combine study-specific estimates of effect. Birth weight was positively associated with breast cancer risk in studies based on birth records (pooled relative risk [RR] per one standard deviation [SD] [= 0.5 kg] increment in birth weight: 1.06; 95% confidence interval [CI] 1.02-1.09) and parental recall when the participants were children (1.02; 95% CI 0.99-1.05), but not in those based on adult self-reports, or maternal recall during the woman's adulthood (0.98; 95% CI 0.95-1.01) (p for heterogeneity between data sources = 0.003). Relative to women who weighed 3.000-3.499 kg, the risk was 0.96 (CI 0.80-1.16) in those who weighed < 2.500 kg, and 1.12 (95% CI 1.00-1.25) in those who weighed > or = 4.000 kg (p for linear trend = 0.001) in birth record data. Birth length and head circumference from birth records were also positively associated with breast cancer risk (pooled RR per one SD increment: 1.06 [95% CI 1.03-1.10] and 1.09 [95% CI 1.03-1.15], respectively). Simultaneous adjustment for these three birth size variables showed that length was the strongest independent predictor of risk. The birth size effects did not appear to be confounded or mediated by established breast cancer risk factors and were not modified by age or menopausal status. The cumulative incidence of breast cancer per 100 women by age 80 y in the study populations was estimated to be 10.0, 10.0, 10.4, and 11.5 in those who were, respectively, in the bottom, second, third, and top fourths of the birth length distribution. CONCLUSIONS This pooled analysis of individual participant data is consistent with birth size, and in particular birth length, being an independent correlate of breast cancer risk in adulthood.
16364639
By analyzing gene expression data in glioblastoma in combination with matched microRNA profiles, we have uncovered a posttranscriptional regulation layer of surprising magnitude, comprising more than 248,000 microRNA (miR)-mediated interactions. These include ∼7,000 genes whose transcripts act as miR "sponges" and 148 genes that act through alternative, nonsponge interactions. Biochemical analyses in cell lines confirmed that this network regulates established drivers of tumor initiation and subtype implementation, including PTEN, PDGFRA, RB1, VEGFA, STAT3, and RUNX1, suggesting that these interactions mediate crosstalk between canonical oncogenic pathways. siRNA silencing of 13 miR-mediated PTEN regulators, whose locus deletions are predictive of PTEN expression variability, was sufficient to downregulate PTEN in a 3'UTR-dependent manner and to increase tumor cell growth rates. Thus, miR-mediated interactions provide a mechanistic, experimentally validated rationale for the loss of PTEN expression in a large number of glioma samples with an intact PTEN locus.
16389141
Dysfunction of the pancreatic beta cell is an important defect in the pathogenesis of type 2 diabetes, although its exact relationship to the insulin resistance is unclear. To determine whether insulin signaling has a functional role in the beta cell we have used the Cre-loxP system to specifically inactivate the insulin receptor gene in the beta cells. The resultant mice exhibit a selective loss of insulin secretion in response to glucose and a progressive impairment of glucose tolerance. These data indicate an important functional role for the insulin receptor in glucose sensing by the pancreatic beta cell and suggest that defects in insulin signaling at the level of the beta cell may contribute to the observed alterations in insulin secretion in type 2 diabetes.
16390264
OBJECTIVES To determine the extent to which type of hospital admission (emergency compared with elective) and surgical procedure varied by socioeconomic circumstances, age, sex, and year of admission for colorectal, breast, and lung cancer. DESIGN Repeated cross sectional study with data from individual patients, 1 April 1999 to 31 March 2006. SETTING Hospital episode statistics (HES) dataset. PARTICIPANTS 564 821 patients aged 50 and over admitted with a diagnosis of colorectal, breast, or lung cancer. MAIN OUTCOME MEASURES Proportion of patients admitted as emergencies, and the proportion receiving the recommended surgical treatment. RESULTS Patients from deprived areas, older people, and women were more likely to be admitted as emergencies. For example, the adjusted odds ratio for patients with breast cancer in the least compared with most deprived fifth of deprivation was 0.63 (95% confidence interval 0.60 to 0.66) and the adjusted odds ratio for patients with lung cancer aged 80-89 compared with those aged 50-59 was 3.13 (2.93 to 3.34). There were some improvements in disparities between age groups but not for patients living in deprived areas over time. Patients from deprived areas were less likely to receive preferred procedures for rectal, breast, and lung cancer. These findings did not improve with time. For example, 67.4% (3529/5237) of patients in the most deprived fifth of deprivation had anterior resection for rectal cancer compared with 75.5% (4497/5959) of patients in the least deprived fifth (1.34, 1.22 to 1.47). Over half (54.0%, 11 256/20 849) of patients in the most deprived fifth of deprivation had breast conserving surgery compared with 63.7% (18 445/28 960) of patients in the least deprived fifth (1.21, 1.16 to 1.26). Men were less likely than women to undergo anterior resection and lung cancer resection and older people were less likely to receive breast conserving surgery and lung cancer resection. For example, the adjusted odds ratio for lung cancer patients aged 80-89 compared with those aged 50-59 was 0.52 (0.46 to 0.59). Conclusions Despite the implementation of the NHS Cancer Plan, social factors still strongly influence access to and the provision of care.
16398827
Afferent activity can induce fast, feed-forward changes in synaptic efficacy that are synapse specific. Using combined electrophysiology, caged molecule photolysis, and Ca(2+) imaging, we describe a plasticity in which the recruitment of astrocytes in response to afferent activity causes a fast and feed-forward, yet distributed increase in the amplitude of quantal synaptic currents at multiple glutamate synapses on magnocellular neurosecretory cells in the hypothalamic paraventricular nucleus. The plasticity is largely multiplicative, consistent with a proportional increase or "scaling" in the strength of all synapses on the neuron. This effect requires a metabotropic glutamate receptor-mediated rise in Ca(2+) in the astrocyte processes surrounding the neuron and the release of the gliotransmitter ATP, which acts on postsynaptic purinergic receptors. These data provide evidence for a form of distributed synaptic plasticity that is feed-forward, expressed quickly, and mediated by the synaptic activation of neighboring astrocytes.