id
int64 20
338k
| vocab_size
int64 2
671
| ast_levels
int64 4
32
| nloc
int64 1
451
| n_ast_nodes
int64 12
5.6k
| n_identifiers
int64 1
186
| n_ast_errors
int64 0
10
| n_words
int64 2
2.17k
| n_whitespaces
int64 2
13.8k
| fun_name
stringlengths 2
73
| commit_message
stringlengths 51
15.3k
| url
stringlengths 31
59
| code
stringlengths 51
31k
| ast_errors
stringlengths 0
1.46k
| token_counts
int64 6
3.32k
| file_name
stringlengths 5
56
| language
stringclasses 1
value | path
stringlengths 7
134
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| complexity
int64 1
153
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
294,047 | 11 | 8 | 4 | 45 | 6 | 0 | 12 | 33 | channels | Seperate emonitor extra_state_attributes into their own sensors (#68479) | https://github.com/home-assistant/core.git | def channels(self) -> dict[int, EmonitorChannel]:
channels: dict[int, EmonitorChannel] = self.emonitor_status.channels
return channels
| 29 | sensor.py | Python | homeassistant/components/emonitor/sensor.py | cb011570e81c2e9fcbf39e30b76dd9f441ce5264 | core | 1 |
|
160,620 | 225 | 21 | 67 | 908 | 57 | 0 | 421 | 1,175 | in1d | TST: Extend np.in1d tests to old algorithm
- Add flag ``_slow_integer`` to np.isin/np.in1d to force the use of the
old isin/in1d algorithm for integers. | https://github.com/numpy/numpy.git | def in1d(ar1, ar2, assume_unique=False, invert=False, _slow_integer=None):
# Ravel both arrays, behavior for the first array could be different
ar1 = np.asarray(ar1).ravel()
ar2 = np.asarray(ar2).ravel()
# Ensure that iteration through object arrays yields size-1 arrays
if ar2.dtype == object:
ar2 = ar2.reshape(-1, 1)
# Convert booleans to uint8 so we can use the fast integer algorithm
if ar1.dtype == np.bool_:
ar1 = ar1.view(np.uint8)
if ar2.dtype == np.bool_:
ar2 = ar2.view(np.uint8)
# Check if we can use a fast integer algorithm:
integer_arrays = (np.issubdtype(ar1.dtype, np.integer) and
np.issubdtype(ar2.dtype, np.integer))
if integer_arrays and _slow_integer in [None, False]:
ar2_min = np.min(ar2)
ar2_max = np.max(ar2)
ar2_size = ar2.size
# Check for integer overflow
with np.errstate(over='raise'):
try:
ar2_range = ar2_max - ar2_min
# Optimal performance is for approximately
# log10(size) > (log10(range) - 2.27) / 0.927, see discussion on
# https://github.com/numpy/numpy/pull/12065
optimal_parameters = (
np.log10(ar2_size) >
((np.log10(ar2_range + 1.0) - 2.27) / 0.927)
)
except FloatingPointError:
optimal_parameters = False
# Use the fast integer algorithm
if optimal_parameters or _slow_integer == False:
if invert:
outgoing_array = np.ones_like(ar1, dtype=np.bool_)
else:
outgoing_array = np.zeros_like(ar1, dtype=np.bool_)
# Make elements 1 where the integer exists in ar2
if invert:
isin_helper_ar = np.ones(ar2_range + 1, dtype=np.bool_)
isin_helper_ar[ar2 - ar2_min] = 0
else:
isin_helper_ar = np.zeros(ar2_range + 1, dtype=np.bool_)
isin_helper_ar[ar2 - ar2_min] = 1
# Mask out elements we know won't work
basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min)
outgoing_array[basic_mask] = isin_helper_ar[ar1[basic_mask] -
ar2_min]
return outgoing_array
# Check if one of the arrays may contain arbitrary objects
contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject
# This code is run when
# a) the first condition is true, making the code significantly faster
# b) the second condition is true (i.e. `ar1` or `ar2` may contain
# arbitrary objects), since then sorting is not guaranteed to work
if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
if invert:
mask = np.ones(len(ar1), dtype=bool)
for a in ar2:
mask &= (ar1 != a)
else:
mask = np.zeros(len(ar1), dtype=bool)
for a in ar2:
mask |= (ar1 == a)
return mask
# Otherwise use sorting
if not assume_unique:
ar1, rev_idx = np.unique(ar1, return_inverse=True)
ar2 = np.unique(ar2)
ar = np.concatenate((ar1, ar2))
# We need this to be a stable sort, so always use 'mergesort'
# here. The values from the first array should always come before
# the values from the second array.
order = ar.argsort(kind='mergesort')
sar = ar[order]
if invert:
bool_ar = (sar[1:] != sar[:-1])
else:
bool_ar = (sar[1:] == sar[:-1])
flag = np.concatenate((bool_ar, [invert]))
ret = np.empty(ar.shape, dtype=bool)
ret[order] = flag
if assume_unique:
return ret[:len(ar1)]
else:
return ret[rev_idx]
| 576 | arraysetops.py | Python | numpy/lib/arraysetops.py | d6437066f27f81c4a78fb377ef1c61b4969f8159 | numpy | 21 |
|
299,430 | 45 | 17 | 21 | 207 | 32 | 0 | 57 | 220 | test_change_toggle_property | Insteon Device Control Panel (#70834)
Co-authored-by: Paulus Schoutsen <[email protected]> | https://github.com/home-assistant/core.git | async def test_change_toggle_property(hass, hass_ws_client, kpl_properties_data):
ws_client, devices = await _setup(
hass, hass_ws_client, "33.33.33", kpl_properties_data
)
device = devices["33.33.33"]
prop_name = f"{TOGGLE_BUTTON}_c"
toggle_prop = device.configuration[prop_name]
assert toggle_prop.value == ToggleMode.TOGGLE
with patch.object(insteon.api.properties, "devices", devices):
await ws_client.send_json(
{
ID: 2,
TYPE: "insteon/properties/change",
DEVICE_ADDRESS: "33.33.33",
PROPERTY_NAME: prop_name,
PROPERTY_VALUE: str(ToggleMode.ON_ONLY).lower(),
}
)
msg = await ws_client.receive_json()
assert msg["success"]
assert toggle_prop.new_value == ToggleMode.ON_ONLY
| 125 | test_api_properties.py | Python | tests/components/insteon/test_api_properties.py | a9ca774e7ed1d8fe502a53d5b765c1d9b393a524 | core | 1 |
|
262,688 | 13 | 8 | 6 | 62 | 8 | 0 | 23 | 65 | _mask_lengths | Adding OverFlow (#2183)
* Adding encoder
* currently modifying hmm
* Adding hmm
* Adding overflow
* Adding overflow setting up flat start
* Removing runs
* adding normalization parameters
* Fixing models on same device
* Training overflow and plotting evaluations
* Adding inference
* At the end of epoch the test sentences are coming on cpu instead of gpu
* Adding figures from model during training to monitor
* reverting tacotron2 training recipe
* fixing inference on gpu for test sentences on config
* moving helpers and texts within overflows source code
* renaming to overflow
* moving loss to the model file
* Fixing the rename
* Model training but not plotting the test config sentences's audios
* Formatting logs
* Changing model name to camelcase
* Fixing test log
* Fixing plotting bug
* Adding some tests
* Adding more tests to overflow
* Adding all tests for overflow
* making changes to camel case in config
* Adding information about parameters and docstring
* removing compute_mel_statistics moved statistic computation to the model instead
* Added overflow in readme
* Adding more test cases, now it doesn't saves transition_p like tensor and can be dumped as json | https://github.com/coqui-ai/TTS.git | def _mask_lengths(mel_lens, log_c, log_alpha_scaled):
mask_log_c = sequence_mask(mel_lens)
log_c = log_c * mask_log_c
mask_log_alpha_scaled = mask_log_c.unsqueeze(2)
log_alpha_scaled = log_alpha_scaled * mask_log_alpha_scaled
return log_c, log_alpha_scaled
| 38 | neural_hmm.py | Python | TTS/tts/layers/overflow/neural_hmm.py | 3b8b105b0d6539ac12972de94e0b2a5077fa1ce2 | TTS | 1 |
|
111,516 | 48 | 12 | 18 | 336 | 18 | 0 | 77 | 155 | test_kb_set_entities | Refactor KB for easier customization (#11268)
* Add implementation of batching + backwards compatibility fixes. Tests indicate issue with batch disambiguation for custom singular entity lookups.
* Fix tests. Add distinction w.r.t. batch size.
* Remove redundant and add new comments.
* Adjust comments. Fix variable naming in EL prediction.
* Fix mypy errors.
* Remove KB entity type config option. Change return types of candidate retrieval functions to Iterable from Iterator. Fix various other issues.
* Update spacy/pipeline/entity_linker.py
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Update spacy/pipeline/entity_linker.py
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Update spacy/kb_base.pyx
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Update spacy/kb_base.pyx
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Update spacy/pipeline/entity_linker.py
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Add error messages to NotImplementedErrors. Remove redundant comment.
* Fix imports.
* Remove redundant comments.
* Rename KnowledgeBase to InMemoryLookupKB and BaseKnowledgeBase to KnowledgeBase.
* Fix tests.
* Update spacy/errors.py
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Move KB into subdirectory.
* Adjust imports after KB move to dedicated subdirectory.
* Fix config imports.
* Move Candidate + retrieval functions to separate module. Fix other, small issues.
* Fix docstrings and error message w.r.t. class names. Fix typing for candidate retrieval functions.
* Update spacy/kb/kb_in_memory.pyx
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Update spacy/ml/models/entity_linker.py
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Fix typing.
* Change typing of mentions to be Span instead of Union[Span, str].
* Update docs.
* Update EntityLinker and _architecture docs.
* Update website/docs/api/entitylinker.md
Co-authored-by: Paul O'Leary McCann <[email protected]>
* Adjust message for E1046.
* Re-add section for Candidate in kb.md, add reference to dedicated page.
* Update docs and docstrings.
* Re-add section + reference for KnowledgeBase.get_alias_candidates() in docs.
* Update spacy/kb/candidate.pyx
* Update spacy/kb/kb_in_memory.pyx
* Update spacy/pipeline/legacy/entity_linker.py
* Remove canididate.md. Remove mistakenly added config snippet in entity_linker.py.
Co-authored-by: Paul O'Leary McCann <[email protected]>
Co-authored-by: Sofie Van Landeghem <[email protected]> | https://github.com/explosion/spaCy.git | def test_kb_set_entities(nlp):
v = [5, 6, 7, 8]
v1 = [1, 1, 1, 0]
v2 = [2, 2, 2, 3]
kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb1.set_entities(["E0"], [1], [v])
assert kb1.get_entity_strings() == ["E0"]
kb1.set_entities(["E1", "E2"], [1, 9], [v1, v2])
assert set(kb1.get_entity_strings()) == {"E1", "E2"}
assert kb1.get_vector("E1") == v1
assert kb1.get_vector("E2") == v2
with make_tempdir() as d:
kb1.to_disk(d / "kb")
kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb2.from_disk(d / "kb")
assert set(kb2.get_entity_strings()) == {"E1", "E2"}
assert kb2.get_vector("E1") == v1
assert kb2.get_vector("E2") == v2
| 204 | test_entity_linker.py | Python | spacy/tests/pipeline/test_entity_linker.py | 1f23c615d7a7326ca5a38a7d768b8b70caaa0e17 | spaCy | 1 |
|
245,831 | 95 | 12 | 38 | 488 | 35 | 1 | 181 | 289 | eiou_loss | [Feats]: support EIoU Loss (#9086)
* add eiou impl
* update docstring
* correct docstring | https://github.com/open-mmlab/mmdetection.git | def eiou_loss(pred, target, smooth_point=0.1, eps=1e-7):
r
px1, py1, px2, py2 = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
tx1, ty1, tx2, ty2 = target[:, 0], target[:, 1], target[:, 2], target[:, 3]
# extent top left
ex1 = torch.min(px1, tx1)
ey1 = torch.min(py1, ty1)
# intersection coordinates
ix1 = torch.max(px1, tx1)
iy1 = torch.max(py1, ty1)
ix2 = torch.min(px2, tx2)
iy2 = torch.min(py2, ty2)
# extra
xmin = torch.min(ix1, ix2)
ymin = torch.min(iy1, iy2)
xmax = torch.max(ix1, ix2)
ymax = torch.max(iy1, iy2)
# Intersection
intersection = (ix2 - ex1) * (iy2 - ey1) + (xmin - ex1) * (ymin - ey1) - (
ix1 - ex1) * (ymax - ey1) - (xmax - ex1) * (
iy1 - ey1)
# Union
union = (px2 - px1) * (py2 - py1) + (tx2 - tx1) * (
ty2 - ty1) - intersection + eps
# IoU
ious = 1 - (intersection / union)
# Smooth-EIoU
smooth_sign = (ious < smooth_point).detach().float()
loss = 0.5 * smooth_sign * (ious**2) / smooth_point + (1 - smooth_sign) * (
ious - 0.5 * smooth_point)
return loss
@MODELS.register_module() | @MODELS.register_module() | 326 | iou_loss.py | Python | mmdet/models/losses/iou_loss.py | 4510c77a48b264ea12389ecf766604ed1b04b694 | mmdetection | 1 |
175,193 | 32 | 10 | 8 | 111 | 15 | 0 | 37 | 69 | stdev | bpo-46257: Convert statistics._ss() to a single pass algorithm (GH-30403) | https://github.com/python/cpython.git | def stdev(data, xbar=None):
T, ss, n = _ss(data, xbar)
if n < 2:
raise StatisticsError('stdev requires at least two data points')
mss = ss / (n - 1)
if issubclass(T, Decimal):
return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
return _float_sqrt_of_frac(mss.numerator, mss.denominator)
| 71 | statistics.py | Python | Lib/statistics.py | 43aac29cbbb8a963a22c334b5b795d1e43417d6b | cpython | 3 |
|
300,191 | 24 | 11 | 14 | 146 | 11 | 0 | 41 | 95 | test_mute_volume | Add ws66i core integration (#56094)
* Add ws66i core integration
* Remove all ws66i translations
* Update ws66i unit tests to meet minimum code coverage
* Update ws66i based on @bdraco review
* General improvements after 2nd PR review
* Disable entities if amp shutoff, set default source names, set 30sec polling
* Add _attr_ and change async_on_unload
* Improve entity generation
* Implement coordinator
* Made options fields required, retry connection on failed attempts, use ZoneStatus for attributes
* Refactor WS66i entity properties, raise HomeAssistantError on restore service if no snapshot
* Update to pyws66i v1.1
* Add quality scale of silver to manifest
* Update config_flow test | https://github.com/home-assistant/core.git | async def test_mute_volume(hass):
ws66i = MockWs66i()
await _setup_ws66i(hass, ws66i)
await _call_media_player_service(
hass, SERVICE_VOLUME_SET, {"entity_id": ZONE_1_ID, "volume_level": 0.5}
)
await _call_media_player_service(
hass, SERVICE_VOLUME_MUTE, {"entity_id": ZONE_1_ID, "is_volume_muted": False}
)
assert not ws66i.zones[11].mute
await _call_media_player_service(
hass, SERVICE_VOLUME_MUTE, {"entity_id": ZONE_1_ID, "is_volume_muted": True}
)
assert ws66i.zones[11].mute
| 90 | test_media_player.py | Python | tests/components/ws66i/test_media_player.py | 5e737bfe4fbc5a724f5fdf04ea9319c2224cb114 | core | 1 |
|
22,057 | 88 | 13 | 25 | 359 | 40 | 0 | 126 | 435 | handle_401 | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | https://github.com/pypa/pipenv.git | def handle_401(self, r, **kwargs):
# If response is not 4xx, do not auth
# See https://github.com/psf/requests/issues/3772
if not 400 <= r.status_code < 500:
self._thread_local.num_401_calls = 1
return r
if self._thread_local.pos is not None:
# Rewind the file position indicator of the body to where
# it was to resend the request.
r.request.body.seek(self._thread_local.pos)
s_auth = r.headers.get("www-authenticate", "")
if "digest" in s_auth.lower() and self._thread_local.num_401_calls < 2:
self._thread_local.num_401_calls += 1
pat = re.compile(r"digest ", flags=re.IGNORECASE)
self._thread_local.chal = parse_dict_header(pat.sub("", s_auth, count=1))
# Consume content and release the original connection
# to allow our new request to reuse the same one.
r.content
r.close()
prep = r.request.copy()
extract_cookies_to_jar(prep._cookies, r.request, r.raw)
prep.prepare_cookies(prep._cookies)
prep.headers["Authorization"] = self.build_digest_header(
prep.method, prep.url
)
_r = r.connection.send(prep, **kwargs)
_r.history.append(r)
_r.request = prep
return _r
self._thread_local.num_401_calls = 1
return r
| 221 | auth.py | Python | pipenv/patched/pip/_vendor/requests/auth.py | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | pipenv | 5 |
|
270,117 | 49 | 14 | 26 | 300 | 21 | 0 | 77 | 244 | _kernel_constraint | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def _kernel_constraint(self, kernel):
padding = backend.constant([[1, 1], [1, 1]], dtype="int32")
kernel_shape = backend.shape(kernel)[0]
start = backend.cast(kernel_shape / 2, "int32")
kernel_new = backend.switch(
backend.cast(tf.math.floormod(kernel_shape, 2), "bool"),
lambda: kernel[start - 1 : start, start - 1 : start],
lambda: kernel[start - 1 : start, start - 1 : start]
+ backend.zeros( # pylint: disable=g-long-lambda
(2, 2), dtype=kernel.dtype
),
)
index = backend.switch(
backend.cast(tf.math.floormod(kernel_shape, 2), "bool"),
lambda: backend.constant(0, dtype="int32"),
lambda: backend.constant(1, dtype="int32"),
)
while_condition = lambda index, *args: backend.less(index, start)
| 246 | constraints.py | Python | keras/constraints.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
197,380 | 79 | 17 | 29 | 463 | 49 | 0 | 120 | 261 | permutedims | PermuteDims and permutedims now have an easier API based on index orders. The corresponding permutation is then derived internally | https://github.com/sympy/sympy.git | def permutedims(expr, perm=None, index_order_old=None, index_order_new=None):
from sympy.tensor.array import SparseNDimArray
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
from sympy.tensor.array.expressions.array_expressions import _permute_dims
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.tensor.array.expressions import PermuteDims
from sympy.tensor.array.expressions.array_expressions import get_rank
perm = PermuteDims._get_permutation_from_arguments(perm, index_order_old, index_order_new, get_rank(expr))
if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
return _permute_dims(expr, perm)
if not isinstance(expr, NDimArray):
expr = ImmutableDenseNDimArray(expr)
from sympy.combinatorics import Permutation
if not isinstance(perm, Permutation):
perm = Permutation(list(perm))
if perm.size != expr.rank():
raise ValueError("wrong permutation size")
# Get the inverse permutation:
iperm = ~perm
new_shape = perm(expr.shape)
if isinstance(expr, SparseNDimArray):
return type(expr)({tuple(perm(expr._get_tuple_index(k))): v
for k, v in expr._sparse_array.items()}, new_shape)
indices_span = perm([range(i) for i in expr.shape])
new_array = [None]*len(expr)
for i, idx in enumerate(itertools.product(*indices_span)):
t = iperm(idx)
new_array[i] = expr[t]
return type(expr)(new_array, new_shape)
| 312 | arrayop.py | Python | sympy/tensor/array/arrayop.py | 34d9ba9bd176605cb60acafc906a36607cd76061 | sympy | 9 |
|
155,114 | 19 | 12 | 15 | 95 | 14 | 0 | 22 | 75 | _get | FIX-#5187: Fixed RecursionError in OmnisciLaunchParameters.get() (#5199)
Signed-off-by: Andrey Pavlenko <[email protected]> | https://github.com/modin-project/modin.git | def _get(cls) -> dict:
custom_parameters = super().get()
result = cls.default.copy()
result.update(
{key.replace("-", "_"): value for key, value in custom_parameters.items()}
)
return result
| 55 | envvars.py | Python | modin/config/envvars.py | c51ab405efec920dbb4baa2e2389409df04e8d43 | modin | 2 |
|
156,090 | 10 | 8 | 3 | 44 | 7 | 0 | 12 | 33 | to_csv | absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | https://github.com/dask/dask.git | def to_csv(self, filename, **kwargs):
from dask.dataframe.io import to_csv
return to_csv(self, filename, **kwargs)
| 29 | core.py | Python | dask/dataframe/core.py | cccb9d8d8e33a891396b1275c2448c352ef40c27 | dask | 1 |
|
146,622 | 63 | 13 | 26 | 181 | 17 | 0 | 86 | 243 | preprocess_datasets | [ml] Trainer implementation (#22969)
Implementation for base Trainer
Co-authored-by: Eric Liang <[email protected]>
Co-authored-by: Richard Liaw <[email protected]> | https://github.com/ray-project/ray.git | def preprocess_datasets(self) -> None:
# Evaluate all datasets.
self.datasets = {k: d() if callable(d) else d for k, d in self.datasets.items()}
if self.preprocessor:
train_dataset = self.datasets.get(TRAIN_DATASET_KEY, None)
if train_dataset and not self.preprocessor.check_is_fitted():
self.preprocessor.fit(train_dataset)
# Execute dataset transformations serially for now.
# Cannot execute them in remote tasks due to dataset ownership model:
# if datasets are created on a remote node, then if that node fails,
# we cannot recover the dataset.
new_datasets = {}
for key, dataset in self.datasets.items():
new_datasets[key] = self.preprocessor.transform(dataset)
self.datasets = new_datasets
| 110 | trainer.py | Python | python/ray/ml/trainer.py | 2548083dcb3928fce145ab75976c7aecbb8a0d51 | ray | 7 |
|
110,061 | 16 | 9 | 4 | 68 | 11 | 0 | 18 | 46 | clip_to_bbox | Simplify some patches path definitions.
- When a Path ends with a CLOSEPOLY, it is not necessary to put a LINETO
to the closing position before it (in fact that can result in an
incorrect line join at that position), and the xy position associated
with the CLOSEPOLY can just be (0, 0), as it is irrelevant.
- For defining the codes arrays, for short paths (such as the patch
shapes here), one can just use list unpacking for shorter definitions.
- Rename the _path and _fillable lists in ArrowStyle to plural names.
- Rely on the default tolerance of
split_bezier_intersecting_with_closedpath (which is 0.01) rather than
re-specifying the same magic value everywhere.
- Remove inapplicable comment re: make_compound_path_from_polys (which
only applies to polygons all of with the same number of sides, which
is not the case when clipping to a bbox). | https://github.com/matplotlib/matplotlib.git | def clip_to_bbox(self, bbox, inside=True):
verts = _path.clip_path_to_rect(self, bbox, inside)
paths = [Path(poly) for poly in verts]
return self.make_compound_path(*paths)
| 44 | path.py | Python | lib/matplotlib/path.py | 73622a0173916bfcb4cb7b9b393929be025e18c9 | matplotlib | 2 |
|
104,904 | 13 | 11 | 16 | 96 | 13 | 0 | 14 | 53 | get_all_exported_dataset_infos | Add API code examples for Builder classes (#4313)
* 📝 add examples for builder classes
* 📝 apply quentin review | https://github.com/huggingface/datasets.git | def get_all_exported_dataset_infos(cls) -> dict:
dset_infos_file_path = os.path.join(cls.get_imported_module_dir(), config.DATASETDICT_INFOS_FILENAME)
if os.path.exists(dset_infos_file_path):
return DatasetInfosDict.from_directory(cls.get_imported_module_dir())
return {}
| 50 | builder.py | Python | src/datasets/builder.py | d1d4f1065fd4ab91b2c8682643dbd12f86d66fcd | datasets | 2 |
|
256,959 | 9 | 8 | 3 | 38 | 6 | 0 | 9 | 18 | enable_telemetry | Add basic telemetry features (#2314)
* add basic telemetry features
* change pipeline_config to _component_config
* Update Documentation & Code Style
* add super().__init__() calls to error classes
* make posthog mock work with python 3.7
* Update Documentation & Code Style
* update link to docs web page
* log exceptions, send event for raised HaystackErrors, refactor Path(CONFIG_PATH)
* add comment on send_event in BaseComponent.init() and fix mypy
* mock NonPrivateParameters and fix pylint undefined-variable
* Update Documentation & Code Style
* check model path contains multiple /
* add test for writing to file
* add test for en-/disable telemetry
* Update Documentation & Code Style
* merge file deletion methods and ignore pylint global statement
* Update Documentation & Code Style
* set env variable in demo to activate telemetry
* fix mock of HAYSTACK_TELEMETRY_ENABLED
* fix mypy and linter
* add CI as env variable to execution contexts
* remove threading, add test for custom error event
* Update Documentation & Code Style
* simplify config/log file deletion
* add test for final event being sent
* force writing config file in test
* make test compatible with python 3.7
* switch to posthog production server
* Update Documentation & Code Style
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | https://github.com/deepset-ai/haystack.git | def enable_telemetry():
os.environ[HAYSTACK_TELEMETRY_ENABLED] = "True"
logger.info("Telemetry has been enabled.")
| 19 | telemetry.py | Python | haystack/telemetry.py | ac5617e757e9ace6f30b7291686d9dbbc339f433 | haystack | 1 |
|
105,813 | 49 | 11 | 13 | 143 | 14 | 0 | 59 | 175 | __add__ | refactor: replace AssertionError with more meaningful exceptions (#5074) (#5079)
* refactor: replace AssertionError with more meaningful exceptions (#5074)
* refactor: change FileNotFoundError to ValueError (#5074)
Co-authored-by: Mario Šaško <[email protected]>
Co-authored-by: Mario Šaško <[email protected]> | https://github.com/huggingface/datasets.git | def __add__(self, other):
if not isinstance(other, ReadInstruction):
msg = "ReadInstruction can only be added to another ReadInstruction obj."
raise TypeError(msg)
self_ris = self._relative_instructions
other_ris = other._relative_instructions # pylint: disable=protected-access
if (
self_ris[0].unit != "abs"
and other_ris[0].unit != "abs"
and self._relative_instructions[0].rounding != other_ris[0].rounding
):
raise ValueError("It is forbidden to sum ReadInstruction instances with different rounding values.")
return self._read_instruction_from_relative_instructions(self_ris + other_ris)
| 86 | arrow_reader.py | Python | src/datasets/arrow_reader.py | 31d6ba08a4dd4eb0cc763ed6c20423258ccbdee8 | datasets | 5 |
|
156,973 | 34 | 10 | 8 | 128 | 16 | 0 | 42 | 69 | test_direct_deferral_wrapping_override | Added `flake8-bugbear` to `pre-commit` hooks (#9457) | https://github.com/dask/dask.git | def test_direct_deferral_wrapping_override():
a = da.from_array(np.arange(4))
b = WrappedArray(np.arange(4))
assert a.__add__(b) is NotImplemented
# Note: remove dask_graph to be able to wrap b in a dask array
b.__dask_graph__ = None
res = a + da.from_array(b)
assert isinstance(res, da.Array)
assert_eq(res, 2 * np.arange(4), check_type=False)
| 79 | test_dispatch.py | Python | dask/array/tests/test_dispatch.py | 5f11ba94cd5b1e0284c5246c4583e3a898d6447d | dask | 1 |