id
int64 20
338k
| vocab_size
int64 2
671
| ast_levels
int64 4
32
| nloc
int64 1
451
| n_ast_nodes
int64 12
5.6k
| n_identifiers
int64 1
186
| n_ast_errors
int64 0
10
| n_words
int64 2
2.17k
| n_whitespaces
int64 2
13.8k
| fun_name
stringlengths 2
73
| commit_message
stringlengths 51
15.3k
| url
stringlengths 31
59
| code
stringlengths 51
31k
| ast_errors
stringlengths 0
1.46k
| token_counts
int64 6
3.32k
| file_name
stringlengths 5
56
| language
stringclasses 1
value | path
stringlengths 7
134
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| complexity
int64 1
153
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
143,848 | 14 | 11 | 5 | 63 | 11 | 0 | 14 | 53 | _extra_input_signature_def | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | https://github.com/ray-project/ray.git | def _extra_input_signature_def(self):
feed_dict = self.extra_compute_action_feed_dict()
return {
k.name: tf1.saved_model.utils.build_tensor_info(k) for k in feed_dict.keys()
}
| 38 | tf_policy.py | Python | rllib/policy/tf_policy.py | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | 2 |
|
310,124 | 53 | 14 | 39 | 310 | 28 | 0 | 83 | 316 | test_summary_correctly_updated | fix: 17track package summary status is not updated when there are no more packages in that summary (#64421)
* 17track package status is not updated when there are no packages
* 17track package status is not updated when there are no packages
* 17track package status is not updated when there are no packages | https://github.com/home-assistant/core.git | async def test_summary_correctly_updated(hass):
package = Package(
tracking_number="456",
destination_country=206,
friendly_name="friendly name 1",
info_text="info text 1",
location="location 1",
timestamp="2020-08-10 10:32",
origin_country=206,
package_type=2,
status=30,
)
ProfileMock.package_list = [package]
await _setup_seventeentrack(hass, summary_data=DEFAULT_SUMMARY)
assert len(hass.states.async_entity_ids()) == 8
for state in hass.states.async_all():
if state.entity_id == "sensor.seventeentrack_package_456":
break
assert state.state == "0"
assert (
len(
hass.states.get(
"sensor.seventeentrack_packages_ready_to_be_picked_up"
).attributes["packages"]
)
== 1
)
ProfileMock.package_list = []
ProfileMock.summary_data = NEW_SUMMARY_DATA
await _goto_future(hass)
assert len(hass.states.async_entity_ids()) == 7
for state in hass.states.async_all():
assert state.state == "1"
assert (
hass.states.get(
"sensor.seventeentrack_packages_ready_to_be_picked_up"
).attributes["packages"]
is None
)
| 186 | test_sensor.py | Python | tests/components/seventeentrack/test_sensor.py | 6176bb954c4aa68b33c9db487dbb5712059f4b38 | core | 4 |
|
323,214 | 55 | 17 | 18 | 194 | 21 | 0 | 64 | 386 | acquire | Add model parallel for FasterGPT. (#1755)
* Add model parallel for FasterGPT.
* Make GPT model parallel runable
* Make FT model parallel optional.
* Fix _write_setup_file when kwargs is not empty.
* Fix ext_utils.load
* Add file lock for model parallel.
* Fix model_parallel.flag in CMakeLists.txt.
* Use a separated lib for model parallel.
* Make from_pretrained get partial model.
* Make model parallel support layer group in python.
* Fix fit_partial_model when model having keys state not including.
Add api docs for model parallel.
* Fix the default world_size when mpi is not available.
* Add demo for GPT model parallel.
* Fix default global ft_para_conf.
* Fix GPTModel state_dict wrapper for layer parallel.
* Set seed for tensor parallel.
* Fix location of gpt.h in cmake.
* Fix seed in gpt.h
* Fix NV FT GPT embedding.
* Add more cases in gpt_mp_sample.py
* Fix seed in ker_curand_setupLauncher.
Put build dir of FG in PPNLP_HOME with digest of current path.
* Refine gpt_mp_sample.py | https://github.com/PaddlePaddle/PaddleNLP.git | def acquire(self):
start_time = time.time()
while True:
try:
self.fd = os.open(self.lock_file_path, os.O_CREAT | os.O_EXCL |
os.O_RDWR)
self.is_locked = True # moved to ensure tag only when locked
break
except OSError as e:
if e.errno != errno.EEXIST:
raise
if self.timeout is None:
raise FileLockException("Could not acquire lock on {}".
format(self.lock_file_path))
if self.timeout > 0 and (time.time() - start_time
) >= self.timeout:
raise FileLockException("Timeout occured.")
time.sleep(self.delay)
| 116 | file_lock.py | Python | paddlenlp/utils/file_lock.py | c541f4ba1fcab8304c7ac4efdce3d63a2e478176 | PaddleNLP | 7 |
|
171,627 | 20 | 14 | 13 | 163 | 4 | 0 | 36 | 142 | render_pep440 | BLD: use nonvendor versioneer (#49924)
* BLD: remove vendored versioneer
* run vis
* move config to pyproject.toml
* add versioneer to deps
* run pyupgrade
* fix isort and pylint
* fix ci
* fix env | https://github.com/pandas-dev/pandas.git | def render_pep440(pieces):
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
if pieces["distance"] or pieces["dirty"]:
rendered += plus_or_dot(pieces)
rendered += f"{pieces['distance']}.g{pieces['short']}"
if pieces["dirty"]:
rendered += ".dirty"
else:
# exception #1
rendered = f"0+untagged.{pieces['distance']}.g{pieces['short']}"
if pieces["dirty"]:
rendered += ".dirty"
return rendered
| 65 | _version.py | Python | pandas/_version.py | e2df99823758210fb2b7c4aba39e23f3445f7cd3 | pandas | 6 |
|
139,165 | 23 | 11 | 27 | 104 | 13 | 0 | 27 | 86 | workflow_logging_context | [Workflow]Make workflow logs publish to the correct driver. (#24089)
All workflow tasks are executed as remote functions that submitted from WorkflowManagmentActor. WorkflowManagmentActor is a detached long-running actor whose owner is the first driver in the cluster that runs the very first workflow execution. Therefore, for new drivers that run workflows, the loggings won't be properly published back to the driver because loggings are saved and published based on job_id and the job_id is always the first driver's job_id as the ownership goes like: first_driver -> WorkflowManagmentActor -> workflow executions using remote functions.
To solve this, during workflow execution, we pass the actual driver's job_id along with execution, and re-configure the logging files on each worker that runs the remote functions. Notice that we need to do this in multiple places as a workflow task is executed with more than one remote functions that are running in different workers. | https://github.com/ray-project/ray.git | def workflow_logging_context(job_id) -> None:
node = ray.worker._global_node
original_out_file, original_err_file = node.get_log_file_handles(
get_worker_log_file_name("WORKER")
)
out_file, err_file = node.get_log_file_handles(
get_worker_log_file_name("WORKER", job_id)
)
try:
configure_log_file(out_file, err_file)
yield
finally:
configure_log_file(original_out_file, original_err_file)
| 60 | workflow_context.py | Python | python/ray/workflow/workflow_context.py | e8fc66af348f2afd2b578fe1c6776cc88ea82499 | ray | 2 |
|
271,851 | 45 | 12 | 15 | 134 | 16 | 0 | 58 | 150 | verify_dataset_shuffled | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def verify_dataset_shuffled(x):
assert isinstance(x, tf.data.Dataset)
graph_def = get_dataset_graph_def(x)
for node in graph_def.node:
if node.op.startswith("ShuffleDataset"):
return True
# Also check graph_def.library.function for ds.interleave or ds.flat_map
for function in graph_def.library.function:
for node in function.node_def:
if node.op.startswith("ShuffleDataset"):
return True
logging.warning(
"Expected a shuffled dataset but input dataset `x` is "
"not shuffled. Please invoke `shuffle()` on input dataset."
)
return False
| 79 | training_utils_v1.py | Python | keras/engine/training_utils_v1.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 6 |
|
264,296 | 123 | 17 | 40 | 565 | 47 | 0 | 192 | 698 | get | Refactor generic views; add plugins dev documentation | https://github.com/netbox-community/netbox.git | def get(self, request):
model = self.queryset.model
content_type = ContentType.objects.get_for_model(model)
if self.filterset:
self.queryset = self.filterset(request.GET, self.queryset).qs
# Compile a dictionary indicating which permissions are available to the current user for this model
permissions = {}
for action in ('add', 'change', 'delete', 'view'):
perm_name = get_permission_for_model(model, action)
permissions[action] = request.user.has_perm(perm_name)
if 'export' in request.GET:
# Export the current table view
if request.GET['export'] == 'table':
table = self.get_table(request, permissions)
columns = [name for name, _ in table.selected_columns]
return self.export_table(table, columns)
# Render an ExportTemplate
elif request.GET['export']:
template = get_object_or_404(ExportTemplate, content_type=content_type, name=request.GET['export'])
return self.export_template(template, request)
# Check for YAML export support on the model
elif hasattr(model, 'to_yaml'):
response = HttpResponse(self.export_yaml(), content_type='text/yaml')
filename = 'netbox_{}.yaml'.format(self.queryset.model._meta.verbose_name_plural)
response['Content-Disposition'] = 'attachment; filename="{}"'.format(filename)
return response
# Fall back to default table/YAML export
else:
table = self.get_table(request, permissions)
return self.export_table(table)
# Render the objects table
table = self.get_table(request, permissions)
configure_table(table, request)
# If this is an HTMX request, return only the rendered table HTML
if is_htmx(request):
return render(request, 'htmx/table.html', {
'table': table,
})
context = {
'content_type': content_type,
'table': table,
'permissions': permissions,
'action_buttons': self.action_buttons,
'filter_form': self.filterset_form(request.GET, label_suffix='') if self.filterset_form else None,
}
context.update(self.get_extra_context(request))
return render(request, self.template_name, context)
#
# Export methods
#
| 342 | bulk_views.py | Python | netbox/netbox/views/generic/bulk_views.py | 54834c47f8870e7faabcd847c3270da0bd3d2884 | netbox | 10 |
|
286,002 | 11 | 8 | 9 | 48 | 8 | 1 | 11 | 16 | get_project_ids | Add 3 Token Terminal commands (#2447)
* add crypto/ov/fun
* add tokenterminal to dependencies
* update website content
* add to main.yml
* fix tests
* add tests
* Update _index.md
* Update _index.md
* fix tests
* fix test
* List hint added
* improve code based on Jose input
* fix tests
* requirements for token terminal
* add source and fix source bug
* some improvements
* colors bars
* fix dependencies
* update kaleido version
* update setuptools for pkg_resources
* replace pkg_resources by importlib_metadata
* Added fixes
* Fixed tests
* fix stuff for Josecas
Co-authored-by: Colin Delahunty <[email protected]>
Co-authored-by: colin99d <[email protected]> | https://github.com/OpenBB-finance/OpenBBTerminal.git | def get_project_ids() -> List[str]:
return [project["project_id"] for project in PROJECTS_DATA]
@log_start_end(log=logger) | @log_start_end(log=logger) | 21 | tokenterminal_model.py | Python | openbb_terminal/cryptocurrency/due_diligence/tokenterminal_model.py | 7979b1fc071a1c3e7463044bea617d7305b4a17e | OpenBBTerminal | 2 |
85,425 | 28 | 11 | 9 | 191 | 27 | 0 | 32 | 102 | test_delete_performance_issue | feat(perf issues): Prevent deleting and merging (#38479)
* Prevent deleting, discarding, and merging in single and bulk operations
for performance issues. | https://github.com/getsentry/sentry.git | def test_delete_performance_issue(self):
self.login_as(user=self.user)
group = self.create_group(type=GroupType.PERFORMANCE_SLOW_SPAN.value)
GroupHash.objects.create(project=group.project, hash="x" * 32, group=group)
url = f"/api/0/issues/{group.id}/"
response = self.client.delete(url, format="json")
assert response.status_code == 400, response.content
# Ensure it's still there
assert Group.objects.filter(id=group.id).exists()
assert GroupHash.objects.filter(group_id=group.id).exists()
| 114 | test_group_details.py | Python | tests/sentry/api/endpoints/test_group_details.py | dfe1d3442af1535cc2d4f8a511ee5733b3887572 | sentry | 1 |
|
275,037 | 4 | 6 | 2 | 16 | 3 | 0 | 4 | 18 | dynamic_counter | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def dynamic_counter(self):
raise NotImplementedError
| 8 | loss_scale_optimizer.py | Python | keras/mixed_precision/loss_scale_optimizer.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
295,912 | 17 | 12 | 5 | 84 | 10 | 0 | 18 | 37 | test_missing_tones_dict | Add EntityFeature enum to Siren (#69585)
Co-authored-by: Franck Nijhof <[email protected]> | https://github.com/home-assistant/core.git | async def test_missing_tones_dict(hass):
siren = MockSirenEntity(SirenEntityFeature.TONES, {1: "a", 2: "b"})
siren.hass = hass
with pytest.raises(ValueError):
process_turn_on_params(siren, {"tone": 3})
| 47 | test_init.py | Python | tests/components/siren/test_init.py | a61ac3ddc6d65522dfa1eb599adf73420a9267dc | core | 1 |
|
85,913 | 40 | 14 | 15 | 166 | 19 | 0 | 68 | 247 | get_matching_frame_actions | fix(grouping): Exception matcher with no frames (#38994)
We used to pass `-1` as a frame index for exception matchers, which
worked by accident because `-1` is a valid list index in Python, except
when the list of frames was empty.
Replace `-1` by `None` and make sure we do not attempt to access the
list of frames in the exception matcher, by giving it its own
`matches_frame` override.
Fixes SENTRY-VWW | https://github.com/getsentry/sentry.git | def get_matching_frame_actions(self, frames, platform, exception_data=None, cache=None):
if not self.matchers:
return []
# 1 - Check if exception matchers match
for m in self._exception_matchers:
if not m.matches_frame(frames, None, platform, exception_data, cache):
return []
rv = []
# 2 - Check if frame matchers match
for idx, frame in enumerate(frames):
if all(
m.matches_frame(frames, idx, platform, exception_data, cache)
for m in self._other_matchers
):
for action in self.actions:
rv.append((idx, action))
return rv
| 112 | __init__.py | Python | src/sentry/grouping/enhancer/__init__.py | 686675f81bf9402bc9b671e61ea0481b0c5c3468 | sentry | 8 |
|
160,327 | 73 | 12 | 16 | 239 | 17 | 0 | 104 | 183 | eye | BUG: lib: Allow type uint64 for eye() arguments.
Closes gh-9982.
(Plus a few small PEP 8 fixes.) | https://github.com/numpy/numpy.git | def eye(N, M=None, k=0, dtype=float, order='C', *, like=None):
if like is not None:
return _eye_with_like(N, M=M, k=k, dtype=dtype, order=order, like=like)
if M is None:
M = N
m = zeros((N, M), dtype=dtype, order=order)
if k >= M:
return m
# Ensure M and k are integers, so we don't get any surprise casting
# results in the expressions `M-k` and `M+1` used below. This avoids
# a problem with inputs with type (for example) np.uint64.
M = operator.index(M)
k = operator.index(k)
if k >= 0:
i = k
else:
i = (-k) * M
m[:M-k].flat[i::M+1] = 1
return m
_eye_with_like = array_function_dispatch(
_eye_dispatcher
)(eye)
| 146 | twodim_base.py | Python | numpy/lib/twodim_base.py | f9355942f6ef7c5d27691c4571096234efb67a2b | numpy | 5 |
|
271,557 | 95 | 13 | 12 | 84 | 5 | 0 | 148 | 337 | _validate_target_and_loss | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def _validate_target_and_loss(self, y, loss):
# `self.loss` references the loss added via `compile` call. If users have
# provided such, the target must be provided; otherwise it's a user error.
# Note that `self.loss` does not include losses added via `add_loss`, and it
# is a valid use when such loss from `add_loss` exists and target does not.
if self.loss and y is None:
raise ValueError(
"Target data is missing. Your model was compiled with "
f"loss={self.loss}, "
"and therefore expects target data to be provided in `fit()`."
)
# For training, there must be compiled loss or regularization loss to exist
# in order to apply the gradients. If one is not found, it means no loss
# was supplied via `compile` or `add_loss`.
elif loss is None:
raise ValueError(
"No loss found. You may have forgotten to provide a `loss` argument "
"in the `compile()` method."
)
| 38 | training.py | Python | keras/engine/training.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 4 |
|
276,843 | 22 | 12 | 18 | 78 | 8 | 0 | 24 | 56 | func_load | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def func_load(code, defaults=None, closure=None, globs=None):
if isinstance(code, (tuple, list)): # unpack previous dump
code, defaults, closure = code
if isinstance(defaults, list):
defaults = tuple(defaults)
| 147 | generic_utils.py | Python | keras/utils/generic_utils.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 7 |
|
181,893 | 20 | 13 | 8 | 95 | 7 | 0 | 28 | 64 | float_range | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | https://github.com/EpistasisLab/tpot.git | def float_range(value):
try:
value = float(value)
except Exception:
raise argparse.ArgumentTypeError('Invalid float value: \'{}\''.format(value))
if value < 0.0 or value > 1.0:
raise argparse.ArgumentTypeError('Invalid float value: \'{}\''.format(value))
return value
| 56 | driver.py | Python | tpot/driver.py | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | 4 |
|
268,980 | 14 | 10 | 6 | 61 | 8 | 0 | 15 | 23 | config_for_enable_caching_device | Reorganize RNN layers, cells and wrappers into smaller logically organized files hosted under an `rnn` directory.
PiperOrigin-RevId: 428841673 | https://github.com/keras-team/keras.git | def config_for_enable_caching_device(rnn_cell):
default_enable_caching_device = tf.compat.v1.executing_eagerly_outside_functions(
)
if rnn_cell._enable_caching_device != default_enable_caching_device:
return {'enable_caching_device': rnn_cell._enable_caching_device}
return {}
| 35 | rnn_utils.py | Python | keras/layers/rnn/rnn_utils.py | 01c906c4178db5ae03b7eb2d298a052c952a0667 | keras | 2 |
|
298,605 | 33 | 9 | 7 | 134 | 25 | 1 | 38 | 63 | test_update_hvac_mode | Use climate enums in gree (#70655)
* Use climate enums in gree
* Adjust tests | https://github.com/home-assistant/core.git | async def test_update_hvac_mode(hass, discovery, device, mock_now, hvac_mode):
device().power = hvac_mode != HVACMode.OFF
device().mode = HVAC_MODES_REVERSE.get(hvac_mode)
await async_setup_gree(hass)
state = hass.states.get(ENTITY_ID)
assert state is not None
assert state.state == hvac_mode
@pytest.mark.parametrize(
"fan_mode",
(FAN_AUTO, FAN_LOW, FAN_MEDIUM_LOW, FAN_MEDIUM, FAN_MEDIUM_HIGH, FAN_HIGH),
) | @pytest.mark.parametrize(
"fan_mode",
(FAN_AUTO, FAN_LOW, FAN_MEDIUM_LOW, FAN_MEDIUM, FAN_MEDIUM_HIGH, FAN_HIGH),
) | 63 | test_climate.py | Python | tests/components/gree/test_climate.py | 23c5bd97793af4eed9806a237593b482f8e1b932 | core | 1 |
267,080 | 22 | 16 | 9 | 104 | 14 | 0 | 24 | 95 | retry | ansible-test - Fix subprocess management. (#77638)
* Run code-smell sanity tests in UTF-8 Mode.
* Update subprocess use in sanity test programs.
* Use raw_command instead of run_command with always=True set.
* Add more capture=True usage.
* Don't expose stdin to subprocesses.
* Capture more output. Warn on retry.
* Add more captures.
* Capture coverage cli output.
* Capture windows and network host checks.
* Be explicit about interactive usage.
* Use a shell for non-captured, non-interactive subprocesses.
* Add integration test to assert no TTY.
* Add unit test to assert no TTY.
* Require blocking stdin/stdout/stderr.
* Use subprocess.run in ansible-core sanity tests.
* Remove unused arg.
* Be explicit with subprocess.run check=False.
* Add changelog. | https://github.com/ansible/ansible.git | def retry(func, ex_type=SubprocessError, sleep=10, attempts=10, warn=True):
for dummy in range(1, attempts):
try:
return func()
except ex_type as ex:
if warn:
display.warning(str(ex))
time.sleep(sleep)
return func()
| 65 | util.py | Python | test/lib/ansible_test/_internal/util.py | 62d03c8e752ee35057031a91d7028e0a2e5d43e4 | ansible | 4 |
|
81,378 | 34 | 10 | 9 | 69 | 9 | 0 | 38 | 108 | event_processing_finished | Split TaskManager into
- DependencyManager spawns dependencies if necessary
- WorkflowManager processes running workflows to see if a new job is
ready to spawn
- TaskManager starts tasks if unblocked and has execution capacity | https://github.com/ansible/awx.git | def event_processing_finished(self):
if self.status in ACTIVE_STATES:
return False # tally of events is only available at end of run
try:
event_qs = self.get_event_queryset()
except NotImplementedError:
return True # Model without events, such as WFJT
return self.emitted_events == event_qs.count()
| 45 | unified_jobs.py | Python | awx/main/models/unified_jobs.py | 431b9370dfbbbcb64dee0b4ebc8af7df12740d08 | awx | 3 |
|
20,916 | 15 | 9 | 2 | 52 | 7 | 2 | 15 | 27 | TypeAlias | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | https://github.com/pypa/pipenv.git | def TypeAlias(self, parameters):
raise TypeError(f"{self} is not subscriptable")
# 3.7-3.8
elif sys.version_info[:2] >= (3, 7): | elif sys.version_info[:2] >= (3, 7):sys | 14 | typing_extensions.py | Python | pipenv/patched/notpip/_vendor/typing_extensions.py | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | 1 |
224,055 | 75 | 17 | 27 | 303 | 28 | 0 | 106 | 411 | _load_theme_config | Remove spaces at the ends of docstrings, normalize quotes | https://github.com/mkdocs/mkdocs.git | def _load_theme_config(self, name):
theme_dir = utils.get_theme_dir(name)
self.dirs.append(theme_dir)
try:
file_path = os.path.join(theme_dir, 'mkdocs_theme.yml')
with open(file_path, 'rb') as f:
theme_config = utils.yaml_load(f)
if theme_config is None:
theme_config = {}
except OSError as e:
log.debug(e)
raise ValidationError(
f"The theme '{name}' does not appear to have a configuration file. "
f"Please upgrade to a current version of the theme."
)
log.debug(f"Loaded theme configuration for '{name}' from '{file_path}': {theme_config}")
parent_theme = theme_config.pop('extends', None)
if parent_theme:
themes = utils.get_theme_names()
if parent_theme not in themes:
raise ValidationError(
f"The theme '{name}' inherits from '{parent_theme}', which does not appear to be installed. "
f"The available installed themes are: {', '.join(themes)}"
)
self._load_theme_config(parent_theme)
self.static_templates.update(theme_config.pop('static_templates', []))
self._vars.update(theme_config)
| 155 | theme.py | Python | mkdocs/theme.py | e7f07cc82ab2be920ab426ba07456d8b2592714d | mkdocs | 5 |
|
47,693 | 32 | 16 | 16 | 195 | 15 | 0 | 42 | 166 | test_default_args | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | https://github.com/apache/airflow.git | def test_default_args():
execution_date = pendulum.parse("20201109")
with DAG(
dag_id='example_task_group_default_args',
start_date=execution_date,
default_args={
"owner": "dag",
},
):
with TaskGroup("group1", default_args={"owner": "group"}):
task_1 = EmptyOperator(task_id='task_1')
task_2 = EmptyOperator(task_id='task_2', owner='task')
task_3 = EmptyOperator(task_id='task_3', default_args={"owner": "task"})
assert task_1.owner == 'group'
assert task_2.owner == 'task'
assert task_3.owner == 'task'
| 103 | test_task_group.py | Python | tests/utils/test_task_group.py | 49e336ae0302b386a2f47269a6d13988382d975f | airflow | 1 |
|
275,981 | 12 | 9 | 6 | 68 | 9 | 0 | 14 | 60 | trackable_children | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def trackable_children(self, serialization_cache):
if not utils.should_save_traces():
return {}
children = self.objects_to_serialize(serialization_cache)
children.update(self.functions_to_serialize(serialization_cache))
return children
| 40 | base_serialization.py | Python | keras/saving/saved_model/base_serialization.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 2 |
|
35,104 | 19 | 10 | 4 | 35 | 5 | 0 | 19 | 51 | copy | Constrained Beam Search [without disjunctive decoding] (#15416)
* added classes to get started with constrained beam search
* in progress, think i can directly force tokens now but not yet with the round robin
* think now i have total control, now need to code the bank selection
* technically works as desired, need to optimize and fix design choices leading to undersirable outputs
* complete PR #1 without disjunctive decoding
* removed incorrect tests
* Delete k.txt
* Delete test.py
* Delete test.sh
* revert changes to test scripts
* genutils
* full implementation with testing, no disjunctive yet
* shifted docs
* passing all tests realistically ran locally
* removing accidentally included print statements
* fixed source of error in initial PR test
* fixing the get_device() vs device trap
* fixed documentation docstrings about constrained_beam_search
* fixed tests having failing for Speech2TextModel's floating point inputs
* fix cuda long tensor
* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search
* deleted accidentally added test halting code with assert False
* code reformat
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update tests/test_generation_utils.py
* fixing based on comments on PR
* took out the testing code that should but work fails without the beam search moditification ; style changes
* fixing comments issues
* docstrings for ConstraintListState
* typo in PhrsalConstraint docstring
* docstrings improvements
Co-authored-by: Patrick von Platen <[email protected]> | https://github.com/huggingface/transformers.git | def copy(self, stateful=False):
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
| 16 | generation_beam_constraints.py | Python | src/transformers/generation_beam_constraints.py | 2b5603f6ac58f0cd3b2116c01d6b9f62575248b2 | transformers | 1 |
|
78,341 | 28 | 10 | 5 | 61 | 8 | 0 | 32 | 85 | test_settings_no_request_no_use_default | Add generic settings to compliment site-specific settings (#8327) | https://github.com/wagtail/wagtail.git | def test_settings_no_request_no_use_default(self):
context = {}
# Without a request in the context, and without use_default_site, this
# should bail with an error
template = '{{ settings("tests.testsitesetting").title }}'
with self.assertRaises(RuntimeError):
self.render(template, context, request_context=False)
| 33 | test_templates.py | Python | wagtail/contrib/settings/tests/site_specific/test_templates.py | d967eccef28ce47f60d26be1c28f2d83a25f40b0 | wagtail | 1 |
|
97,856 | 11 | 9 | 3 | 45 | 6 | 0 | 11 | 32 | render_warning | ref(py): Split up large file (#32862)
Co-authored-by: getsantry[bot] <66042841+getsantry[bot]@users.noreply.github.com> | https://github.com/getsentry/sentry.git | def render_warning(self, message):
context = {"error": message}
return render_to_response("sentry/pipeline-provider-error.html", context, self.request)
| 26 | base.py | Python | src/sentry/pipeline/base.py | d246d2b6d3e014270941209e54f2f12e09ad9a81 | sentry | 1 |
|
82,608 | 92 | 15 | 36 | 379 | 39 | 0 | 152 | 404 | get_page_from_request | fix: Prefer titles matching request language (#7144)
* prefer titles matching request language
* add comments on use of annotate
* fix wayward imports
* Add changelog entry
Co-authored-by: Vinit Kumar <[email protected]>
Co-authored-by: Mark Walker <[email protected]> | https://github.com/django-cms/django-cms.git | def get_page_from_request(request, use_path=None, clean_path=None):
from cms.utils.page_permissions import user_can_view_page_draft
if not bool(use_path) and hasattr(request, '_current_page_cache'):
# The following is set by CurrentPageMiddleware
return request._current_page_cache
if clean_path is None:
clean_path = not bool(use_path)
draft = use_draft(request)
preview = 'preview' in request.GET
path = request.path_info if use_path is None else use_path
if clean_path:
pages_root = reverse("pages-root")
if path.startswith(pages_root):
path = path[len(pages_root):]
# strip any final slash
if path.endswith("/"):
path = path[:-1]
site = get_current_site()
request_language_code = getattr(request, "LANGUAGE_CODE", None)
page = get_page_from_path(
site, path, preview, draft, language_code=request_language_code
)
if draft and page and not user_can_view_page_draft(request.user, page):
page = get_page_from_path(
site, path, preview, draft=False, language_code=request_language_code
)
# For public pages, check if any parent is hidden due to published dates
# In this case the selected page is not reachable
if page and not draft:
now = timezone.now()
unpublished_ancestors = (
page
.get_ancestor_pages()
.filter(
Q(publication_date__gt=now) | Q(publication_end_date__lt=now),
)
)
if unpublished_ancestors.exists():
page = None
return page
| 235 | page.py | Python | cms/utils/page.py | 06c9a85df486581f152dbf11bbf40a1c6c5e6cd3 | django-cms | 14 |
|
132,826 | 63 | 15 | 15 | 162 | 25 | 0 | 79 | 312 | __call__ | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | https://github.com/ray-project/ray.git | def __call__(self, checkpoint):
if not self.runner:
return
if checkpoint.storage == Checkpoint.PERSISTENT and checkpoint.value:
checkpoint_path = checkpoint.value
logger.debug(
"Trial %s: Deleting checkpoint %s", self.trial_id, checkpoint_path
)
# TODO(ujvl): Batch remote deletes.
# We first delete the remote checkpoint. If it is on the same
# node as the driver, it will also remove the local copy.
ray.get(self.runner.delete_checkpoint.remote(checkpoint_path))
# Delete local copy, if any exists.
if os.path.exists(checkpoint_path):
try:
checkpoint_dir = TrainableUtil.find_checkpoint_dir(checkpoint_path)
shutil.rmtree(checkpoint_dir)
except FileNotFoundError:
logger.debug("Local checkpoint dir not found during deletion.")
| 95 | trial.py | Python | python/ray/tune/trial.py | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | 6 |
|
320,678 | 40 | 10 | 5 | 205 | 18 | 1 | 70 | 190 | test_filename_rubout | Add :rl-rubout and :rl-filename-rubout
Closes #4561 | https://github.com/qutebrowser/qutebrowser.git | def test_filename_rubout(os_sep, monkeypatch, lineedit, text, deleted, rest):
monkeypatch.setattr(os, "sep", os_sep)
_validate_deletion(lineedit,
readlinecommands.rl_filename_rubout, [],
text, deleted, rest)
@pytest.mark.parametrize('text, deleted, rest', [
pytest.param('test foobar| delete', ' delete', 'test foobar|',
marks=fixme),
('test foobar| delete', ' ', 'test foobar|delete'), # wrong
pytest.param('test foo|delete bar', 'delete', 'test foo| bar',
marks=fixme),
('test foo|delete bar', 'delete ', 'test foo|bar'), # wrong
pytest.param('test foo<bar> delete', ' delete', 'test foobar|',
marks=fixme),
('test foo<bar>delete', 'bardelete', 'test foo|'), # wrong
]) | @pytest.mark.parametrize('text, deleted, rest', [
pytest.param('test foobar| delete', ' delete', 'test foobar|',
marks=fixme),
('test foobar| delete', ' ', 'test foobar|delete'), # wrong
pytest.param('test foo|delete bar', 'delete', 'test foo| bar',
marks=fixme),
('test foo|delete bar', 'delete ', 'test foo|bar'), # wrong
pytest.param('test foo<bar> delete', ' delete', 'test foobar|',
marks=fixme),
('test foo<bar>delete', 'bardelete', 'test foo|'), # wrong
]) | 43 | test_readlinecommands.py | Python | tests/unit/components/test_readlinecommands.py | ab65c542a0551abf105eeb58803cd08bd040753b | qutebrowser | 1 |
41,878 | 47 | 13 | 18 | 198 | 16 | 0 | 72 | 249 | _map_attributes | Downgrade exception on mapping list length mismatch to warning (#2856)
* Downgrade exception on mapping list length mismatch to warning
* Lint
* Fix pairplot test
* Set stacklevel to report warning in user code | https://github.com/mwaskom/seaborn.git | def _map_attributes(self, arg, levels, defaults, attr):
if arg is True:
lookup_table = dict(zip(levels, defaults))
elif isinstance(arg, dict):
missing = set(levels) - set(arg)
if missing:
err = f"These `{attr}` levels are missing values: {missing}"
raise ValueError(err)
lookup_table = arg
elif isinstance(arg, Sequence):
arg = self._check_list_length(levels, arg, attr)
lookup_table = dict(zip(levels, arg))
elif arg:
err = f"This `{attr}` argument was not understood: {arg}"
raise ValueError(err)
else:
lookup_table = {}
return lookup_table
# =========================================================================== #
| 115 | _oldcore.py | Python | seaborn/_oldcore.py | 563e96d3be1eaee8db8dfbccf7eed1f1c66dfd31 | seaborn | 6 |
|
300,836 | 42 | 11 | 9 | 119 | 17 | 0 | 48 | 133 | process_new_events | Clean up accessing dispatcher helpers via hass (#72014)
Clean up accessing ditpatcher helpers via hass | https://github.com/home-assistant/core.git | def process_new_events(self, new_values_dict) -> None:
self.async_set_available_state(True)
# Process any stateless events (via device_triggers)
async_fire_triggers(self, new_values_dict)
for (aid, cid), value in new_values_dict.items():
accessory = self.current_state.setdefault(aid, {})
accessory[cid] = value
# self.current_state will be replaced by entity_map in a future PR
# For now we update both
self.entity_map.process_changes(new_values_dict)
async_dispatcher_send(self.hass, self.signal_state_updated)
| 74 | connection.py | Python | homeassistant/components/homekit_controller/connection.py | c8f700c80319cef81a9a817c1b9111887ea98b1a | core | 2 |
|
22,222 | 59 | 16 | 20 | 240 | 24 | 0 | 75 | 202 | get_dependencies | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | https://github.com/pypa/pipenv.git | def get_dependencies(ireq, sources=None, parent=None):
# type: (Union[InstallRequirement, InstallationCandidate], Optional[List[Dict[S, Union[S, bool]]]], Optional[AbstractDependency]) -> Set[S, ...]
if not isinstance(ireq, shims.InstallRequirement):
name = getattr(ireq, "project_name", getattr(ireq, "project", ireq.name))
version = getattr(ireq, "version", None)
if not version:
ireq = shims.InstallRequirement.from_line("{0}".format(name))
else:
ireq = shims.InstallRequirement.from_line("{0}=={1}".format(name, version))
pip_options = get_pip_options(sources=sources)
getters = [
get_dependencies_from_cache,
get_dependencies_from_wheel_cache,
get_dependencies_from_json,
functools.partial(get_dependencies_from_index, pip_options=pip_options),
]
for getter in getters:
deps = getter(ireq)
if deps is not None:
return deps
raise RuntimeError("failed to get dependencies for {}".format(ireq))
| 150 | dependencies.py | Python | pipenv/vendor/requirementslib/models/dependencies.py | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | pipenv | 5 |
|
119,312 | 54 | 15 | 16 | 252 | 16 | 0 | 83 | 184 | odd_ext | Add some functions for spectral analysis.
This commit adds "stft", "csd", and "welch" functions in scipy.signal. | https://github.com/google/jax.git | def odd_ext(x, n, axis=-1):
if n < 1:
return x
if n > x.shape[axis] - 1:
raise ValueError(
f"The extension length n ({n}) is too big. "
f"It must not exceed x.shape[axis]-1, which is {x.shape[axis] - 1}.")
left_end = lax.slice_in_dim(x, 0, 1, axis=axis)
left_ext = jnp.flip(lax.slice_in_dim(x, 1, n + 1, axis=axis), axis=axis)
right_end = lax.slice_in_dim(x, -1, None, axis=axis)
right_ext = jnp.flip(lax.slice_in_dim(x, -(n + 1), -1, axis=axis), axis=axis)
ext = jnp.concatenate((2 * left_end - left_ext,
x,
2 * right_end - right_ext),
axis=axis)
return ext
| 159 | signal.py | Python | jax/_src/scipy/signal.py | e085370ec4137cf0f73c5163cb664bc4e1c46082 | jax | 3 |
|
34,604 | 38 | 14 | 4 | 90 | 13 | 0 | 44 | 58 | create_position_ids_from_input_ids | Add XGLM models (#14876)
* add xglm
* update vocab size
* fix model name
* style and tokenizer
* typo
* no mask token
* fix pos embed compute
* fix args
* fix tokenizer
* fix positions
* fix tokenization
* style and dic fixes
* fix imports
* add fast tokenizer
* update names
* add pt tests
* fix tokenizer
* fix typo
* fix tokenizer import
* fix fast tokenizer
* fix tokenizer
* fix converter
* add tokenizer test
* update checkpoint names
* fix tokenizer tests
* fix slow tests
* add copied from comments
* rst -> mdx
* flax model
* update flax tests
* quality
* style
* doc
* update index and readme
* fix copies
* fix doc
* update toctrr
* fix indent
* minor fixes
* fix config doc
* don't save embed_pos weights
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]>
* address Sylvains commnets, few doc fixes
* fix check_repo
* align order of arguments
* fix copies
* fix labels
* remove unnecessary mapping
* fix saving tokenizer
Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]> | https://github.com/huggingface/transformers.git | def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding with M2M100->XGLM | 55 | modeling_xglm.py | Python | src/transformers/models/xglm/modeling_xglm.py | d25e25ee2b63ebfcd099deb689a5a7272574a10f | transformers | 1 |
|
101,448 | 20 | 15 | 7 | 110 | 15 | 0 | 21 | 75 | _build_tabs | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | https://github.com/deepfakes/faceswap.git | def _build_tabs(self) -> None:
logger.debug("Build Tabs")
for section in self.config_tools.sections:
tab = ttk.Notebook(self)
self._tabs[section] = {"tab": tab}
self.add(tab, text=section.replace("_", " ").title())
| 64 | preview.py | Python | tools/preview/preview.py | 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | faceswap | 2 |
|
295,982 | 9 | 9 | 3 | 46 | 7 | 1 | 9 | 14 | token_expiry | Refresh google calendar tokens with invalid expiration times (#69679)
* Refresh google calendar tokens with invalid expiration times
* Update tests/components/google/conftest.py
Co-authored-by: Martin Hjelmare <[email protected]>
* Remove unnecessary async methods in functions being touched already
Co-authored-by: Martin Hjelmare <[email protected]> | https://github.com/home-assistant/core.git | def token_expiry() -> datetime.datetime:
return utcnow() + datetime.timedelta(days=7)
@pytest.fixture | @pytest.fixture | 22 | conftest.py | Python | tests/components/google/conftest.py | 06d2aeec6b153a104b275c73068cf05a7b5c0c6b | core | 1 |
148,501 | 131 | 18 | 44 | 672 | 40 | 0 | 181 | 675 | start | Implement previous backtest result reuse when config and strategy did not change. | https://github.com/freqtrade/freqtrade.git | def start(self) -> None:
data: Dict[str, Any] = {}
data, timerange = self.load_bt_data()
self.load_bt_data_detail()
logger.info("Dataload complete. Calculating indicators")
run_ids = {
strategy.get_strategy_name(): get_strategy_run_id(strategy)
for strategy in self.strategylist
}
# Load previous result that will be updated incrementally.
if self.config.get('timerange', '-').endswith('-'):
self.config['no_backtest_cache'] = True
logger.warning('Backtest result caching disabled due to use of open-ended timerange.')
if not self.config.get('no_backtest_cache', False):
self.results = find_existing_backtest_stats(
self.config['user_data_dir'] / 'backtest_results', run_ids)
for strat in self.strategylist:
if self.results and strat.get_strategy_name() in self.results['strategy']:
# When previous result hash matches - reuse that result and skip backtesting.
logger.info(f'Reusing result of previous backtest for {strat.get_strategy_name()}')
continue
min_date, max_date = self.backtest_one_strategy(strat, data, timerange)
# Update old results with new ones.
if len(self.all_results) > 0:
results = generate_backtest_stats(
data, self.all_results, min_date=min_date, max_date=max_date)
if self.results:
self.results['metadata'].update(results['metadata'])
self.results['strategy'].update(results['strategy'])
self.results['strategy_comparison'].extend(results['strategy_comparison'])
else:
self.results = results
if self.config.get('export', 'none') == 'trades':
store_backtest_stats(self.config['exportfilename'], self.results)
# Results may be mixed up now. Sort them so they follow --strategy-list order.
if 'strategy_list' in self.config and len(self.results) > 0:
self.results['strategy_comparison'] = sorted(
self.results['strategy_comparison'],
key=lambda c: self.config['strategy_list'].index(c['key']))
self.results['strategy'] = dict(
sorted(self.results['strategy'].items(),
key=lambda kv: self.config['strategy_list'].index(kv[0])))
if len(self.strategylist) > 0:
# Show backtest results
show_backtest_results(self.config, self.results)
| 391 | backtesting.py | Python | freqtrade/optimize/backtesting.py | 16861db653ec8166f73fc8480894f186a137e7bd | freqtrade | 13 |
|
158,185 | 25 | 13 | 5 | 82 | 11 | 0 | 26 | 46 | evaluate_accuracy | [PaddlePaddle] Merge master into Paddle branch (#1186)
* change 15.2 title in chinese version (#1109)
change title ’15.2. 情感分析:使用递归神经网络‘ to ’15.2. 情感分析:使用循环神经网络‘
* 修改部分语义表述 (#1105)
* Update r0.17.5 (#1120)
* Bump versions in installation
* 94行typo: (“bert.mall”)->(“bert.small”) (#1129)
* line 313: "bert.mall" -> "bert.small" (#1130)
* fix: update language as native reader (#1114)
* Fix the translation of "stride" (#1115)
* Update index.md (#1118)
修改部分语义表述
* Update self-attention-and-positional-encoding.md (#1133)
依照本书的翻译习惯,将pooling翻译成汇聚
* maybe a comment false (#1149)
* maybe a little false
* maybe a little false
* A minor bug in the rcnn section (Chinese edition) (#1148)
* Update bert.md (#1137)
一个笔误
# 假设batch_size=2,num_pred_positions=3
# 那么batch_idx应该是np.repeat( [0,1], 3 ) = [0,0,0,1,1,1]
* Update calculus.md (#1135)
* fix typo in git documentation (#1106)
* fix: Update the Chinese translation in lr-scheduler.md (#1136)
* Update lr-scheduler.md
* Update chapter_optimization/lr-scheduler.md
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* fix translation for kaggle-house-price.md (#1107)
* fix translation for kaggle-house-price.md
* fix translation for kaggle-house-price.md
Signed-off-by: sunhaizhou <[email protected]>
* Update weight-decay.md (#1150)
* Update weight-decay.md
关于“k多选d”这一部分,中文读者使用排列组合的方式可能更容易理解
关于“给定k个变量,阶数的个数为...”这句话是有歧义的,不是很像中国话,应该是说“阶数为d的项的个数为...”。
并增加了一句对“因此即使是阶数上的微小变化,比如从$2$到$3$,也会显著增加我们模型的复杂性。”的解释
解释为何会增加复杂性以及为何需要细粒度工具。
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Fix a spelling error (#1161)
* Update gru.md (#1152)
The key distinction between vanilla RNNs and GRUs is that the latter support gating of the hidden state.
翻译错误
* Unify the function naming (#1113)
Unify naming of the function 'init_xavier()'.
* Update mlp-concise.md (#1166)
* Update mlp-concise.md
语句不通顺
* Update environment.md
语序异常
* Update config.ini
* fix the imprecise description (#1168)
Co-authored-by: yuande <yuande>
* fix typo in chapter_natural-language-processing-pretraining/glove.md (#1175)
* Fix some typos. (#1163)
* Update batch-norm.md (#1170)
fixing typos u->x in article
* Update linear-regression.md (#1090)
We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial Intelligence: A Modern Approach :cite:Russell.Norvig.2016, pointed out that
原译文把who也直接翻译出来了。
* Update mlp.md (#1117)
* Update mlp.md
修改部分语义表述
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Correct a translation error. (#1091)
* Correct a translation error.
* Update chapter_computer-vision/image-augmentation.md
Co-authored-by: Aston Zhang <[email protected]>
* Update aws.md (#1121)
* Update aws.md
* Update chapter_appendix-tools-for-deep-learning/aws.md
Co-authored-by: Aston Zhang <[email protected]>
* Update image-augmentation.md (#1093)
* Update anchor.md (#1088)
fix a minor issue in code
* Update anchor.md
* Update image-augmentation.md
* fix typo and improve translation in chapter_linear-networks\softmax-regression.md (#1087)
* Avoid `torch.meshgrid` user warning (#1174)
Avoids the following user warning:
```python
~/anaconda3/envs/torch/lib/python3.10/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
```
* bump to 2.0.0-beta1
* Update sequence.md
* bump beta1 on readme
* Add latex code block background to config
* BLD: Bump python support version 3.9 (#1183)
* BLD: Bump python support version 3.9
* Remove clear and manually downgrade protobuf 4.21.4 to 3.19.4
* BLD: Bump torch and tensorflow
* Update Jenkinsfile
* Update chapter_installation/index.md
* Update chapter_installation/index.md
Co-authored-by: Aston Zhang <[email protected]>
* Update config.ini
* Update INFO.md
* Update INFO.md
* Drop mint to show code in pdf, use Inconsolata font, apply code cell color (#1187)
* resolve the conflicts
* revise from publisher (#1089)
* revise from publisher
* d2l api
* post_latex
* revise from publisher
* revise ch11
* Delete d2l-Copy1.bib
* clear cache
* rm d2lbook clear
* debug anchor
* keep original d2l doc
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
* 重复语句 (#1188)
Co-authored-by: Aston Zhang <[email protected]>
* Improve expression for chapter_preliminaries/pandas.md (#1184)
* Update pandas.md
* Improve expression
* Improve expression
* Update chapter_preliminaries/pandas.md
Co-authored-by: Aston Zhang <[email protected]>
* Improce expression for chapter_preliminaries/linear-algebra.md (#1185)
* Improce expression
* Improve code comments
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
Co-authored-by: Aston Zhang <[email protected]>
* Fix multibox_detection bugs
* Update d2l to 0.17.5 version
* restore older version
* Upgrade pandas
* change to python3.8
* Test warning log
* relocate warning log
* test logs filtering
* Update gru.md
* Add DeprecationWarning filter
* Test warning log
* Update attention mechanisms & computational performance
* Update multilayer perceptron& linear & convolution networks & computer vision
* Update recurrent&optimition&nlp pretraining & nlp applications
* ignore warnings
* Update index.md
* Update linear networks
* Update multilayer perceptrons&deep learning computation
* Update preliminaries
* Check and Add warning filter
* Update kaggle-cifar10.md
* Update object-detection-dataset.md
* Update ssd.md fcn.md
* Update hybridize.md
* Update hybridize.md
Signed-off-by: sunhaizhou <[email protected]>
Co-authored-by: zhou201505013 <[email protected]>
Co-authored-by: Xinwei Liu <[email protected]>
Co-authored-by: Anirudh Dagar <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: hugo_han <[email protected]>
Co-authored-by: gyro永不抽风 <[email protected]>
Co-authored-by: CanChengZheng <[email protected]>
Co-authored-by: linlin <[email protected]>
Co-authored-by: iuk <[email protected]>
Co-authored-by: yoos <[email protected]>
Co-authored-by: Mr. Justice Lawrence John Wargrave <[email protected]>
Co-authored-by: Chiyuan Fu <[email protected]>
Co-authored-by: Sunhuashan <[email protected]>
Co-authored-by: Haiker Sun <[email protected]>
Co-authored-by: Ming Liu <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: silenceZheng66 <[email protected]>
Co-authored-by: Wenchao Yan <[email protected]>
Co-authored-by: Kiki2049 <[email protected]>
Co-authored-by: Krahets <[email protected]>
Co-authored-by: friedmainfunction <[email protected]>
Co-authored-by: Jameson <[email protected]>
Co-authored-by: P. Yao <[email protected]>
Co-authored-by: Yulv-git <[email protected]>
Co-authored-by: Liu,Xiao <[email protected]>
Co-authored-by: YIN, Gang <[email protected]>
Co-authored-by: Joe-HZ <[email protected]>
Co-authored-by: lybloveyou <[email protected]>
Co-authored-by: VigourJiang <[email protected]>
Co-authored-by: zxhd863943427 <[email protected]>
Co-authored-by: LYF <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: xiaotinghe <[email protected]>
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Holly-Max <[email protected]>
Co-authored-by: HinGwenWoong <[email protected]>
Co-authored-by: Shuai Zhang <[email protected]> | https://github.com/d2l-ai/d2l-zh.git | def evaluate_accuracy(net, data_iter):
metric = Accumulator(2) # No. of correct predictions, no. of predictions
for X, y in data_iter:
metric.add(accuracy(net(X), y), d2l.size(y))
return metric[0] / metric[1]
| 52 | mxnet.py | Python | d2l/mxnet.py | b64b41d8c1ac23c43f7a4e3f9f6339d6f0012ab2 | d2l-zh | 2 |
|
287,724 | 7 | 9 | 3 | 31 | 4 | 0 | 7 | 21 | async_terminate_apps | Add Button platform to Bravia TV (#78093)
* Add Button platform to Bravia TV
* Add button.py to coveragerc
* improve callable type | https://github.com/home-assistant/core.git | async def async_terminate_apps(self) -> None:
await self.client.terminate_apps()
| 16 | coordinator.py | Python | homeassistant/components/braviatv/coordinator.py | ab4c1ebfd6ab79abfc4e214853f71afba2380099 | core | 1 |
|
139,515 | 14 | 8 | 8 | 34 | 6 | 0 | 14 | 29 | extra_compute_grad_fetches | [RLlib] Introduce new policy base classes. (#24742) | https://github.com/ray-project/ray.git | def extra_compute_grad_fetches(self) -> Dict[str, Any]:
return {LEARNER_STATS_KEY: {}} # e.g, stats, td error, etc.
| 20 | torch_policy_v2.py | Python | rllib/policy/torch_policy_v2.py | bc3a1d35cf6e9a5fd7eef908a8e76aefb80ce6a9 | ray | 1 |
|
248,550 | 68 | 12 | 54 | 488 | 17 | 0 | 145 | 717 | test_join_rules_public | EventAuthTestCase: build events for the right room version
In practice, when we run the auth rules, all of the events have the right room
version. Let's stop building Room V1 events for these tests and use the right
version. | https://github.com/matrix-org/synapse.git | def test_join_rules_public(self):
creator = "@creator:example.com"
pleb = "@joiner:example.com"
auth_events = {
("m.room.create", ""): _create_event(RoomVersions.V6, creator),
("m.room.member", creator): _join_event(RoomVersions.V6, creator),
("m.room.join_rules", ""): _join_rules_event(
RoomVersions.V6, creator, "public"
),
}
# Check join.
event_auth.check_auth_rules_for_event(
RoomVersions.V6,
_join_event(RoomVersions.V6, pleb),
auth_events.values(),
)
# A user cannot be force-joined to a room.
with self.assertRaises(AuthError):
event_auth.check_auth_rules_for_event(
RoomVersions.V6,
_member_event(RoomVersions.V6, pleb, "join", sender=creator),
auth_events.values(),
)
# Banned should be rejected.
auth_events[("m.room.member", pleb)] = _member_event(
RoomVersions.V6, pleb, "ban"
)
with self.assertRaises(AuthError):
event_auth.check_auth_rules_for_event(
RoomVersions.V6,
_join_event(RoomVersions.V6, pleb),
auth_events.values(),
)
# A user who left can re-join.
auth_events[("m.room.member", pleb)] = _member_event(
RoomVersions.V6, pleb, "leave"
)
event_auth.check_auth_rules_for_event(
RoomVersions.V6,
_join_event(RoomVersions.V6, pleb),
auth_events.values(),
)
# A user can send a join if they're in the room.
auth_events[("m.room.member", pleb)] = _member_event(
RoomVersions.V6, pleb, "join"
)
event_auth.check_auth_rules_for_event(
RoomVersions.V6,
_join_event(RoomVersions.V6, pleb),
auth_events.values(),
)
# A user can accept an invite.
auth_events[("m.room.member", pleb)] = _member_event(
RoomVersions.V6, pleb, "invite", sender=creator
)
event_auth.check_auth_rules_for_event(
RoomVersions.V6,
_join_event(RoomVersions.V6, pleb),
auth_events.values(),
)
| 309 | test_event_auth.py | Python | tests/test_event_auth.py | 2959184a42398277ff916206235b844a8f7be5d7 | synapse | 1 |
|
178,014 | 35 | 15 | 17 | 179 | 21 | 0 | 51 | 182 | check_toname_in_config_by_regex | fix: DEV-1462: Fix changing label config for repeater tag (#2725)
* fix: DEV-1462: Fix changing label config for repeater tag with created annotations | https://github.com/heartexlabs/label-studio.git | def check_toname_in_config_by_regex(config_string, to_name, control_type=None):
c = parse_config(config_string)
if control_type:
check_list = [control_type]
else:
check_list = list(c.keys())
for control in check_list:
item = c[control].get('regex', {})
for to_name_item in c[control]['to_name']:
expression = to_name_item
for key in item:
expression = expression.replace(key, item[key])
pattern = re.compile(expression)
full_match = pattern.fullmatch(to_name)
if full_match:
return True
return False
| 112 | label_config.py | Python | label_studio/core/label_config.py | 583b3cb3b03a36a30b3ce9fe96eb4fb28548a070 | label-studio | 6 |
|
100,928 | 18 | 12 | 6 | 85 | 12 | 0 | 19 | 73 | ask_multi_load | Core updates
- Change loss loading mechanism
- Autosize tooltips based on content size
- Random linting + code modernisation | https://github.com/deepfakes/faceswap.git | def ask_multi_load(filepath, filetypes):
filenames = FileHandler("filename_multi", filetypes).return_file
if filenames:
final_names = " ".join(f"\"{fname}\"" for fname in filenames)
logger.debug(final_names)
filepath.set(final_names)
| 46 | control_helper.py | Python | lib/gui/control_helper.py | bad5025aea1adb9126580e14e064e6c99089243d | faceswap | 3 |
|
38,106 | 64 | 18 | 33 | 349 | 24 | 0 | 105 | 564 | tokenize | Black preview (#17217)
* Black preview
* Fixup too!
* Fix check copies
* Use the same version as the CI
* Bump black | https://github.com/huggingface/transformers.git | def tokenize(self, x):
if isinstance(x, list) and all([isinstance(_x, list) for _x in x]):
d = None
for l in x:
t = self.tokenizer(
l,
padding="max_length",
max_length=384,
truncation=True,
return_tensors="pt",
)
t["sizes"] = torch.tensor([len(l)])
if d is not None:
for k in d.keys():
d[k] = torch.cat((d[k], t[k]), 0)
else:
d = t
d["start_token_id"] = torch.tensor(self.tokenizer.convert_tokens_to_ids("[E]"))
d["end_token_id"] = torch.tensor(self.tokenizer.convert_tokens_to_ids("[/E]"))
elif isinstance(x, list) and all([isinstance(_x, str) for _x in x]):
d = self.tokenizer(
x,
padding="max_length",
max_length=384,
truncation=True,
return_tensors="pt",
)
else:
raise Exception(
"Type of parameter x was not recognized! Only `list of strings` for query or `list of lists of"
" strings` for supports are supported."
)
return d
| 219 | tokenizer_utils.py | Python | examples/research_projects/fsner/src/fsner/tokenizer_utils.py | afe5d42d8d1d80af911ed980c2936bfe887078f6 | transformers | 10 |
|
266,410 | 331 | 24 | 134 | 1,651 | 111 | 0 | 624 | 3,924 | run | end_play: end the current play only (#76674)
Fixes #76672 | https://github.com/ansible/ansible.git | def run(self):
result = 0
entrylist = []
entry = {}
try:
# preload become/connection/shell to set config defs cached
list(connection_loader.all(class_only=True))
list(shell_loader.all(class_only=True))
list(become_loader.all(class_only=True))
for playbook in self._playbooks:
# deal with FQCN
resource = _get_collection_playbook_path(playbook)
if resource is not None:
playbook_path = resource[1]
playbook_collection = resource[2]
else:
playbook_path = playbook
# not fqcn, but might still be colleciotn playbook
playbook_collection = _get_collection_name_from_path(playbook)
if playbook_collection:
display.warning("running playbook inside collection {0}".format(playbook_collection))
AnsibleCollectionConfig.default_collection = playbook_collection
else:
AnsibleCollectionConfig.default_collection = None
pb = Playbook.load(playbook_path, variable_manager=self._variable_manager, loader=self._loader)
# FIXME: move out of inventory self._inventory.set_playbook_basedir(os.path.realpath(os.path.dirname(playbook_path)))
if self._tqm is None: # we are doing a listing
entry = {'playbook': playbook_path}
entry['plays'] = []
else:
# make sure the tqm has callbacks loaded
self._tqm.load_callbacks()
self._tqm.send_callback('v2_playbook_on_start', pb)
i = 1
plays = pb.get_plays()
display.vv(u'%d plays in %s' % (len(plays), to_text(playbook_path)))
for play in plays:
if play._included_path is not None:
self._loader.set_basedir(play._included_path)
else:
self._loader.set_basedir(pb._basedir)
# clear any filters which may have been applied to the inventory
self._inventory.remove_restriction()
# Allow variables to be used in vars_prompt fields.
all_vars = self._variable_manager.get_vars(play=play)
templar = Templar(loader=self._loader, variables=all_vars)
setattr(play, 'vars_prompt', templar.template(play.vars_prompt))
# FIXME: this should be a play 'sub object' like loop_control
if play.vars_prompt:
for var in play.vars_prompt:
vname = var['name']
prompt = var.get("prompt", vname)
default = var.get("default", None)
private = boolean(var.get("private", True))
confirm = boolean(var.get("confirm", False))
encrypt = var.get("encrypt", None)
salt_size = var.get("salt_size", None)
salt = var.get("salt", None)
unsafe = var.get("unsafe", None)
if vname not in self._variable_manager.extra_vars:
if self._tqm:
self._tqm.send_callback('v2_playbook_on_vars_prompt', vname, private, prompt, encrypt, confirm, salt_size, salt,
default, unsafe)
play.vars[vname] = display.do_var_prompt(vname, private, prompt, encrypt, confirm, salt_size, salt, default, unsafe)
else: # we are either in --list-<option> or syntax check
play.vars[vname] = default
# Post validate so any play level variables are templated
all_vars = self._variable_manager.get_vars(play=play)
templar = Templar(loader=self._loader, variables=all_vars)
play.post_validate(templar)
if context.CLIARGS['syntax']:
continue
if self._tqm is None:
# we are just doing a listing
entry['plays'].append(play)
else:
self._tqm._unreachable_hosts.update(self._unreachable_hosts)
previously_failed = len(self._tqm._failed_hosts)
previously_unreachable = len(self._tqm._unreachable_hosts)
break_play = False
# we are actually running plays
batches = self._get_serialized_batches(play)
if len(batches) == 0:
self._tqm.send_callback('v2_playbook_on_play_start', play)
self._tqm.send_callback('v2_playbook_on_no_hosts_matched')
for batch in batches:
# restrict the inventory to the hosts in the serialized batch
self._inventory.restrict_to_hosts(batch)
# and run it...
try:
result = self._tqm.run(play=play)
except AnsibleEndPlay as e:
result = e.result
break
# break the play if the result equals the special return code
if result & self._tqm.RUN_FAILED_BREAK_PLAY != 0:
result = self._tqm.RUN_FAILED_HOSTS
break_play = True
# check the number of failures here, to see if they're above the maximum
# failure percentage allowed, or if any errors are fatal. If either of those
# conditions are met, we break out, otherwise we only break out if the entire
# batch failed
failed_hosts_count = len(self._tqm._failed_hosts) + len(self._tqm._unreachable_hosts) - \
(previously_failed + previously_unreachable)
if len(batch) == failed_hosts_count:
break_play = True
break
# update the previous counts so they don't accumulate incorrectly
# over multiple serial batches
previously_failed += len(self._tqm._failed_hosts) - previously_failed
previously_unreachable += len(self._tqm._unreachable_hosts) - previously_unreachable
# save the unreachable hosts from this batch
self._unreachable_hosts.update(self._tqm._unreachable_hosts)
if break_play:
break
i = i + 1 # per play
if entry:
entrylist.append(entry) # per playbook
# send the stats callback for this playbook
if self._tqm is not None:
if C.RETRY_FILES_ENABLED:
retries = set(self._tqm._failed_hosts.keys())
retries.update(self._tqm._unreachable_hosts.keys())
retries = sorted(retries)
if len(retries) > 0:
if C.RETRY_FILES_SAVE_PATH:
basedir = C.RETRY_FILES_SAVE_PATH
elif playbook_path:
basedir = os.path.dirname(os.path.abspath(playbook_path))
else:
basedir = '~/'
(retry_name, _) = os.path.splitext(os.path.basename(playbook_path))
filename = os.path.join(basedir, "%s.retry" % retry_name)
if self._generate_retry_inventory(filename, retries):
display.display("\tto retry, use: --limit @%s\n" % filename)
self._tqm.send_callback('v2_playbook_on_stats', self._tqm._stats)
# if the last result wasn't zero, break out of the playbook file name loop
if result != 0:
break
if entrylist:
return entrylist
finally:
if self._tqm is not None:
self._tqm.cleanup()
if self._loader:
self._loader.cleanup_all_tmp_files()
if context.CLIARGS['syntax']:
display.display("No issues encountered")
return result
if context.CLIARGS['start_at_task'] and not self._tqm._start_at_done:
display.error(
"No matching task \"%s\" found."
" Note: --start-at-task can only follow static includes."
% context.CLIARGS['start_at_task']
)
return result
| 1,002 | playbook_executor.py | Python | lib/ansible/executor/playbook_executor.py | f78deccec2d4b5447f32d4fc67eaa549f479ccaa | ansible | 34 |
|
119,595 | 13 | 8 | 2 | 63 | 10 | 1 | 16 | 17 | _coo_matmat | [sparse] change call signature of coo primitive wrappers | https://github.com/google/jax.git | def _coo_matmat(data, row, col, B, *, spinfo, transpose=False):
return coo_matmat_p.bind(data, row, col, B, spinfo=spinfo, transpose=transpose)
@coo_matmat_p.def_impl | @coo_matmat_p.def_impl | 41 | coo.py | Python | jax/experimental/sparse/coo.py | 424536dcf421a8dd4b6dfd7ddffc066fec7661c7 | jax | 1 |
215,816 | 22 | 12 | 5 | 91 | 14 | 0 | 24 | 55 | test_symlink_exists_file | Add some funtional tests
Add functional tests for the following:
- file.readlink
- file.replace
- file.symlink
Remove unit tests for file.replace as they are duplicated in the added
functional test | https://github.com/saltstack/salt.git | def test_symlink_exists_file(file, source):
with pytest.helpers.temp_file("symlink.txt", contents="Source content") as target:
with pytest.raises(CommandExecutionError) as exc:
file.symlink(source, target)
assert "Existing path is not a symlink:" in exc.value.message
| 50 | test_symlink.py | Python | tests/pytests/functional/modules/file/test_symlink.py | a35b29b2651bf33c5d5b45e64bc7765ffde4aff4 | salt | 1 |
|
110,159 | 15 | 10 | 3 | 43 | 5 | 0 | 15 | 41 | nargs_error | Factor out error generation for function calls with wrong nargs.
... matching the wording for standard functions.
Note that nargs_error returns the exception without raising it itself to
make the control flow clearer on the caller side. | https://github.com/matplotlib/matplotlib.git | def nargs_error(name, takes, given):
return TypeError(f"{name}() takes {takes} positional arguments but "
f"{given} were given")
| 18 | __init__.py | Python | lib/matplotlib/_api/__init__.py | 973e475ef85524c5e9cef0638c90ca9a159935e4 | matplotlib | 1 |
|
121,221 | 78 | 14 | 20 | 338 | 30 | 0 | 102 | 199 | conv_shape_tuple | lax.conv_general_dilated: validate negative paddings | https://github.com/google/jax.git | def conv_shape_tuple(lhs_shape, rhs_shape, strides, pads, batch_group_count=1):
if isinstance(pads, str):
pads = lax.padtype_to_pads(lhs_shape[2:], rhs_shape[2:], strides, pads)
if len(pads) != len(lhs_shape) - 2:
msg = "Wrong number of explicit pads for convolution: expected {}, got {}."
raise TypeError(msg.format(len(lhs_shape) - 2, len(pads)))
lhs_padded = np.add(lhs_shape[2:], np.sum(np.array(pads).reshape(-1, 2),
axis=1))
if np.any(lhs_padded < 0):
raise ValueError("Negative padding is larger than the size of the corresponding dimension: "
f"got padding={pads} for lhs_shape[2:]={lhs_shape[2:]}")
out_space = core.stride_shape(lhs_padded, rhs_shape[2:], strides)
out_space = np.maximum(0, out_space)
if batch_group_count > 1:
assert lhs_shape[0] % batch_group_count == 0
out_shape_0 = lhs_shape[0] // batch_group_count
else:
out_shape_0 = lhs_shape[0]
out_shape = (out_shape_0, rhs_shape[0])
return tuple(out_shape + tuple(out_space))
| 210 | convolution.py | Python | jax/_src/lax/convolution.py | 489596c0e268bf37a7f6c2cb86822f38d24eecc9 | jax | 5 |
|
185,776 | 7 | 8 | 10 | 27 | 4 | 0 | 7 | 13 | test_widget_remove_order | Add a unit test for removal ordering via DOMQuery.remove | https://github.com/Textualize/textual.git | async def test_widget_remove_order():
removals: list[str] = []
| 87 | test_widget_removing.py | Python | tests/test_widget_removing.py | d3e7f5ad994a92ae1734caea8bb66cfb043fcfc4 | textual | 1 |
|
37,528 | 50 | 14 | 22 | 337 | 29 | 0 | 80 | 186 | nested_simplify | Replace dict/BatchEncoding instance checks by Mapping (#17014)
* Replace dict/BatchEncoding instance checks by Mapping
* Typo | https://github.com/huggingface/transformers.git | def nested_simplify(obj, decimals=3):
import numpy as np
if isinstance(obj, list):
return [nested_simplify(item, decimals) for item in obj]
elif isinstance(obj, np.ndarray):
return nested_simplify(obj.tolist())
elif isinstance(obj, Mapping):
return {nested_simplify(k, decimals): nested_simplify(v, decimals) for k, v in obj.items()}
elif isinstance(obj, (str, int, np.int64)):
return obj
elif obj is None:
return obj
elif is_torch_available() and isinstance(obj, torch.Tensor):
return nested_simplify(obj.tolist(), decimals)
elif is_tf_available() and tf.is_tensor(obj):
return nested_simplify(obj.numpy().tolist())
elif isinstance(obj, float):
return round(obj, decimals)
elif isinstance(obj, (np.int32, np.float32)):
return nested_simplify(obj.item(), decimals)
else:
raise Exception(f"Not supported: {type(obj)}")
| 213 | testing_utils.py | Python | src/transformers/testing_utils.py | 18df440709f1b19d1c5617c0d987c5ff8fd0915d | transformers | 14 |
|
20,451 | 46 | 13 | 26 | 248 | 23 | 0 | 75 | 244 | guess_lexer_for_filename | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | https://github.com/pypa/pipenv.git | def guess_lexer_for_filename(_fn, _text, **options):
fn = basename(_fn)
primary = {}
matching_lexers = set()
for lexer in _iter_lexerclasses():
for filename in lexer.filenames:
if _fn_matches(fn, filename):
matching_lexers.add(lexer)
primary[lexer] = True
for filename in lexer.alias_filenames:
if _fn_matches(fn, filename):
matching_lexers.add(lexer)
primary[lexer] = False
if not matching_lexers:
raise ClassNotFound('no lexer for filename %r found' % fn)
if len(matching_lexers) == 1:
return matching_lexers.pop()(**options)
result = []
for lexer in matching_lexers:
rv = lexer.analyse_text(_text)
if rv == 1.0:
return lexer(**options)
result.append((rv, lexer))
| 179 | __init__.py | Python | pipenv/patched/notpip/_vendor/pygments/lexers/__init__.py | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | 10 |
|
111,538 | 55 | 12 | 21 | 269 | 30 | 1 | 68 | 197 | test_issue4674 | Refactor KB for easier customization (#11268)
* Add implementation of batching + backwards compatibility fixes. Tests indicate issue with batch disambiguation for custom singular entity lookups.
* Fix tests. Add distinction w.r.t. batch size.
* Remove redundant and add new comments.
* Adjust comments. Fix variable naming in EL prediction.
* Fix mypy errors.
* Remove KB entity type config option. Change return types of candidate retrieval functions to Iterable from Iterator. Fix various other issues.
* Update spacy/pipeline/entity_linker.py
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Update spacy/pipeline/entity_linker.py
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Update spacy/kb_base.pyx
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Update spacy/kb_base.pyx
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Update spacy/pipeline/entity_linker.py
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Add error messages to NotImplementedErrors. Remove redundant comment.
* Fix imports.
* Remove redundant comments.
* Rename KnowledgeBase to InMemoryLookupKB and BaseKnowledgeBase to KnowledgeBase.
* Fix tests.
* Update spacy/errors.py
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Move KB into subdirectory.
* Adjust imports after KB move to dedicated subdirectory.
* Fix config imports.
* Move Candidate + retrieval functions to separate module. Fix other, small issues.
* Fix docstrings and error message w.r.t. class names. Fix typing for candidate retrieval functions.
* Update spacy/kb/kb_in_memory.pyx
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Update spacy/ml/models/entity_linker.py
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Fix typing.
* Change typing of mentions to be Span instead of Union[Span, str].
* Update docs.
* Update EntityLinker and _architecture docs.
* Update website/docs/api/entitylinker.md
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Adjust message for E1046.
* Re-add section for Candidate in kb.md, add reference to dedicated page.
* Update docs and docstrings.
* Re-add section + reference for KnowledgeBase.get_alias_candidates() in docs.
* Update spacy/kb/candidate.pyx
* Update spacy/kb/kb_in_memory.pyx
* Update spacy/pipeline/legacy/entity_linker.py
* Remove canididate.md. Remove mistakenly added config snippet in entity_linker.py.
Co-authored-by: Paul O'Leary McCann <[email protected]>
Co-authored-by: Sofie Van Landeghem <[email protected]> | https://github.com/explosion/spaCy.git | def test_issue4674():
nlp = English()
kb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
vector1 = [0.9, 1.1, 1.01]
vector2 = [1.8, 2.25, 2.01]
with pytest.warns(UserWarning):
kb.set_entities(
entity_list=["Q1", "Q1"],
freq_list=[32, 111],
vector_list=[vector1, vector2],
)
assert kb.get_size_entities() == 1
# dumping to file & loading back in
with make_tempdir() as d:
dir_path = ensure_path(d)
if not dir_path.exists():
dir_path.mkdir()
file_path = dir_path / "kb"
kb.to_disk(str(file_path))
kb2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
kb2.from_disk(str(file_path))
assert kb2.get_size_entities() == 1
@pytest.mark.issue(6730) | @pytest.mark.issue(6730) | 166 | test_entity_linker.py | Python | spacy/tests/pipeline/test_entity_linker.py | 1f23c615d7a7326ca5a38a7d768b8b70caaa0e17 | spaCy | 2 |
50,918 | 107 | 19 | 50 | 611 | 48 | 0 | 172 | 610 | postprocess | update yolov3_darknet53_vehicles (#1957)
* update yolov3_darknet53_vehicles
* update gpu config
* update
* add clean func
* update save inference model | https://github.com/PaddlePaddle/PaddleHub.git | def postprocess(paths, images, data_out, score_thresh, label_names, output_dir, handle_id, visualization=True):
results = data_out.copy_to_cpu()
lod = data_out.lod()[0]
check_dir(output_dir)
if paths:
assert type(paths) is list, "type(paths) is not list."
if handle_id < len(paths):
unhandled_paths = paths[handle_id:]
unhandled_paths_num = len(unhandled_paths)
else:
unhandled_paths_num = 0
if images is not None:
if handle_id < len(images):
unhandled_paths = None
unhandled_paths_num = len(images) - handle_id
else:
unhandled_paths_num = 0
output = list()
for index in range(len(lod) - 1):
output_i = {'data': []}
if unhandled_paths and index < unhandled_paths_num:
org_img_path = unhandled_paths[index]
org_img = Image.open(org_img_path)
else:
org_img = images[index - unhandled_paths_num]
org_img = org_img.astype(np.uint8)
org_img = Image.fromarray(org_img[:, :, ::-1])
if visualization:
org_img_path = get_save_image_name(org_img, output_dir, 'image_numpy_{}'.format((handle_id + index)))
org_img.save(org_img_path)
org_img_height = org_img.height
org_img_width = org_img.width
result_i = results[lod[index]:lod[index + 1]]
for row in result_i:
if len(row) != 6:
continue
if row[1] < score_thresh:
continue
category_id = int(row[0])
confidence = row[1]
bbox = row[2:]
dt = {}
dt['label'] = label_names[category_id]
dt['confidence'] = float(confidence)
dt['left'], dt['top'], dt['right'], dt['bottom'] = clip_bbox(bbox, org_img_width, org_img_height)
output_i['data'].append(dt)
output.append(output_i)
if visualization:
output_i['save_path'] = draw_bounding_box_on_image(org_img_path, output_i['data'], output_dir)
return output
| 380 | processor.py | Python | modules/image/object_detection/yolov3_darknet53_vehicles/processor.py | 7a847a39b1da6e6867031f52f713d92391b9729d | PaddleHub | 13 |
|
255,400 | 43 | 13 | 15 | 229 | 23 | 0 | 54 | 209 | test_error_opset_import_mismatch | Use Python type annotations rather than comments (#3962)
* These have been supported since Python 3.5.
ONNX doesn't support Python < 3.6, so we can use the annotations.
Diffs generated by https://pypi.org/project/com2ann/.
Signed-off-by: Gary Miguel <[email protected]>
* Remove MYPY conditional logic in gen_proto.py
It breaks the type annotations and shouldn't be needed.
Signed-off-by: Gary Miguel <[email protected]>
* Get rid of MYPY bool from more scripts
Signed-off-by: Gary Miguel <[email protected]>
* move Descriptors class above where its referenced in type annotation
Signed-off-by: Gary Miguel <[email protected]>
* fixes
Signed-off-by: Gary Miguel <[email protected]>
* remove extra blank line
Signed-off-by: Gary Miguel <[email protected]>
* fix type annotations
Signed-off-by: Gary Miguel <[email protected]>
* fix type annotation in gen_docs
Signed-off-by: Gary Miguel <[email protected]>
* fix Operators.md
Signed-off-by: Gary Miguel <[email protected]>
* fix TestCoverage.md
Signed-off-by: Gary Miguel <[email protected]>
* fix protoc-gen-mypy.py
Signed-off-by: Gary Miguel <[email protected]> | https://github.com/onnx/onnx.git | def test_error_opset_import_mismatch(self) -> None:
m1, m2 = _load_model(m1_def), _load_model(m2_def)
m1 = helper.make_model(m1.graph, producer_name='test',
opset_imports=[helper.make_opsetid("", 10)])
m2 = helper.make_model(m2.graph, producer_name='test',
opset_imports=[helper.make_opsetid("", 15)])
io_map = [("B00", "B01"), ("B10", "B11"), ("B20", "B21")]
self.assertRaises(ValueError,
compose.merge_models, m1, m2, io_map)
# Converting to the same Operator set version, should work
m1 = version_converter.convert_version(m1, 15)
m3 = compose.merge_models(m1, m2, io_map=io_map)
checker.check_model(m3)
| 142 | compose_test.py | Python | onnx/test/compose_test.py | 83fa57c74edfd13ddac9548b8a12f9e3e2ed05bd | onnx | 1 |
|
319,856 | 17 | 10 | 4 | 63 | 11 | 0 | 17 | 56 | test_load_corrupt_file | Updates the classifier to catch warnings from scikit-learn and rebuild the model file when this happens | https://github.com/paperless-ngx/paperless-ngx.git | def test_load_corrupt_file(self, patched_pickle_load):
# First load is the schema version
patched_pickle_load.side_effect = [DocumentClassifier.FORMAT_VERSION, OSError()]
with self.assertRaises(ClassifierModelCorruptError):
self.classifier.load()
| 36 | test_classifier.py | Python | src/documents/tests/test_classifier.py | 77fbbe95ffb965525136982846f50e3ad8244de9 | paperless-ngx | 1 |
|
186,604 | 14 | 9 | 9 | 55 | 6 | 0 | 20 | 85 | ipv4_enabled | Fully type certbot-nginx module (#9124)
* Work in progress
* Fix type
* Work in progress
* Work in progress
* Work in progress
* Work in progress
* Work in progress
* Oups.
* Fix typing in UnspacedList
* Fix logic
* Finish typing
* List certbot-nginx as fully typed in tox
* Fix lint
* Fix checks
* Organize imports
* Fix typing for Python 3.6
* Fix checks
* Fix lint
* Update certbot-nginx/certbot_nginx/_internal/configurator.py
Co-authored-by: alexzorin <[email protected]>
* Update certbot-nginx/certbot_nginx/_internal/configurator.py
Co-authored-by: alexzorin <[email protected]>
* Fix signature of deploy_cert regarding the installer interface
* Update certbot-nginx/certbot_nginx/_internal/obj.py
Co-authored-by: alexzorin <[email protected]>
* Fix types
* Update certbot-nginx/certbot_nginx/_internal/parser.py
Co-authored-by: alexzorin <[email protected]>
* Precise type
* Precise _coerce possible inputs/outputs
* Fix type
* Update certbot-nginx/certbot_nginx/_internal/http_01.py
Co-authored-by: ohemorange <[email protected]>
* Fix type
* Remove an undesirable implementation.
* Fix type
Co-authored-by: alexzorin <[email protected]>
Co-authored-by: ohemorange <[email protected]> | https://github.com/certbot/certbot.git | def ipv4_enabled(self) -> bool:
if not self.addrs:
return True
for a in self.addrs:
if not a.ipv6:
return True
return False
| 33 | obj.py | Python | certbot-nginx/certbot_nginx/_internal/obj.py | 16aad35d31a887dab157f9d4f5e0fe9218d06064 | certbot | 4 |
|
176,485 | 22 | 12 | 5 | 99 | 11 | 0 | 25 | 60 | test_basic | Update black (#5438)
* CI: sync up black dev requirements version with precommit
* Run black
Co-authored-by: Jarrod Millman <[email protected]> | https://github.com/networkx/networkx.git | def test_basic(self):
trees = [(nx.full_rary_tree(2, 2**2 - 1), 0) for i in range(2)]
actual = nx.join(trees)
expected = nx.full_rary_tree(2, 2**3 - 1)
assert nx.is_isomorphic(actual, expected)
| 64 | test_operations.py | Python | networkx/algorithms/tree/tests/test_operations.py | f6755ffa00211b523c6c0bec5398bc6c3c43c8b1 | networkx | 2 |
|
296,688 | 5 | 15 | 2 | 53 | 6 | 0 | 5 | 11 | format_target_temperature | Fix #69952: Daikin AC Temperature jumps after being set (#70326) | https://github.com/home-assistant/core.git | def format_target_temperature(target_temperature):
return str(round(float(target_temperature), 1)).rstrip("0").rstrip(".")
| 29 | climate.py | Python | homeassistant/components/daikin/climate.py | b0ed42a5a58976ebe82b5bbbb60c499648a1718b | core | 1 |
|
70,730 | 21 | 11 | 4 | 70 | 8 | 0 | 23 | 58 | test_not_collapsed_with_legacy | Update Wagtail test cases to match slim sidebar capabilities and implementation details | https://github.com/wagtail/wagtail.git | def test_not_collapsed_with_legacy(self):
# Sidebar should not be collapsed because the feature flag is not enabled
self.client.cookies['wagtail_sidebar_collapsed'] = '1'
response = self.client.get(reverse('wagtailadmin_home'))
self.assertNotContains(response, 'sidebar-collapsed')
| 37 | test_menu.py | Python | wagtail/admin/tests/test_menu.py | 18c4d7c81356dbd5c4503db2ea24b21492512317 | wagtail | 1 |
|
47,623 | 21 | 12 | 9 | 83 | 14 | 0 | 21 | 128 | test_pool_slots_property | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | https://github.com/apache/airflow.git | def test_pool_slots_property(self):
with pytest.raises(ValueError, match="pool slots .* cannot be less than 1"):
dag = models.DAG(dag_id='test_run_pooling_task')
EmptyOperator(
task_id='test_run_pooling_task_op',
dag=dag,
pool='test_pool',
pool_slots=0,
)
| 47 | test_taskinstance.py | Python | tests/models/test_taskinstance.py | 49e336ae0302b386a2f47269a6d13988382d975f | airflow | 1 |
|
163,655 | 127 | 16 | 47 | 435 | 46 | 0 | 191 | 651 | putmask | BUG: setting pd.NA into Series casts to object (#45431) | https://github.com/pandas-dev/pandas.git | def putmask(self, mask, new) -> list[Block]:
orig_mask = mask
values = cast(np.ndarray, self.values)
mask, noop = validate_putmask(values.T, mask)
assert not isinstance(new, (ABCIndex, ABCSeries, ABCDataFrame))
if new is lib.no_default:
new = self.fill_value
new = self._standardize_fill_value(new)
if self._can_hold_element(new):
putmask_without_repeat(values.T, mask, new)
return [self]
elif np_version_under1p20 and infer_dtype_from(new)[0].kind in ["m", "M"]:
# using putmask with object dtype will incorrectly cast to object
# Having excluded self._can_hold_element, we know we cannot operate
# in-place, so we are safe using `where`
return self.where(new, ~mask)
elif noop:
return [self]
elif self.ndim == 1 or self.shape[0] == 1:
# no need to split columns
if not is_list_like(new):
# putmask_smart can't save us the need to cast
return self.coerce_to_target_dtype(new).putmask(mask, new)
# This differs from
# `self.coerce_to_target_dtype(new).putmask(mask, new)`
# because putmask_smart will check if new[mask] may be held
# by our dtype.
nv = putmask_smart(values.T, mask, new).T
return [self.make_block(nv)]
else:
is_array = isinstance(new, np.ndarray)
res_blocks = []
nbs = self._split()
for i, nb in enumerate(nbs):
n = new
if is_array:
# we have a different value per-column
n = new[:, i : i + 1]
submask = orig_mask[:, i : i + 1]
rbs = nb.putmask(submask, n)
res_blocks.extend(rbs)
return res_blocks
| 275 | blocks.py | Python | pandas/core/internals/blocks.py | 3510b1fd2a9cf752638f4af751bdeb33496db766 | pandas | 11 |
|
109,118 | 92 | 14 | 27 | 281 | 19 | 1 | 100 | 285 | xkcd | Simplify impl. of functions optionally used as context managers.
We can actually just put the "exit" logic into an ExitStack callback.
If the return value is never `__enter__`'d via a "with" statement, it is
never `__exit__`'d either. | https://github.com/matplotlib/matplotlib.git | def xkcd(scale=1, length=100, randomness=2):
# This cannot be implemented in terms of contextmanager() or rc_context()
# because this needs to work as a non-contextmanager too.
if rcParams['text.usetex']:
raise RuntimeError(
"xkcd mode is not compatible with text.usetex = True")
stack = ExitStack()
stack.callback(dict.update, rcParams, rcParams.copy())
from matplotlib import patheffects
rcParams.update({
'font.family': ['xkcd', 'xkcd Script', 'Humor Sans', 'Comic Neue',
'Comic Sans MS'],
'font.size': 14.0,
'path.sketch': (scale, length, randomness),
'path.effects': [
patheffects.withStroke(linewidth=4, foreground="w")],
'axes.linewidth': 1.5,
'lines.linewidth': 2.0,
'figure.facecolor': 'white',
'grid.linewidth': 0.0,
'axes.grid': False,
'axes.unicode_minus': False,
'axes.edgecolor': 'black',
'xtick.major.size': 8,
'xtick.major.width': 3,
'ytick.major.size': 8,
'ytick.major.width': 3,
})
return stack
## Figures ##
@_api.make_keyword_only("3.6", "facecolor") | @_api.make_keyword_only("3.6", "facecolor") | 158 | pyplot.py | Python | lib/matplotlib/pyplot.py | 2d918ba09155810194bb4ba136369082ad46c8c8 | matplotlib | 2 |
157,202 | 38 | 14 | 23 | 200 | 13 | 0 | 41 | 111 | test_use_nullable_dtypes | Add support for `use_nullable_dtypes` to `dd.read_parquet` (#9617) | https://github.com/dask/dask.git | def test_use_nullable_dtypes(tmp_path, engine):
df = pd.DataFrame(
{
"a": pd.Series([1, 2, pd.NA, 3, 4], dtype="Int64"),
"b": pd.Series([True, pd.NA, False, True, False], dtype="boolean"),
"c": pd.Series([0.1, 0.2, 0.3, pd.NA, 0.4], dtype="Float64"),
"d": pd.Series(["a", "b", "c", "d", pd.NA], dtype="string"),
}
)
ddf = dd.from_pandas(df, npartitions=2)
| 257 | test_parquet.py | Python | dask/dataframe/io/tests/test_parquet.py | b1e468e8645baee30992fbfa84250d816ac1098a | dask | 3 |
|
107,623 | 113 | 14 | 26 | 418 | 49 | 0 | 169 | 501 | update_positions | Cleanup AnnotationBbox.
Inline _update_position_xybox into update_positions. Avoid unpacking
x,y pairs where unnecessary. Don't bother copying arrowprops, as we
don't actually modify it. Reuse mutation scale for both patch and
arrow. Clarify the doc for frameon. Various small extra cleanups. | https://github.com/matplotlib/matplotlib.git | def update_positions(self, renderer):
x, y = self.xybox
if isinstance(self.boxcoords, tuple):
xcoord, ycoord = self.boxcoords
x1, y1 = self._get_xy(renderer, x, y, xcoord)
x2, y2 = self._get_xy(renderer, x, y, ycoord)
ox0, oy0 = x1, y2
else:
ox0, oy0 = self._get_xy(renderer, x, y, self.boxcoords)
w, h, xd, yd = self.offsetbox.get_extent(renderer)
fw, fh = self._box_alignment
self.offsetbox.set_offset((ox0 - fw * w + xd, oy0 - fh * h + yd))
bbox = self.offsetbox.get_window_extent(renderer)
self.patch.set_bounds(bbox.bounds)
mutation_scale = renderer.points_to_pixels(self.get_fontsize())
self.patch.set_mutation_scale(mutation_scale)
if self.arrowprops:
# Use FancyArrowPatch if self.arrowprops has "arrowstyle" key.
# Adjust the starting point of the arrow relative to the textbox.
# TODO: Rotation needs to be accounted.
arrow_begin = bbox.p0 + bbox.size * self._arrow_relpos
arrow_end = self._get_position_xy(renderer)
# The arrow (from arrow_begin to arrow_end) will be first clipped
# by patchA and patchB, then shrunk by shrinkA and shrinkB (in
# points). If patch A is not set, self.bbox_patch is used.
self.arrow_patch.set_positions(arrow_begin, arrow_end)
if "mutation_scale" in self.arrowprops:
mutation_scale = renderer.points_to_pixels(
self.arrowprops["mutation_scale"])
# Else, use fontsize-based mutation_scale defined above.
self.arrow_patch.set_mutation_scale(mutation_scale)
patchA = self.arrowprops.get("patchA", self.patch)
self.arrow_patch.set_patchA(patchA)
| 264 | offsetbox.py | Python | lib/matplotlib/offsetbox.py | 924d7c7f9900d8839e66616791121237101e7b57 | matplotlib | 4 |
|
180,449 | 63 | 12 | 31 | 419 | 27 | 0 | 83 | 412 | test_component_functions | detect all types of null default value (#1685)
* detect all types of null default value
* fix test
* address review comments | https://github.com/gradio-app/gradio.git | def test_component_functions(self):
radio_input = gr.Radio(["a", "b", "c"])
self.assertEqual(radio_input.preprocess("c"), "c")
self.assertEqual(radio_input.preprocess_example("a"), "a")
self.assertEqual(radio_input.serialize("a", True), "a")
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = radio_input.save_flagged(tmpdirname, "radio_input", "a", None)
self.assertEqual(to_save, "a")
restored = radio_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, "a")
self.assertIsInstance(radio_input.generate_sample(), str)
radio_input = gr.Radio(
choices=["a", "b", "c"], default="a", label="Pick Your One Input"
)
self.assertEqual(
radio_input.get_config(),
{
"choices": ["a", "b", "c"],
"value": None,
"name": "radio",
"show_label": True,
"label": "Pick Your One Input",
"style": {},
"elem_id": None,
"visible": True,
"interactive": None,
},
)
with self.assertRaises(ValueError):
wrong_type = gr.Radio(["a", "b"], type="unknown")
wrong_type.preprocess(0)
| 235 | test_components.py | Python | test/test_components.py | a2b84199d88f84fd2dc515e092e79380ed7cef50 | gradio | 1 |
|
189,528 | 10 | 8 | 11 | 40 | 5 | 0 | 10 | 38 | stop_submobject_movement | Upgraded typehints (#2429)
* Future Annotations
* Delete template_twitter_post.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Apply suggestions from code review
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fixed broken RTD
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | https://github.com/ManimCommunity/manim.git | def stop_submobject_movement(self) -> VectorField:
self.remove_updater(self.submob_movement_updater)
self.submob_movement_updater = None
return self
| 23 | vector_field.py | Python | manim/mobject/vector_field.py | daf23c9d1031b12d9c119b8f6b7e60727d7f9242 | manim | 1 |
|
107,875 | 14 | 11 | 3 | 57 | 6 | 0 | 14 | 35 | _extend_upper | FIX: Handle inverted colorbar axes with extensions
This fixes the colorbar extensions to use the proper color when the
long axis is inverted. | https://github.com/matplotlib/matplotlib.git | def _extend_upper(self):
minmax = "min" if self._long_axis().get_inverted() else "max"
return self.extend in ('both', minmax)
| 31 | colorbar.py | Python | lib/matplotlib/colorbar.py | ec374f5148631e4d392ed7e6d4c454d163a62f21 | matplotlib | 2 |
|
260,354 | 24 | 10 | 11 | 135 | 14 | 0 | 34 | 119 | fit | MAINT Use _validate_params in SparsePCA and MiniBatchSparsePCA (#23710)
Co-authored-by: Guillaume Lemaitre <[email protected]>
Co-authored-by: jeremiedbb <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def fit(self, X, y=None):
self._validate_params()
random_state = check_random_state(self.random_state)
X = self._validate_data(X)
self.mean_ = X.mean(axis=0)
X = X - self.mean_
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
return self._fit(X, n_components, random_state)
| 85 | _sparse_pca.py | Python | sklearn/decomposition/_sparse_pca.py | db6123fe40400828918037f3fae949bfcc4d9d05 | scikit-learn | 2 |
|
86,890 | 32 | 14 | 17 | 168 | 24 | 0 | 39 | 206 | get_repo | feat(github): Log Github integration errors (#39993)
We are flying blind without this. This helps the debugging of issues. | https://github.com/getsentry/sentry.git | def get_repo(self, integration, organization, event):
try:
project_id = event["project"]["id"]
except KeyError:
logger.info(
"gitlab.webhook.missing-projectid", extra={"integration_id": integration.id}
)
logger.exception("Missing project ID.")
raise Http404()
external_id = "{}:{}".format(integration.metadata["instance"], project_id)
try:
repo = Repository.objects.get(
organization_id=organization.id, provider=PROVIDER_NAME, external_id=external_id
)
except Repository.DoesNotExist:
return None
return repo
| 100 | webhooks.py | Python | src/sentry/integrations/gitlab/webhooks.py | 746c20250f419a227bed0d174791e9c9b75daa13 | sentry | 3 |
|
93,332 | 60 | 16 | 19 | 186 | 27 | 1 | 62 | 293 | handle_subscription_metrics_logger | refs(metric_alerts): Consolidate `QueryDatasets` and `Dataset` (#36894)
This refactor pr removes `QueryDatasets` and just uses `Dataset` everywhere. `QueryDatasets` existed
before `Dataset`, but `Dataset` is now more widely used and is more up to date. The values here are
the same, `Dataset` just supports a few more datasets.
We already make sure that only datasets that are valid for alerts can be passed to the alert rules
api, so this won't allow people to attempt to create alerts on datasets that don't support them. | https://github.com/getsentry/sentry.git | def handle_subscription_metrics_logger(subscription_update, subscription):
from sentry.incidents.subscription_processor import SubscriptionProcessor
try:
if subscription.snuba_query.dataset == Dataset.Metrics.value:
processor = SubscriptionProcessor(subscription)
# XXX: Temporary hack so that we can extract these values without raising an exception
processor.reset_trigger_counts = lambda *arg, **kwargs: None
aggregation_value = processor.get_aggregation_value(subscription_update)
logger.info(
"handle_subscription_metrics_logger.message",
extra={
"subscription_id": subscription.id,
"dataset": subscription.snuba_query.dataset,
"snuba_subscription_id": subscription.subscription_id,
"result": subscription_update,
"aggregation_value": aggregation_value,
},
)
except Exception:
logger.exception("Failed to log subscription results")
@register_subscriber(INCIDENTS_SNUBA_SUBSCRIPTION_TYPE) | @register_subscriber(INCIDENTS_SNUBA_SUBSCRIPTION_TYPE) | 106 | tasks.py | Python | src/sentry/incidents/tasks.py | e1482001662b446c7c2be7c9daa19cba562c615c | sentry | 3 |
186,683 | 26 | 9 | 16 | 130 | 14 | 0 | 36 | 122 | _set_locations | Add typing to certbot.apache (#9071)
* Add typing to certbot.apache
Co-authored-by: Adrien Ferrand <[email protected]> | https://github.com/certbot/certbot.git | def _set_locations(self) -> Dict[str, str]:
default: str = self.loc["root"]
temp: str = os.path.join(self.root, "ports.conf")
if os.path.isfile(temp):
listen = temp
name = temp
else:
listen = default
name = default
return {"default": default, "listen": listen, "name": name}
| 77 | parser.py | Python | certbot-apache/certbot_apache/_internal/parser.py | 7d9e9a49005de7961e84d2a7c608db57dbab3046 | certbot | 2 |
|
127,552 | 19 | 11 | 20 | 77 | 12 | 0 | 22 | 37 | test_placement_group_parent | Migrate the deprecated placement_group option to PlacementGroupSchedulingStrategy (#28437)
placement_group option is deprecated, use PlacementGroupSchedulingStrategy instead. | https://github.com/ray-project/ray.git | def test_placement_group_parent(ray_4_node_4_cpu, placement_group_capture_child_tasks):
num_workers = 2
bundle = {"CPU": 1}
bundles = [bundle.copy() for _ in range(num_workers + 1)]
placement_group = ray.util.placement_group(bundles)
| 109 | test_backend.py | Python | python/ray/train/tests/test_backend.py | 57cdbb1769a9c32972ba0ec9e7e857eeea961869 | ray | 4 |
|
314,093 | 10 | 10 | 5 | 47 | 4 | 0 | 10 | 38 | async_will_remove_from_hass | Fix cover, light, select, sensor, switch type hints in zha (#73770)
* Fix zha sensor type hints
* Fix zha entity type hints
* Fix switch type hints
* Fix light type hints
* Fix cover type hints
* Fix select type hints | https://github.com/home-assistant/core.git | async def async_will_remove_from_hass(self) -> None:
assert self._cancel_refresh_handle
self._cancel_refresh_handle()
await super().async_will_remove_from_hass()
| 25 | light.py | Python | homeassistant/components/zha/light.py | 243905ae3e10f21c9bc8cbde565532e1b7b9112f | core | 1 |
|
48,202 | 49 | 12 | 22 | 330 | 42 | 0 | 65 | 227 | test_find_executable_task_instances_negative_open_pool_slots | Pools with negative open slots should not block other pools (#23143) | https://github.com/apache/airflow.git | def test_find_executable_task_instances_negative_open_pool_slots(self, dag_maker):
set_default_pool_slots(0)
self.scheduler_job = SchedulerJob(subdir=os.devnull)
session = settings.Session()
pool1 = Pool(pool='pool1', slots=1)
pool2 = Pool(pool='pool2', slots=1)
session.add(pool1)
session.add(pool2)
dag_id = 'SchedulerJobTest.test_find_executable_task_instances_negative_open_pool_slots'
with dag_maker(dag_id=dag_id):
op1 = EmptyOperator(task_id='op1', pool='pool1')
op2 = EmptyOperator(task_id='op2', pool='pool2', pool_slots=2)
dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED)
ti1 = dr1.get_task_instance(op1.task_id, session)
ti2 = dr1.get_task_instance(op2.task_id, session)
ti1.state = State.SCHEDULED
ti2.state = State.RUNNING
session.flush()
res = self.scheduler_job._executable_task_instances_to_queued(max_tis=1, session=session)
assert 1 == len(res)
assert res[0].key == ti1.key
session.rollback()
| 200 | test_scheduler_job.py | Python | tests/jobs/test_scheduler_job.py | 7132be2f11db24161940f57613874b4af86369c7 | airflow | 1 |
|
258,549 | 9 | 11 | 3 | 45 | 7 | 0 | 9 | 34 | staged_predict_proba | DOC Fix incorrect heading underline length in docstrings (#22278) | https://github.com/scikit-learn/scikit-learn.git | def staged_predict_proba(self, X):
for raw_predictions in self._staged_raw_predict(X):
yield self._loss.predict_proba(raw_predictions)
| 27 | gradient_boosting.py | Python | sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py | 24106c2149683efeb642c8c1317152d7fe5be162 | scikit-learn | 2 |
|
42,746 | 65 | 17 | 28 | 235 | 19 | 0 | 84 | 334 | provide_gcp_credential_file_as_context | Ensure @contextmanager decorates generator func (#23103) | https://github.com/apache/airflow.git | def provide_gcp_credential_file_as_context(self) -> Generator[Optional[str], None, None]:
key_path: Optional[str] = self._get_field('key_path', None)
keyfile_dict: Optional[str] = self._get_field('keyfile_dict', None)
if key_path and keyfile_dict:
raise AirflowException(
"The `keyfile_dict` and `key_path` fields are mutually exclusive. "
"Please provide only one value."
)
elif key_path:
if key_path.endswith('.p12'):
raise AirflowException('Legacy P12 key file are not supported, use a JSON key file.')
with patch_environ({CREDENTIALS: key_path}):
yield key_path
elif keyfile_dict:
with tempfile.NamedTemporaryFile(mode='w+t') as conf_file:
conf_file.write(keyfile_dict)
conf_file.flush()
with patch_environ({CREDENTIALS: conf_file.name}):
yield conf_file.name
else:
# We will use the default service account credentials.
yield None
| 133 | base_google.py | Python | airflow/providers/google/common/hooks/base_google.py | e58985598f202395098e15b686aec33645a906ff | airflow | 6 |
|
287,994 | 94 | 16 | 114 | 985 | 22 | 1 | 246 | 1,907 | test_migration_1_1_to_1_4 | Add serial_number to device registry entries (#77713) | https://github.com/home-assistant/core.git | async def test_migration_1_1_to_1_4(hass, hass_storage):
hass_storage[device_registry.STORAGE_KEY] = {
"version": 1,
"minor_version": 1,
"data": {
"devices": [
{
"config_entries": ["1234"],
"connections": [["Zigbee", "01.23.45.67.89"]],
"entry_type": "service",
"id": "abcdefghijklm",
"identifiers": [["serial", "12:34:56:AB:CD:EF"]],
"manufacturer": "manufacturer",
"model": "model",
"name": "name",
"sw_version": "version",
},
# Invalid entry type
{
"config_entries": [None],
"connections": [],
"entry_type": "INVALID_VALUE",
"id": "invalid-entry-type",
"identifiers": [["serial", "mock-id-invalid-entry"]],
"manufacturer": None,
"model": None,
"name": None,
"sw_version": None,
},
],
"deleted_devices": [
{
"config_entries": ["123456"],
"connections": [],
"entry_type": "service",
"id": "deletedid",
"identifiers": [["serial", "12:34:56:AB:CD:FF"]],
"manufacturer": "manufacturer",
"model": "model",
"name": "name",
"sw_version": "version",
}
],
},
}
await device_registry.async_load(hass)
registry = device_registry.async_get(hass)
# Test data was loaded
entry = registry.async_get_or_create(
config_entry_id="1234",
connections={("Zigbee", "01.23.45.67.89")},
identifiers={("serial", "12:34:56:AB:CD:EF")},
)
assert entry.id == "abcdefghijklm"
# Update to trigger a store
entry = registry.async_get_or_create(
config_entry_id="1234",
connections={("Zigbee", "01.23.45.67.89")},
identifiers={("serial", "12:34:56:AB:CD:EF")},
sw_version="new_version",
)
assert entry.id == "abcdefghijklm"
# Check we store migrated data
await flush_store(registry._store)
assert hass_storage[device_registry.STORAGE_KEY] == {
"version": device_registry.STORAGE_VERSION_MAJOR,
"minor_version": device_registry.STORAGE_VERSION_MINOR,
"key": device_registry.STORAGE_KEY,
"data": {
"devices": [
{
"area_id": None,
"config_entries": ["1234"],
"configuration_url": None,
"connections": [["Zigbee", "01.23.45.67.89"]],
"disabled_by": None,
"entry_type": "service",
"hw_version": None,
"id": "abcdefghijklm",
"identifiers": [["serial", "12:34:56:AB:CD:EF"]],
"manufacturer": "manufacturer",
"model": "model",
"name": "name",
"name_by_user": None,
"serial_number": None,
"sw_version": "new_version",
"via_device_id": None,
},
{
"area_id": None,
"config_entries": [None],
"configuration_url": None,
"connections": [],
"disabled_by": None,
"entry_type": None,
"hw_version": None,
"id": "invalid-entry-type",
"identifiers": [["serial", "mock-id-invalid-entry"]],
"manufacturer": None,
"model": None,
"name_by_user": None,
"name": None,
"serial_number": None,
"sw_version": None,
"via_device_id": None,
},
],
"deleted_devices": [
{
"config_entries": ["123456"],
"connections": [],
"id": "deletedid",
"identifiers": [["serial", "12:34:56:AB:CD:FF"]],
"orphaned_timestamp": None,
}
],
},
}
@pytest.mark.parametrize("load_registries", [False]) | @pytest.mark.parametrize("load_registries", [False]) | 519 | test_device_registry.py | Python | tests/helpers/test_device_registry.py | cba3b6ad944408b9ffd906f4da5e5f5fd615b174 | core | 1 |
248,057 | 67 | 12 | 21 | 250 | 18 | 0 | 97 | 293 | test_thread_edit_latest_event | Misc. clean-ups to the relations code (#12519)
* Corrects some typos / copy & paste errors in tests.
* Clarifies docstrings.
* Removes an unnecessary method. | https://github.com/matrix-org/synapse.git | def test_thread_edit_latest_event(self) -> None:
# Create a thread and edit the last event.
channel = self._send_relation(
RelationTypes.THREAD,
"m.room.message",
content={"msgtype": "m.text", "body": "A threaded reply!"},
)
threaded_event_id = channel.json_body["event_id"]
new_body = {"msgtype": "m.text", "body": "I've been edited!"}
channel = self._send_relation(
RelationTypes.REPLACE,
"m.room.message",
content={"msgtype": "m.text", "body": "foo", "m.new_content": new_body},
parent_id=threaded_event_id,
)
# Fetch the thread root, to get the bundled aggregation for the thread.
relations_dict = self._get_bundled_aggregations()
# We expect that the edit message appears in the thread summary in the
# unsigned relations section.
self.assertIn(RelationTypes.THREAD, relations_dict)
thread_summary = relations_dict[RelationTypes.THREAD]
self.assertIn("latest_event", thread_summary)
latest_event_in_thread = thread_summary["latest_event"]
self.assertEqual(latest_event_in_thread["content"]["body"], "I've been edited!")
| 138 | test_relations.py | Python | tests/rest/client/test_relations.py | 185da8f0f2db8e4d502a904942cbd8a6840e27c8 | synapse | 1 |
|
8,573 | 51 | 14 | 11 | 217 | 23 | 0 | 57 | 117 | _split | Add H&M fashion recommendation dataset (#2708)
* allow individual file downloads from kaggle
* pipe download_filenames to kaggle download fn
* add dataset config for H&M Fashion Recommendations
* add custom loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use local backend instead of mock
* add docstring for sample
* fix titanic test
* move negative_sample to ludwig.data
* do not negative sample in loader
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | https://github.com/ludwig-ai/ludwig.git | def _split(df):
splitter = get_splitter("datetime", column="year_month", probabilities=(0.7, 0.2, 0.1))
if not isinstance(df, pd.DataFrame):
df = df.compute()
train_dfs, val_dfs, test_dfs = [], [], []
for customer_id in df["customer_id"].unique():
# Split per customer_id to ensure that interactions for a customer are across all splits
train_df, val_df, test_df = splitter.split(df[df["customer_id"] == customer_id], backend=LocalBackend())
train_dfs.append(train_df)
val_dfs.append(val_df)
test_dfs.append(test_df)
return pd.concat(train_dfs), pd.concat(val_dfs), pd.concat(test_dfs)
| 141 | hm_fashion_recommendations.py | Python | ludwig/datasets/loaders/hm_fashion_recommendations.py | abfdc05018cc4dec5a2fed20ad09e94f1749fca9 | ludwig | 3 |
|
132,860 | 40 | 14 | 18 | 185 | 20 | 0 | 67 | 256 | _get_next_trial | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | https://github.com/ray-project/ray.git | def _get_next_trial(self):
no_trials_unfinished = True
no_trials_pending = True
for trial in self._live_trials:
if not trial.is_finished():
no_trials_unfinished = False
if trial.status == Trial.PENDING:
no_trials_pending = False
if not no_trials_unfinished and not no_trials_pending:
break
wait_for_trial = no_trials_unfinished and not self._search_alg.is_finished()
# Only fetch a new trial if we have no pending trial
if wait_for_trial or no_trials_pending:
self._update_trial_queue(blocking=wait_for_trial)
with warn_if_slow("choose_trial_to_run"):
trial = self._scheduler_alg.choose_trial_to_run(self)
if trial:
logger.debug("Running trial {}".format(trial))
return trial
| 107 | trial_runner.py | Python | python/ray/tune/trial_runner.py | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | 10 |
|
43,207 | 31 | 13 | 15 | 152 | 24 | 0 | 35 | 192 | test__build_query | Don't rely on current ORM structure for db clean command (#23574)
For command DB clean, by not relying on the ORM models, we will be able to use the command even when the metadatabase is not yet upgraded to the version of Airflow you have installed.
Additionally we archive all rows before deletion. | https://github.com/apache/airflow.git | def test__build_query(self, table_name, date_add_kwargs, expected_to_delete, external_trigger):
base_date = pendulum.DateTime(2022, 1, 1, tzinfo=pendulum.timezone('UTC'))
create_tis(
base_date=base_date,
num_tis=10,
external_trigger=external_trigger,
)
with create_session() as session:
clean_before_date = base_date.add(**date_add_kwargs)
query = _build_query(
**config_dict[table_name].__dict__,
clean_before_timestamp=clean_before_date,
session=session,
)
assert len(query.all()) == expected_to_delete
| 98 | test_db_cleanup.py | Python | tests/utils/test_db_cleanup.py | 95bd6b71cc9f5da377e272707f7b68000d980939 | airflow | 1 |
|
160,128 | 32 | 11 | 10 | 131 | 18 | 0 | 35 | 97 | test_build_dir | TST: Initialize f2py2e tests of the F2PY CLI (#20668)
Increases F2PY coverage by around 15 percent. For the CLI itself it covers the major features (around 70 percent), with the exception of mostly numpy.distutils stuff.
More importantly, sets the groundwork for #20056, in that passing the same testsuite should indicate feature parity. | https://github.com/numpy/numpy.git | def test_build_dir(capfd, hello_world_f90, monkeypatch):
ipath = Path(hello_world_f90)
mname = "blah"
odir = "tttmp"
monkeypatch.setattr(sys, "argv",
f'f2py -m {mname} {ipath} --build-dir {odir}'.split())
with util.switchdir(ipath.parent):
f2pycli()
out, _ = capfd.readouterr()
assert f"Wrote C/API module \"{mname}\"" in out
| 64 | test_f2py2e.py | Python | numpy/f2py/tests/test_f2py2e.py | 729ad4f92420231e2a7009b3223c6c7620b8b808 | numpy | 1 |
|
298,212 | 29 | 11 | 14 | 127 | 19 | 0 | 32 | 115 | help_test_reload_with_config | Do not depend MQTT CI tests on debug logs (#84783)
* Do not depend MQTT CI tests on debug logs
* Leave Clean up expire as debug message | https://github.com/home-assistant/core.git | async def help_test_reload_with_config(hass, caplog, tmp_path, config):
new_yaml_config_file = tmp_path / "configuration.yaml"
new_yaml_config = yaml.dump(config)
new_yaml_config_file.write_text(new_yaml_config)
assert new_yaml_config_file.read_text() == new_yaml_config
with patch.object(hass_config, "YAML_CONFIG_FILE", new_yaml_config_file):
await hass.services.async_call(
"mqtt",
SERVICE_RELOAD,
{},
blocking=True,
)
await hass.async_block_till_done()
| 82 | test_common.py | Python | tests/components/mqtt/test_common.py | ee66ffc8deaa6d383becc60c0418f63a7cfa4dc9 | core | 1 |
|
171,851 | 4 | 7 | 46 | 25 | 4 | 0 | 4 | 18 | get_loc | DEPR: Remove method and tolerance in Index.get_loc, bump xarray (#49630)
* DEPR: Remove method and tolerance in Index.get_loc
* note xarray bump
* Fix tests
* Fix refactor in period
* Lighter parameterization
* xfail xarray test
* Just use get_indexer | https://github.com/pandas-dev/pandas.git | def get_loc(self, key):
self._check_indexing_error(key)
| 308 | multi.py | Python | pandas/core/indexes/multi.py | bc987e708b9856f5d5c8cf3096e1e2bcf23e1121 | pandas | 14 |
|
192,296 | 13 | 10 | 4 | 63 | 14 | 0 | 14 | 42 | test_probe_video_from_memory | Improve test_video_reader (#5498)
* Improve test_video_reader
* Fix linter error | https://github.com/pytorch/vision.git | def test_probe_video_from_memory(self, test_video, config):
_, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
probe_result = torch.ops.video_reader.probe_video_from_memory(video_tensor)
self.check_probe_result(probe_result, config)
| 40 | test_video_reader.py | Python | test/test_video_reader.py | c50d48845f7b1ca86d6a3b7f37a59be0ae11e36b | vision | 1 |
|
42,510 | 51 | 11 | 15 | 154 | 15 | 0 | 73 | 224 | __lazymodule_import | Prevent LazyLoader from modifying nltk.__dict__
Allows pytest --doctest-modules nltk to be executed | https://github.com/nltk/nltk.git | def __lazymodule_import(self):
# Load and register module
local_name = self.__lazymodule_name # e.g. "toolbox"
full_name = self.__name__ # e.g. "nltk.toolbox"
if self.__lazymodule_loaded:
return self.__lazymodule_locals[local_name]
if _debug:
print("LazyModule: Loading module %r" % full_name)
self.__lazymodule_locals[local_name] = module = __import__(
full_name, self.__lazymodule_locals, self.__lazymodule_globals, "*"
)
# Fill namespace with all symbols from original module to
# provide faster access.
self.__dict__.update(module.__dict__)
# Set import flag
self.__dict__["__lazymodule_loaded"] = 1
if _debug:
print("LazyModule: Module %r loaded" % full_name)
return module
| 89 | lazyimport.py | Python | nltk/lazyimport.py | 0fbbff998ed4b91b2f640a5193161642d98898cd | nltk | 4 |
|
60,450 | 41 | 16 | 13 | 193 | 19 | 0 | 67 | 163 | print_table | Balanced joint maximum mean discrepancy for deep transfer learning | https://github.com/jindongwang/transferlearning.git | def print_table(table, max_width):
max_widths = [max_width] * len(table[0])
column_widths = [max(printed_len(row[j]) + 1 for row in table)
for j in range(len(table[0]))]
column_widths = [min(w, max_w) for w, max_w in zip(column_widths, max_widths)]
for row in table:
row_str = ''
right_col = 0
for cell, width in zip(row, column_widths):
right_col += width
row_str += cell + ' '
row_str += ' ' * max(right_col - printed_len(row_str), 0)
print row_str
| 123 | summarize.py | Python | code/deep/BJMMD/caffe/tools/extra/summarize.py | cc4d0564756ca067516f71718a3d135996525909 | transferlearning | 6 |
|
303,393 | 12 | 8 | 6 | 59 | 5 | 0 | 17 | 67 | vehicle_name | Refactor volvooncall to (mostly) use DataUpdateCoordinator (#75885)
Co-authored-by: Martin Hjelmare <[email protected]> | https://github.com/home-assistant/core.git | def vehicle_name(self, vehicle):
if vehicle.registration_number and vehicle.registration_number != "UNKNOWN":
return vehicle.registration_number
if vehicle.vin:
return vehicle.vin
return "Volvo"
| 34 | __init__.py | Python | homeassistant/components/volvooncall/__init__.py | b5a6ee3c567aa50633ef47d342af685fb75e5219 | core | 4 |
|
149,759 | 18 | 12 | 7 | 126 | 12 | 0 | 22 | 79 | fill_predictions | add freqao backend machinery, user interface, documentation | https://github.com/freqtrade/freqtrade.git | def fill_predictions(self, len_dataframe):
filler = np.zeros(len_dataframe -len(self.predictions)) # startup_candle_count
self.predictions = np.append(filler,self.predictions)
self.do_predict = np.append(filler,self.do_predict)
self.target_mean = np.append(filler,self.target_mean)
self.target_std = np.append(filler,self.target_std)
return
| 80 | data_handler.py | Python | freqtrade/freqai/data_handler.py | fc837c4daa27a18ff0e86128f4d52089b88fa5fb | freqtrade | 1 |
|
89,350 | 20 | 12 | 10 | 84 | 12 | 0 | 20 | 126 | test_get_dynamic_sampling_default_biases | fix(dyn-sampling): Backend code clean up (#42001)
We are consolidating server-side-sampling and dynamic-sampling flags
into only dynamic-sampling. The flag is being controlled by plan | https://github.com/getsentry/sentry.git | def test_get_dynamic_sampling_default_biases(self):
with Feature(
{
self.new_ds_flag: True,
}
):
response = self.get_success_response(
self.organization.slug, self.project.slug, method="get"
)
assert response.data["dynamicSamplingBiases"] == DEFAULT_BIASES
| 50 | test_project_details.py | Python | tests/sentry/api/endpoints/test_project_details.py | 6fc6106b6a57149a5bae3c0f4677349cfbae1155 | sentry | 1 |
|
280,789 | 5 | 7 | 2 | 27 | 5 | 0 | 5 | 19 | save | Add serialization support to FeatureSpace.
PiperOrigin-RevId: 496914744 | https://github.com/keras-team/keras.git | def save(self, filepath):
saving_lib.save_model(self, filepath)
| 16 | feature_space.py | Python | keras/utils/feature_space.py | 799f70761eeb8155dc25c6afce8c1d22b38367b0 | keras | 1 |
|
100,441 | 56 | 15 | 24 | 294 | 30 | 0 | 77 | 360 | detect_rnet | Update all Keras Imports to be conditional (#1214)
* Remove custom keras importer
* first round keras imports fix
* launcher.py: Remove KerasFinder references
* 2nd round keras imports update (lib and extract)
* 3rd round keras imports update (train)
* remove KerasFinder from tests
* 4th round keras imports update (tests) | https://github.com/deepfakes/faceswap.git | def detect_rnet(self, images, rectangle_batch, height, width):
ret = []
# TODO: batching
for idx, rectangles in enumerate(rectangle_batch):
if not rectangles:
ret.append([])
continue
image = images[idx]
crop_number = 0
predict_24_batch = []
for rect in rectangles:
crop_img = image[int(rect[1]):int(rect[3]), int(rect[0]):int(rect[2])]
scale_img = cv2.resize(crop_img, (24, 24))
predict_24_batch.append(scale_img)
crop_number += 1
predict_24_batch = np.array(predict_24_batch)
output = self.rnet.predict(predict_24_batch, batch_size=128)
cls_prob = output[0]
cls_prob = np.array(cls_prob)
roi_prob = output[1]
roi_prob = np.array(roi_prob)
ret.append(filter_face_24net(
cls_prob, roi_prob, rectangles, width, height, self.threshold[1]
))
return ret
| 193 | mtcnn.py | Python | plugins/extract/detect/mtcnn.py | aa39234538a8f83e6aa2b60b8275a570e8876ac2 | faceswap | 4 |
|
81,964 | 50 | 16 | 11 | 137 | 13 | 0 | 60 | 186 | extract_data | Register pages for the Instance peers and install bundle endpoints
This includes exposing a new interface for Page objects, Page.bytes,
to return the full bytestring contents of the response. | https://github.com/ansible/awx.git | def extract_data(self, response):
try:
data = response.json()
except ValueError as e: # If there was no json to parse
data = {}
if response.text or response.status_code not in (200, 202, 204):
text = response.text
if len(text) > 1024:
text = text[:1024] + '... <<< Truncated >>> ...'
log.debug("Unable to parse JSON response ({0.status_code}): {1} - '{2}'".format(response, e, text))
return data
| 83 | page.py | Python | awxkit/awxkit/api/pages/page.py | 68a44529b6b77d2d43d7099b654560bfd8bbf518 | awx | 5 |
|
106,933 | 18 | 12 | 7 | 73 | 11 | 0 | 18 | 37 | _isolated_tk_test | TST: Remove numpy cpu disabling from some subprocess tests
This removes the NPY_DISABLE_CPU_FEATURES flag from the sphinx and tk tests
as they emit warnings on CI which leads to failure from the subprocess.
These don't need to be disabled on these tests, so remove them from
the environment variables that are passed in. | https://github.com/matplotlib/matplotlib.git | def _isolated_tk_test(success_count, func=None):
if func is None:
return functools.partial(_isolated_tk_test, success_count)
# Remove decorators.
source = re.search(r"(?ms)^def .*", inspect.getsource(func)).group(0)
| 56 | test_backend_tk.py | Python | lib/matplotlib/tests/test_backend_tk.py | d6f68757c234d33f341adc9e3bd65053094cf748 | matplotlib | 2 |
|
70,901 | 21 | 9 | 7 | 103 | 11 | 0 | 28 | 91 | test_is_html_renderer | Improve asserts in wagtail.
These improvements were based on flake8-assertive, which compiled an extensive
list of patterns to replace with more precise assertions. This should make
the error messages better in case of failures. | https://github.com/wagtail/wagtail.git | def test_is_html_renderer(self):
# TableBlock with default table_options
block1 = TableBlock()
self.assertIs(block1.is_html_renderer(), False)
# TableBlock with altered table_options
new_options = self.default_table_options.copy()
new_options['renderer'] = 'html'
block2 = TableBlock(table_options=new_options)
self.assertIs(block2.is_html_renderer(), True)
| 58 | tests.py | Python | wagtail/contrib/table_block/tests.py | a0ef2477a68f2deb83cdc9a0bb709cb644be028b | wagtail | 1 |
|
268,996 | 11 | 10 | 3 | 58 | 9 | 0 | 12 | 15 | top_k_categorical_matches | making util methods for all the categorical accuracies | https://github.com/keras-team/keras.git | def top_k_categorical_matches(y_true, y_pred, k=5):
y_true = tf.math.argmax(y_true, axis=-1)
return sparse_top_k_categorical_matches(y_true, y_pred, k=k)
| 38 | metrics_utils.py | Python | keras/utils/metrics_utils.py | 33f395aeceaad95910ce6f0931621bb82d3e967c | keras | 1 |
|
276,480 | 18 | 13 | 8 | 98 | 9 | 0 | 19 | 67 | basic_sequential | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def basic_sequential():
model = keras.Sequential(
[
keras.layers.Dense(3, activation="relu", input_shape=(3,)),
keras.layers.Dense(2, activation="softmax"),
]
)
return ModelFn(model, (None, 3), (None, 2))
| 64 | model_architectures.py | Python | keras/tests/model_architectures.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
267,989 | 15 | 12 | 3 | 74 | 10 | 0 | 17 | 31 | env_dict | ansible-test - Use more native type hints. (#78435)
* ansible-test - Use more native type hints.
Simple search and replace to switch from comments to native type hints for return types of functions with no arguments.
* ansible-test - Use more native type hints.
Conversion of simple single-line function annotation type comments to native type hints.
* ansible-test - Use more native type hints.
Conversion of single-line function annotation type comments with default values to native type hints.
* ansible-test - Use more native type hints.
Manual conversion of type annotation comments for functions which have pylint directives. | https://github.com/ansible/ansible.git | def env_dict(self) -> t.Dict[str, str]:
return dict((item[0], item[1]) for item in [e.split('=', 1) for e in self.env])
| 49 | docker_util.py | Python | test/lib/ansible_test/_internal/docker_util.py | 3eb0485dd92c88cc92152d3656d94492db44b183 | ansible | 3 |