text
stringlengths 23
5.09k
| label
class label 3
classes |
---|---|
Title: Meta Gradient Boosting Neural Networks. Abstract: Meta-optimization is an effective approach that learns a shared set of parameters across tasks for parameter initialization in meta-learning.
A key challenge for meta-optimization based approaches is to determine whether an initialization condition can be generalized to tasks with diverse distributions to accelerate learning.
To address this issue, we design a meta-gradient boosting framework that uses a base learner to learn shared information across tasks and a series of gradient-boosted modules to capture task-specific information to fit diverse distributions.
We evaluate the proposed model on both regression and classification tasks with multi-mode distributions.
The results demonstrate both the effectiveness of our model in modulating task-specific meta-learned priors and its advantages on multi-mode distributions. | 0reject
|
Title: Joint Perception and Control as Inference with an Object-based Implementation. Abstract: Existing model-based reinforcement learning methods often study perception modeling and decision making separately. We introduce joint Perception and Control as Inference (PCI), a general framework to combine perception and control for partially observable environments through Bayesian inference. Based on the fact that object-level inductive biases are critical in human perceptual learning and reasoning, we propose Object-based Perception Control (OPC), an instantiation of PCI which manages to facilitate control using automatic discovered object-based representations. We develop an unsupervised end-to-end solution and analyze the convergence of the perception model update. Experiments in a high-dimensional pixel environment demonstrate the learning effectiveness of our object-based perception control approach. Specifically, we show that OPC achieves good perceptual grouping quality and outperforms several strong baselines in accumulated rewards. | 0reject
|
Title: Towards Robust Graph Neural Networks against Label Noise. Abstract: Massive labeled data have been used in training deep neural networks, thus label noise has become an important issue therein. Although learning with noisy labels has made great progress on image datasets in recent years, it has not yet been studied in connection with utilizing GNNs to classify graph nodes. In this paper, we proposed a method, named LPM, to address the problem using Label Propagation (LP) and Meta learning. Different from previous methods designed for image datasets, our method is based on a special attribute (label smoothness) of graph-structured data, i.e., neighboring nodes in a graph tend to have the same label. A pseudo label is computed from the neighboring labels for each node in the training set using LP; meta learning is utilized to learn a proper aggregation of the original and pseudo label as the final label. Experimental results demonstrate that LPM outperforms state-of-the-art methods in graph node classification task with both synthetic and real-world label noise. Source code to reproduce all results will be released. | 0reject
|
Title: GENERALIZATION GUARANTEES FOR NEURAL NETS VIA HARNESSING THE LOW-RANKNESS OF JACOBIAN. Abstract: Modern neural network architectures often generalize well despite containing many more parameters than the size of the training dataset. This paper explores the generalization capabilities of neural networks trained via gradient descent. We develop a data-dependent optimization and generalization theory which leverages the low-rank structure of the Jacobian matrix associated with the network. Our results help demystify why training and generalization is easier on clean and structured datasets and harder on noisy and unstructured datasets as well as how the network size affects the evolution of the train and test errors during training. Specifically, we use a control knob to split the Jacobian spectum into ``information" and ``nuisance" spaces associated with the large and small singular values. We show that over the information space learning is fast and one can quickly train a model with zero training loss that can also generalize well. Over the nuisance space training is slower and early stopping can help with generalization at the expense of some bias. We also show that the overall generalization capability of the network is controlled by how well the labels are aligned with the information space. A key feature of our results is that even constant width neural nets can provably generalize for sufficiently nice datasets. We conduct various numerical experiments on deep networks that corroborate our theoretical findings and demonstrate that: (i) the Jacobian of typical neural networks exhibit low-rank structure with a few large singular values and many small ones leading to a low-dimensional information space, (ii) over the information space learning is fast and most of the labels falls on this space, and (iii) label noise falls on the nuisance space and impedes optimization/generalization. | 0reject
|
Title: White Paper Assistance: A Step Forward Beyond the Shortcut Learning. Abstract: The promising performances of CNNs often overshadow the need to examine whether they are doing in the way we are actually interested. We show through experiments that even over-parameterized models would still solve a dataset by recklessly leveraging spurious correlations, or so-called ``shortcuts’’. To combat with this unintended propensity, we borrow the idea of printer test page and propose a novel approach called White Paper Assistance. Our proposed method is two-fold; (a) we intentionally involves the white paper to detect the extent to which the model has preference for certain characterized patterns and (b) we debias the model by enforcing it to make a random guess on the white paper. We show the consistent accuracy improvements that are manifest in various architectures, datasets and combinations with other techniques. Experiments have also demonstrated the versatility of our approach on imbalanced classification and robustness to corruptions. | 0reject
|
Title: Quantile Regularization : Towards Implicit Calibration of Regression Models. Abstract: Recent works have shown that most deep learning models are often poorly calibrated, i.e., they may produce overconfident
predictions that are wrong, implying that their uncertainty estimates are unreliable. While a number of approaches have been proposed recently to calibrate classification models, relatively little work exists on calibrating regression models. Isotonic Regression has recently been advocated for regression calibration. We provide a detailed formal analysis of the \emph{side-effects} of Isotonic Regression when used for regression calibration. To address this, we recast quantile calibration as entropy estimation, and leverage this idea to construct a novel quantile regularizer, which can be used in any optimization based probabilisitc regression models. Unlike most of the existing approaches for calibrating regression models, which are based on \emph{post-hoc} processing of the model's output, and require an additional dataset, our method is trainable in an end-to-end fashion, without requiring an additional dataset. We provide empirical results demonstrating that our approach improves calibration for regression models trained on diverse architectures that provide uncertainty estimates, such as Dropout VI, Deep Ensembles | 0reject
|
Title: Learning Programmatically Structured Representations with Perceptor Gradients. Abstract: We present the perceptor gradients algorithm -- a novel approach to learning symbolic representations based on the idea of decomposing an agent's policy into i) a perceptor network extracting symbols from raw observation data and ii) a task encoding program which maps the input symbols to output actions. We show that the proposed algorithm is able to learn representations that can be directly fed into a Linear-Quadratic Regulator (LQR) or a general purpose A* planner. Our experimental results confirm that the perceptor gradients algorithm is able to efficiently learn transferable symbolic representations as well as generate new observations according to a semantically meaningful specification.
| 1accept
|
Title: Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization. Abstract: Wasserstein barycenters provide a geometric notion of the weighted average of probability measures based on optimal transport. In this paper, we present a scalable algorithm to compute Wasserstein-2 barycenters given sample access to the input measures, which are not restricted to being discrete. While past approaches rely on entropic or quadratic regularization, we employ input convex neural networks and cycle-consistency regularization to avoid introducing bias. As a result, our approach does not resort to minimax optimization. We provide theoretical analysis on error bounds as well as empirical evidence of the effectiveness of the proposed approach in low-dimensional qualitative scenarios and high-dimensional quantitative experiments. | 1accept
|
Title: Towards Simplicity in Deep Reinforcement Learning: Streamlined Off-Policy Learning. Abstract: The field of Deep Reinforcement Learning (DRL) has recently seen a surge in the popularity of maximum entropy reinforcement learning algorithms. Their popularity stems from the intuitive interpretation of the maximum entropy objective and their superior sample efficiency on standard benchmarks. In this paper, we seek to understand the primary contribution of the entropy term to the performance of maximum entropy algorithms. For the Mujoco benchmark, we demonstrate that the entropy term in Soft Actor Critic (SAC) principally addresses the bounded nature of the action spaces. With this insight, we propose a simple normalization scheme which allows a streamlined algorithm without entropy maximization match the performance of SAC. Our experimental results demonstrate a need to revisit the benefits of entropy regularization in DRL. We also propose a simple non-uniform sampling method for selecting transitions from the replay buffer during training. We further show that the streamlined algorithm with the simple non-uniform sampling scheme outperforms SAC and achieves state-of-the-art performance on challenging continuous control tasks. | 0reject
|
Title: Graph Partition Neural Networks for Semi-Supervised Classification. Abstract: We present graph partition neural networks (GPNN), an extension of graph neural networks (GNNs) able to handle extremely large graphs. GPNNs alternate between locally propagating information between nodes in small subgraphs and globally propagating information between the subgraphs. To efficiently partition graphs, we experiment with spectral partitioning and also propose a modified multi-seed flood fill for fast processing of large scale graphs. We extensively test our model on a variety of semi-supervised node classification tasks. Experimental results indicate that GPNNs are either superior or comparable to state-of-the-art methods on a wide variety of datasets for graph-based semi-supervised classification. We also show that GPNNs can achieve similar performance as standard GNNs with fewer propagation steps. | 0reject
|
Title: AdaX: Adaptive Gradient Descent with Exponential Long Term Memory. Abstract: Adaptive optimization algorithms such as RMSProp and Adam have fast convergence and smooth learning process. Despite their successes, they are proven to have non-convergence issue even in convex optimization problems as well as weak performance compared with the first order gradient methods such as stochastic gradient descent (SGD). Several other algorithms, for example AMSGrad and AdaShift, have been proposed to alleviate these issues but only minor effect has been observed. This paper further analyzes the performance of such algorithms in a non-convex setting by extending their non-convergence issue into a simple non-convex case and show that Adam's design of update steps would possibly lead the algorithm to local minimums. To address the above problems, we propose a novel adaptive gradient descent algorithm, named AdaX, which accumulates the long-term past gradient information exponentially. We prove the convergence of AdaX in both convex and non-convex settings. Extensive experiments show that AdaX outperforms Adam in various tasks of computer vision and natural language processing and can catch up with SGD.
| 0reject
|
Title: Analyzing the Expressive Power of Graph Neural Networks in a Spectral Perspective. Abstract: In the recent literature of Graph Neural Networks (GNN), the expressive power of models has been studied through their capability to distinguish if two given graphs are isomorphic or not. Since the graph isomorphism problem is NP-intermediate, and Weisfeiler-Lehman (WL) test can give sufficient but not enough evidence in polynomial time, the theoretical power of GNNs is usually evaluated by the equivalence of WL-test order, followed by an empirical analysis of the models on some reference inductive and transductive datasets. However, such analysis does not account the signal processing pipeline, whose capability is generally evaluated in the spectral domain. In this paper, we argue that a spectral analysis of GNNs behavior can provide a complementary point of view to go one step further in the understanding of GNNs. By bridging the gap between the spectral and spatial design of graph convolutions, we theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. Using this connection, we managed to re-formulate most of the state-of-the-art graph neural networks into one common framework. This general framework allows to lead a spectral analysis of the most popular GNNs, explaining their performance and showing their limits according to spectral point of view. Our theoretical spectral analysis is confirmed by experiments on various graph databases. Furthermore, we demonstrate the necessity of high and/or band-pass filters on a graph dataset, while the majority of GNN is limited to only low-pass and inevitably it fails. | 1accept
|
Title: Semi-Supervised Learning via New Deep Network Inversion. Abstract: We exploit a recently derived inversion scheme for arbitrary deep neural networks to develop a new semi-supervised learning framework that applies to a wide range of systems and problems.
The approach reaches current state-of-the-art methods on MNIST and provides reasonable performances on SVHN and CIFAR10. Through the introduced method, residual networks are for the first time applied to semi-supervised tasks. Experiments with one-dimensional signals highlight the generality of the method. Importantly, our approach is simple, efficient, and requires no change in the deep network architecture. | 0reject
|
Title: Learning from deep model via exploring local targets. Abstract: Deep neural networks often have huge number of parameters, which posts challenges in deployment in application scenarios with limited memory and computation capacity. Knowledge distillation is one approach to derive compact models from bigger ones.
However, it has been observed that a converged heavy teacher model is strongly constrained for learning a compact student network and could make the optimization subject to poor local optima. In this paper, we propose proKT, a new model-agnostic method by projecting the supervision signals of a teacher model into the student's parameter space. Such projection is implemented by decomposing the training objective into local intermediate targets with approximate mirror descent technique. The proposed method could be less sensitive with the quirks during optimization which could result in a better local optima. Experiments on both image and text datasets show that our proposed proKT consistently achieves the state-of-the-art performance comparing to all existing knowledge distillation methods. | 0reject
|
Title: Model Compression via Hyper-Structure Network. Abstract: In this paper, we propose a novel channel pruning method to solve the problem of compression and acceleration of Convolutional Neural Networks (CNNs). Previous channel pruning methods usually ignore the relationships between channels and layers. Many of them parameterize each channel independently by using gates or similar concepts. To fill this gap, a hyper-structure network is proposed to generate the architecture of the main network. Like the existing hypernet, our hyper-structure network can be optimized by regular backpropagation. Moreover, we use a regularization term to specify the computational resource of the compact network. Usually, FLOPs is used as the criterion of computational resource. However, if FLOPs is used in the regularization, it may over penalize early layers. To address this issue, we further introduce learnable layer-wise scaling factors to balance the gradients from different terms, and they can be optimized by hyper-gradient descent. Extensive experimental results on CIFAR-10 and ImageNet show that our method is competitive with state-of-the-art methods. | 0reject
|
Title: Multi-Agent MDP Homomorphic Networks. Abstract: This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information, yet is able to share experience between global symmetries in the joint state-action space of cooperative multi-agent systems. In cooperative multi-agent systems, complex symmetries arise between different configurations of the agents and their local observations. For example, consider a group of agents navigating: rotating the state globally results in a permutation of the optimal joint policy. Existing work on symmetries in single agent reinforcement learning can only be generalized to the fully centralized setting, because such approaches rely on the global symmetry in the full state-action spaces, and these can result in correspondences across agents. To encode such symmetries while still allowing distributed execution we propose a factorization that decomposes global symmetries into local transformations. Our proposed factorization allows for distributing the computation that enforces global symmetries over local agents and local interactions. We introduce a multi-agent equivariant policy network based on this factorization. We show empirically on symmetric multi-agent problems that globally symmetric distributable policies improve data efficiency compared to non-equivariant baselines. | 1accept
|
Title: Constraint-based graph network simulator. Abstract: In the rapidly advancing area of learned physical simulators, nearly all methods train a forward model that directly predicts future states from input states. However, many traditional simulation engines use a constraint-based approach instead of direct prediction. Here we present a framework for constraint-based learned simulation, where a scalar constraint function is implemented as a trainable function approximator, and future predictions are computed as the solutions to a constraint satisfaction problem. We implement our method using a graph neural network as the constraint function and gradient descent as the constraint solver. The architecture can be trained by standard backpropagation. We test the model on a variety of challenging physical domains, including simulated ropes, bouncing balls, colliding irregular shapes and splashing fluids. Our model achieves better or comparable performance to top learned simulators. A key advantage of our model is the ability to generalize to more solver iterations at test time to improve the simulation accuracy. We also show how hand-designed constraints can be added at test time to satisfy objectives which were not present in the training data, which is not possible with forward approaches. Our constraint-based framework is applicable to any setting in which forward learned simulators are used, and more generally demonstrates key ways that learned models can leverage popular methods in numerical methods. | 0reject
|
Title: On the Importance of Difficulty Calibration in Membership Inference Attacks. Abstract: The vulnerability of machine learning models to membership inference attacks has received much attention in recent years. However, existing attacks mostly remain impractical due to having high false positive rates, where non-member samples are often erroneously predicted as members. This type of error makes the predicted membership signal unreliable, especially since most samples are non-members in real world applications. In this work, we argue that membership inference attacks can benefit drastically from difficulty calibration, where an attack's predicted membership score is adjusted to the difficulty of correctly classifying the target sample. We show that difficulty calibration can significantly reduce the false positive rate of a variety of existing attacks without a loss in accuracy. | 1accept
|
Title: Shapley Explanation Networks. Abstract: Shapley values have become one of the most popular feature attribution explanation methods. However, most prior work has focused on post-hoc Shapley explanations, which can be computationally demanding due to its exponential time complexity and preclude model regularization based on Shapley explanations during training. Thus, we propose to incorporate Shapley values themselves as latent representations in deep models thereby making Shapley explanations first-class citizens in the modeling paradigm. This intrinsic explanation approach enables layer-wise explanations, explanation regularization of the model during training, and fast explanation computation at test time. We define the Shapley transform that transforms the input into a Shapley representation given a specific function. We operationalize the Shapley transform as a neural network module and construct both shallow and deep networks, called ShapNets, by composing Shapley modules. We prove that our Shallow ShapNets compute the exact Shapley values and our Deep ShapNets maintain the missingness and accuracy properties of Shapley values. We demonstrate on synthetic and real-world datasets that our ShapNets enable layer-wise Shapley explanations, novel Shapley regularizations during training, and fast computation while maintaining reasonable performance. Code is available at https://github.com/inouye-lab/ShapleyExplanationNetworks. | 1accept
|
Title: Neural Face Identification in a 2D Wireframe Projection of a Manifold Object. Abstract: In computer-aided design (CAD) systems, 2D line drawings are commonly used to illustrate 3D object designs. To reconstruct the 3D models depicted by a single 2D line drawing, an important key is finding the edge loops in the line drawing which correspond to the actual faces of the 3D object. In this paper, we approach the classical problem of face identification from a novel data-driven point of view. We cast it as a sequence generation problem: starting from an arbitrary edge, we adopt a variant of the popular Transformer model to predict the edges associated with the same face in a natural order. This allows us to avoid searching the space of all possible edges loops with various hand-crafted rules and heuristics as most existing methods do, deal with challenging cases such as curved surfaces and nested edge loops, and leverage additional cues such as face types. We further discuss how possibly imperfect predictions can be used for 3D object reconstruction. | 2withdrawn
|
Title: When less is more: Simplifying inputs aids neural network understanding. Abstract: Are all bits useful? In this work, we propose SimpleBits, a method to synthesize simplified inputs by reducing information content, and carefully measure the effect of such simplification on learning. Crucially, SimpleBits does not require any domain-specific knowledge to constrain which input features should be removed. Instead, SimpleBits learns to remove the features of inputs which are least relevant for a given task. Concretely, we jointly optimize for input simplification by reducing inputs' bits per dimension as given by a pretrained generative model, as well as for the classification performance. We apply the simplification approach to a wide range of scenarios: conventional training, dataset condensation and post-hoc explanations. In this way, we analyze what simplified inputs tell us about the decisions made by classification networks. We show that our simplification approach successfully removes superfluous information for tasks with injected distractors. When applied post-hoc, our approach provides intuition into reasons for misclassifications of conventionally trained classifiers. Finally, for dataset condensation, we find that inputs can be simplified with only minimal accuracy degradation. Overall, our learning-based simplification approach offers a valuable new tool to explore the basis of network decisions. | 0reject
|
Title: Beyond Greedy Ranking: Slate Optimization via List-CVAE. Abstract: The conventional approach to solving the recommendation problem greedily ranks
individual document candidates by prediction scores. However, this method fails to
optimize the slate as a whole, and hence, often struggles to capture biases caused
by the page layout and document interdepedencies. The slate recommendation
problem aims to directly find the optimally ordered subset of documents (i.e.
slates) that best serve users’ interests. Solving this problem is hard due to the
combinatorial explosion of document candidates and their display positions on the
page. Therefore we propose a paradigm shift from the traditional viewpoint of solving a ranking problem to a direct slate generation framework. In this paper, we introduce List Conditional Variational Auto-Encoders (ListCVAE),
which learn the joint distribution of documents on the slate conditioned
on user responses, and directly generate full slates. Experiments on simulated
and real-world data show that List-CVAE outperforms greedy ranking methods
consistently on various scales of documents corpora. | 1accept
|
Title: Modelling neuronal behaviour with time series regression: Recurrent Neural Networks on synthetic C. elegans data. Abstract: Given the inner complexity of the human nervous system, insight into the dynamics of brain activity can be gained from understanding smaller and simpler organisms, such as the nematode C. elegans. The behavioural and structural biology of these organisms is well-known, making them prime candidates for benchmarking modelling and simulation techniques. In these complex neuronal collections, classical white-box modelling techniques based on intrinsic structural or behavioural information are either unable to capture the profound nonlinearities of the neuronal response to different stimuli or generate extremely complex models, which are computationally intractable. In this paper we investigate whether it is possible to generate lower complexity black-box models that can capture the system dynamics with low error using only measured or simulated input-output information. We show how the nervous system of C. elegans can be modelled and simulated with data-driven models using different neural network architectures. Specifically, we target the use of state of the art recurrent neural networks architectures such as LSTMs and GRUs and compare these architectures in terms of their properties and their RMSE, as well as the complexity of the resulting models.
We show that GRU models with a hidden layer size of 4 units are able to accurately reproduce the system's response to very different stimuli. | 0reject
|
Title: Bigeminal Priors Variational Auto-encoder. Abstract: Variational auto-encoders (VAEs) are an influential and generally-used class of likelihood-based generative models in unsupervised learning. The likelihood-based generative models have been reported to be highly robust to the out-of-distribution (OOD) inputs and can be a detector by assuming that the model assigns higher likelihoods to the samples from the in-distribution (ID) dataset than an OOD dataset. However, recent works reported a phenomenon that VAE recognizes some OOD samples as ID by assigning a higher likelihood to the OOD inputs compared to the one from ID. In this work, we introduce a new model, namely \textit{Bigeminal Priors Variational auto-encoder (BPVAE)}, to address this phenomenon. The BPVAE aims to enhance the robustness of the VAEs by combing the power of VAE with the two independent priors that belong to the training dataset and simple dataset, which complexity is lower than the training dataset, respectively. BPVAE learns two datasets’ features, assigning a higher likelihood for the training dataset than the simple dataset. In this way, we can use BPVAE’s density estimate for detecting the OOD samples. Quantitative experimental results suggest that our model has better generalization capability and stronger robustness than the standard VAEs, proving the effectiveness of the proposed approach of hybrid learning by collaborative priors. Overall, this work paves a new avenue to potentially overcome the OOD problem via multiple latent priors modeling. | 2withdrawn
|
Title: Multi-Advisor Reinforcement Learning. Abstract: We consider tackling a single-agent RL problem by distributing it to $n$ learners. These learners, called advisors, endeavour to solve the problem from a different focus. Their advice, taking the form of action values, is then communicated to an aggregator, which is in control of the system. We show that the local planning method for the advisors is critical and that none of the ones found in the literature is flawless: the \textit{egocentric} planning overestimates values of states where the other advisors disagree, and the \textit{agnostic} planning is inefficient around danger zones. We introduce a novel approach called \textit{empathic} and discuss its theoretical aspects. We empirically examine and validate our theoretical findings on a fruit collection task. | 0reject
|
Title: Bayesian Inference for Large Scale Image Classification. Abstract: Bayesian inference promises to ground and improve the performance of deep neural networks. It promises to be robust to overfitting, to simplify the training procedure and the space of hyperparameters, and to provide a calibrated measure of uncertainty that can enhance decision making, agent exploration and prediction fairness.
Markov Chain Monte Carlo (MCMC) methods enable Bayesian inference by generating samples from the posterior distribution over model parameters.
Despite the theoretical advantages of Bayesian inference and the similarity between MCMC and optimization methods, the performance of sampling methods has so far lagged behind optimization methods for large scale deep learning tasks.
We aim to fill this gap and introduce ATMC, an adaptive noise MCMC algorithm that estimates and is able to sample from the posterior of a neural network.
ATMC dynamically adjusts the amount of momentum and noise applied to each parameter update in order to compensate for the use of stochastic gradients.
We use a ResNet architecture without batch normalization to test ATMC on the Cifar10 benchmark and the large scale ImageNet benchmark and show that, despite the absence of batch normalization, ATMC outperforms a strong optimization baseline in terms of both classification accuracy and test log-likelihood. We show that ATMC is intrinsically robust to overfitting on the training data and that ATMC provides a better calibrated measure of uncertainty compared to the optimization baseline. | 0reject
|
Title: Improving Tail Label Prediction for Extreme Multi-label Learning. Abstract: Extreme multi-label learning (XML) works to annotate objects with relevant labels from an extremely large label set. Many previous methods treat labels uniformly such that the learned model tends to perform better on head labels, while the performance is severely deteriorated for tail labels. However, it is often desirable to predict more tail labels in many real-world applications. To alleviate this problem, in this work, we show theoretical and experimental evidence for the inferior performance of representative XML methods on tail labels. Our finding is that the norm of label classifier weights typically follows a long-tailed distribution similar to the label frequency, which results in the over-suppression of tail labels. Base on this new finding, we present two new modules: (1)~\algoa~learns to re-rank the predictions by optimizing a population-aware loss, which predicts tail labels with high rank; (2)~\algob~augments tail labels via a decoupled learning scheme, which can yield more balanced classification boundary. We conduct experiments on commonly used XML benchmarks with hundreds of thousands of labels, showing that the proposed methods improve the performance of many state-of-the-art XML models by a considerable margin (6\% performance gain with respect to PSP@1 on average). | 0reject
|
Title: Conditional Expectation based Value Decomposition for Scalable On-Demand Ride Pooling. Abstract: Owing to the benefits for customers (lower prices), drivers (higher revenues), aggregation companies (higher revenues) and the environment (fewer vehicles), on-demand ride pooling (e.g., Uber pool, Grab Share) has become quite popular. The significant computational complexity of matching vehicles to combinations of requests has meant that traditional ride pooling approaches are myopic in that they do not consider the impact of current matches on future value for vehicles/drivers.
Recently, Neural Approximate Dynamic Programming (NeurADP) has employed value decomposition with Approximate Dynamic Programming (ADP) to outperform leading approaches by considering the impact of an individual agent's (vehicle) chosen actions on the future value of that agent. However, in order to ensure scalability and facilitate city-scale ride pooling, NeurADP completely ignores the impact of other agents actions on individual agent/vehicle value. As demonstrated in our experimental results, ignoring the impact of other agents actions on individual value can have a significant impact on the overall performance when there is increased competition among vehicles for demand. Our key contribution is a novel mechanism based on computing conditional expectations through joint conditional probabilities for capturing dependencies on other agents actions without increasing the complexity of training or decision making. We show that our new approach, Conditional Expectation based Value Decomposition (CEVD) outperforms NeurADP by up to 9.76$\% $in terms of overall requests served, which is a significant improvement on a city wide benchmark taxi dataset. | 0reject
|
Title: Towards Effective GANs for Data Distributions with Diverse Modes. Abstract: Generative Adversarial Networks (GANs), when trained on large datasets with diverse modes, are known to produce conflated images which do not distinctly belong to any of the modes. We hypothesize that this problem occurs due to the interaction between two facts: (1) For datasets with large variety, it is likely that the modes lie on separate manifolds. (2) The generator (G) is formulated as a continuous function, and the input noise is derived from a connected set, due to which G's output is a connected set. If G covers all modes, then there must be some portion of G's output which connects them. This corresponds to undesirable, conflated images. We develop theoretical arguments to support these intuitions. We propose a novel method to break the second assumption via learnable discontinuities in the latent noise space. Equivalently, it can be viewed as training several generators, thus creating discontinuities in the G function. We also augment the GAN formulation with a classifier C that predicts which noise partition/generator produced the output images, encouraging diversity between each partition/generator. We experiment on MNIST, celebA, STL-10, and a difficult dataset with clearly distinct modes, and show that the noise partitions correspond to different modes of the data distribution, and produce images of superior quality. | 0reject
|
Title: FEW-SHOT LEARNING ON GRAPHS VIA SUPER-CLASSES BASED ON GRAPH SPECTRAL MEASURES. Abstract: We propose to study the problem of few-shot graph classification in graph neural networks (GNNs) to recognize unseen classes, given limited labeled graph examples. Despite several interesting GNN variants being proposed recently for node and graph classification tasks, when faced with scarce labeled examples in the few-shot setting, these GNNs exhibit significant loss in classification performance. Here, we present an approach where a probability measure is assigned to each graph based on the spectrum of the graph’s normalized Laplacian. This enables us to accordingly cluster the graph base-labels associated with each graph into super-classes, where the L^p Wasserstein distance serves as our underlying distance metric. Subsequently, a super-graph constructed based on the super-classes is then fed to our proposed GNN framework which exploits the latent inter-class relationships made explicit by the super-graph to achieve better class label separation among the graphs. We conduct exhaustive empirical evaluations of our proposed method and show that it outperforms both the adaptation of state-of-the-art graph classification methods to few-shot scenario and our naive baseline GNNs. Additionally, we also extend and study the behavior of our method to semi-supervised and active learning scenarios. | 1accept
|
Title: Meta Learning Low Rank Covariance Factors for Energy Based Deterministic Uncertainty. Abstract: Numerous recent works utilize bi-Lipschitz regularization of neural network layers to preserve relative distances between data instances in the feature spaces of each layer. This distance sensitivity with respect to the data aids in tasks such as uncertainty calibration and out-of-distribution (OOD) detection. In previous works, features extracted with a distance sensitive model are used to construct feature covariance matrices which are used in deterministic uncertainty estimation or OOD detection. However, in cases where there is a distribution over tasks, these methods result in covariances which are sub-optimal, as they may not leverage all of the meta information which can be shared among tasks. With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices. Additionally, we propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution which is well calibrated under a distributional dataset shift. | 1accept
|
Title: Scale-Equivariant Steerable Networks. Abstract: The effectiveness of Convolutional Neural Networks (CNNs) has been substantially attributed to their built-in property of translation equivariance. However, CNNs do not have embedded mechanisms to handle other types of transformations. In this work, we pay attention to scale changes, which regularly appear in various tasks due to the changing distances between the objects and the camera. First, we introduce the general theory for building scale-equivariant convolutional networks with steerable filters. We develop scale-convolution and generalize other common blocks to be scale-equivariant. We demonstrate the computational efficiency and numerical stability of the proposed method. We compare the proposed models to the previously developed methods for scale equivariance and local scale invariance. We demonstrate state-of-the-art results on the MNIST-scale dataset and on the STL-10 dataset in the supervised learning setting. | 1accept
|
Title: Mol-CycleGAN - a generative model for molecular optimization. Abstract: Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires optimization of chemical compound structures with respect to many complex properties. To augment the compound design process we introduce Mol-CycleGAN -- a CycleGAN-based model that generates optimized compounds with a chemical scaffold of interest. Namely, given a molecule our model generates a structurally similar one with an optimized value of the considered property. We evaluate the performance of the model on selected optimization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a physicochemical property (penalized logP). In the task of optimization of penalized logP of drug-like molecules our model significantly outperforms previous results. | 0reject
|
Title: Continual Learning using the SHDL Framework with Skewed Replay Distributions. Abstract: Human and animals continuously acquire, adapt as well as transfer knowledge throughout their lifespan. The ability to learn continuously is crucial for the effective functioning of agents interacting with the real world and processing continuous streams of information. Continuous learning has been a long-standing challenge for neural networks as the repeated acquisition of information from non-uniform data distributions generally lead to catastrophic forgetting or interference. This work proposes a modular architecture capable of continuous acquisition of tasks while averting catastrophic forgetting. Specifically, our contributions are: (i) Efficient Architecture: a modular architecture emulating the visual cortex that can learn meaningful representations with limited labelled examples, (ii) Knowledge Retention: retention of learned knowledge via limited replay of past experiences, (iii) Forward Transfer: efficient and relatively faster learning on new tasks, and (iv) Naturally Skewed Distributions: The learning in the above-mentioned claims is performed on non-uniform data distributions which better represent the natural statistics of our ongoing experience. Several experiments that substantiate the above-mentioned claims are demonstrated on the CIFAR-100 dataset. | 0reject
|
Title: A Multi-Task Learning Algorithm for Non-personalized Recommendations. Abstract: In this paper, we introduce a multi-task learning (MTL) algorithm for recommending non-personalized videos to watch next on industrial video sharing platforms. Personalized recommendations have been studied for decades, while researches on non-personalized solutions are very rare to be seen, which still remain a huge portion in industry. As an indispensable part in recommender system, non-personalized video recommender system also faces several real-world challenges, including maintaining high relevance between source item and target items, as well as achieving multiple competing ranking objectives. To solve these, we largely extended model-based collaborative filtering algorithm by adding related candidate generation stage, Two-tower DNN structure and a multi-task learning mechanism. Compared with typical baseline solutions, our proposed algorithm can capture both linear and non-linear relationships from user-item interactions, and live experiments demonstrate that it can significantly advance the state of the art on recommendation quality. | 0reject
|
Title: Graph-Enhanced Exploration for Goal-oriented Reinforcement Learning. Abstract: Goal-oriented Reinforcement Learning (GoRL) is a promising approach for scaling up RL techniques on sparse reward environments requiring long horizon planning. Recent works attempt to build suitable abstraction graph of the environment and enhance GoRL with classical graphical methods such as shortest path searching; however, these approaches mainly focus on either graph construction or agent exploitation, but leave the exploration lack of study. This paper proposes Graph-enhanced GoRL (G2RL), a new GoRL framework for effective exploration and efficient training based on the state-transition graph. We first introduce the optimal goals for exploration on the graph and then use them as supervised signals to train the goal generator in G2RL in a hindsight manner. Furthermore, we define relevant trajectories of a state based on its graph neighborhood and show that giving high priority to these trajectories would lead to an efficient policy learning. In addition to the theoretical results regarding optimal goal generation, our empirical results on standard discrete and continuous control benchmarks show that leveraging the state-transition graph is beneficial for GoRL to learn an effective and informative exploration strategy and outperform the state-of-the-art methods. | 2withdrawn
|
Title: Kernel of CycleGAN as a principal homogeneous space. Abstract: Unpaired image-to-image translation has attracted significant interest due to the invention of CycleGAN, a method which utilizes a combination of adversarial and cycle consistency losses to avoid the need for paired data. It is known that the CycleGAN problem might admit multiple solutions, and our goal in this paper is to analyze the space of exact solutions and to give perturbation bounds for approximate solutions. We show theoretically that the exact solution space is invariant with respect to automorphisms of the underlying probability spaces, and, furthermore, that the group of automorphisms acts freely and transitively on the space of exact solutions. We examine the case of zero pure CycleGAN loss first in its generality, and, subsequently, expand our analysis to approximate solutions for extended CycleGAN loss where identity loss term is included. In order to demonstrate that these results are applicable, we show that under mild conditions nontrivial smooth automorphisms exist. Furthermore, we provide empirical evidence that neural networks can learn these automorphisms with unexpected and unwanted results. We conclude that finding optimal solutions to the CycleGAN loss does not necessarily lead to the envisioned result in image-to-image translation tasks and that underlying hidden symmetries can render the result useless. | 1accept
|
Title: Representation Balancing Offline Model-based Reinforcement Learning. Abstract: One of the main challenges in offline and off-policy reinforcement learning is to cope with the distribution shift that arises from the mismatch between the target policy and the data collection policy. In this paper, we focus on a model-based approach, particularly on learning the representation for a robust model of the environment under the distribution shift, which has been first studied by Representation Balancing MDP (RepBM). Although this prior work has shown promising results, there are a number of shortcomings that still hinder its applicability to practical tasks. In particular, we address the curse of horizon exhibited by RepBM, rejecting most of the pre-collected data in long-term tasks. We present a new objective for model learning motivated by recent advances in the estimation of stationary distribution corrections. This effectively overcomes the aforementioned limitation of RepBM, as well as naturally extending to continuous action spaces and stochastic policies. We also present an offline model-based policy optimization using this new objective, yielding the state-of-the-art performance in a representative set of benchmark offline RL tasks. | 1accept
|
Title: Bootstrapped Hindsight Experience replay with Counterintuitive Prioritization. Abstract: Goal-conditioned environments are known as sparse rewards tasks, in which the agent gains a positive reward only when it achieves the goal. Such an setting results in much difficulty for the agent to explore successful trajectories. Hindsight experience replay (HER) replaces the goal in failed experiences with any practically achieved one, so that the agent has a much higher chance to see successful trajectories even if they are fake. Comprehensive results have demonstrated the effectiveness of HER in the literature. However, the importance of the fake trajectories differs in terms of exploration and exploitation, and it is usually inefficient to learn with a fixed proportion of fake and original data as HER did. In this paper, inspired by Bootstrapped DQN, we use multiple heads in DDPG and take advantage of the diversity and uncertainty among multiple heads to improve the data efficiency with relabeled goals. The method is referred to as Bootstrapped HER (BHER). Specifically, in addition to the benefit from the Bootstrapped version, we explicitly leverage the uncertainty measured by the variance of estimated Q-values from multiple heads. A common knowledge is that higher uncertainty will promote exploration and hence maximizing the uncertainty via a bonus term will induce better performance in Q-learning. However, in this paper, we reveal a counterintuitive conclusion that for hindsight experiences, exploiting lower uncertainty data samples will significantly improve the performance. The explanation behind this fact is that hindsight relabeling largely promotes exploration, and then exploiting lower uncertainty data (whose goals are generated by hindsight relabeling) provides a good trade-off between exploration and exploitation, resulting in further improved data efficiency. Comprehensive experiments demonstrate that our method can achieve state-of-the-art results in many goal-conditioned tasks. | 0reject
|
Title: Scheduled Intrinsic Drive: A Hierarchical Take on Intrinsically Motivated Exploration. Abstract: Exploration in sparse reward reinforcement learning remains an open challenge. Many state-of-the-art methods use intrinsic motivation to complement the sparse extrinsic reward signal, giving the agent more opportunities to receive feedback during exploration. Commonly these signals are added as bonus rewards, which results in a mixture policy that neither conducts exploration nor task fulfillment resolutely.
In this paper, we instead learn separate intrinsic and extrinsic task policies and schedule between these different drives to accelerate exploration and stabilize learning. Moreover, we introduce a new type of intrinsic reward denoted as successor feature control (SFC), which is general and not task-specific. It takes into account statistics over complete trajectories and thus differs from previous methods that only use local information to evaluate intrinsic motivation. We evaluate our proposed scheduled intrinsic drive (SID) agent using three different environments with pure visual inputs: VizDoom, DeepMind Lab and DeepMind Control Suite. The results show a substantially improved exploration efficiency with SFC and the hierarchical usage of the intrinsic drives. A video of our experimental results can be found at https://gofile.io/?c=HpEwTd. | 0reject
|
Title: Multi-Task Processes. Abstract: Neural Processes (NPs) consider a task as a function realized from a stochastic process and flexibly adapt to unseen tasks through inference on functions. However, naive NPs can model data from only a single stochastic process and are designed to infer each task independently. Since many real-world data represent a set of correlated tasks from multiple sources (e.g., multiple attributes and multi-sensor data), it is beneficial to infer them jointly and exploit the underlying correlation to improve the predictive performance.
To this end, we propose Multi-Task Neural Processes (MTNPs), an extension of NPs designed to jointly infer tasks realized from multiple stochastic processes. We build MTNPs in a hierarchical way such that inter-task correlation is considered by conditioning all per-task latent variables on a single global latent variable. In addition, we further design our MTNPs so that they can address multi-task settings with incomplete data (i.e., not all tasks share the same set of input points), which has high practical demands in various applications.
Experiments demonstrate that MTNPs can successfully model multiple tasks jointly by discovering and exploiting their correlations in various real-world data such as time series of weather attributes and pixel-aligned visual modalities. We release our code at https://github.com/GitGyun/multi_task_neural_processes. | 1accept
|
Title: Optimizing Transformers with Approximate Computing for Faster, Smaller and more Accurate NLP Models. Abstract: Transformer models have garnered a lot of interest in recent years by delivering state-of-the-art performance in a range of Natural Language Processing (NLP) tasks. However, these models can have over a hundred billion parameters, presenting very high computational and memory requirements. We address this challenge through Approximate Computing, specifically targeting the use of Transformers in NLP tasks. Transformers are typically pre-trained and subsequently specialized for specific tasks through transfer learning. We observe that pre-trained Transformers are often over-parameterized for several downstream NLP tasks and propose a framework to create smaller and faster models with comparable accuracy. The key cornerstones of the framework are a Significance Analysis (SA) method to identify important components in a pre-trained Transformer for a given task, and techniques to approximate the less significant components. Our framework can be adapted to produce models that are faster, smaller and/or more accurate, depending on the user's constraints. We apply our framework to multiple Transformer models and different downstream tasks, including previously proposed optimized models like DistilBERT and Q8BERT. We demonstrate that our framework produces models that are up to 4$\times$ faster and up to 14$\times$ smaller (with less than 0.5% relative accuracy degradation), or up to 5.5% more accurate with simultaneous model size and speed improvements of up to 9.8$\times$ and 2.9$\times$, respectively. | 0reject
|
Title: Understanding Mental Representations Of Objects Through Verbs Applied To Them. Abstract: In order to interact with objects in our environment, we rely on an understanding of the actions that can be performed on them, and the extent to which they rely or have an effect on the properties of the object. This knowledge is called the object "affordance". We propose an approach for creating an embedding of objects in an affordance space, in which each dimension corresponds to an aspect of meaning shared by many actions, using text corpora. This embedding makes it possible to predict which verbs will be applicable to a given object, as captured in human judgments of affordance, better than a variety of alternative approaches. Furthermore, we show that the dimensions learned are interpretable, and that they correspond to typical patterns of interaction with objects. Finally, we show that the dimensions can be used to predict a state-of-the-art mental representation of objects, derived purely from human judgements of object similarity. | 0reject
|
Title: Uncertainty Sets for Image Classifiers using Conformal Prediction. Abstract: Convolutional image classifiers can achieve high predictive accuracy, but quantifying their uncertainty remains an unresolved challenge, hindering their deployment in consequential settings. Existing uncertainty quantification techniques, such as Platt scaling, attempt to calibrate the network’s probability estimates, but they do not have formal guarantees. We present an algorithm that modifies any classifier to output a predictive set containing the true label with a user-specified probability, such as 90%. The algorithm is simple and fast like Platt scaling, but provides a formal finite-sample coverage guarantee for every model and dataset. Our method modifies an existing conformal prediction algorithm to give more stable predictive sets by regularizing the small scores of unlikely classes after Platt scaling. In experiments on both Imagenet and Imagenet-V2 with ResNet-152 and other classifiers, our scheme outperforms existing approaches, achieving coverage with sets that are often factors of 5 to 10 smaller than a stand-alone Platt scaling baseline. | 1accept
|
Title: Causal Contextual Bandits with Targeted Interventions. Abstract: We study a contextual bandit setting where the learning agent has the ability to perform interventions on targeted subsets of the population, apart from possessing qualitative causal side-information. This novel formalism captures intricacies in real-world scenarios such as software product experimentation where targeted experiments can be conducted. However, this fundamentally changes the set of options that the agent has, compared to standard contextual bandit settings, necessitating new techniques. This is also the first work that integrates causal side-information in a contextual bandit setting, where the agent aims to learn a policy that maps contexts to arms (as opposed to just identifying one best arm). We propose a new algorithm, which we show empirically performs better than baselines on experiments that use purely synthetic data and on real world-inspired experiments. We also prove a bound on regret that theoretically guards performance. | 1accept
|
Title: Variational Inference of Disentangled Latent Concepts from Unlabeled Observations. Abstract: Disentangled representations, where the higher level data generative factors are reflected in disjoint latent dimensions, offer several benefits such as ease of deriving invariant representations, transferability to other tasks, interpretability, etc. We consider the problem of unsupervised learning of disentangled representations from large pool of unlabeled observations, and propose a variational inference based approach to infer disentangled latent factors. We introduce a regularizer on the expectation of the approximate posterior over observed data that encourages the disentanglement. We also propose a new disentanglement metric which is better aligned with the qualitative disentanglement observed in the decoder's output. We empirically observe significant improvement over existing methods in terms of both disentanglement and data likelihood (reconstruction quality).
| 1accept
|
Title: R-GAP: Recursive Gradient Attack on Privacy. Abstract: Federated learning frameworks have been regarded as a promising approach to break the dilemma between demands on privacy and the promise of learning from large collections of distributed data. Many such frameworks only ask collaborators to share their local update of a common model, i.e. gradients with respect to locally stored data, instead of exposing their raw data to other collaborators. However, recent optimization-based gradient attacks show that raw data can often be accurately recovered from gradients. It has been shown that minimizing the Euclidean distance between true gradients and those calculated from estimated data is often effective in fully recovering private data. However, there is a fundamental lack of theoretical understanding of how and when gradients can lead to unique recovery of original data. Our research fills this gap by providing a closed-form recursive procedure to recover data from gradients in deep neural networks. We name it Recursive Gradient Attack on Privacy (R-GAP). Experimental results demonstrate that R-GAP works as well as or even better than optimization-based approaches at a fraction of the computation under certain conditions. Additionally, we propose a Rank Analysis method, which can be used to estimate the risk of gradient attacks inherent in certain network architectures, regardless of whether an optimization-based or closed-form-recursive attack is used. Experimental results demonstrate the utility of the rank analysis towards improving the network's security. Source code is available for download from https://github.com/JunyiZhu-AI/R-GAP. | 1accept
|
Title: Diverse and Consistent Multi-view Networks for Semi-supervised Regression. Abstract: Label collection is costly in many applications, which poses the need for label-efficient learning. In this work, we present Diverse and Consistent Multi-view Networks (DiCoM) — a novel semi-supervised regression technique based on a multi-view learning framework. DiCoM combines diversity with consistency — two seemingly opposing yet complementary principles of multi-view learning - based on underlying probabilistic graphical assumptions. Given multiple deep views of the same input, DiCoM encourages a negative correlation among the views' predictions on labeled data, while simultaneously enforces their agreement on unlabeled data. DiCoM can utilize either multi-network or multi-branch architectures to make a trade-off between computational cost and modeling performance. Under realistic evaluation setups, DiCoM outperforms competing methods on tabular and image data. Our ablation studies confirm the importance of having both consistency and diversity. | 0reject
|
Title: Decoupling Representation Learning from Reinforcement Learning. Abstract: In an effort to overcome limitations of reward-driven feature learning in deep reinforcement learning (RL) from images, we propose decoupling representation learning from policy learning. To this end, we introduce a new unsupervised learning (UL) task, called Augmented Temporal Contrast (ATC), which trains a convolutional encoder to associate pairs of observations separated by a short time difference, under image augmentations and using a contrastive loss. In online RL experiments, we show that training the encoder exclusively using ATC matches or outperforms end-to-end RL in most environments. Additionally, we benchmark several leading UL algorithms by pre-training encoders on expert demonstrations and using them, with weights frozen, in RL agents; we find that agents using ATC-trained encoders outperform all others. We also train multi-task encoders on data from multiple environments and show generalization to different downstream RL tasks. Finally, we ablate components of ATC, and introduce a new data augmentation to enable replay of (compressed) latent images from pre-trained encoders when RL requires augmentation. Our experiments span visually diverse RL benchmarks in DeepMind Control, DeepMind Lab, and Atari, and our complete code is available at \url{hidden url}. | 0reject
|
Title: Regularized Learning for Domain Adaptation under Label Shifts. Abstract: We propose Regularized Learning under Label shifts (RLLS), a principled and a practical domain-adaptation algorithm to correct for shifts in the label distribution between a source and a target domain. We first estimate importance weights using labeled source data and unlabeled target data, and then train a classifier on the weighted source samples. We derive a generalization bound for the classifier on the target domain which is independent of the (ambient) data dimensions, and instead only depends on the complexity of the function class. To the best of our knowledge, this is the first generalization bound for the label-shift problem where the labels in the target domain are not available. Based on this bound, we propose a regularized estimator for the small-sample regime which accounts for the uncertainty in the estimated weights. Experiments on the CIFAR-10 and MNIST datasets show that RLLS improves classification accuracy, especially in the low sample and large-shift regimes, compared to previous methods. | 1accept
|
Title: Sensor Transformation Attention Networks. Abstract: Recent work on encoder-decoder models for sequence-to-sequence mapping has shown that integrating both temporal and spatial attentional mechanisms into neural networks increases the performance of the system substantially. We report on a new modular network architecture that applies an attentional mechanism not on temporal and spatial regions of the input, but on sensor selection for multi-sensor setups. This network called the sensor transformation attention network (STAN) is evaluated in scenarios which include the presence of natural noise or synthetic dynamic noise. We demonstrate how the attentional signal responds dynamically to changing noise levels and sensor-specific noise, leading to reduced word error rates (WERs) on both audio and visual tasks using TIDIGITS and GRID; and also on CHiME-3, a multi-microphone real-world noisy dataset. The improvement grows as more channels are corrupted as demonstrated on the CHiME-3 dataset. Moreover, the proposed STAN architecture naturally introduces a number of advantages including ease of removing sensors from existing architectures, attentional interpretability, and increased robustness to a variety of noise environments. | 0reject
|
Title: Few-Shot Intent Inference via Meta-Inverse Reinforcement Learning. Abstract: A significant challenge for the practical application of reinforcement learning toreal world problems is the need to specify an oracle reward function that correctly defines a task. Inverse reinforcement learning (IRL) seeks to avoid this challenge by instead inferring a reward function from expert behavior. While appealing, it can be impractically expensive to collect datasets of demonstrations that cover the variation common in the real world (e.g. opening any type of door). Thus in practice, IRL must commonly be performed with only a limited set of demonstrations where it can be exceedingly difficult to unambiguously recover a reward function. In this work, we exploit the insight that demonstrations from other tasks can be used to constrain the set of possible reward functions by learning a "prior" that is specifically optimized for the ability to infer expressive reward functions from limited numbers of demonstrations. We demonstrate that our method can efficiently recover rewards from images for novel tasks and provide intuition as to how our approach is analogous to learning a prior. | 0reject
|
Title: All SMILES Variational Autoencoder for Molecular Property Prediction and Optimization. Abstract: Variational autoencoders (VAEs) defined over SMILES string and graph-based representations of molecules promise to improve the optimization of molecular properties, thereby revolutionizing the pharmaceuticals and materials industries. However, these VAEs are hindered by the non-unique nature of SMILES strings and the computational cost of graph convolutions. To efficiently pass messages along all paths through the molecular graph, we encode multiple SMILES strings of a single molecule using a set of stacked recurrent neural networks, harmonizing hidden representations of each atom between SMILES representations, and use attentional pooling to build a final fixed-length latent representation. By then decoding to a disjoint set of SMILES strings of the molecule, our All SMILES VAE learns an almost bijective mapping between molecules and latent representations near the high-probability-mass subspace of the prior. Our SMILES-derived but molecule-based latent representations significantly surpass the state-of-the-art in a variety of fully- and semi-supervised property regression and molecular property optimization tasks. | 0reject
|
Title: Neural Deep Equilibrium Solvers. Abstract: A deep equilibrium (DEQ) model abandons traditional depth by solving for the fixed point of a single nonlinear layer $f_\theta$. This structure enables decoupling the internal structure of the layer (which controls representational capacity) from how the fixed point is actually computed (which impacts inference-time efficiency), which is usually via classic techniques such as Broyden's method or Anderson acceleration. In this paper, we show that one can exploit such decoupling and substantially enhance this fixed point computation using a custom neural solver. Specifically, our solver uses a parameterized network to both guess an initial value of the optimization and perform iterative updates, in a method that generalizes a learnable form of Anderson acceleration and can be trained end-to-end in an unsupervised manner. Such a solution is particularly well suited to the implicit model setting, because inference in these models requires repeatedly solving for a fixed point of the same nonlinear layer for different inputs, a task at which our network excels. Our experiments show that these neural equilibrium solvers are fast to train (only taking an extra 0.9-1.1% over the original DEQ's training time), require few additional parameters (1-3% of the original model size), yet lead to a $2\times$ speedup in DEQ network inference without any degradation in accuracy across numerous domains and tasks. | 1accept
|
Title: How to Train Your MAML to Excel in Few-Shot Classification. Abstract: Model-agnostic meta-learning (MAML) is arguably one of the most popular meta-learning algorithms nowadays.
Nevertheless, its performance on few-shot classification is far behind many recent algorithms dedicated to the problem. In this paper, we point out several key facets of how to train MAML to excel in few-shot classification. First, we find that MAML needs a large number of gradient steps in its inner loop update, which contradicts its common usage in few-shot classification. Second, we find that MAML is sensitive to the class label assignments during meta-testing. Concretely, MAML meta-trains the initialization of an $N$-way classifier. These $N$ ways, during meta-testing, then have "$N!$" different permutations to be paired with a few-shot task of $N$ novel classes. We find that these permutations lead to a huge variance of accuracy, making MAML unstable in few-shot classification. Third, we investigate several approaches to make MAML permutation-invariant, among which meta-training a single vector to initialize all the $N$ weight vectors in the classification head performs the best. On benchmark datasets like MiniImageNet and TieredImageNet, our approach, which we name UNICORN-MAML, performs on a par with or even outperforms many recent few-shot classification algorithms, without sacrificing MAML's simplicity. | 1accept
|
Title: Training By Vanilla SGD with Larger Learning Rates. Abstract: The stochastic gradient descent (SGD) method, first proposed in 1950's, has been the foundation for deep-neural-network (DNN) training with numerous enhancements including adding a momentum or adaptively selecting learning rates, or using both strategies and more. A common view for SGD is that the learning rate should be eventually made small in order to reach sufficiently good approximate solutions. Another widely held view is that the vanilla SGD is out of fashion in comparison to many of its modern variations. In this work, we provide a contrarian claim that, when training over-parameterized DNNs, the vanilla SGD can still compete well with, and oftentimes outperform, its more recent variations by simply using learning rates significantly larger than commonly used values. We establish theoretical results to explain this local convergence behavior of SGD on nonconvex functions, and also present computational evidence, across multiple tasks including image classification, speech recognition and natural language processing, to support the practice of using larger learning rates.
| 0reject
|
Title: One Generation Knowledge Distillation by Utilizing Peer Samples. Abstract: Knowledge Distillation (KD) is a widely used technique in recent deep learning research to obtain small and simple models whose performance is on a par with their large and complex counterparts. Standard Knowledge Distillation tends to be time-consuming because of the training time spent to obtain a teacher model that would then provide guidance for the student model. It might be possible to cut short the time by training a teacher model on the fly, but it is not trivial to have such a high-capacity teacher that gives quality guidance to student models this way. To improve this, we present a novel framework of Knowledge Distillation exploiting dark knowledge from the whole training set. In this framework, we propose a simple and effective implementation named Distillation by Utilizing Peer Samples (DUPS) in one generation. We verify our algorithm on numerous experiments. Compared with standard training on modern architectures, DUPS achieves an average improvement of 1%-2% on various tasks with nearly zero extra cost. Considering some typical Knowledge Distillation methods which are much more time-consuming, we also get comparable or even better performance using DUPS. | 2withdrawn
|
Title: Decomposing Mutual Information for Representation Learning. Abstract: Many self-supervised representation learning methods maximize mutual information (MI) across views. In this paper, we transform each view into a set of subviews and then decompose the original MI bound into a sum of bounds involving conditional MI between the subviews. E.g.,~given two views $x$ and $y$ of the same input example, we can split $x$ into two subviews, $x^{\prime}$ and $x^{\prime\prime}$, which depend only on $x$ but are otherwise unconstrained. The following holds: $I(x; y) \geq I(x^{\prime\prime}; y) + I(x^{\prime}; y | x^{\prime\prime})$, due to the chain rule and information processing inequality. By maximizing both terms in the decomposition, our approach explicitly rewards the encoder for any information about $y$ which it extracts from $x^{\prime\prime}$, and for information about $y$ extracted from $x^{\prime}$ in excess of the information from $x^{\prime\prime}$. We provide a novel contrastive lower-bound on conditional MI, that relies on sampling contrast sets from $p(y|x^{\prime\prime})$. By decomposing the original MI into a sum of increasingly challenging MI bounds between sets of increasingly informed views, our representations can capture more of the total information shared between the original views. We empirically test the method in a vision domain and for dialogue generation. | 0reject
|
Title: Do deep networks transfer invariances across classes?. Abstract: In order to generalize well, classifiers must learn to be invariant to nuisance transformations that do not alter an input's class. Many problems have "class-agnostic" nuisance transformations that apply similarly to all classes, such as lighting and background changes for image classification. Neural networks can learn these invariances given sufficient data, but many real-world datasets are heavily class imbalanced and contain only a few examples for most of the classes. We therefore pose the question: how well do neural networks transfer class-agnostic invariances learned from the large classes to the small ones? Through careful experimentation, we observe that invariance to class-agnostic transformations is still heavily dependent on class size, with the networks being much less invariant on smaller classes. This result holds even when using data balancing techniques, and suggests poor invariance transfer across classes. Our results provide one explanation for why classifiers generalize poorly on unbalanced and long-tailed distributions. Based on this analysis, we show how a generative approach for learning the nuisance transformations can help transfer invariances across classes and improve performance on a set of imbalanced image classification benchmarks. | 1accept
|
Title: From English to Foreign Languages: Transferring Pre-trained Language Models. Abstract: Pre-trained models have demonstrated their effectiveness in many downstream natural language processing (NLP) tasks. The availability of multilingual pre-trained models enables zero-shot transfer of NLP tasks from high resource languages to low resource ones. However, recent research in improving pre-trained models focuses heavily on English. While it is possible to train the latest neural architectures for other languages from scratch, it is undesirable due to the required amount of compute. In this work, we tackle the problem of transferring an existing pre-trained model from English to other languages under a limited computational budget. With a single GPU, our approach can obtain a foreign BERT-base model within a day and a foreign BERT-large within two days. Furthermore, evaluating our models on six languages, we demonstrate that our models are better than multilingual BERT on two zero-shot tasks: natural language inference and dependency parsing. | 0reject
|
Title: Representation and Bias in Multilingual NLP: Insights from Controlled Experiments on Conditional Language Modeling. Abstract: Inspired by the phenomenon of performance disparity between languages in machine translation, we investigate whether and to what extent languages are equally hard to "conditional-language-model". Our goal is to improve our understanding and expectation of the relationship between language, data representation, size, and performance. We study one-to-one, bilingual conditional language modeling through a series of systematically controlled experiments with the Transformer and the 6 languages from the United Nations Parallel Corpus. We examine character, byte, and word models in 30 language directions and 5 data sizes, and observe indications suggesting a script bias on the character level, a length bias on the byte level, and a word bias that gives rise to a hierarchy in performance across languages. We also identify two types of sample-wise non-monotonicity --- while word-based representations are prone to exhibit Double Descent, length can induce unstable performance across the size range studied in a novel meta phenomenon which we term "erraticity". By eliminating statistically significant performance disparity on the character and byte levels by normalizing length and vocabulary in the data, we show that, in the context of computing with the Transformer, there is no complexity intrinsic to languages other than that related to their statistical attributes and that performance disparity is not a necessary condition but a byproduct of word segmentation. Our application of statistical comparisons as a fairness measure also serves as a novel rigorous method for the intrinsic evaluation of languages, resolving a decades-long debate on language complexity. While these quantitative biases leading to disparity are mitigable through a shallower network, we find room for a human bias to be reflected upon. We hope our work helps open up new directions in the area of language and computing that would be fairer and more flexible and foster a new transdisciplinary perspective for DL-inspired scientific progress. | 0reject
|
Title: Matrix Data Deep Decoder - Geometric Learning for Structured Data Completion. Abstract: In this work, we present a fully convolutional end to end method to reconstruct corrupted sparse matrices of Non-Euclidean data. The classic example for such matrices is recommender systems matrices where the rows/columns represent items/users and the entries are ratings. The method we present is inspired by the surprising and spectacular success of methods like$"$ deep image prior$"$ and $``$deep decoder$"$ for corrupted image completion. In sharp contrast to previous Matrix Completion methods wherein the latent matrix or its factors directly serve as the optimization variable, in the method we present, the matrix is parameterized as the weights of a graph neural network acting on a random noisy input. Then we are tuning the network parameters to get a result as close as possible to the initial sparse matrix (using its factors) getting that way state of the art matrix completion result. In addition to the conceptual simplicity of our method, which is just Non-Euclidean generalization of deep image priors, it holds fewer parameters than previously presented methods which makes the parameters more trackable and the method more computationally efficient and more applicable for the real-world tasks. The method also achieves state-of-the-art results for the matrix completion task on the classical benchmarks in the field. The method also surprisingly shows that untrained convolutional neural network can use a good prior not only for image completion but also for Matrix Completion when redefined for graphs. | 0reject
|
Title: GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks. Abstract: Deep multitask networks, in which one neural network produces multiple predictive outputs, are more scalable and often better regularized than their single-task counterparts. Such advantages can potentially lead to gains in both speed and performance, but multitask networks are also difficult to train without finding the right balance between tasks. We present a novel gradient normalization (GradNorm) technique which automatically balances the multitask loss function by directly tuning the gradients to equalize task training rates. We show that for various network architectures, for both regression and classification tasks, and on both synthetic and real datasets, GradNorm improves accuracy and reduces overfitting over single networks, static baselines, and other adaptive multitask loss balancing techniques. GradNorm also matches or surpasses the performance of exhaustive grid search methods, despite only involving a single asymmetry hyperparameter $\alpha$. Thus, what was once a tedious search process which incurred exponentially more compute for each task added can now be accomplished within a few training runs, irrespective of the number of tasks. Ultimately, we hope to demonstrate that gradient manipulation affords us great control over the training dynamics of multitask networks and may be one of the keys to unlocking the potential of multitask learning. | 0reject
|
Title: Text Style Transfer with Confounders. Abstract: Existing methods for style transfer operate either with paired sentences or distributionally matched corpora which differ only in the desired style. In this paper, we relax this restriction and consider data sources with additional confounding differences, from which the desired style needs to be inferred. Specifically, we first learn an invariant style classifier that takes out nuisance variation, and then introduce an orthogonal classifier that highlights the confounding cues. The resulting pair of classifiers guide us to transfer text in the specified direction, creating sentences of the type not seen during training. Experiments show that using positive and negative review datasets from different categories, we can successfully transfer the sentiment without changing the category. | 0reject
|
Title: The GAN Landscape: Losses, Architectures, Regularization, and Normalization. Abstract: Generative adversarial networks (GANs) are a class of deep generative models which aim to learn a target distribution in an unsupervised fashion. While they were successfully applied to many problems, training a GAN is a notoriously challenging task and requires a significant amount of hyperparameter tuning, neural architecture engineering, and a non-trivial amount of ``tricks". The success in many practical applications coupled with the lack of a measure to quantify the failure modes of GANs resulted in a plethora of proposed losses, regularization and normalization schemes, and neural architectures. In this work we take a sober view of the current state of GANs from a practical perspective. We reproduce the current state of the art and go beyond fairly exploring the GAN landscape. We discuss common pitfalls and reproducibility issues, open-source our code on Github, and provide pre-trained models on TensorFlow Hub. | 0reject
|
Title: CAPACITY-LIMITED REINFORCEMENT LEARNING: APPLICATIONS IN DEEP ACTOR-CRITIC METHODS FOR CONTINUOUS CONTROL. Abstract: Biological and artificial agents must learn to act optimally in spite of a limited capacity for processing, storing, and attending to information. We formalize this type of bounded rationality in terms of an information-theoretic constraint on the complexity of policies that agents seek to learn. We present the Capacity-Limited Reinforcement Learning (CLRL) objective which defines an optimal policy subject to an information capacity constraint. This objective is optimized by drawing from methods used in rate distortion theory and information theory, and applied to the reinforcement learning setting. Using this objective we implement a novel Capacity-Limited Actor-Critic (CLAC) algorithm and situate it within a broader family of RL algorithms such as the Soft Actor Critic (SAC) and discuss their similarities and differences. Our experiments show that compared to alternative approaches, CLAC offers improvements in generalization between training and modified test environments. This is achieved in the CLAC model while displaying high sample efficiency and minimal requirements for hyper-parameter tuning. | 0reject
|
Title: Learning to Remember from a Multi-Task Teacher. Abstract: Recent studies on catastrophic forgetting during sequential learning typically focus on fixing the accuracy of the predictions for a previously learned task. In this paper we argue that the outputs of neural networks are subject to rapid changes when learning a new data distribution, and networks that appear to "forget" everything still contain useful representation towards previous tasks. We thus propose to enforce the output accuracy to stay the same, we should aim to reduce the effect of catastrophic forgetting on the representation level, as the output layer can be quickly recovered later with a small number of examples. Towards this goal, we propose an experimental setup that measures the amount of representational forgetting, and develop a novel meta-learning algorithm to overcome this issue. The proposed meta-learner produces weight updates of a sequential learning network, mimicking a multi-task teacher network's representation. We show that our meta-learner can improve its learned representations on new tasks, while maintaining a good representation for old tasks. | 0reject
|
Title: CARD: Certifiably Robust Machine Learning Pipeline via Domain Knowledge Integration. Abstract: The advent of ubiquitous machine learning (ML) has led to exciting revolution in computing today. However, recent studies have shown that ML, especially deep neural networks (DNNs), are vulnerable to adversarial examples, which are able to mislead DNNs with carefully crafted stealthy perturbations. So far, many defense approaches have been proposed against such adversarial attacks, both empirically and theoretically. Though effective under certain conditions, existing empirical defenses are usually found vulnerable against new attacks; existing certified defenses are only able to certify robustness against limited perturbation radius. As current pure data-driven defenses have reached a bottleneck towards certifiably robust ML, in this paper we propose a certifiably robust ML pipeline CARD, aiming to integrate exogenous information, such as domain knowledge, as logical rules with ML models to improve the certified robustness. Intuitively, domain knowledge (e.g., cat belongs to the animal category) will prevent attacks that violate these knowledge rules, and it is also challenging to construct adaptive attacks satisfying such pre-defined logical relationships. In particular, we express the domain knowledge as first-order logic rules and embed these logic rules in a probabilistic graphical model. We then prove that such a probabilistic graphical model can be mapped to a 1-layer NN for efficient training. We conduct extensive experiments on several high-dimensional datasets and show that our proposed CARD achieves the state-of-the-art certified robustness. | 2withdrawn
|
Title: BERT for Sequence-to-Sequence Multi-Label Text Classification. Abstract: We study the BERT language representation model and the sequence generation model with BERT encoder for multi-label text classification task. We experiment with both models and explore their special qualities for this setting. We also introduce and examine experimentally a mixed model, which is an ensemble of multi-label BERT and sequence generating BERT models. Our experiments demonstrated that BERT-based models and the mixed model, in particular, outperform current baselines in several metrics achieving state-of-the-art results on three well-studied multi-label classification datasets with English texts and two private Yandex Taxi datasets with Russian texts. | 2withdrawn
|
Title: Grounding Physical Concepts of Objects and Events Through Dynamic Visual Reasoning. Abstract: We study the problem of dynamic visual reasoning on raw videos. This is a challenging problem; currently, state-of-the-art models often require dense supervision on physical object properties and events from simulation, which are impractical to obtain in real life. In this paper, we present the Dynamic Concept Learner (DCL), a unified framework that grounds physical objects and events from video and language. DCL first adopts a trajectory extractor to track each object over time and to represent it as a latent, object-centric feature vector. Building upon this object-centric representation, DCL learns to approximate the dynamic interaction among objects using graph networks. DCL further incorporates a semantic parser to parse question into semantic programs and, finally, a program executor to run the program to answer the question, levering the learned dynamics model. After training, DCL can detect and associate objects across the frames, ground visual properties and physical events, understand the causal relationship between events, make future and counterfactual predictions, and leverage these extracted presentations for answering queries. DCL achieves state-of-the-art performance on CLEVRER, a challenging causal video reasoning dataset, even without using ground-truth attributes and collision labels from simulations for training. We further test DCL on a newly proposed video-retrieval and event localization dataset derived from CLEVRER, showing its strong generalization capacity. | 1accept
|
Title: Probabilistic Numeric Convolutional Neural Networks. Abstract: Continuous input signals like images and time series that are irregularly sampled or have missing values are challenging for existing deep learning methods. Coherently defined feature representations must depend on the values in unobserved regions of the input. Drawing from the work in probabilistic numerics, we propose Probabilistic Numeric Convolutional Neural Networks which represent features as Gaussian processes, providing a probabilistic description of discretization error. We then define a convolutional layer as the evolution of a PDE defined on this GP, followed by a nonlinearity. This approach also naturally admits steerable equivariant convolutions under e.g. the rotation group. In experiments we show that our approach yields a $3\times$ reduction of error from the previous state of the art on the SuperPixel-MNIST dataset and competitive performance on the medical time series dataset PhysioNet2012. | 1accept
|
Title: Towards Understanding Generalization in Gradient-Based Meta-Learning. Abstract: In this work we study generalization of neural networks in gradient-based meta-learning by analyzing various properties of the objective landscapes. We experimentally demonstrate that as meta-training progresses, the meta-test solutions obtained by adapting the meta-train solution of the model to new tasks via few steps of gradient-based fine-tuning, become flatter, lower in loss, and further away from the meta-train solution. We also show that those meta-test solutions become flatter even as generalization starts to degrade, thus providing an experimental evidence against the correlation between generalization and flat minima in the paradigm of gradient-based meta-leaning. Furthermore, we provide empirical evidence that generalization to new tasks is correlated with the coherence between their adaptation trajectories in parameter space, measured by the average cosine similarity between task-specific trajectory directions, starting from a same meta-train solution. We also show that coherence of meta-test gradients, measured by the average inner product between the task-specific gradient vectors evaluated at meta-train solution, is also correlated with generalization. | 2withdrawn
|
Title: INVASE: Instance-wise Variable Selection using Neural Networks. Abstract: The advent of big data brings with it data with more and more dimensions and thus a growing need to be able to efficiently select which features to use for a variety of problems. While global feature selection has been a well-studied problem for quite some time, only recently has the paradigm of instance-wise feature selection been developed. In this paper, we propose a new instance-wise feature selection method, which we term INVASE. INVASE consists of 3 neural networks, a selector network, a predictor network and a baseline network which are used to train the selector network using the actor-critic methodology. Using this methodology, INVASE is capable of flexibly discovering feature subsets of a different size for each instance, which is a key limitation of existing state-of-the-art methods. We demonstrate through a mixture of synthetic and real data experiments that INVASE significantly outperforms state-of-the-art benchmarks. | 1accept
|
Title: A Theoretical Analysis of the Number of Shots in Few-Shot Learning. Abstract: Few-shot classification is the task of predicting the category of an example from a set of few labeled examples. The number of labeled examples per category is called the number of shots (or shot number). Recent works tackle this task through meta-learning, where a meta-learner extracts information from observed tasks during meta-training to quickly adapt to new tasks during meta-testing. In this formulation, the number of shots exploited during meta-training has an impact on the recognition performance at meta-test time. Generally, the shot number used in meta-training should match the one used in meta-testing to obtain the best performance. We introduce a theoretical analysis of the impact of the shot number on Prototypical Networks, a state-of-the-art few-shot classification method. From our analysis, we propose a simple method that is robust to the choice of shot number used during meta-training, which is a crucial hyperparameter. The performance of our model trained for an arbitrary meta-training shot number shows great performance for different values of meta-testing shot numbers. We experimentally demonstrate our approach on different few-shot classification benchmarks. | 1accept
|
Title: Reconstructing continuous distributions of 3D protein structure from cryo-EM images. Abstract: Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structure of proteins and other macromolecular complexes at near-atomic resolution. In single particle cryo-EM, the central problem is to reconstruct the 3D structure of a macromolecule from $10^{4-7}$ noisy and randomly oriented 2D projection images. However, the imaged protein complexes may exhibit structural variability, which complicates reconstruction and is typically addressed using discrete clustering approaches that fail to capture the full range of protein dynamics. Here, we introduce a novel method for cryo-EM reconstruction that extends naturally to modeling continuous generative factors of structural heterogeneity. This method encodes structures in Fourier space using coordinate-based deep neural networks, and trains these networks from unlabeled 2D cryo-EM images by combining exact inference over image orientation with variational inference for structural heterogeneity. We demonstrate that the proposed method, termed cryoDRGN, can perform ab-initio reconstruction of 3D protein complexes from simulated and real 2D cryo-EM image data. To our knowledge, cryoDRGN is the first neural network-based approach for cryo-EM reconstruction and the first end-to-end method for directly reconstructing continuous ensembles of protein structures from cryo-EM images. | 1accept
|
Title: Message Passing Neural PDE Solvers. Abstract: The numerical solution of partial differential equations (PDEs) is difficult, having led to a century of research so far. Recently, there have been pushes to build neural--numerical hybrid solvers, which piggy-backs the modern trend towards fully end-to-end learned systems. Most works so far can only generalize over a subset of properties to which a generic solver would be faced, including: resolution, topology, geometry, boundary conditions, domain discretization regularity, dimensionality, etc. In this work, we build a solver, satisfying these properties, where all the components are based on neural message passing, replacing all heuristically designed components in the computation graph with backprop-optimized neural function approximators. We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes. In order to encourage stability in training autoregressive models, we put forward a method that is based on the principle of zero-stability, posing stability as a domain adaptation problem. We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, discretization, etc. in 1D and 2D. Our model outperforms state-of-the-art numerical solvers in the low resolution regime in terms of speed, and accuracy. | 1accept
|
Title: Fix-Net: pure fixed-point representation of deep neural networks. Abstract: Deep neural networks (DNNs) dominate current research in machine learning. Due to massive GPU parallelization DNN training is no longer a bottleneck, and large models with many parameters and high computational effort lead common benchmark tables. In contrast, embedded devices have a very limited capability. As a result, both model size and inference time must be significantly reduced if DNNs are to achieve suitable performance on embedded devices.
We propose a soft quantization approach to train DNNs that can be evaluated using pure fixed-point arithmetic. By exploiting the bit-shift mechanism, we derive fixed-point quantization constraints for all important components, including batch normalization and ReLU. Compared to floating-point arithmetic, fixed-point calculations significantly reduce computational effort whereas low-bit representations immediately decrease memory costs. We evaluate our approach with different architectures on common benchmark data sets and compare with recent quantization approaches. We achieve new state of the art performance using 4-bit fixed-point models with an error rate of 4.98% on CIFAR-10. | 2withdrawn
|
Title: Predicting Unreliable Predictions by Shattering a Neural Network. Abstract: Generalization error bounds measure the deviation of performance on unseen test data from performance on training data. However, by providing one scalar per model, they are input-agnostic. What if one wants to predict error for a specific test sample? To answer this, we propose the novel paradigm of input-conditioned generalization error bounds. For piecewise linear neural networks, given a weighting function that relates the errors of different input activation regions together, we obtain a bound on each region's generalization error that scales inversely with the density of training samples. That is, more densely supported regions are more reliable. As the bound is input-conditioned, it is to our knowledge the first generalization error bound applicable to the problems of detecting out-of-distribution and misclassified in-distribution samples for neural networks; we find that it performs competitively in both cases when tested on image classification tasks. | 2withdrawn
|
Title: Learning to Map for Active Semantic Goal Navigation. Abstract: We consider the problem of object goal navigation in unseen environments. Solving this problem requires learning of contextual semantic priors, a challenging endeavour given the spatial and semantic variability of indoor environments. Current methods learn to implicitly encode these priors through goal-oriented navigation policy functions operating on spatial representations that are limited to the agent's observable areas. In this work, we propose a novel framework that actively learns to generate semantic maps outside the field of view of the agent and leverages the uncertainty over the semantic classes in the unobserved areas to decide on long term goals. We demonstrate that through this spatial prediction strategy, we are able to learn semantic priors in scenes that can be leveraged in unknown environments. Additionally, we show how different objectives can be defined by balancing exploration with exploitation during searching for semantic targets. Our method is validated in the visually realistic environments of the Matterport3D dataset and show improved results on object goal navigation over competitive baselines. | 1accept
|
Title: Connecting the Dots Between MLE and RL for Sequence Prediction. Abstract: Sequence prediction models can be learned from example sequences with a variety of training algorithms. Maximum likelihood learning is simple and efficient, yet can suffer from compounding error at test time.
Reinforcement learning such as policy gradient addresses the issue but can have prohibitively poor exploration efficiency. A rich set of other algorithms, such as data noising, RAML, and softmax policy gradient, have also been developed from different perspectives.
In this paper, we present a formalism of entropy regularized policy optimization, and show that the apparently distinct algorithms, including MLE, can be reformulated as special instances of the formulation. The difference between them is characterized by the reward function and two weight hyperparameters.
The unifying interpretation enables us to systematically compare the algorithms side-by-side, and gain new insights into the trade-offs of the algorithm design.
The new perspective also leads to an improved approach that dynamically interpolates among the family of algorithms, and learns the model in a scheduled way. Experiments on machine translation, text summarization, and game imitation learning demonstrate superiority of the proposed approach. | 0reject
|
Title: Trajectory Prediction using Equivariant Continuous Convolution. Abstract: Trajectory prediction is a critical part of many AI applications, for example, the safe operation of autonomous vehicles. However, current methods are prone to making inconsistent and physically unrealistic predictions. We leverage insights from fluid dynamics to overcome this limitation by considering internal symmetry in real-world trajectories. We propose a novel model, Equivariant Continous COnvolution (ECCO) for improved trajectory prediction. ECCO uses rotationally-equivariant continuous convolutions to embed the symmetries of the system. On both vehicle and pedestrian trajectory datasets, ECCO attains competitive accuracy with significantly fewer parameters. It is also more sample efficient, generalizing automatically from few data points in any orientation. Lastly, ECCO improves generalization with equivariance, resulting in more physically consistent predictions. Our method provides a fresh perspective towards increasing trust and transparency in deep learning models. Our code and data can be found at https://github.com/Rose-STL-Lab/ECCO. | 1accept
|
Title: Adaptive Region Pooling for Fine-Grained Representation Learning. Abstract: Fine-grained recognition aims to discriminate the sub-categories of the images within one general category. It is fundamentally difficult due to the requirement to extract fine-grained features from subtle regions. Nonetheless, a Convolutional Neural Network typically applies strided operations to downsample the representation, which would excessively spoil the feature resolution and lead to a significant loss of fine-grained information. In this paper, we propose Adaptive Region Pooling (ARP): a novel downsampling algorithm that makes the network only focus on a smaller but more critical region, and simultaneously increase the resolution of sub-sampled feature. ARP owns a trade-off mechanism that allows users to actively balance the scale of receptive field and the granularity of feature. Also, without any learning-based parameters, ARP provides the network a stabler training process and an earlier convergence. Extensive experiments qualitatively and quantitatively validate the effectiveness and efficiency of the proposed pooling operation and show superior performance against the state-of-the-arts in both the tasks of image classification and image retrieval. | 2withdrawn
|
Title: Representational aspects of depth and conditioning in normalizing flows. Abstract: Normalizing flows are among the most popular paradigms in generative modeling, especially for images, primarily because we can efficiently evaluate the likelihood of a data point. This is desirable both for evaluating the fit of a model, and for ease of training, as maximizing the likelihood can be done by gradient descent. However, training normalizing flows comes with difficulties as well: models which produce good samples typically need to be extremely deep -- which comes with accompanying vanishing/exploding gradient problems. A very related problem is that they are often poorly \emph{conditioned}: since they are parametrized as invertible maps from $\mathbb{R}^d \to \mathbb{R}^d$, and typical training data like images intuitively is lower-dimensional, the learned maps often have Jacobians that are close to being singular.
In our paper, we tackle representational aspects around depth and conditioning of normalizing flows---both for general invertible architectures, and for a particular common architecture---affine couplings.
For general invertible architectures, we prove that invertibility comes at a cost in terms of depth: we show examples where a much deeper normalizing flow model may need to be used to match the performance of a non-invertible generator.
For affine couplings, we first show that the choice of partitions isn't a likely bottleneck for depth: we show that any invertible linear map (and hence a permutation) can be simulated by a constant number of affine coupling layers, using a fixed partition. This shows that the extra flexibility conferred by 1x1 convolution layers, as in GLOW, can in principle be simulated by increasing the size by a constant factor. Next, in terms of conditioning, we show that affine couplings are universal approximators -- provided the Jacobian of the model is allowed to be close to singular. We furthermore empirically explore the benefit of different kinds of padding -- a common strategy for improving conditioning. | 0reject
|
Title: Adversarial Attacks on Machine Learning Systems for High-Frequency Trading. Abstract: Algorithmic trading systems are often completely automated, and deep learning is increasingly receiving attention in this domain. Nonetheless, little is known about the robustness properties of these models. We study valuation models for algorithmic trading from the perspective of adversarial machine learning. We introduce new attacks specific to this domain with size constraints that minimize attack costs. We further discuss how these attacks can be used as an analysis tool to study and evaluate the robustness properties of financial models. Finally, we investigate the feasibility of realistic adversarial attacks in which an adversarial trader fools automated trading systems into making inaccurate predictions. | 2withdrawn
|
Title: THOMAS: Trajectory Heatmap Output with learned Multi-Agent Sampling. Abstract: In this paper, we propose THOMAS, a joint multi-agent trajectory prediction framework allowing for an efficient and consistent prediction of multi-agent multi-modal trajectories. We present a unified model architecture for simultaneous agent future heatmap estimation, in which we leverage hierarchical and sparse image generation for fast and memory-efficient inference. We propose a learnable trajectory recombination model that takes as input a set of predicted trajectories for each agent and outputs its consistent reordered recombination. This recombination module is able to realign the initially independent modalities so that they do no collide and are coherent with each other. We report our results on the Interaction multi-agent prediction challenge and rank $1^{st}$ on the online test leaderboard. | 1accept
|
Title: Modeling Adversarial Noise for Adversarial Defense. Abstract: Deep neural networks have been demonstrated to be vulnerable to adversarial noise, promoting the development of defense against adversarial attacks. Motivated by the fact that adversarial noise contains well-generalizing features and that the relationship between adversarial data and natural data can help infer natural data and make reliable predictions, in this paper, we study to model adversarial noise by learning the transition relationship between adversarial labels (i.e. the flipped labels used to generate adversarial data) and natural labels (i.e. the ground truth labels of the natural data). Specifically, we introduce an instance-dependent transition matrix to relate adversarial labels and natural labels, which can be seamlessly embedded with the target model (enabling us to model stronger adaptive adversarial noise). Empirical evaluations demonstrate that our method could effectively improve adversarial accuracy. | 0reject
|
Title: Stochastic Proximal Point Algorithm for Large-scale Nonconvex Optimization: Convergence, Implementation, and Application to Neural Networks. Abstract: We revisit the stochastic proximal point algorithm (SPPA) for large-scale nonconvex optimization problems. SPPA has been shown to converge faster and more stable than the celebrated stochastic gradient descent (SGD) algorithm, and its many variations, for convex problems. However, the per-iteration update of SPPA is defined abstractly and has long been considered expensive. In this paper, we show that efficient implementation of SPPA can be achieved. If the problem is a nonlinear least squares, each iteration of SPPA can be efficiently implemented by Gauss-Newton; with some linear algebra trick the resulting complexity is in the same order of SGD. For more generic problems, SPPA can still be implemented with L-BFGS or accelerated gradient with high efficiency. Another contribution of this work is the convergence of SPPA to a stationary point in expectation for nonconvex problems. The result is encouraging that it admits more flexible choices of the step sizes under similar assumptions. The proposed algorithm is elaborated for both regression and classification problems using different neural network structures. Real data experiments showcase its effectiveness in terms of convergence and accuracy compared to SGD and its variants. | 0reject
|
Title: Max-Affine Spline Insights Into Deep Network Pruning. Abstract: State-of-the-art (SOTA) approaches to deep network (DN) training overparametrize the model and then prune a posteriori to obtain a "winning ticket'' subnetwork that can be trained from scratch to achieve high accuracy. To date, the literature has remained largely empirical and hence provides little insights into how pruning affects a DN's decision boundary and no guidance regarding how to design a principled pruning technique. Using a recently developed spline interpretation of DNs, we develop new theory and visualization tools that provide new insights into how pruning DN nodes affects the decision boundary. We discover that a DN's spline mappings exhibit an early-bird (EB) phenomenon whereby the spline's partition converges at early training stages, bridging the recently developed max-affine spline theory and lottery ticket hypothesis of DNs. We leverage this new insight to develop a principled and efficient pruning strategy that focuses on a tiny fraction of DN nodes whose corresponding spline partition regions actually contribute to the final decision boundary. Extensive experiments on four networks and three datasets validate that our new spline-based DN pruning approach reduces training FLOPs by up to 3.5x while achieving similar or even better accuracy than state-of-the-art methods. All the codes will be released publicly upon acceptance. | 0reject
|
Title: Cost-efficient SVRG with Arbitrary Sampling. Abstract: We consider the problem of distributed optimization over a network, using a stochastic variance reduced gradient (SVRG) algorithm, where executing every iteration of the algorithm requires computation and exchange of gradients among network nodes. These tasks always consume network resources, including communication bandwidth and battery power, which we model as a general cost function. In this paper, we consider an SVRG algorithm with arbitrary sampling (SVRG-AS), where the nodes are sampled according to some distribution. We characterize the convergence of SVRG-AS, in terms of this distribution. We determine the distribution that minimizes the costs associated with running the algorithm, with provable convergence guarantees. We show that our approach can substantially outperform vanilla SVRG and its variants in terms of both convergence rate and total cost of running the algorithm. We then show how our approach can optimize the mini-batch size to address the tradeoff between low communication cost and fast convergence rate. Comprehensive theoretical and numerical analyses on real datasets reveal that our algorithm can significantly reduce the cost, especially in large and heterogeneous networks. Our results provide important practical insights for using machine learning over Internet-of-Things. | 2withdrawn
|
Title: Meta-Learning Update Rules for Unsupervised Representation Learning. Abstract: A major goal of unsupervised learning is to discover data representations that are useful for subsequent tasks, without access to supervised labels during training. Typically, this involves minimizing a surrogate objective, such as the negative log likelihood of a generative model, with the hope that representations useful for subsequent tasks will arise as a side effect. In this work, we propose instead to directly target later desired tasks by meta-learning an unsupervised learning rule which leads to representations useful for those tasks. Specifically, we target semi-supervised classification performance, and we meta-learn an algorithm -- an unsupervised weight update rule -- that produces representations useful for this task. Additionally, we constrain our unsupervised update rule to a be a biologically-motivated, neuron-local function, which enables it to generalize to different neural network architectures, datasets, and data modalities. We show that the meta-learned update rule produces useful features and sometimes outperforms existing unsupervised learning techniques. We further show that the meta-learned unsupervised update rule generalizes to train networks with different widths, depths, and nonlinearities. It also generalizes to train on data with randomly permuted input dimensions and even generalizes from image datasets to a text task. | 1accept
|
Title: A Simple Approach to the Noisy Label Problem Through the Gambler's Loss. Abstract: Learning in the presence of label noise is a challenging yet important task. It is crucial to design models that are robust to noisy labels. In this paper, we discover that a new class of loss functions called the gambler's loss provides strong robustness to label noise across various levels of corruption. Training with this modified loss function reduces memorization of data points with noisy labels and is a simple yet effective method to improve robustness and generalization. Moreover, using this loss function allows us to derive an analytical early stopping criterion that accurately estimates when memorization of noisy labels begins to occur. Our overall approach achieves strong results and outperforming existing baselines. | 0reject
|
Title: Unknown-Aware Deep Neural Network. Abstract: An important property of image classification systems in the real world is that they both accurately classify objects from target classes (``knowns'') and safely reject unknown objects (``unknowns'') that belong to classes not present in the training data. Unfortunately, although the strong generalization ability of existing CNNs ensures their accuracy when classifying known objects, it also causes them to often assign an unknown to a target class with high confidence. As a result, simply using low-confidence detections as a way to detect unknowns does not work well. In this work, we propose an Unknown-aware Deep Neural Network (UDN for short) to solve this challenging problem. The key idea of UDN is to enhance existing CNNs to support a product operation that models the product relationship among the features produced by convolutional layers. This way, missing a single key feature of a target class will greatly reduce the probability of assigning an object to this class. UDN uses a learned ensemble of these product operations, which allows it to balance the contradictory requirements of accurately classifying known objects and correctly rejecting unknowns. To further improve the performance of UDN at detecting unknowns, we propose an information-theoretic regularization strategy that incorporates the objective of rejecting unknowns into the learning process of UDN. We experiment on benchmark image datasets including MNIST, CIFAR-10, CIFAR-100, and SVHN, adding unknowns by injecting one dataset into another. Our results demonstrate that UDN significantly outperforms state-of-the-art methods at rejecting unknowns by 25 percentage points improvement in accuracy, while still preserving the classification accuracy. | 0reject
|
Title: Conditional Inference in Pre-trained Variational Autoencoders via Cross-coding. Abstract: Variational Autoencoders (VAEs) are a popular generative model, but one in which conditional inference can be challenging. If the decomposition into query and evidence variables is fixed, conditional VAEs provide an attractive solution. To support arbitrary queries, one is generally reduced to Markov Chain Monte Carlo sampling methods that can suffer from long mixing times. In this paper, we propose an idea we term cross-coding to approximate the distribution over the latent variables after conditioning on an evidence assignment to some subset of the variables. This allows generating query samples without retraining the full VAE. We experimentally evaluate three variations of cross-coding showing that (i) can be quickly optimized for different decompositions of evidence and query and (ii) they quantitatively and qualitatively outperform Hamiltonian Monte Carlo. | 0reject
|
Title: Invariance Through Inference. Abstract: We introduce a general approach, called invariance through inference, for improving the test-time performance of a behavior agent in deployment environments with unknown perceptual variations. Instead of producing invariant visual features through memorization, invariance through inference turns adaptation at deployment-time into an unsupervised learning problem by trying to match the distribution of latent features to the agent's prior experience without relying on paired data. Although simple, we show that this idea leads to surprising improvements on a variety of adaptation scenarios without access to task reward, including changes in camera poses from the challenging distractor control suite. | 0reject
|
Title: Exploring Covariate and Concept Shift for Detection and Confidence Calibration of Out-of-Distribution Data. Abstract: Moving beyond testing on in-distribution data, works on Out-of-Distribution (OOD) detection have recently increased in popularity. A recent attempt to categorize OOD data introduces the concept of near and far OOD detection. Specifically, prior works define characteristics of OOD data in terms of detection difficulty. We propose to characterize the spectrum of OOD data using two types of distribution shifts: covariate shift and concept shift, where covariate shift corresponds to change in style, e.g., noise, and concept shift indicates change in semantics. This characterization reveals that sensitivity to each type of shift is important to the detection and model calibration of OOD data. Consequently, we investigate score functions that capture sensitivity to each type of dataset shift and methods that improve them. To this end, we theoretically derive two score functions for OOD detection, the covariate shift score and concept shift score, based on the decomposition of KL-divergence for both scores, and propose a geometrically-inspired method (Geometric ODIN) to improve OOD detection under both shifts with only in-distribution data. Additionally, the proposed method naturally leads to an expressive post-hoc calibration function which yields state-of-the-art calibration performance on both in-distribution and out-of-distribution data. We are the first to propose a method that works well across both OOD detection and calibration, and under different types of shifts. Specifically, we improve the previous state-of-the-art OOD detection by relatively 7% AUROC on CIFAR100 vs. SVHN and achieve the best calibration performance of 0.084 Expected Calibration Error on the corrupted CIFAR100C dataset. | 0reject
|
Title: Colorization Transformer. Abstract: We present the Colorization Transformer, a novel approach for diverse high fidelity image colorization based on self-attention. Given a grayscale image, the colorization proceeds in three steps. We first use a conditional autoregressive transformer to produce a low resolution coarse coloring of the grayscale image. Our architecture adopts conditional transformer layers to effectively condition grayscale input. Two subsequent fully parallel networks upsample the coarse colored low resolution image into a finely colored high resolution image. Sampling from the Colorization Transformer produces diverse colorings whose fidelity outperforms the previous state-of-the-art on colorising ImageNet based on FID results and based on a human evaluation in a Mechanical Turk test. Remarkably, in more than 60\% of cases human evaluators prefer the highest rated among three generated colorings over the ground truth. The code and pre-trained checkpoints for Colorization Transformer are publicly available at https://github.com/google-research/google-research/tree/master/coltran | 1accept
|
Title: Blockwise Adaptivity: Faster Training and Better Generalization in Deep Learning. Abstract: Stochastic methods with coordinate-wise adaptive stepsize (such as RMSprop and Adam) have been widely used in training deep neural networks. Despite their fast convergence, they can generalize worse than stochastic gradient descent. In this paper, by revisiting the design of Adagrad, we propose to split the network parameters into blocks, and use a blockwise
adaptive stepsize. Intuitively, blockwise adaptivity is less aggressive than adaptivity to individual coordinates, and can have a better balance between adaptivity and generalization. We show theoretically that the proposed blockwise adaptive gradient
descent has comparable regret in online convex learning and convergence rate for optimizing nonconvex objective as its counterpart with coordinate-wise adaptive stepsize, but is better up to some constant. We also study its uniform stability
and show that blockwise adaptivity can lead to lower generalization error than coordinate-wise adaptivity. Experimental results show that blockwise adaptive gradient descent converges faster and improves generalization performance over Nesterov's accelerated gradient and Adam. | 0reject
|
Title: Overview on Reinforcement Learning for Robotics. Abstract: Reinforcement Learning(RL) offers robotics tasks a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors.[1]
Reinforcement Learning is an branch of Machine Learning inspired by behaviorist psychology[wiki- Reinforcemenr Learning], concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward.
The basic idea of Reinforcement Learning is to obtain a policy that extract more reward from the environment by picking actions given a state.
By policy, we mean a decision maker (Agent) that decide on an action based on some parameterized rules given an input observation of environment (State). The policy can be a set of weight that linearly combine the features in a state or different structured Neural Network. The environment in Reinforcement Learning context provide the agent a new state and reward immediately after the agent takes a specific action.
From a more broad view, the Machine Learning method was mainly three folds. The Supervised Learning, Semi-supervised Learning and Unsupervised Learning. The supervised learning network was trained given a dataset including the observation data and the corresponding categorization. The latter was given a dataset that no classification is label to the observation data. For reinforcement Learning, it is more close to supervised learning, while its label is obtained by exploring the environment and get feedback (reward, r) from it. The RL algorithm marks the policy that generates the highest score as the training target and make small change of its parameters (or weights, θ) towards that policy until the policy converge.
In this report, we mainly focus on the methods of Reinforcement Learning methods for robotics. | 2withdrawn
|
Title: RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests. Abstract: Many causal and policy effects of interest are defined by linear functionals of high-dimensional or non-parametric regression functions. $\sqrt{n}$-consistent and asymptotically normal estimation of the object of interest requires debiasing to reduce the effects of regularization and/or model selection on the object of interest. Debiasing is typically achieved by adding a correction term to the plug-in estimator of the functional, that is derived based on a functional-specific theoretical derivation of what is known as the influence function and which leads to properties such as double robustness and Neyman orthogonality. We instead implement an automatic debiasing procedure based on automatically learning the Riesz representation of the linear functional using Neural Nets and Random Forests. Our method solely requires value query oracle access to the linear functional. We propose a multi-tasking Neural Net debiasing method with stochastic gradient descent minimization of a combined Reisz representer and regression loss, while sharing representation layers for the two functions. We also propose a random forest method which learns a locally linear representation of the Reisz function. Even though our methodology applies to arbitrary functionals, we experimentally find that it beats state of the art performance of the prior neural net based estimator of Shi et al. (2019) for the case of the average treatment effect functional. We also evaluate our method on the more challenging problem of estimating average marginal effects with continuous treatments, using semi-synthetic data of gasoline price changes on gasoline demand. | 0reject
|
Title: Hippocampal representations emerge when training recurrent neural networks on a memory dependent maze navigation task. Abstract: Can neural networks learn goal-directed behaviour using similar strategies to the brain, by combining the relationships between the current state of the organism and the consequences of future actions? Recent work has shown that recurrent neural networks trained on goal based tasks can develop representations resembling those found in the brain, entorhinal cortex grid cells, for instance. Here we explore the evolution of the dynamics of their internal representations and compare this with experimental data. We observe that once a recurrent network is trained to learn the structure of its environment solely based on sensory prediction, an attractor based landscape forms in the network's representation, which parallels hippocampal place cells in structure and function. Next, we extend the predictive objective to include Q-learning for a reward task, where rewarding actions are dependent on delayed cue modulation. Mirroring experimental findings in hippocampus recordings in rodents performing the same task, this training paradigm causes nonlocal neural activity to sweep forward in space at decision points, anticipating the future path to a rewarded location. Moreover, prevalent choice and cue-selective neurons form in this network, again recapitulating experimental findings. Together, these results indicate that combining predictive, unsupervised learning of the structure of an environment with reinforcement learning can help understand the formation of hippocampus-like representations containing both spatial and task-relevant information. | 0reject
|