complexity
int64 1
139
| fun_name
stringlengths 1
80
| code
stringlengths 101
62.2k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
3.11k
| ast_levels
int64 6
36
| file_name
stringlengths 5
79
| n_ast_nodes
int64 17
19.2k
| commit_message
stringlengths 3
15.3k
| d_id
int64 12
121k
| n_ast_errors
int64 0
9
| n_whitespaces
int64 4
10.8k
| token_counts
int64 5
3.06k
| vocab_size
int64 4
1.11k
| id
int64 20
338k
| n_words
int64 4
4.82k
| repo
stringlengths 3
22
| n_identifiers
int64 2
176
| path
stringlengths 7
134
| language
stringclasses 1
value | nloc
int64 1
413
| documentation
dict | url
stringlengths 31
59
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | test_check_perms_set_owner_test_true | def test_check_perms_set_owner_test_true(test_file):
expected = {
"comment": "",
"changes": {"owner": "Backup Operators"},
"name": str(test_file),
"result": None,
}
with patch.dict(win_dacl.__opts__, {"test": True}):
result = win_file.check_perms(
path=str(test_file), owner="Backup Operators", inheritance=None
)
assert result == expected
| 5550d1823e9cb571740ae9e57b25424cfe6a919e | 13 | test_check_perms.py | 132 | Add changelong | 54,577 | 0 | 104 | 74 | 29 | 216,411 | 32 | salt | 14 | tests/pytests/functional/modules/win_file/test_check_perms.py | Python | 12 | {
"docstring": "\n Test setting the owner of a file with test=True\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 9,
"vocab_size": 9
} | https://github.com/saltstack/salt.git |
|
3 | _get_comm_key_send_recv | def _get_comm_key_send_recv(my_rank, my_gpu_idx, peer_rank, peer_gpu_idx):
if my_rank < peer_rank:
lower_key = str(my_rank) + "_" + str(my_gpu_idx)
higher_key = str(peer_rank) + "_" + str(peer_gpu_idx)
elif my_rank > peer_rank:
lower_key = str(peer_rank) + "_" + str(peer_gpu_idx)
higher_key = str(my_rank) + "_" + str(my_gpu_idx)
else:
raise RuntimeError(
"Send and recv happens on the same process. ray.util.collective "
"does not support this case as of now. Alternatively, consider "
"doing GPU to GPU memcpy?"
)
comm_key = lower_key + ":" + higher_key
return comm_key
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 13 | nccl_collective_group.py | 164 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,912 | 0 | 173 | 92 | 51 | 133,004 | 80 | ray | 10 | python/ray/util/collective/collective_group/nccl_collective_group.py | Python | 15 | {
"docstring": "Return a key given source and destination ranks for p2p tasks.\n\n The p2p key is in the following form:\n [min_rank]_[gpu_index]:[max_rank]_[gpu_index].\n\n Args:\n my_rank (int): the rank of the source process.\n my_gpu_idx (int): the source gpu index on the process.\n peer_rank (int): the rank of the destination process.\n peer_gpu_idx (int): the destination gpu index on the process.\n\n Returns:\n comm_key (str): a string key to query the communication cache.\n ",
"language": "en",
"n_whitespaces": 128,
"n_words": 66,
"vocab_size": 38
} | https://github.com/ray-project/ray.git |
|
1 | update_last_login | def update_last_login(sender, user, **kwargs):
user.last_login = timezone.now()
user.save(update_fields=["last_login"])
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 10 | models.py | 52 | Refs #33476 -- Reformatted code with Black. | 50,509 | 0 | 17 | 30 | 8 | 203,684 | 8 | django | 9 | django/contrib/auth/models.py | Python | 3 | {
"docstring": "\n A signal receiver which updates the last_login date for\n the user logging in.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 13,
"vocab_size": 12
} | https://github.com/django/django.git |
|
1 | test__create_document_index_wrong_mapping_raises | def test__create_document_index_wrong_mapping_raises(self, mocked_document_store, index):
mocked_document_store.search_fields = ["age"]
mocked_document_store.client.indices.exists.return_value = True
mocked_document_store.client.indices.get.return_value = {self.index_name: index}
with pytest.raises(Exception, match=f"The search_field 'age' of index '{self.index_name}' with type 'integer'"):
mocked_document_store._create_document_index(self.index_name)
| e7627c3f8b241654b61f8523479c81f855102f0a | 13 | test_opensearch.py | 115 | Use opensearch-py in OpenSearchDocumentStore (#2691)
* add Opensearch extras
* let OpenSearchDocumentStore use opensearch-py
* Update Documentation & Code Style
* fix a bug found after adding tests
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sara Zan <[email protected]> | 75,113 | 0 | 72 | 66 | 23 | 257,683 | 26 | haystack | 16 | test/document_stores/test_opensearch.py | Python | 6 | {
"docstring": "\n Ensure the method raises if we specify a field in `search_fields` that's not text\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 14
} | https://github.com/deepset-ai/haystack.git |
|
4 | plot | def plot(self, *args, scalex=True, scaley=True, data=None, **kwargs):
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
lines = [*self._get_lines(*args, data=data, **kwargs)]
for line in lines:
self.add_line(line)
if scalex:
self._request_autoscale_view("x")
if scaley:
self._request_autoscale_view("y")
return lines
| 7c6c5f6215b40a27cfefb7bf21246299fd9b3a1e | 11 | _axes.py | 137 | Fix removed cross-references | 23,109 | 0 | 111 | 86 | 26 | 108,228 | 29 | matplotlib | 16 | lib/matplotlib/axes/_axes.py | Python | 10 | {
"docstring": "\n Plot y versus x as lines and/or markers.\n\n Call signatures::\n\n plot([x], y, [fmt], *, data=None, **kwargs)\n plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)\n\n The coordinates of the points or line nodes are given by *x*, *y*.\n\n The optional parameter *fmt* is a convenient way for defining basic\n formatting like color, marker and linestyle. It's a shortcut string\n notation described in the *Notes* section below.\n\n >>> plot(x, y) # plot x and y using default line style and color\n >>> plot(x, y, 'bo') # plot x and y using blue circle markers\n >>> plot(y) # plot y using x as index array 0..N-1\n >>> plot(y, 'r+') # ditto, but with red plusses\n\n You can use `.Line2D` properties as keyword arguments for more\n control on the appearance. Line properties and *fmt* can be mixed.\n The following two calls yield identical results:\n\n >>> plot(x, y, 'go--', linewidth=2, markersize=12)\n >>> plot(x, y, color='green', marker='o', linestyle='dashed',\n ... linewidth=2, markersize=12)\n\n When conflicting with *fmt*, keyword arguments take precedence.\n\n\n **Plotting labelled data**\n\n There's a convenient way for plotting objects with labelled data (i.e.\n data that can be accessed by index ``obj['y']``). Instead of giving\n the data in *x* and *y*, you can provide the object in the *data*\n parameter and just give the labels for *x* and *y*::\n\n >>> plot('xlabel', 'ylabel', data=obj)\n\n All indexable objects are supported. This could e.g. be a `dict`, a\n `pandas.DataFrame` or a structured numpy array.\n\n\n **Plotting multiple sets of data**\n\n There are various ways to plot multiple sets of data.\n\n - The most straight forward way is just to call `plot` multiple times.\n Example:\n\n >>> plot(x1, y1, 'bo')\n >>> plot(x2, y2, 'go')\n\n - If *x* and/or *y* are 2D arrays a separate data set will be drawn\n for every column. If both *x* and *y* are 2D, they must have the\n same shape. If only one of them is 2D with shape (N, m) the other\n must have length N and will be used for every data set m.\n\n Example:\n\n >>> x = [1, 2, 3]\n >>> y = np.array([[1, 2], [3, 4], [5, 6]])\n >>> plot(x, y)\n\n is equivalent to:\n\n >>> for col in range(y.shape[1]):\n ... plot(x, y[:, col])\n\n - The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*\n groups::\n\n >>> plot(x1, y1, 'g^', x2, y2, 'g-')\n\n In this case, any additional keyword argument applies to all\n datasets. Also this syntax cannot be combined with the *data*\n parameter.\n\n By default, each line is assigned a different style specified by a\n 'style cycle'. The *fmt* and line property parameters are only\n necessary if you want explicit deviations from these defaults.\n Alternatively, you can also change the style cycle using\n :rc:`axes.prop_cycle`.\n\n\n Parameters\n ----------\n x, y : array-like or scalar\n The horizontal / vertical coordinates of the data points.\n *x* values are optional and default to ``range(len(y))``.\n\n Commonly, these parameters are 1D arrays.\n\n They can also be scalars, or two-dimensional (in that case, the\n columns represent separate data sets).\n\n These arguments cannot be passed as keywords.\n\n fmt : str, optional\n A format string, e.g. 'ro' for red circles. See the *Notes*\n section for a full description of the format strings.\n\n Format strings are just an abbreviation for quickly setting\n basic line properties. All of these and more can also be\n controlled by keyword arguments.\n\n This argument cannot be passed as keyword.\n\n data : indexable object, optional\n An object with labelled data. If given, provide the label names to\n plot in *x* and *y*.\n\n .. note::\n Technically there's a slight ambiguity in calls where the\n second label is a valid *fmt*. ``plot('n', 'o', data=obj)``\n could be ``plt(x, y)`` or ``plt(y, fmt)``. In such cases,\n the former interpretation is chosen, but a warning is issued.\n You may suppress the warning by adding an empty format string\n ``plot('n', 'o', '', data=obj)``.\n\n Returns\n -------\n list of `.Line2D`\n A list of lines representing the plotted data.\n\n Other Parameters\n ----------------\n scalex, scaley : bool, default: True\n These parameters determine if the view limits are adapted to the\n data limits. The values are passed on to\n `~.axes.Axes.autoscale_view`.\n\n **kwargs : `.Line2D` properties, optional\n *kwargs* are used to specify properties like a line label (for\n auto legends), linewidth, antialiasing, marker face color.\n Example::\n\n >>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2)\n >>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')\n\n If you specify multiple lines with one plot call, the kwargs apply\n to all those lines. In case the label object is iterable, each\n element is used as labels for each set of data.\n\n Here is a list of available `.Line2D` properties:\n\n %(Line2D:kwdoc)s\n\n See Also\n --------\n scatter : XY scatter plot with markers of varying size and/or color (\n sometimes also called bubble chart).\n\n Notes\n -----\n **Format Strings**\n\n A format string consists of a part for color, marker and line::\n\n fmt = '[marker][line][color]'\n\n Each of them is optional. If not provided, the value from the style\n cycle is used. Exception: If ``line`` is given, but no ``marker``,\n the data will be a line without markers.\n\n Other combinations such as ``[color][marker][line]`` are also\n supported, but note that their parsing may be ambiguous.\n\n **Markers**\n\n ============= ===============================\n character description\n ============= ===============================\n ``'.'`` point marker\n ``','`` pixel marker\n ``'o'`` circle marker\n ``'v'`` triangle_down marker\n ``'^'`` triangle_up marker\n ``'<'`` triangle_left marker\n ``'>'`` triangle_right marker\n ``'1'`` tri_down marker\n ``'2'`` tri_up marker\n ``'3'`` tri_left marker\n ``'4'`` tri_right marker\n ``'8'`` octagon marker\n ``'s'`` square marker\n ``'p'`` pentagon marker\n ``'P'`` plus (filled) marker\n ``'*'`` star marker\n ``'h'`` hexagon1 marker\n ``'H'`` hexagon2 marker\n ``'+'`` plus marker\n ``'x'`` x marker\n ``'X'`` x (filled) marker\n ``'D'`` diamond marker\n ``'d'`` thin_diamond marker\n ``'|'`` vline marker\n ``'_'`` hline marker\n ============= ===============================\n\n **Line Styles**\n\n ============= ===============================\n character description\n ============= ===============================\n ``'-'`` solid line style\n ``'--'`` dashed line style\n ``'-.'`` dash-dot line style\n ``':'`` dotted line style\n ============= ===============================\n\n Example format strings::\n\n 'b' # blue markers with default shape\n 'or' # red circles\n '-g' # green solid line\n '--' # dashed line with default color\n '^k:' # black triangle_up markers connected by a dotted line\n\n **Colors**\n\n The supported color abbreviations are the single letter codes\n\n ============= ===============================\n character color\n ============= ===============================\n ``'b'`` blue\n ``'g'`` green\n ``'r'`` red\n ``'c'`` cyan\n ``'m'`` magenta\n ``'y'`` yellow\n ``'k'`` black\n ``'w'`` white\n ============= ===============================\n\n and the ``'CN'`` colors that index into the default property cycle.\n\n If the color is the only part of the format string, you can\n additionally use any `matplotlib.colors` spec, e.g. full names\n (``'green'``) or hex strings (``'#008000'``).\n ",
"language": "en",
"n_whitespaces": 2954,
"n_words": 1065,
"vocab_size": 527
} | https://github.com/matplotlib/matplotlib.git |
|
1 | start | async def start(self, fn, *args):
raise RuntimeError("`GatherTaskGroup` does not support `start`.")
| 5c53517aee853a5262fd2373a4fae5a15ad72da4 | 8 | asyncio.py | 30 | Wait for task run futures concurrently | 11,051 | 0 | 25 | 16 | 11 | 54,410 | 11 | prefect | 5 | src/prefect/utilities/asyncio.py | Python | 2 | {
"docstring": "\n Since `start` returns the result of `task_status.started()` but here we must\n return the key instead, we just won't support this method for now.\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 23,
"vocab_size": 21
} | https://github.com/PrefectHQ/prefect.git |
|
2 | test_unimplemented_dtypes_table_columns | def test_unimplemented_dtypes_table_columns(setup_path):
with ensure_clean_store(setup_path) as store:
dtypes = [("date", datetime.date(2001, 1, 2))]
# currently not supported dtypes ####
for n, f in dtypes:
df = tm.makeDataFrame()
df[n] = f
msg = re.escape(f"[{n}] is not implemented as a table column")
with pytest.raises(TypeError, match=msg):
store.append(f"df1_{n}", df)
# frame
df = tm.makeDataFrame()
df["obj1"] = "foo"
df["obj2"] = "bar"
df["datetime1"] = datetime.date(2001, 1, 2)
df = df._consolidate()
with ensure_clean_store(setup_path) as store:
# this fails because we have a date in the object block......
msg = re.escape(
)
with pytest.raises(TypeError, match=msg):
store.append("df_unimplemented", df)
| de6a5cc21e59e61733be1b7f8ae7d3d4e15374f2 | 15 | test_errors.py | 281 | REF: remove NDFrame._convert (#50026) | 40,719 | 0 | 242 | 158 | 56 | 171,781 | 88 | pandas | 21 | pandas/tests/io/pytables/test_errors.py | Python | 21 | {
"docstring": "Cannot serialize the column [datetime1]\nbecause its data contents are not [string] but [date] object dtype",
"language": "en",
"n_whitespaces": 14,
"n_words": 16,
"vocab_size": 16
} | https://github.com/pandas-dev/pandas.git |
|
4 | record_setattr | def record_setattr(context, builder, sig, args, attr):
typ, valty = sig.args
target, val = args
context.sentry_record_alignment(typ, attr)
offset = typ.offset(attr)
elemty = typ.typeof(attr)
if isinstance(elemty, types.NestedArray):
# TODO: assert both sides are arrays
dptr = cgutils.get_record_member(builder, target, offset,
context.get_data_type(elemty))
dataval_ptr = context.data_model_manager[elemty].get(builder, val, 'data')
dataval_ptr = builder.bitcast(dataval_ptr, context.get_data_type(elemty).as_pointer())
align = None if typ.aligned else 1
dataval = builder.load(dataval_ptr)
builder.store(dataval, dptr, align=align)
else:
dptr = cgutils.get_record_member(builder, target, offset,
context.get_data_type(elemty))
val = context.cast(builder, val, valty, elemty)
align = None if typ.aligned else 1
context.pack_value(builder, elemty, val, dptr, align=align)
@lower_builtin('static_getitem', types.Record, types.StringLiteral) | 0d41a799678a9ad7cd77f1e19201d570bc40fdf8 | @lower_builtin('static_getitem', types.Record, types.StringLiteral) | 14 | arrayobj.py | 325 | ugly poc | 39,113 | 1 | 260 | 204 | 58 | 161,968 | 88 | numba | 36 | numba/np/arrayobj.py | Python | 20 | {
"docstring": "\n Generic setattr() implementation for records: set the given\n record member, i.e. a scalar.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 13,
"vocab_size": 13
} | https://github.com/numba/numba.git |
2 | getvalue | def getvalue(self):
if callable(getattr(self.stream, "getvalue", None)):
return self.stream.getvalue()
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 10 | base.py | 50 | Refs #33476 -- Reformatted code with Black. | 50,864 | 0 | 33 | 29 | 8 | 204,736 | 8 | django | 5 | django/core/serializers/base.py | Python | 3 | {
"docstring": "\n Return the fully serialized queryset (or None if the output stream is\n not seekable).\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | https://github.com/django/django.git |
|
2 | itermonthdates | def itermonthdates(self, year, month):
for y, m, d in self.itermonthdays3(year, month):
yield datetime.date(y, m, d)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 10 | calendar.py | 55 | add python 3.10.4 for windows | 56,274 | 0 | 40 | 37 | 13 | 221,217 | 15 | XX-Net | 10 | python3.10.4/Lib/calendar.py | Python | 3 | {
"docstring": "\n Return an iterator for one month. The iterator will yield datetime.date\n values and will always iterate through complete weeks, so it will yield\n dates outside the specified month.\n ",
"language": "en",
"n_whitespaces": 57,
"n_words": 28,
"vocab_size": 23
} | https://github.com/XX-net/XX-Net.git |
|
1 | test_lazy_load | def test_lazy_load(self):
with self.assertNumQueries(1):
# Get the instance. The StreamField should *not* load the image yet
instance = StreamModel.objects.get(pk=self.with_image.pk)
with self.assertNumQueries(0):
# Access the body. The StreamField should still not get the image.
body = instance.body
with self.assertNumQueries(1):
# Access the image item from the stream. The image is fetched now
body[0].value
with self.assertNumQueries(0):
# Everything has been fetched now, no further database queries.
self.assertEqual(body[0].value, self.image)
self.assertEqual(body[1].value, "foo")
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 13 | test_streamfield.py | 162 | Reformat with black | 16,262 | 0 | 202 | 93 | 46 | 74,545 | 68 | wagtail | 13 | wagtail/core/tests/test_streamfield.py | Python | 10 | {
"docstring": "\n Getting a single item should lazily load the StreamField, only\n accessing the database once the StreamField is accessed\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 16
} | https://github.com/wagtail/wagtail.git |
|
1 | add_print_formats | def add_print_formats():
frappe.reload_doc("regional", "print_format", "detailed_tax_invoice")
frappe.reload_doc("regional", "print_format", "simplified_tax_invoice")
frappe.reload_doc("regional", "print_format", "tax_invoice")
frappe.db.sql(
)
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 8 | setup.py | 83 | style: format code with black | 14,487 | 0 | 7 | 42 | 9 | 67,308 | 13 | erpnext | 5 | erpnext/regional/united_arab_emirates/setup.py | Python | 8 | {
"docstring": " update `tabPrint Format` set disabled = 0 where\n\t\tname in('Simplified Tax Invoice', 'Detailed Tax Invoice', 'Tax Invoice') ",
"language": "en",
"n_whitespaces": 17,
"n_words": 17,
"vocab_size": 15
} | https://github.com/frappe/erpnext.git |
|
2 | mixin_essential_parser | def mixin_essential_parser(parser):
gp = add_arg_group(parser, title='Essential')
gp.add_argument(
'--name',
type=str,
help=,
)
gp.add_argument(
'--workspace',
type=str,
default=None,
help='The working directory for any IO operations in this object. '
'If not set, then derive from its parent `workspace`.',
)
from jina import __resources_path__
gp.add_argument(
'--log-config',
type=str,
default=os.path.join(__resources_path__, 'logging.default.yml'),
help='The YAML config of the logger used in this object.',
)
gp.add_argument(
'--quiet',
action='store_true',
default=False,
help='If set, then no log will be emitted from this object.',
)
gp.add_argument(
'--quiet-error',
action='store_true',
default=False,
help='If set, then exception stack information will not be added to the log',
)
gp.add_argument(
'--workspace-id',
type=str,
default=random_identity(),
help='the UUID for identifying the workspace. When not given a random id will be assigned.'
'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same '
'`workspace-id`.'
if _SHOW_ALL_ARGS
else argparse.SUPPRESS,
)
| a3b71c7208b3cd48aa7bc978c3343a074947e3d9 | 11 | base.py | 254 | fix(parsers): clearify flow args (#4701) | 2,214 | 0 | 370 | 150 | 87 | 12,206 | 129 | jina | 20 | jina/parsers/orchestrate/base.py | Python | 53 | {
"docstring": "Mixing in arguments required by every module into the given parser.\n :param parser: the parser instance to which we add arguments\n \n The name of this object.\n\n This will be used in the following places:\n - how you refer to this object in Python/YAML/CLI\n - visualization\n - log message header\n - ...\n\n When not given, then the default naming strategy will apply.\n ",
"language": "en",
"n_whitespaces": 112,
"n_words": 61,
"vocab_size": 49
} | https://github.com/jina-ai/jina.git |
|
2 | set_collection_path_collation | def set_collection_path_collation(apps, schema_editor):
if schema_editor.connection.vendor == "postgresql":
schema_editor.execute(
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 10 | 0027_fix_collection_path_collation.py | 43 | Reformat with black | 16,099 | 0 | 41 | 23 | 9 | 73,767 | 9 | wagtail | 6 | wagtail/core/migrations/0027_fix_collection_path_collation.py | Python | 7 | {
"docstring": "\n Treebeard's path comparison logic can fail on certain locales such as sk_SK, which\n sort numbers after letters. To avoid this, we explicitly set the collation for the\n 'path' column to the (non-locale-specific) 'C' collation.\n\n See: https://groups.google.com/d/msg/wagtail/q0leyuCnYWI/I9uDvVlyBAAJ\n \n ALTER TABLE wagtailcore_collection ALTER COLUMN path TYPE VARCHAR(255) COLLATE \"C\"\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 46,
"vocab_size": 42
} | https://github.com/wagtail/wagtail.git |
|
2 | test_invalid_logo_upload | def test_invalid_logo_upload(self) -> None:
for fname in self.corrupt_files:
with self.subTest(fname=fname):
self.login("iago")
with get_test_image_file(fname) as fp:
result = self.client_post(
"/json/realm/logo", {"file": fp, "night": orjson.dumps(self.night).decode()}
)
self.assert_json_error(
result, "Could not decode image; did you upload an image file?"
)
| b729f00fc289a731c56d7f6b4afcca2878e9309e | 21 | test_upload.py | 136 | test_upload: Uncomment subTest contexts.
Signed-off-by: Anders Kaseorg <[email protected]> | 17,597 | 0 | 202 | 76 | 35 | 83,125 | 37 | zulip | 15 | zerver/tests/test_upload.py | Python | 14 | {
"docstring": "\n A PUT request to /json/realm/logo with an invalid file should fail.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | https://github.com/zulip/zulip.git |
|
1 | feature_engineering_standard | def feature_engineering_standard(self, dataframe, **kwargs):
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
| c2936d551b8ad6ccf7b57e2ac6cb55d8550622cf | 10 | FreqaiExampleStrategy.py | 68 | improve doc, update test strats, change function names | 35,167 | 0 | 40 | 39 | 11 | 151,925 | 12 | freqtrade | 7 | freqtrade/templates/FreqaiExampleStrategy.py | Python | 4 | {
"docstring": "\n *Only functional with FreqAI enabled strategies*\n This optional function will be called once with the dataframe of the base timeframe.\n This is the final function to be called, which means that the dataframe entering this\n function will contain all the features and columns created by all other\n freqai_feature_engineering_* functions.\n\n This function is a good place to do custom exotic feature extractions (e.g. tsfresh).\n This function is a good place for any feature that should not be auto-expanded upon\n (e.g. day of the week).\n\n All features must be prepended with `%` to be recognized by FreqAI internals.\n\n More details about feature engineering available:\n\n https://www.freqtrade.io/en/latest/freqai-feature-engineering\n\n :param df: strategy dataframe which will receive the features\n usage example: dataframe[\"%-day_of_week\"] = (dataframe[\"date\"].dt.dayofweek + 1) / 7\n ",
"language": "en",
"n_whitespaces": 220,
"n_words": 121,
"vocab_size": 80
} | https://github.com/freqtrade/freqtrade.git |
|
8 | test_pack | def test_pack(self):
if self.sfx not in ("b16", "b32", "b64"):
return
# create the vectors
data = self._data()
rdata = self._data(reverse=True)
vdata = self._load_b(data)
vrdata = self._load_b(rdata)
pack_simd = getattr(self.npyv, f"pack_b8_{self.sfx}")
# for scalar execution, concatenate the elements of the multiple lists
# into a single list (spack) and then iterate over the elements of
# the created list applying a mask to capture the first byte of them.
if self.sfx == "b16":
spack = [(i & 0xFF) for i in (list(rdata) + list(data))]
vpack = pack_simd(vrdata, vdata)
elif self.sfx == "b32":
spack = [(i & 0xFF) for i in (2*list(rdata) + 2*list(data))]
vpack = pack_simd(vrdata, vrdata, vdata, vdata)
elif self.sfx == "b64":
spack = [(i & 0xFF) for i in (4*list(rdata) + 4*list(data))]
vpack = pack_simd(vrdata, vrdata, vrdata, vrdata,
vdata, vdata, vdata, vdata)
assert vpack == spack
| 1134be2ca463d3f5d788c4c7b1dcf3ef1f9e3d33 | 16 | test_simd.py | 336 | SIMD: Use universal intrinsics to implement comparison functions | 38,613 | 0 | 352 | 207 | 74 | 160,369 | 137 | numpy | 17 | numpy/core/tests/test_simd.py | Python | 19 | {
"docstring": "\n Pack multiple vectors into one\n Test intrinsics:\n npyv_pack_b8_b16\n npyv_pack_b8_b32\n npyv_pack_b8_b64\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 10,
"vocab_size": 10
} | https://github.com/numpy/numpy.git |
|
4 | valid_color_configuration | def valid_color_configuration(config):
deprecated = {CONF_COLOR_TEMP, CONF_HS, CONF_RGB, CONF_XY}
if config[CONF_COLOR_MODE] and any(config.get(key) for key in deprecated):
raise vol.Invalid(f"color_mode must not be combined with any of {deprecated}")
return config
_PLATFORM_SCHEMA_BASE = (
MQTT_RW_SCHEMA.extend(
{
vol.Optional(CONF_BRIGHTNESS, default=DEFAULT_BRIGHTNESS): cv.boolean,
vol.Optional(
CONF_BRIGHTNESS_SCALE, default=DEFAULT_BRIGHTNESS_SCALE
): vol.All(vol.Coerce(int), vol.Range(min=1)),
vol.Inclusive(
CONF_COLOR_MODE, "color_mode", default=DEFAULT_COLOR_MODE
): cv.boolean,
vol.Optional(CONF_COLOR_TEMP, default=DEFAULT_COLOR_TEMP): cv.boolean,
vol.Optional(CONF_EFFECT, default=DEFAULT_EFFECT): cv.boolean,
vol.Optional(CONF_EFFECT_LIST): vol.All(cv.ensure_list, [cv.string]),
vol.Optional(
CONF_FLASH_TIME_LONG, default=DEFAULT_FLASH_TIME_LONG
): cv.positive_int,
vol.Optional(
CONF_FLASH_TIME_SHORT, default=DEFAULT_FLASH_TIME_SHORT
): cv.positive_int,
vol.Optional(CONF_HS, default=DEFAULT_HS): cv.boolean,
vol.Optional(CONF_MAX_MIREDS): cv.positive_int,
vol.Optional(CONF_MIN_MIREDS): cv.positive_int,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_OPTIMISTIC, default=DEFAULT_OPTIMISTIC): cv.boolean,
vol.Optional(CONF_QOS, default=DEFAULT_QOS): vol.All(
vol.Coerce(int), vol.In([0, 1, 2])
),
vol.Optional(CONF_RETAIN, default=DEFAULT_RETAIN): cv.boolean,
vol.Optional(CONF_RGB, default=DEFAULT_RGB): cv.boolean,
vol.Optional(CONF_STATE_TOPIC): valid_subscribe_topic,
vol.Inclusive(CONF_SUPPORTED_COLOR_MODES, "color_mode"): vol.All(
cv.ensure_list,
[vol.In(VALID_COLOR_MODES)],
vol.Unique(),
valid_supported_color_modes,
),
vol.Optional(CONF_XY, default=DEFAULT_XY): cv.boolean,
},
)
.extend(MQTT_ENTITY_COMMON_SCHEMA.schema)
.extend(MQTT_LIGHT_SCHEMA_SCHEMA.schema)
)
# Configuring MQTT Lights under the light platform key is deprecated in HA Core 2022.6
PLATFORM_SCHEMA_JSON = vol.All(
cv.PLATFORM_SCHEMA.extend(_PLATFORM_SCHEMA_BASE.schema),
valid_color_configuration,
)
DISCOVERY_SCHEMA_JSON = vol.All(
# CONF_WHITE_VALUE is no longer supported, support was removed in 2022.9
cv.removed(CONF_WHITE_VALUE),
_PLATFORM_SCHEMA_BASE.extend({}, extra=vol.REMOVE_EXTRA),
valid_color_configuration,
)
PLATFORM_SCHEMA_MODERN_JSON = vol.All(
_PLATFORM_SCHEMA_BASE,
valid_color_configuration,
)
| 73001e29ff22f7a5008a0b0a0e058aae22771d16 | 18 | schema_json.py | 694 | Remove deprecated white_value support from MQTT light (#76848)
* Remove deprecated white_value support from MQTT light
* Remove deprecated white_value support from MQTT JSON light
* Remove deprecated white_value support from MQTT template light | 102,738 | 0 | 628 | 47 | 121 | 303,930 | 158 | core | 73 | homeassistant/components/mqtt/light/schema_json.py | Python | 5 | {
"docstring": "Test color_mode is not combined with deprecated config.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/home-assistant/core.git |
|
1 | test_decrypt_pillar_invalid_renderer | def test_decrypt_pillar_invalid_renderer(salt_master, grains, pillar_homedir):
opts = salt_master.config.copy()
opts["decrypt_pillar"] = [{"secrets:vault": "gpg"}]
opts["decrypt_pillar_default"] = "foo"
opts["decrypt_pillar_renderers"] = ["foo", "bar"]
pillar_obj = salt.pillar.Pillar(opts, grains, "test", "base")
ret = pillar_obj.compile_pillar()
expected = copy.deepcopy(GPG_PILLAR_ENCRYPTED)
expected["_errors"] = [
"Failed to decrypt pillar key 'secrets:vault': 'gpg' is not a valid decryption"
" renderer. Valid choices are: foo, bar"
]
assert ret["_errors"] == expected["_errors"]
assert ret["secrets"]["vault"]["foo"] == expected["secrets"]["vault"]["foo"]
assert ret["secrets"]["vault"]["bar"] == expected["secrets"]["vault"]["bar"]
assert ret["secrets"]["vault"]["baz"] == expected["secrets"]["vault"]["baz"]
assert ret["secrets"]["vault"]["qux"] == expected["secrets"]["vault"]["qux"]
| b856d3225ef1003cbe94499dc8bd82efffabb661 | 10 | test_gpg.py | 346 | Add tests for gpg decryption failure option
Test that:
1. Pillar registers an error when `gpg_decrypt_must_succeed` is `True` and decryption fails
2. The GPG renderer fails silently when `gpg_decrypt_must_succeed` is `False`
Also mock `__opts__["gpg_decrypt_must_succeed"]` for gpg renderer unit pytests. | 54,344 | 0 | 132 | 185 | 56 | 216,038 | 73 | salt | 16 | tests/pytests/functional/pillar/test_gpg.py | Python | 17 | {
"docstring": "\n Test decryption using a renderer which is not permitted. It should\n fail, leaving the encrypted keys intact, and add an error to the pillar\n dictionary.\n\n decrypt_pillar_default: foo\n decrypt_pillar_renderers:\n - foo\n - bar\n decrypt_pillar:\n - 'secrets:vault': gpg\n ",
"language": "en",
"n_whitespaces": 97,
"n_words": 36,
"vocab_size": 32
} | https://github.com/saltstack/salt.git |
|
2 | test_unreadable | def test_unreadable(self, message_mock, editor, caplog, qtbot):
editor.edit("")
filename = pathlib.Path(editor._filename)
assert filename.exists()
filename.chmod(0o277)
if os.access(str(filename), os.R_OK):
# Docker container or similar
pytest.skip("File was still readable")
with caplog.at_level(logging.ERROR):
editor._proc._proc.finished.emit(0, QProcess.ExitStatus.NormalExit)
assert not filename.exists()
msg = message_mock.getmsg(usertypes.MessageLevel.error)
assert msg.text.startswith("Failed to read back edited file: ")
| 0877fb0d78635692e481c8bde224fac5ad0dd430 | 12 | test_editor.py | 197 | Run scripts/dev/rewrite_enums.py | 117,695 | 0 | 146 | 119 | 39 | 321,395 | 43 | qutebrowser | 35 | tests/unit/misc/test_editor.py | Python | 12 | {
"docstring": "Test file handling when closing with an unreadable file.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/qutebrowser/qutebrowser.git |
|
1 | RecurrenceOperators | def RecurrenceOperators(base, generator):
ring = RecurrenceOperatorAlgebra(base, generator)
return (ring, ring.shift_operator)
| 498015021131af4dbb07eb110e5badaba8250c7b | 8 | recurrence.py | 38 | Updated import locations | 47,825 | 0 | 19 | 24 | 10 | 196,325 | 10 | sympy | 6 | sympy/holonomic/recurrence.py | Python | 3 | {
"docstring": "\n Returns an Algebra of Recurrence Operators and the operator for\n shifting i.e. the `Sn` operator.\n The first argument needs to be the base polynomial ring for the algebra\n and the second argument must be a generator which can be either a\n noncommutative Symbol or a string.\n\n Examples\n ========\n\n >>> from sympy import ZZ\n >>> from sympy import symbols\n >>> from sympy.holonomic.recurrence import RecurrenceOperators\n >>> n = symbols('n', integer=True)\n >>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn')\n ",
"language": "en",
"n_whitespaces": 114,
"n_words": 74,
"vocab_size": 53
} | https://github.com/sympy/sympy.git |
|
2 | _patch_faces | def _patch_faces(self, queue_in, queue_out, sample_size):
logger.trace("Patching faces")
self._converter.process(queue_in, queue_out)
swapped = []
idx = 0
while idx < sample_size:
logger.trace("Patching image %s of %s", idx + 1, sample_size)
item = queue_out.get()
swapped.append(item[1])
logger.trace("Patched image %s of %s", idx + 1, sample_size)
idx += 1
logger.trace("Patched faces")
return swapped
| 71c20252c2e747f692289cdefe80ad0d5a456ea6 | 10 | preview.py | 150 | bugfix: Preview Tool, ensure all config items are written | 19,975 | 0 | 159 | 91 | 31 | 100,506 | 48 | faceswap | 14 | tools/preview/preview.py | Python | 13 | {
"docstring": " Patch faces.\n\n Run the convert process on the swapped faces and return the patched faces.\n\n patch_queue_in: :class:`queue.Queue`\n The input queue for the patching process\n queue_out: :class:`queue.Queue`\n The output queue from the patching process\n sample_size: int\n The number of samples to be displayed\n\n Returns\n -------\n list\n The swapped faces patched with the selected convert settings\n ",
"language": "en",
"n_whitespaces": 155,
"n_words": 54,
"vocab_size": 36
} | https://github.com/deepfakes/faceswap.git |
|
5 | get_cv2_image | def get_cv2_image(self, image):
if isinstance(image, str):
if os.path.isfile(image):
image = cv2.imread(image, cv2.IMREAD_COLOR).astype('float32')
else:
raise FileNotFoundError("Cannot find {}".format(image))
elif isinstance(image, np.ndarray):
image = image.astype('float32')
elif isinstance(image, PIL.Image.Image):
image = np.asarray(image)[:, :, ::-1]
else:
raise TypeError("Unsupport image format. Only path-to-file, opencv BGR image, and PIL image are supported.")
return image
| 803b90729d25fda253011c505d0189e8e63cc039 | 15 | DBNet.py | 186 | add dbnet | 27,298 | 0 | 175 | 111 | 35 | 123,121 | 48 | EasyOCR | 20 | easyocr/DBNet/DBNet.py | Python | 13 | {
"docstring": "\n Load or convert input to OpenCV BGR image numpy array.\n\n Parameters\n ----------\n image : str, PIL.Image, or np.ndarray\n Image to load or convert.\n\n Raises\n ------\n FileNotFoundError\n Raised when the input is a path to file (str), but the file is not found.\n TypeError\n Raised when the data type of the input is not supported.\n\n Returns\n -------\n image : np.ndarray\n OpenCV BGR image.\n ",
"language": "en",
"n_whitespaces": 191,
"n_words": 62,
"vocab_size": 41
} | https://github.com/JaidedAI/EasyOCR.git |
|
3 | serialize_model_as_bytecode | def serialize_model_as_bytecode(model):
# Note: we don't use a RAM path for this because zipfile cannot write
# to such paths.
temp_dir = tempfile.mkdtemp()
try:
filepath = os.path.join(temp_dir, "model.keras")
saving_lib.save_model(model, filepath)
with open(filepath, "rb") as f:
data = f.read()
except Exception as e:
raise e
else:
return data
finally:
tf.io.gfile.rmtree(temp_dir)
| 2ed044d06d0ae552477672aa8b778f8edafb52f1 | 13 | pickle_utils.py | 134 | Use new saving logic for pickling. This is somewhat cleaner since it restores the exact same model (no usage of traces). It may however be less convenient since it requires get_config() to be implemented and the use of a custom_object_scope.
PiperOrigin-RevId: 474146108 | 83,134 | 0 | 126 | 75 | 44 | 279,795 | 49 | keras | 21 | keras/saving/pickle_utils.py | Python | 13 | {
"docstring": "Convert a Keras Model into a bytecode representation for pickling.\n\n Args:\n model: Keras Model instance.\n\n Returns:\n Tuple that can be read by `deserialize_from_bytecode`.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 23,
"vocab_size": 20
} | https://github.com/keras-team/keras.git |
|
7 | boilerplate_gen | def boilerplate_gen():
_figure_commands = (
'figimage',
'figtext:text',
'gca',
'gci:_gci',
'ginput',
'subplots_adjust',
'suptitle',
'tight_layout',
'waitforbuttonpress',
)
# These methods are all simple wrappers of Axes methods by the same name.
_axes_commands = (
'acorr',
'angle_spectrum',
'annotate',
'arrow',
'autoscale',
'axhline',
'axhspan',
'axis',
'axline',
'axvline',
'axvspan',
'bar',
'barbs',
'barh',
'bar_label',
'boxplot',
'broken_barh',
'clabel',
'cohere',
'contour',
'contourf',
'csd',
'errorbar',
'eventplot',
'fill',
'fill_between',
'fill_betweenx',
'grid',
'hexbin',
'hist',
'stairs',
'hist2d',
'hlines',
'imshow',
'legend',
'locator_params',
'loglog',
'magnitude_spectrum',
'margins',
'minorticks_off',
'minorticks_on',
'pcolor',
'pcolormesh',
'phase_spectrum',
'pie',
'plot',
'plot_date',
'psd',
'quiver',
'quiverkey',
'scatter',
'semilogx',
'semilogy',
'specgram',
'spy',
'stackplot',
'stem',
'step',
'streamplot',
'table',
'text',
'tick_params',
'ticklabel_format',
'tricontour',
'tricontourf',
'tripcolor',
'triplot',
'violinplot',
'vlines',
'xcorr',
# pyplot name : real name
'sci:_sci',
'title:set_title',
'xlabel:set_xlabel',
'ylabel:set_ylabel',
'xscale:set_xscale',
'yscale:set_yscale',
)
cmappable = {
'contour': 'if __ret._A is not None: sci(__ret) # noqa',
'contourf': 'if __ret._A is not None: sci(__ret) # noqa',
'hexbin': 'sci(__ret)',
'scatter': 'sci(__ret)',
'pcolor': 'sci(__ret)',
'pcolormesh': 'sci(__ret)',
'hist2d': 'sci(__ret[-1])',
'imshow': 'sci(__ret)',
'spy': 'if isinstance(__ret, cm.ScalarMappable): sci(__ret) # noqa',
'quiver': 'sci(__ret)',
'specgram': 'sci(__ret[-1])',
'streamplot': 'sci(__ret.lines)',
'tricontour': 'if __ret._A is not None: sci(__ret) # noqa',
'tricontourf': 'if __ret._A is not None: sci(__ret) # noqa',
'tripcolor': 'sci(__ret)',
}
for spec in _figure_commands:
if ':' in spec:
name, called_name = spec.split(':')
else:
name = called_name = spec
yield generate_function(name, f'Figure.{called_name}',
FIGURE_METHOD_TEMPLATE)
for spec in _axes_commands:
if ':' in spec:
name, called_name = spec.split(':')
else:
name = called_name = spec
template = (AXES_CMAPPABLE_METHOD_TEMPLATE if name in cmappable else
AXES_METHOD_TEMPLATE)
yield generate_function(name, f'Axes.{called_name}', template,
sci_command=cmappable.get(name))
cmaps = (
'autumn',
'bone',
'cool',
'copper',
'flag',
'gray',
'hot',
'hsv',
'jet',
'pink',
'prism',
'spring',
'summer',
'winter',
'magma',
'inferno',
'plasma',
'viridis',
"nipy_spectral"
)
# add all the colormaps (autumn, hsv, ....)
for name in cmaps:
yield AUTOGEN_MSG
yield CMAP_TEMPLATE.format(name=name)
| 032316bc6c7798fca6c82de24167c975f237687f | 13 | boilerplate.py | 780 | Cleanup documentation generation for pyplot
- remove the awkward `pyplot.plotting()` function, which only served
as a namespace to take up the docs for pyplot and output them via
`.. autofunction`
- Instead generate the same information using `.. autosummary::`. We
have to list the desired methods here explicitly. I've added a test
that these are the same as previously auto-generated in the
`plotting()` docstring. If we change anything in pyplot, we'll be
notified through the test failure that we have to adapt the
autosummary list.
- Removed the docstring generation logic
`_setup_pyplot_info_docstrings()`. Apart from generating the
`plotting()` docstring, this added docstrings to the pyplot colormap
setters. Instead, we now add these docstrings directly via
boilerplate.py
Co-authored-by: Elliott Sales de Andrade <[email protected]> | 23,247 | 0 | 1,350 | 398 | 190 | 108,536 | 275 | matplotlib | 19 | tools/boilerplate.py | Python | 147 | {
"docstring": "Generator of lines for the automated part of pyplot.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | https://github.com/matplotlib/matplotlib.git |
|
14 | get_data_by_territory | def get_data_by_territory(filters, common_columns):
columns = [
{
"label": "Territory",
"fieldname": "territory",
"fieldtype": "Link",
"options": "Territory",
"width": 150,
}
]
columns += common_columns
customers_in = get_customer_stats(filters, tree_view=True)
territory_dict = {}
for t in frappe.db.sql(
, as_dict=1
):
territory_dict.update({t.name: {"parent": t.parent_territory, "is_group": t.is_group}})
depth_map = frappe._dict()
for name, info in territory_dict.items():
default = depth_map.get(info["parent"]) + 1 if info["parent"] else 0
depth_map.setdefault(name, default)
data = []
for name, indent in depth_map.items():
condition = customers_in.get(name)
new = customers_in[name]["new"] if condition else [0, 0.0]
repeat = customers_in[name]["repeat"] if condition else [0, 0.0]
temp = {
"territory": name,
"parent_territory": territory_dict[name]["parent"],
"indent": indent,
"new_customers": new[0],
"repeat_customers": repeat[0],
"total": new[0] + repeat[0],
"new_customer_revenue": new[1],
"repeat_customer_revenue": repeat[1],
"total_revenue": new[1] + repeat[1],
"bold": 0 if indent else 1,
}
data.append(temp)
loop_data = sorted(data, key=lambda k: k["indent"], reverse=True)
for ld in loop_data:
if ld["parent_territory"]:
parent_data = [x for x in data if x["territory"] == ld["parent_territory"]][0]
for key in parent_data.keys():
if key not in ["indent", "territory", "parent_territory", "bold"]:
parent_data[key] += ld[key]
return columns, data, None, None, None, 1
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 16 | customer_acquisition_and_loyalty.py | 608 | style: format code with black | 14,514 | 0 | 119 | 382 | 112 | 67,398 | 166 | erpnext | 40 | erpnext/selling/report/customer_acquisition_and_loyalty/customer_acquisition_and_loyalty.py | Python | 47 | {
"docstring": "SELECT name, lft, parent_territory, is_group FROM `tabTerritory` ORDER BY lft",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/frappe/erpnext.git |
|
2 | test_multipartite_layout_layer_order | def test_multipartite_layout_layer_order():
G = nx.Graph()
for node, layer in zip(("a", "b", "c", "d", "e"), (2, 3, 1, 2, 4)):
G.add_node(node, subset=layer)
# Horizontal alignment, therefore y-coord determines layers
pos = nx.multipartite_layout(G, align="horizontal")
# Nodes "a" and "d" are in the same layer
assert pos["a"][-1] == pos["d"][-1]
# positions should be sorted according to layer
assert pos["c"][-1] < pos["a"][-1] < pos["b"][-1] < pos["e"][-1]
# Make sure that multipartite_layout still works when layers are not sortable
G.nodes["a"]["subset"] = "layer_0" # Can't sort mixed strs/ints
pos_nosort = nx.multipartite_layout(G) # smoke test: this should not raise
assert pos_nosort.keys() == pos.keys()
| 23fc7568a5179c54dccd0c6f68760877f88aa4b6 | 10 | test_layout.py | 257 | Recover order of layers in multipartite_layout when layers are sortable (#5705)
* Add test for sorted layers.
* Implement layer sorting when possible.
Co-authored-by: Dan Schult <[email protected]>
* Add test case for non-sortable layers.
Co-authored-by: Dan Schult <[email protected]> | 42,138 | 0 | 144 | 151 | 75 | 176,846 | 96 | networkx | 15 | networkx/drawing/tests/test_layout.py | Python | 10 | {
"docstring": "Return the layers in sorted order if the layers of the multipartite\n graph are sortable. See gh-5691",
"language": "en",
"n_whitespaces": 19,
"n_words": 17,
"vocab_size": 14
} | https://github.com/networkx/networkx.git |
|
2 | trace_basic_info | def trace_basic_info(finder):
# type: (PackageFinder) -> None
# Display where finder is looking for packages
search_scope = finder.search_scope
locations = search_scope.get_formatted_locations()
if locations:
logger.info(locations)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 9 | req_command.py | 50 | upd; format | 12,210 | 0 | 77 | 27 | 22 | 60,561 | 24 | transferlearning | 7 | .venv/lib/python3.8/site-packages/pip/_internal/cli/req_command.py | Python | 5 | {
"docstring": "\n Trace basic information about the provided objects.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | https://github.com/jindongwang/transferlearning.git |
|
4 | draw | def draw(self, pictorial=True):
if not numpy:
raise ImportError("To use this function numpy module is required")
x = self.variable
# checking whether length is an expression in terms of any Symbol.
if isinstance(self.length, Expr):
l = list(self.length.atoms(Symbol))
# assigning every Symbol a default value of 10
l = {i:10 for i in l}
length = self.length.subs(l)
else:
l = {}
length = self.length
height = length/10
rectangles = []
rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"})
annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l)
support_markers, support_rectangles = self._draw_supports(length, l)
rectangles += support_rectangles
markers += support_markers
sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length),
xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations,
markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False)
return sing_plot
| 24f1e7730119fe958cc8e28411f790c9a5ec04eb | 13 | beam.py | 344 | Fix various typos
Found via `codespell -q 3 -L aboves,aline,ans,aother,arithmetics,assum,atleast,braket,clen,declar,declars,dorder,dum,enew,fo,fro,inout,iself,ist,ket,lamda,lightyear,lightyears,nd,numer,numers,orderd,ot,pring,rcall,rever,ro,ser,siz,splitted,sring,supercedes,te,tht,unequality,upto,vas,versin,whet` | 49,636 | 0 | 318 | 226 | 91 | 200,421 | 119 | sympy | 35 | sympy/physics/continuum_mechanics/beam.py | Python | 22 | {
"docstring": "\n Returns a plot object representing the beam diagram of the beam.\n\n .. note::\n The user must be careful while entering load values.\n The draw function assumes a sign convention which is used\n for plotting loads.\n Given a right handed coordinate system with XYZ coordinates,\n the beam's length is assumed to be along the positive X axis.\n The draw function recognizes positive loads(with n>-2) as loads\n acting along negative Y direction and positive moments acting\n along positive Z direction.\n\n Parameters\n ==========\n\n pictorial: Boolean (default=True)\n Setting ``pictorial=True`` would simply create a pictorial (scaled) view\n of the beam diagram not with the exact dimensions.\n Although setting ``pictorial=False`` would create a beam diagram with\n the exact dimensions on the plot\n\n Examples\n ========\n\n .. plot::\n :context: close-figs\n :format: doctest\n :include-source: True\n\n >>> from sympy.physics.continuum_mechanics.beam import Beam\n >>> from sympy import symbols\n >>> R1, R2 = symbols('R1, R2')\n >>> E, I = symbols('E, I')\n >>> b = Beam(50, 20, 30)\n >>> b.apply_load(10, 2, -1)\n >>> b.apply_load(R1, 10, -1)\n >>> b.apply_load(R2, 30, -1)\n >>> b.apply_load(90, 5, 0, 23)\n >>> b.apply_load(10, 30, 1, 50)\n >>> b.apply_support(50, \"pin\")\n >>> b.apply_support(0, \"fixed\")\n >>> b.apply_support(20, \"roller\")\n >>> p = b.draw()\n >>> p\n Plot object containing:\n [0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0)\n + SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0)\n - SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0)\n [1]: cartesian line: 5 for x over (0.0, 50.0)\n >>> p.show()\n\n ",
"language": "en",
"n_whitespaces": 694,
"n_words": 234,
"vocab_size": 153
} | https://github.com/sympy/sympy.git |
|
1 | get_number_of_leave_days | def get_number_of_leave_days(from_date, to_date, holiday_list):
number_of_days = date_diff(to_date, from_date) + 1
holidays = frappe.db.sql(
,
(from_date, to_date, holiday_list),
)[0][0]
number_of_days = flt(number_of_days) - flt(holidays)
return number_of_days
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 11 | student_leave_application.py | 85 | style: format code with black | 14,052 | 0 | 17 | 57 | 20 | 65,905 | 25 | erpnext | 11 | erpnext/education/doctype/student_leave_application/student_leave_application.py | Python | 15 | {
"docstring": "\n\t\tSELECT\n\t\t\tCOUNT(DISTINCT holiday_date)\n\t\tFROM `tabHoliday` h1,`tabHoliday List` h2\n\t\tWHERE\n\t\t\th1.parent = h2.name and\n\t\t\th1.holiday_date between %s and %s and\n\t\t\th2.name = %s",
"language": "en",
"n_whitespaces": 15,
"n_words": 22,
"vocab_size": 16
} | https://github.com/frappe/erpnext.git |
|
3 | getgeneratorlocals | def getgeneratorlocals(generator):
if not isgenerator(generator):
raise TypeError("{!r} is not a Python generator".format(generator))
frame = getattr(generator, "gi_frame", None)
if frame is not None:
return generator.gi_frame.f_locals
else:
return {}
# ------------------------------------------------ coroutine introspection
CORO_CREATED = 'CORO_CREATED'
CORO_RUNNING = 'CORO_RUNNING'
CORO_SUSPENDED = 'CORO_SUSPENDED'
CORO_CLOSED = 'CORO_CLOSED'
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 12 | inspect.py | 115 | add python 3.10.4 for windows | 55,315 | 0 | 74 | 50 | 33 | 218,447 | 43 | XX-Net | 13 | python3.10.4/Lib/inspect.py | Python | 8 | {
"docstring": "\n Get the mapping of generator local variables to their current values.\n\n A dict is returned, with the keys the local variable names and values the\n bound values.",
"language": "en",
"n_whitespaces": 36,
"n_words": 27,
"vocab_size": 22
} | https://github.com/XX-net/XX-Net.git |
|
3 | _remove_invalid_user | def _remove_invalid_user(self, request):
try:
stored_backend = load_backend(
request.session.get(auth.BACKEND_SESSION_KEY, "")
)
except ImportError:
# backend failed to load
auth.logout(request)
else:
if isinstance(stored_backend, RemoteUserBackend):
auth.logout(request)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 13 | middleware.py | 89 | Refs #33476 -- Reformatted code with Black. | 50,501 | 0 | 136 | 52 | 22 | 203,668 | 23 | django | 13 | django/contrib/auth/middleware.py | Python | 10 | {
"docstring": "\n Remove the current authenticated user in the request which is invalid\n but only if the user is authenticated via the RemoteUserBackend.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 15
} | https://github.com/django/django.git |
|
5 | batch_test | def batch_test(num_threads, delay):
with mock.patch(
"ray.autoscaler._private.aws.node_provider.make_ec2_client"
), mock.patch.object(AWSNodeProvider, "_create_tags", mock_create_tags):
provider = AWSNodeProvider(
provider_config={"region": "nowhere"}, cluster_name="default"
)
provider.batch_counter = 0
provider.tag_update_counter = 0
provider.tag_cache = {str(x): {} for x in range(num_threads)}
threads = []
for x in range(num_threads):
thread = threading.Thread(
target=provider.set_node_tags, args=(str(x), {"foo": "bar"})
)
threads.append(thread)
for thread in threads:
thread.start()
time.sleep(delay)
for thread in threads:
thread.join()
return provider.batch_counter, provider.tag_update_counter
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 17 | test_aws_batch_tag_update.py | 256 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,474 | 0 | 239 | 154 | 43 | 131,087 | 61 | ray | 29 | python/ray/tests/aws/test_aws_batch_tag_update.py | Python | 22 | {
"docstring": "Run AWSNodeProvider.set_node_tags in several threads, with a\n specified delay between thread launches.\n\n Return the number of batches of tag updates and the number of tags\n updated.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 26,
"vocab_size": 22
} | https://github.com/ray-project/ray.git |
|
13 | sample_to_features_text | def sample_to_features_text(sample, tasks, max_seq_len, tokenizer):
if tokenizer.is_fast:
text = sample.clear_text["text"]
# Here, we tokenize the sample for the second time to get all relevant ids
# This should change once we git rid of FARM's tokenize_with_metadata()
inputs = tokenizer(
text,
return_token_type_ids=True,
truncation=True,
truncation_strategy="longest_first",
max_length=max_seq_len,
return_special_tokens_mask=True,
)
if (len(inputs["input_ids"]) - inputs["special_tokens_mask"].count(1)) != len(sample.tokenized["tokens"]):
logger.error(
f"FastTokenizer encoded sample {sample.clear_text['text']} to "
f"{len(inputs['input_ids']) - inputs['special_tokens_mask'].count(1)} tokens, which differs "
f"from number of tokens produced in tokenize_with_metadata(). \n"
f"Further processing is likely to be wrong."
)
else:
# TODO It might be cleaner to adjust the data structure in sample.tokenized
tokens_a = sample.tokenized["tokens"]
tokens_b = sample.tokenized.get("tokens_b", None)
inputs = tokenizer.encode_plus(
tokens_a,
tokens_b,
add_special_tokens=True,
truncation=False, # truncation_strategy is deprecated
return_token_type_ids=True,
is_split_into_words=False,
)
input_ids, segment_ids = inputs["input_ids"], inputs["token_type_ids"]
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
padding_mask = [1] * len(input_ids)
# Padding up to the sequence length.
# Normal case: adding multiple 0 to the right
# Special cases:
# a) xlnet pads on the left and uses "4" for padding token_type_ids
if tokenizer.__class__.__name__ == "XLNetTokenizer":
pad_on_left = True
segment_ids = pad(segment_ids, max_seq_len, 4, pad_on_left=pad_on_left)
else:
pad_on_left = False
segment_ids = pad(segment_ids, max_seq_len, 0, pad_on_left=pad_on_left)
input_ids = pad(input_ids, max_seq_len, tokenizer.pad_token_id, pad_on_left=pad_on_left)
padding_mask = pad(padding_mask, max_seq_len, 0, pad_on_left=pad_on_left)
assert len(input_ids) == max_seq_len
assert len(padding_mask) == max_seq_len
assert len(segment_ids) == max_seq_len
feat_dict = {
"input_ids": input_ids,
"padding_mask": padding_mask,
"segment_ids": segment_ids,
}
# Add Labels for different tasks
for task_name, task in tasks.items():
try:
label_name = task["label_name"]
label_raw = sample.clear_text[label_name]
label_list = task["label_list"]
if task["task_type"] == "classification":
# id of label
try:
label_ids = [label_list.index(label_raw)]
except ValueError as e:
raise ValueError(f"[Task: {task_name}] Observed label {label_raw} not in defined label_list")
elif task["task_type"] == "multilabel_classification":
# multi-hot-format
label_ids = [0] * len(label_list)
for l in label_raw.split(","):
if l != "":
label_ids[label_list.index(l)] = 1
elif task["task_type"] == "regression":
label_ids = [float(label_raw)]
else:
raise ValueError(task["task_type"])
except KeyError:
# For inference mode we don't expect labels
label_ids = None
if label_ids is not None:
feat_dict[task["label_tensor_name"]] = label_ids
return [feat_dict]
| a59bca366174d9c692fa19750c24d65f47660ef7 | 20 | input_features.py | 778 | Apply black formatting (#2115)
* Testing black on ui/
* Applying black on docstores
* Add latest docstring and tutorial changes
* Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too
* Remove comments
* Relax constraints on pydoc-markdown
* Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade
* Fix a couple of bugs
* Add a type: ignore that was missing somehow
* Give path to black
* Apply Black
* Apply Black
* Relocate a couple of type: ignore
* Update documentation
* Make Linux CI run after applying Black
* Triggering Black
* Apply Black
* Remove dependency, does not work well
* Remove manually double trailing commas
* Update documentation
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | 74,800 | 0 | 1,081 | 439 | 214 | 256,204 | 338 | haystack | 48 | haystack/modeling/data_handler/input_features.py | Python | 71 | {
"docstring": "\n Generates a dictionary of features for a given input sample that is to be consumed by a text classification model.\n\n :param sample: Sample object that contains human readable text and label fields from a single text classification data sample\n :type sample: Sample\n :param tasks: A dictionary where the keys are the names of the tasks and the values are the details of the task (e.g. label_list, metric, tensor name)\n :type tasks: dict\n :param max_seq_len: Sequences are truncated after this many tokens\n :type max_seq_len: int\n :param tokenizer: A tokenizer object that can turn string sentences into a list of tokens\n :return: A list with one dictionary containing the keys \"input_ids\", \"padding_mask\" and \"segment_ids\" (also \"label_ids\" if not\n in inference mode). The values are lists containing those features.\n :rtype: list\n ",
"language": "en",
"n_whitespaces": 174,
"n_words": 128,
"vocab_size": 84
} | https://github.com/deepset-ai/haystack.git |
|
1 | available | def available(self) -> bool:
return (self.ecowitt.last_update_m + 5 * 60) > time.monotonic()
| 105bb3e08264c753012f10fd35f8358c8683646d | 10 | entity.py | 44 | Ecowitt integration (#77441)
* Add ecowitt integration
* add tests
* use total
* use total
* test coverage
* Update homeassistant/components/ecowitt/__init__.py
Co-authored-by: Paulus Schoutsen <[email protected]>
* Update homeassistant/components/ecowitt/binary_sensor.py
Co-authored-by: Paulus Schoutsen <[email protected]>
* Update homeassistant/components/ecowitt/entity.py
Co-authored-by: Paulus Schoutsen <[email protected]>
* Update homeassistant/components/ecowitt/diagnostics.py
Co-authored-by: Paulus Schoutsen <[email protected]>
* add to async_on_unload
* remove attr_name / unload callback
* support unload platforms
* using replace
* address mapping
* update type
* mark final
* Apply suggestions from code review
Co-authored-by: Martin Hjelmare <[email protected]>
* Fix bracket
* Fix another bracket
* Address comment
* Add strings
* update tests
* Update homeassistant/components/ecowitt/strings.json
Co-authored-by: Martin Hjelmare <[email protected]>
* update text
* Update homeassistant/components/ecowitt/strings.json
Co-authored-by: Martin Hjelmare <[email protected]>
Co-authored-by: Paulus Schoutsen <[email protected]>
Co-authored-by: Martin Hjelmare <[email protected]> | 104,111 | 0 | 26 | 26 | 12 | 305,321 | 12 | core | 7 | homeassistant/components/ecowitt/entity.py | Python | 3 | {
"docstring": "Return whether the state is based on actual reading from device.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/home-assistant/core.git |
|
7 | _get_selection_override | def _get_selection_override(self, prev, next_, opposite):
cmdutils.check_exclusive((prev, next_, opposite), 'pno')
if prev:
return QTabBar.SelectionBehavior.SelectLeftTab
elif next_:
return QTabBar.SelectionBehavior.SelectRightTab
elif opposite:
conf_selection = config.val.tabs.select_on_remove
if conf_selection == QTabBar.SelectionBehavior.SelectLeftTab:
return QTabBar.SelectionBehavior.SelectRightTab
elif conf_selection == QTabBar.SelectionBehavior.SelectRightTab:
return QTabBar.SelectionBehavior.SelectLeftTab
elif conf_selection == QTabBar.SelectionBehavior.SelectPreviousTab:
raise cmdutils.CommandError(
"-o is not supported with 'tabs.select_on_remove' set to "
"'last-used'!")
else: # pragma: no cover
raise ValueError("Invalid select_on_remove value "
"{!r}!".format(conf_selection))
return None
| 0877fb0d78635692e481c8bde224fac5ad0dd430 | 17 | commands.py | 194 | Run scripts/dev/rewrite_enums.py | 117,512 | 0 | 313 | 118 | 45 | 321,077 | 63 | qutebrowser | 20 | qutebrowser/browser/commands.py | Python | 20 | {
"docstring": "Helper function for tab_close to get the tab to select.\n\n Args:\n prev: Force selecting the tab before the current tab.\n next_: Force selecting the tab after the current tab.\n opposite: Force selecting the tab in the opposite direction of\n what's configured in 'tabs.select_on_remove'.\n\n Return:\n QTabBar.SelectionBehavior.SelectLeftTab, QTabBar.SelectionBehavior.SelectRightTab, or None if no change\n should be made.\n ",
"language": "en",
"n_whitespaces": 151,
"n_words": 54,
"vocab_size": 37
} | https://github.com/qutebrowser/qutebrowser.git |
|
42 | resolve_type_hint | def resolve_type_hint(hint) -> Any:
origin, args = _get_type_hint_origin(hint)
excluded_fields = get_override(hint, "exclude_fields", [])
if origin is None and is_basic_type(hint, allow_none=False):
return build_basic_type(hint)
elif origin is None and inspect.isclass(hint) and issubclass(hint, tuple):
# a convoluted way to catch NamedTuple. suggestions welcome.
if get_type_hints(hint):
properties = {k: resolve_type_hint(v) for k, v in get_type_hints(hint).items()}
else:
properties = {k: build_basic_type(OpenApiTypes.ANY) for k in hint._fields}
return build_object_type(properties=properties, required=properties.keys())
elif origin is list or hint is list:
return build_array_type(
resolve_type_hint(args[0]) if args else build_basic_type(OpenApiTypes.ANY)
)
elif origin is tuple:
return build_array_type(
schema=build_basic_type(args[0]),
max_length=len(args),
min_length=len(args),
)
elif origin is dict or origin is defaultdict:
schema = build_basic_type(OpenApiTypes.OBJECT)
if args and args[1] is not typing.Any:
schema["additionalProperties"] = resolve_type_hint(args[1])
return schema
elif origin is set:
return build_array_type(resolve_type_hint(args[0]))
elif origin is frozenset:
return build_array_type(resolve_type_hint(args[0]))
elif origin is Literal:
# Literal only works for python >= 3.8 despite typing_extensions, because it
# behaves slightly different w.r.t. __origin__
schema = {"enum": list(args)}
if all(type(args[0]) is type(choice) for choice in args):
schema.update(build_basic_type(type(args[0])))
return schema
elif inspect.isclass(hint) and issubclass(hint, Enum):
schema = {"enum": [item.value for item in hint]}
mixin_base_types = [t for t in hint.__mro__ if is_basic_type(t)]
if mixin_base_types:
schema.update(build_basic_type(mixin_base_types[0]))
return schema
elif isinstance(hint, _TypedDictMeta):
return build_object_type(
properties={
k: resolve_type_hint(v)
for k, v in get_type_hints(hint).items()
if k not in excluded_fields
},
description=inspect.cleandoc(hint.__doc__ or ""),
required=[h for h in hint.__required_keys__ if h not in excluded_fields],
)
elif origin is Union:
type_args = [arg for arg in args if arg is not type(None)] # noqa: E721
if len(type_args) > 1:
schema = {"oneOf": [resolve_type_hint(arg) for arg in type_args]}
else:
schema = resolve_type_hint(type_args[0])
if type(None) in args:
schema["nullable"] = True
return schema
elif origin is collections.abc.Iterable:
return build_array_type(resolve_type_hint(args[0]))
elif isinstance(hint, typing._TypedDictMeta):
raise UnableToProceedError("Wrong TypedDict class, please use typing_extensions.TypedDict")
else:
raise UnableToProceedError(hint)
| 286bf2ae7ecfdd6698d8fb1cd4753f107159d4d2 | 17 | spectacular_ports.py | 895 | ref: use dict instead of OrderedDict since sentry is >python3.6 (#39695)
partially automated (especially the fixtures) also via `\(([^]+),
(.*)\),$` -> `\1: \2,` | 18,119 | 0 | 788 | 569 | 148 | 86,529 | 284 | sentry | 63 | src/sentry/apidocs/spectacular_ports.py | Python | 67 | {
"docstring": "drf-spectacular library method modified as described above",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/getsentry/sentry.git |
|
1 | edge_centers | def edge_centers(self):
x0, y0, width, height = self._rect_bbox
w = width / 2.
h = height / 2.
xe = x0, x0 + w, x0 + width, x0 + w
ye = y0 + h, y0, y0 + h, y0 + height
transform = self._get_rotation_transform()
coords = transform.transform(np.array([xe, ye]).T).T
return coords[0], coords[1]
| 1504c4d7d4ed3121c6aa0e8060325ddf1bd10d06 | 13 | widgets.py | 144 | DOC: fix various typos | 22,906 | 0 | 115 | 97 | 28 | 107,770 | 52 | matplotlib | 17 | lib/matplotlib/widgets.py | Python | 9 | {
"docstring": "\n Midpoint of rectangle edges in data coordinates from left,\n moving anti-clockwise.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 11,
"vocab_size": 11
} | https://github.com/matplotlib/matplotlib.git |
|
2 | get_event_type | def get_event_type(self) -> str:
column = self._get_column_name(Columns.TYPE)
if column in self._snuba_data:
return cast(str, self._snuba_data[column])
return cast(str, self.data.get("type", "default"))
| 6aaaf5089b2c39757883179df5a8512db3b0c716 | 11 | models.py | 87 | feat(perf_issues): Add `GroupEvent` and split some functionality in `Event` into a base class. (#38143)
Since we can now have events with multiple groups, we can no longer rely on the `Event.group`
property. This pr adds in a `GroupEvent` subclass that should be passed around wherever we expect an
event to have a single `Group` associated with it.
`Event` has been split up into `BaseEvent` and `Event`. We will deprecate and remove uses of
`group_id` and `group` in the `Event` class going forward. If we need an event with a `Group`, we
can use `build_group_events` to fetch all `GroupEvents` associated with the `Event`, or `for_group`
if we just need a specific `Event`/`Group` pairing.
Going forward, the plan is to store all groups in the `groups` property. This means that error
events being sent via eventstream will have their group included in `groups` as well. We'll
need to update the errors processor in snuba to look there instead of `group_id`. This seems cleaner
long term, instead of having both `group_id` and `group_ids` passed through.
To figure out where we need to use `build_group_events` and `for_group` we can do a mix of searching
the codebase and commenting out the `group_id` and `group` properties and see how CI goes. | 17,984 | 0 | 57 | 53 | 15 | 85,390 | 18 | sentry | 11 | src/sentry/eventstore/models.py | Python | 10 | {
"docstring": "\n Return the type of this event.\n\n See ``sentry.eventtypes``.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 8,
"vocab_size": 8
} | https://github.com/getsentry/sentry.git |
|
1 | _dequantize | def _dequantize(self, quantized_val, scale, zero_point):
real_val = scale * (quantized_val - zero_point)
return real_val
| d68c786ff81bad19c04619d6a999ff34aaa724e7 | 9 | qat_quantizer.py | 36 | [Compression] remove pruning v1 & refactor directory (#5228) | 24,993 | 0 | 35 | 23 | 13 | 113,659 | 14 | nni | 6 | nni/compression/pytorch/quantization/qat_quantizer.py | Python | 3 | {
"docstring": "\n dequantize quantized value.\n Because we simulate quantization in training process, all the computations still happen as float point computations, which means we\n first quantize tensors then dequantize them. For more details, please refer to the paper.\n\n Parameters\n ----------\n quantized_val : torch.Tensor\n the quantized value to be de-quantized\n scale : torch.Tensor\n quantization scale\n zero_point : torch.Tensor\n quantization zero point\n\n Returns\n -------\n Tensor\n ",
"language": "en",
"n_whitespaces": 179,
"n_words": 61,
"vocab_size": 47
} | https://github.com/microsoft/nni.git |
|
1 | get_attributes | def get_attributes(self) -> dict[str, str]:
return _attributes(
message=self.message,
type=self.type,
)
| 871b2ca73adcba3a35551247cf839246cf121231 | 9 | _junit_xml.py | 45 | Simplify existing type hints. | 78,616 | 0 | 53 | 29 | 10 | 266,836 | 10 | ansible | 7 | lib/ansible/utils/_junit_xml.py | Python | 6 | {
"docstring": "Return a dictionary of attributes for this instance.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/ansible/ansible.git |
|
8 | node_attribute_xy | def node_attribute_xy(G, attribute, nodes=None):
if nodes is None:
nodes = set(G)
else:
nodes = set(nodes)
Gnodes = G.nodes
for u, nbrsdict in G.adjacency():
if u not in nodes:
continue
uattr = Gnodes[u].get(attribute, None)
if G.is_multigraph():
for v, keys in nbrsdict.items():
vattr = Gnodes[v].get(attribute, None)
for _ in keys:
yield (uattr, vattr)
else:
for v in nbrsdict:
vattr = Gnodes[v].get(attribute, None)
yield (uattr, vattr)
| 34d9d630bb02426d297d3e20fedb7da8c3ced03a | 16 | pairs.py | 210 | MAINT: Cleanup assortativity module, remove unused variables (#5301)
Remove unused variables, sort imports,
raise errors instead of accepting invalid arguments silently
Co-authored-by: Dan Schult <[email protected]> | 41,837 | 0 | 232 | 135 | 39 | 176,323 | 63 | networkx | 17 | networkx/algorithms/assortativity/pairs.py | Python | 19 | {
"docstring": "Returns iterator of node-attribute pairs for all edges in G.\n\n Parameters\n ----------\n G: NetworkX graph\n\n attribute: key\n The node attribute key.\n\n nodes: list or iterable (optional)\n Use only edges that are incident to specified nodes.\n The default is all nodes.\n\n Returns\n -------\n (x, y): 2-tuple\n Generates 2-tuple of (attribute, attribute) values.\n\n Examples\n --------\n >>> G = nx.DiGraph()\n >>> G.add_node(1, color=\"red\")\n >>> G.add_node(2, color=\"blue\")\n >>> G.add_edge(1, 2)\n >>> list(nx.node_attribute_xy(G, \"color\"))\n [('red', 'blue')]\n\n Notes\n -----\n For undirected graphs each edge is produced twice, once for each edge\n representation (u, v) and (v, u), with the exception of self-loop edges\n which only appear once.\n ",
"language": "en",
"n_whitespaces": 194,
"n_words": 101,
"vocab_size": 83
} | https://github.com/networkx/networkx.git |
|
1 | test_apply_cache_factor_from_config | def test_apply_cache_factor_from_config(self):
config = {"caches": {"event_cache_size": "10k"}}
self.config.read_config(config, config_dir_path="", data_dir_path="")
self.config.resize_all_caches()
cache = LruCache(
max_size=self.config.event_cache_size,
apply_cache_factor_from_config=False,
)
add_resizable_cache("event_cache", cache_resize_callback=cache.set_cache_factor)
self.assertEqual(cache.max_size, 10240)
| d38d242411b8910dfacde1e61fd3a0ec5cbcaa66 | 11 | test_cache.py | 132 | Reload cache factors from disk on SIGHUP (#12673) | 72,179 | 0 | 99 | 77 | 20 | 248,248 | 21 | synapse | 16 | tests/config/test_cache.py | Python | 10 | {
"docstring": "Caches can disable applying cache factor updates, mainly used by\n event cache size.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 13,
"vocab_size": 12
} | https://github.com/matrix-org/synapse.git |
|
1 | remove | def remove(self) -> AwaitRemove:
await_remove = self.app._remove_nodes([self])
return await_remove
| f07684438f1d4f9f18022b1e0d21b908ca299a23 | 9 | widget.py | 38 | fix remove freeze | 45,233 | 0 | 30 | 22 | 8 | 185,889 | 9 | textual | 6 | src/textual/widget.py | Python | 8 | {
"docstring": "Remove the Widget from the DOM (effectively deleting it)\n\n Returns:\n AwaitRemove: An awaitable object that waits for the widget to be removed.\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 22,
"vocab_size": 20
} | https://github.com/Textualize/textual.git |
|
3 | binaries_check | def binaries_check(app_configs, **kwargs):
error = "Paperless can't find {}. Without it, consumption is impossible."
hint = "Either it's not in your ${PATH} or it's not installed."
binaries = (settings.CONVERT_BINARY, settings.OPTIPNG_BINARY, "tesseract")
check_messages = []
for binary in binaries:
if shutil.which(binary) is None:
check_messages.append(Warning(error.format(binary), hint))
return check_messages
@register() | fc695896dd8b0169001c438054a79e347053fac6 | @register() | 15 | checks.py | 117 | Format Python code with black | 116,916 | 1 | 85 | 65 | 39 | 318,781 | 47 | paperless-ngx | 17 | src/paperless/checks.py | Python | 9 | {
"docstring": "\n Paperless requires the existence of a few binaries, so we do some checks\n for those here.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 16,
"vocab_size": 16
} | https://github.com/paperless-ngx/paperless-ngx.git |
7 | generate_gray | def generate_gray(self, **hints):
bits = self.n
start = None
if "start" in hints:
start = hints["start"]
elif "rank" in hints:
start = GrayCode.unrank(self.n, hints["rank"])
if start is not None:
self._current = start
current = self.current
graycode_bin = gray_to_bin(current)
if len(graycode_bin) > self.n:
raise ValueError('Gray code start has length %i but should '
'not be greater than %i' % (len(graycode_bin), bits))
self._current = int(current, 2)
graycode_int = int(''.join(graycode_bin), 2)
for i in range(graycode_int, 1 << bits):
if self._skip:
self._skip = False
else:
yield self.current
bbtc = (i ^ (i + 1))
gbtc = (bbtc ^ (bbtc >> 1))
self._current = (self._current ^ gbtc)
self._current = 0
| 498015021131af4dbb07eb110e5badaba8250c7b | 13 | graycode.py | 303 | Updated import locations | 47,600 | 0 | 336 | 186 | 71 | 196,100 | 105 | sympy | 22 | sympy/combinatorics/graycode.py | Python | 25 | {
"docstring": "\n Generates the sequence of bit vectors of a Gray Code.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import GrayCode\n >>> a = GrayCode(3)\n >>> list(a.generate_gray())\n ['000', '001', '011', '010', '110', '111', '101', '100']\n >>> list(a.generate_gray(start='011'))\n ['011', '010', '110', '111', '101', '100']\n >>> list(a.generate_gray(rank=4))\n ['110', '111', '101', '100']\n\n See Also\n ========\n\n skip\n\n References\n ==========\n\n .. [1] Knuth, D. (2011). The Art of Computer Programming,\n Vol 4, Addison Wesley\n\n ",
"language": "en",
"n_whitespaces": 206,
"n_words": 65,
"vocab_size": 49
} | https://github.com/sympy/sympy.git |
|
3 | not_in_timeout | def not_in_timeout(cls, last_triggered, timeout):
return (
last_triggered is None
or timeout is None
or (time.time() - last_triggered > timeout)
)
| 8c2428c9d355ca5fbc3dd90e9820ceb1cc795837 | 12 | watchdog.py | 51 | [autofix.ci] apply automated fixes | 74,072 | 0 | 74 | 32 | 16 | 253,415 | 20 | mitmproxy | 5 | examples/contrib/webscanner_helper/watchdog.py | Python | 6 | {
"docstring": "Checks if current error lies not in timeout after last trigger (potential reset of connection).",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 15
} | https://github.com/mitmproxy/mitmproxy.git |
|
8 | _get_spec | def _get_spec(cls, fullname, path, target=None):
# If this ends up being a namespace package, namespace_path is
# the list of paths that will become its __path__
namespace_path = []
for entry in path:
if not isinstance(entry, (str, bytes)):
continue
finder = cls._path_importer_cache(entry)
if finder is not None:
if hasattr(finder, 'find_spec'):
spec = finder.find_spec(fullname, target)
else:
spec = cls._legacy_get_spec(fullname, finder)
if spec is None:
continue
if spec.loader is not None:
return spec
portions = spec.submodule_search_locations
if portions is None:
raise ImportError('spec missing loader')
# This is possibly part of a namespace package.
# Remember these path entries (if any) for when we
# create a namespace package, and continue iterating
# on path.
namespace_path.extend(portions)
else:
spec = _bootstrap.ModuleSpec(fullname, None)
spec.submodule_search_locations = namespace_path
return spec
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 15 | _bootstrap_external.py | 224 | add python 3.10.4 for windows | 55,141 | 0 | 510 | 137 | 76 | 218,115 | 123 | XX-Net | 23 | python3.10.4/Lib/importlib/_bootstrap_external.py | Python | 23 | {
"docstring": "Find the loader or namespace_path for this module/package name.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/XX-net/XX-Net.git |
|
7 | test_list_rooms_pagination | def test_list_rooms_pagination(self) -> None:
# Create 5 test rooms
total_rooms = 5
room_ids = []
for _ in range(total_rooms):
room_id = self.helper.create_room_as(
self.admin_user, tok=self.admin_user_tok
)
room_ids.append(room_id)
# Set the name of the rooms so we get a consistent returned ordering
for idx, room_id in enumerate(room_ids):
self.helper.send_state(
room_id,
"m.room.name",
{"name": str(idx)},
tok=self.admin_user_tok,
)
# Request the list of rooms
returned_room_ids = []
start = 0
limit = 2
run_count = 0
should_repeat = True
while should_repeat:
run_count += 1
url = "/_synapse/admin/v1/rooms?from=%d&limit=%d&order_by=%s" % (
start,
limit,
"name",
)
channel = self.make_request(
"GET",
url.encode("ascii"),
access_token=self.admin_user_tok,
)
self.assertEqual(200, channel.code, msg=channel.json_body)
self.assertTrue("rooms" in channel.json_body)
for r in channel.json_body["rooms"]:
returned_room_ids.append(r["room_id"])
# Check that the correct number of total rooms was returned
self.assertEqual(channel.json_body["total_rooms"], total_rooms)
# Check that the offset is correct
# We're only getting 2 rooms each page, so should be 2 * last run_count
self.assertEqual(channel.json_body["offset"], 2 * (run_count - 1))
if run_count > 1:
# Check the value of prev_batch is correct
self.assertEqual(channel.json_body["prev_batch"], 2 * (run_count - 2))
if "next_batch" not in channel.json_body:
# We have reached the end of the list
should_repeat = False
else:
# Make another query with an updated start value
start = channel.json_body["next_batch"]
# We should've queried the endpoint 3 times
self.assertEqual(
run_count,
3,
msg="Should've queried 3 times for 5 rooms with limit 2 per query",
)
# Check that we received all of the room ids
self.assertEqual(room_ids, returned_room_ids)
url = "/_synapse/admin/v1/rooms?from=%d&limit=%d" % (start, limit)
channel = self.make_request(
"GET",
url.encode("ascii"),
access_token=self.admin_user_tok,
)
self.assertEqual(200, channel.code, msg=channel.json_body)
| c97042f7eef3748e17c90e48a4122389a89c4735 | 14 | test_room.py | 542 | Use literals in place of `HTTPStatus` constants in tests (#13469) | 72,648 | 0 | 974 | 329 | 142 | 249,141 | 246 | synapse | 33 | tests/rest/admin/test_room.py | Python | 58 | {
"docstring": "Test that we can get a full list of rooms through pagination",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | https://github.com/matrix-org/synapse.git |
|
3 | draw_background | def draw_background(self, face):
x_offset = RACK_ELEVATION_BORDER_WIDTH + self.legend_width
url_string = '{}?{}&position={{}}'.format(
reverse('dcim:device_add'),
urlencode({
'site': self.rack.site.pk,
'location': self.rack.location.pk if self.rack.location else '',
'rack': self.rack.pk,
'face': face,
})
)
for ru in range(0, self.rack.u_height):
y_offset = RACK_ELEVATION_BORDER_WIDTH + ru * self.unit_height
text_coords = (
x_offset + self.unit_width / 2,
y_offset + self.unit_height / 2
)
link = Hyperlink(href=url_string.format(ru), target='_blank')
link.add(Rect((x_offset, y_offset), (self.unit_width, self.unit_height), class_='slot'))
link.add(self.drawing.text('add device', insert=text_coords, class_='add-device'))
self.drawing.add(link)
| 0c915f7de9612c7485da3713cc6d63f368698a5d | 16 | svg.py | 300 | Clean up rack elevation rendering | 77,988 | 0 | 302 | 187 | 53 | 265,101 | 67 | netbox | 31 | netbox/dcim/svg.py | Python | 21 | {
"docstring": "\n Draw the rack unit placeholders which form the \"background\" of the rack elevation.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 10
} | https://github.com/netbox-community/netbox.git |
|
2 | update | def update(self) -> None:
self._data.update()
self._attr_native_value = self._data.get_value(self._type)
if self._attr_native_value is None:
_LOGGER.debug("Could not get data for %s", self._type)
| bf7239c25db06f1377a895244a906b43242c9963 | 10 | sensor.py | 78 | Improve entity type hints [d] (#77031) | 103,157 | 0 | 58 | 46 | 17 | 304,350 | 19 | core | 8 | homeassistant/components/danfoss_air/sensor.py | Python | 10 | {
"docstring": "Update the new state of the sensor.\n\n This is done through the DanfossAir object that does the actual\n communication with the Air CCM.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 23,
"vocab_size": 19
} | https://github.com/home-assistant/core.git |
|
14 | compatible_platforms | def compatible_platforms(provided, required):
if provided is None or required is None or provided == required:
# easy case
return True
# Mac OS X special cases
reqMac = macosVersionString.match(required)
if reqMac:
provMac = macosVersionString.match(provided)
# is this a Mac package?
if not provMac:
# this is backwards compatibility for packages built before
# setuptools 0.6. All packages built after this point will
# use the new macosx designation.
provDarwin = darwinVersionString.match(provided)
if provDarwin:
dversion = int(provDarwin.group(1))
macosversion = "%s.%s" % (reqMac.group(1), reqMac.group(2))
if dversion == 7 and macosversion >= "10.3" or \
dversion == 8 and macosversion >= "10.4":
return True
# egg isn't macosx or legacy darwin
return False
# are they the same major version and machine type?
if provMac.group(1) != reqMac.group(1) or \
provMac.group(3) != reqMac.group(3):
return False
# is the required OS major update >= the provided one?
if int(provMac.group(2)) > int(reqMac.group(2)):
return False
return True
# XXX Linux and other platforms' special cases should go here
return False
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 16 | __init__.py | 281 | upd; format | 13,149 | 0 | 455 | 168 | 95 | 63,105 | 163 | transferlearning | 13 | .venv/lib/python3.8/site-packages/pip/_vendor/pkg_resources/__init__.py | Python | 22 | {
"docstring": "Can code for the `provided` platform run on the `required` platform?\n\n Returns true if either platform is ``None``, or the platforms are equal.\n\n XXX Needs compatibility checks for Linux and other unixy OSes.\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 33,
"vocab_size": 29
} | https://github.com/jindongwang/transferlearning.git |
|
2 | option_list_all | def option_list_all(self):
# type: () -> List[optparse.Option]
res = self.option_list[:]
for i in self.option_groups:
res.extend(i.option_list)
return res
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 10 | parser.py | 53 | upd; format | 12,198 | 0 | 63 | 31 | 16 | 60,536 | 17 | transferlearning | 7 | .venv/lib/python3.8/site-packages/pip/_internal/cli/parser.py | Python | 5 | {
"docstring": "Get a list of all options, including those in option groups.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/jindongwang/transferlearning.git |
|
2 | is_private | def is_private(self):
return (self.network_address.is_private and
self.broadcast_address.is_private)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 9 | ipaddress.py | 34 | add python 3.10.4 for windows | 55,379 | 0 | 35 | 20 | 6 | 218,544 | 6 | XX-Net | 4 | python3.10.4/Lib/ipaddress.py | Python | 3 | {
"docstring": "Test if this address is allocated for private networks.\n\n Returns:\n A boolean, True if the address is reserved per\n iana-ipv4-special-registry or iana-ipv6-special-registry.\n\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 22,
"vocab_size": 19
} | https://github.com/XX-net/XX-Net.git |
|
5 | _get_tune_run_arguments | def _get_tune_run_arguments(self) -> Dict[str, Any]:
return dict(
mode=self._tune_config.mode,
metric=self._tune_config.metric,
callbacks=self._run_config.callbacks,
sync_config=self._run_config.sync_config,
stop=self._run_config.stop,
max_failures=(
self._run_config.failure_config.max_failures
if self._run_config.failure_config
else 0
),
keep_checkpoints_num=(
self._run_config.checkpoint_config.num_to_keep
if self._run_config.checkpoint_config
else None
),
checkpoint_score_attr=(
self._run_config.checkpoint_config._tune_legacy_checkpoint_score_attr
if self._run_config.checkpoint_config
else None
),
_experiment_checkpoint_dir=self._experiment_checkpoint_dir,
raise_on_failed_trial=False,
fail_fast=(
self._run_config.failure_config.fail_fast
if self._run_config.failure_config
else False
),
verbose=self._run_config.verbose,
)
| b3878e26d765e28dd7c69abadbd856181037db97 | 13 | tuner_internal.py | 220 | [AIR] Fix `ResourceChangingScheduler` not working with AIR (#26307)
This PR ensures that the new trial resources set by `ResourceChangingScheduler` are respected by the train loop logic by modifying the scaling config to match. Previously, even though trials had their resources updated, the scaling config was not modified which lead to eg. new workers not being spawned in the `DataParallelTrainer` even though resources were available.
In order to accomplish this, `ScalingConfigDataClass` is updated to allow equality comparisons with other `ScalingConfigDataClass`es (using the underlying PGF) and to create a `ScalingConfigDataClass` from a PGF.
Please note that this is an internal only change intended to actually make `ResourceChangingScheduler` work. In the future, `ResourceChangingScheduler` should be updated to operate on `ScalingConfigDataClass`es instead of PGFs as it is now. That will require a deprecation cycle. | 27,646 | 0 | 421 | 155 | 32 | 124,651 | 44 | ray | 24 | python/ray/tune/impl/tuner_internal.py | Python | 32 | {
"docstring": "Get tune.run arguments common for both new and resumed runs.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/ray-project/ray.git |
|
11 | step | def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
device = self.param_groups[0]['params'][0].device
one_tensor = torch.tensor(1.0, device=device) # because torch.where doesn't handle scalars correctly
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
trust_coeff = group['trust_coeff']
eps = group['eps']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad
# apply LARS LR adaptation, LARC clipping, weight decay
# ref: https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py
if weight_decay != 0 or group['always_adapt']:
w_norm = p.norm(2.0)
g_norm = grad.norm(2.0)
trust_ratio = trust_coeff * w_norm / (g_norm + w_norm * weight_decay + eps)
# FIXME nested where required since logical and/or not working in PT XLA
trust_ratio = torch.where(
w_norm > 0,
torch.where(g_norm > 0, trust_ratio, one_tensor),
one_tensor,
)
if group['trust_clip']:
trust_ratio = torch.minimum(trust_ratio / group['lr'], one_tensor)
grad.add_(p, alpha=weight_decay)
grad.mul_(trust_ratio)
# apply SGD update https://github.com/pytorch/pytorch/blob/1.7/torch/optim/sgd.py#L100
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(grad).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(grad, alpha=1. - dampening)
if nesterov:
grad = grad.add(buf, alpha=momentum)
else:
grad = buf
p.add_(grad, alpha=-group['lr'])
return loss | cdcd0a92ca8a3dc120336a5dde1b7d6ecd5e9186 | 19 | lars.py | 534 | fix lars | 119,869 | 0 | 947 | 331 | 118 | 331,584 | 182 | pytorch-image-models | 34 | timm/optim/lars.py | Python | 44 | {
"docstring": "Performs a single optimization step.\n\n Args:\n closure (callable, optional): A closure that reevaluates the model and returns the loss.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 19,
"vocab_size": 17
} | https://github.com/huggingface/pytorch-image-models.git |
|
1 | _get | def _get(self, *args, **kwargs):
return (
self.deserialize_messages(self.request.session.get(self.session_key)),
True,
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | session.py | 55 | Refs #33476 -- Reformatted code with Black. | 50,674 | 0 | 52 | 35 | 9 | 204,183 | 9 | django | 9 | django/contrib/messages/storage/session.py | Python | 5 | {
"docstring": "\n Retrieve a list of messages from the request's session. This storage\n always stores everything it is given, so return True for the\n all_retrieved flag.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 24,
"vocab_size": 23
} | https://github.com/django/django.git |
|
9 | parse_known_args | def parse_known_args(self, args=None, namespace=None, nohelp=False):
if args is None:
# args default to the system args
args = _sys.argv[1:]
args = fix_underscores(args)
# handle the single dash stuff. See _handle_single_dash_addarg for info
actions = set()
for action in self._actions:
actions.update(action.option_strings)
args = self._handle_single_dash_parsearg(args, actions)
if nohelp:
# ignore help
args = [
a
for a in args
if a != '-h' and a != '--help' and a != '--helpall' and a != '--h'
]
return super().parse_known_args(args, namespace)
| 4291c8a63a3ae9e7107dda0f90fff8da3b31d29b | 15 | params.py | 177 | python 3.8 parser fix on args_that_override (#4507)
* single dash
* handle args during parsing | 47,160 | 0 | 251 | 107 | 48 | 195,034 | 77 | ParlAI | 17 | parlai/core/params.py | Python | 15 | {
"docstring": "\n Parse known args to ignore help flag.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | https://github.com/facebookresearch/ParlAI.git |
|
1 | test_uptime | def test_uptime(monkeypatch, qapp):
monkeypatch.setattr(objects, 'qapp', qapp)
launch_time = datetime.datetime(1, 1, 1, 1, 1, 1, 1)
monkeypatch.setattr(qapp, "launch_time", launch_time, raising=False)
| 6c4e2810285af0698538aed9d46a99de085eb310 | 8 | test_version.py | 77 | pylint: Fix new unnecessary-lambda-assignment | 117,395 | 0 | 31 | 90 | 15 | 320,852 | 19 | qutebrowser | 8 | tests/unit/utils/test_version.py | Python | 10 | {
"docstring": "Test _uptime runs and check if microseconds are dropped.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/qutebrowser/qutebrowser.git |
|
4 | get_address_territory | def get_address_territory(address_name):
territory = None
if address_name:
address_fields = frappe.db.get_value("Address", address_name, ["city", "state", "country"])
for value in address_fields:
territory = frappe.db.get_value("Territory", value)
if territory:
break
return territory
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 13 | cart.py | 95 | style: format code with black | 14,022 | 0 | 18 | 55 | 22 | 65,820 | 27 | erpnext | 8 | erpnext/e_commerce/shopping_cart/cart.py | Python | 9 | {
"docstring": "Tries to match city, state and country of address to existing territory",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/frappe/erpnext.git |
|
4 | testDotsInLogdir | def testDotsInLogdir(self):
local_dir_path = Path("/tmp/test_rel_dots")
local_dir = str(local_dir_path)
if local_dir_path.exists():
local_dir = tempfile.mkdtemp(prefix=str(local_dir_path) + "_")
trial = Trial(trainable_name="rel_logdir", local_dir=local_dir)
with self.assertRaises(ValueError):
trial.logdir = "/tmp/test_rel/../dots"
with self.assertRaises(ValueError):
trial.logdir = local_dir + "/../"
if shutil.rmtree.avoids_symlink_attacks:
if local_dir_path.exists():
shutil.rmtree(local_dir)
| 2a5d322e705df080e9254c9c9a3e187c1ea41c4e | 14 | test_trial_relative_logdir.py | 179 | [tune] Relative logdir paths in trials for ExperimentAnalysis in remote buckets (#25063)
When running an experiment for example in the cloud and syncing to a bucket the logdir path in the trials will be changed when working with the checkpoints in the bucket. There are some workarounds, but the easier solution is to also add a rel_logdir containing the relative path to the trials/checkpoints that can handle any changes in the location of experiment results.
As discussed with @Yard1 and @krfricke
Co-authored-by: Antoni Baum <[email protected]>
Co-authored-by: Kai Fricke <[email protected]> | 32,293 | 0 | 151 | 100 | 22 | 141,204 | 36 | ray | 19 | python/ray/tune/tests/test_trial_relative_logdir.py | Python | 13 | {
"docstring": "This should result in errors as dots in paths are not allowed.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/ray-project/ray.git |
|
1 | _compute_tree_reduce_metadata | def _compute_tree_reduce_metadata(self, axis, new_parts):
new_axes, new_axes_lengths = [0, 0], [0, 0]
new_axes[axis] = ["__reduced__"]
new_axes[axis ^ 1] = self.axes[axis ^ 1]
new_axes_lengths[axis] = [1]
new_axes_lengths[axis ^ 1] = self._axes_lengths[axis ^ 1]
new_dtypes = None
result = self.__constructor__(
new_parts,
*new_axes,
*new_axes_lengths,
new_dtypes,
)
return result
| 58bbcc37477866d19c8b092a0e1974a4f0baa586 | 9 | dataframe.py | 140 | REFACTOR-#2656: Update modin to fit algebra (code only) (#3717)
Co-authored-by: Yaroslav Igoshev <[email protected]>
Co-authored-by: Vasily Litvinov <[email protected]>
Co-authored-by: Alexey Prutskov <[email protected]>
Co-authored-by: Devin Petersohn <[email protected]>
Signed-off-by: Rehan Durrani <[email protected]> | 35,232 | 0 | 158 | 93 | 30 | 153,048 | 44 | modin | 11 | modin/core/dataframe/pandas/dataframe/dataframe.py | Python | 14 | {
"docstring": "\n Compute the metadata for the result of reduce function.\n\n Parameters\n ----------\n axis : int\n The axis on which reduce function was applied.\n new_parts : NumPy 2D array\n Partitions with the result of applied function.\n\n Returns\n -------\n PandasDataframe\n Modin series (1xN frame) containing the reduced data.\n ",
"language": "en",
"n_whitespaces": 142,
"n_words": 45,
"vocab_size": 36
} | https://github.com/modin-project/modin.git |
|
3 | as_instanceof_cause | def as_instanceof_cause(self):
cause_cls = self.cause.__class__
if issubclass(RayTaskError, cause_cls):
return self # already satisfied
if issubclass(cause_cls, RayError):
return self # don't try to wrap ray internal errors
error_msg = str(self)
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 8 | exceptions.py | 66 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,335 | 0 | 88 | 74 | 24 | 130,722 | 29 | ray | 10 | python/ray/exceptions.py | Python | 15 | {
"docstring": "Returns an exception that is an instance of the cause's class.\n\n The returned exception will inherit from both RayTaskError and the\n cause class and will contain all of the attributes of the cause\n exception.\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 34,
"vocab_size": 24
} | https://github.com/ray-project/ray.git |
|
2 | vf2pp_is_isomorphic | def vf2pp_is_isomorphic(G1, G2, node_label=None, default_label=None):
if vf2pp_isomorphism(G1, G2, node_label, default_label) is not None:
return True
return False
| a796f526c7ce6a7f182aee4b81b8499feabe1a45 | 8 | vf2pp.py | 51 | VF2++ for Directed Graphs (#5972)
Modify vf2pp implementation to support directed graphs. Updates all helper
functions and state/parameter objects to account for in/out degree.
Includes other changes such as renaming the keyword argument from
node_labels to node_label to better reflect the fact that the label kwarg expects
a single value.
Co-authored-by: Ross Barnowski <[email protected]>
Co-authored-by: Dan Schult <[email protected]> | 42,325 | 0 | 33 | 35 | 15 | 177,286 | 17 | networkx | 6 | networkx/algorithms/isomorphism/vf2pp.py | Python | 4 | {
"docstring": "Examines whether G1 and G2 are isomorphic.\n\n Parameters\n ----------\n G1, G2 : NetworkX Graph or MultiGraph instances.\n The two graphs to check for isomorphism.\n\n node_label : str, optional\n The name of the node attribute to be used when comparing nodes.\n The default is `None`, meaning node attributes are not considered\n in the comparison. Any node that doesn't have the `node_label`\n attribute uses `default_label` instead.\n\n default_label : scalar\n Default value to use when a node doesn't have an attribute\n named `node_label`. Default is `None`.\n\n Returns\n -------\n bool\n True if the two graphs are isomorphic, False otherwise.\n ",
"language": "en",
"n_whitespaces": 178,
"n_words": 95,
"vocab_size": 71
} | https://github.com/networkx/networkx.git |
|
1 | test_predict_proba_6 | def test_predict_proba_6():
est = TPOTClassifier(generations=1,population_size=1, template='LogisticRegression')
est.fit(training_features, training_target)
assert hasattr(est, "predict_proba") #This model has predict_proba
est.predict_proba(training_features)
est = TPOTClassifier(generations=1,population_size=1, template='LinearSVC')
est.fit(training_features, training_target)
assert not hasattr(est, "predict_proba") #This model does not have predict_proba, but it hasattr shouldn't raise an error
| d39f3be7b3f49e6178f29fb03461a920103caa35 | 10 | tpot_tests.py | 124 | added test to hasattr | 43,372 | 0 | 63 | 74 | 28 | 181,580 | 39 | tpot | 11 | tests/tpot_tests.py | Python | 8 | {
"docstring": "Assert that TPOT's predict_proba is exposed when available, and hidden when not.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/EpistasisLab/tpot.git |
|
7 | lu | def lu(self, fn_luid, ignorekeys=[], luName=None, frameID=None, frameName=None):
# look for this LU in cache
if not self._lu_idx:
self._buildluindex()
OOV = object()
luinfo = self._lu_idx.get(fn_luid, OOV)
if luinfo is OOV:
# LU not in the index. We create a placeholder by falling back to
# luName, frameID, and frameName. However, this will not be listed
# among the LUs for its frame.
self._warn(
"LU ID not found: {} ({}) in {} ({})".format(
luName, fn_luid, frameName, frameID
)
)
luinfo = AttrDict(
{
"_type": "lu",
"ID": fn_luid,
"name": luName,
"frameID": frameID,
"status": "Problem",
}
)
f = self.frame_by_id(luinfo.frameID)
assert f.name == frameName, (f.name, frameName)
luinfo["frame"] = f
self._lu_idx[fn_luid] = luinfo
elif "_type" not in luinfo:
# we only have an index entry for the LU. loading the frame will replace this.
f = self.frame_by_id(luinfo.frameID)
luinfo = self._lu_idx[fn_luid]
if ignorekeys:
return AttrDict({k: v for k, v in luinfo.items() if k not in ignorekeys})
return luinfo
| 8a4cf5d94eb94b6427c5d1d7907ba07b119932c5 | 13 | framenet.py | 314 | Docstring tests (#3050)
* fixed pytests
* fixed more pytests
* fixed more pytest and changed multiline pytest issues fixes for snowball.py and causal.py
* fixed pytests (mainly multiline or rounding issues)
* fixed treebank pytests, removed test for return_string=True (deprecated)
* fixed destructive.py pytests, removed test for return_string=True (deprecated)
* fixed pytest (rounding issues)
* fixed pytest (initialised missing object)
* fixed pytest (formatting issues)
* fixed pytest (formatting issues)
* fixed pytest (formatting issues)
* added pytest +SKIP for deprecated module stanford
* updated AUTHORS.md
* changed docstring corrections by usage of ELLIPSIS and different roundings
* fixed AUTHORS.md to be consistent
* Fix framenet doctest formatting with pprint
* Change docstring on MultiListBox.__init__
I believe the original typo was misinterpreted and changed to something that was not originally intended.
Co-authored-by: Jan Lennartz <[email protected]>
Co-authored-by: Tom Aarsen <[email protected]>
Co-authored-by: Tom Aarsen <[email protected]> | 7,602 | 0 | 565 | 193 | 99 | 42,540 | 152 | nltk | 22 | nltk/corpus/reader/framenet.py | Python | 30 | {
"docstring": "\n Access a lexical unit by its ID. luName, frameID, and frameName are used\n only in the event that the LU does not have a file in the database\n (which is the case for LUs with \"Problem\" status); in this case,\n a placeholder LU is created which just contains its name, ID, and frame.\n\n\n Usage examples:\n\n >>> from nltk.corpus import framenet as fn\n >>> fn.lu(256).name\n 'foresee.v'\n >>> fn.lu(256).definition\n 'COD: be aware of beforehand; predict.'\n >>> fn.lu(256).frame.name\n 'Expectation'\n >>> list(map(PrettyDict, fn.lu(256).lexemes))\n [{'POS': 'V', 'breakBefore': 'false', 'headword': 'false', 'name': 'foresee', 'order': 1}]\n\n >>> fn.lu(227).exemplars[23] # doctest: +NORMALIZE_WHITESPACE\n exemplar sentence (352962):\n [sentNo] 0\n [aPos] 59699508\n <BLANKLINE>\n [LU] (227) guess.v in Coming_to_believe\n <BLANKLINE>\n [frame] (23) Coming_to_believe\n <BLANKLINE>\n [annotationSet] 2 annotation sets\n <BLANKLINE>\n [POS] 18 tags\n <BLANKLINE>\n [POS_tagset] BNC\n <BLANKLINE>\n [GF] 3 relations\n <BLANKLINE>\n [PT] 3 phrases\n <BLANKLINE>\n [Other] 1 entry\n <BLANKLINE>\n [text] + [Target] + [FE]\n <BLANKLINE>\n When he was inside the house , Culley noticed the characteristic\n ------------------\n Content\n <BLANKLINE>\n he would n't have guessed at .\n -- ******* --\n Co C1 [Evidence:INI]\n (Co=Cognizer, C1=Content)\n <BLANKLINE>\n <BLANKLINE>\n\n The dict that is returned from this function will contain most of the\n following information about the LU. Note that some LUs do not contain\n all of these pieces of information - particularly 'totalAnnotated' and\n 'incorporatedFE' may be missing in some LUs:\n\n - 'name' : the name of the LU (e.g. 'merger.n')\n - 'definition' : textual definition of the LU\n - 'ID' : the internal ID number of the LU\n - '_type' : 'lu'\n - 'status' : e.g. 'Created'\n - 'frame' : Frame that this LU belongs to\n - 'POS' : the part of speech of this LU (e.g. 'N')\n - 'totalAnnotated' : total number of examples annotated with this LU\n - 'incorporatedFE' : FE that incorporates this LU (e.g. 'Ailment')\n - 'sentenceCount' : a dict with the following two keys:\n - 'annotated': number of sentences annotated with this LU\n - 'total' : total number of sentences with this LU\n\n - 'lexemes' : a list of dicts describing the lemma of this LU.\n Each dict in the list contains these keys:\n\n - 'POS' : part of speech e.g. 'N'\n - 'name' : either single-lexeme e.g. 'merger' or\n multi-lexeme e.g. 'a little'\n - 'order': the order of the lexeme in the lemma (starting from 1)\n - 'headword': a boolean ('true' or 'false')\n - 'breakBefore': Can this lexeme be separated from the previous lexeme?\n Consider: \"take over.v\" as in::\n\n Germany took over the Netherlands in 2 days.\n Germany took the Netherlands over in 2 days.\n\n In this case, 'breakBefore' would be \"true\" for the lexeme\n \"over\". Contrast this with \"take after.v\" as in::\n\n Mary takes after her grandmother.\n *Mary takes her grandmother after.\n\n In this case, 'breakBefore' would be \"false\" for the lexeme \"after\"\n\n - 'lemmaID' : Can be used to connect lemmas in different LUs\n - 'semTypes' : a list of semantic type objects for this LU\n - 'subCorpus' : a list of subcorpora\n - Each item in the list is a dict containing the following keys:\n - 'name' :\n - 'sentence' : a list of sentences in the subcorpus\n - each item in the list is a dict with the following keys:\n - 'ID':\n - 'sentNo':\n - 'text': the text of the sentence\n - 'aPos':\n - 'annotationSet': a list of annotation sets\n - each item in the list is a dict with the following keys:\n - 'ID':\n - 'status':\n - 'layer': a list of layers\n - each layer is a dict containing the following keys:\n - 'name': layer name (e.g. 'BNC')\n - 'rank':\n - 'label': a list of labels for the layer\n - each label is a dict containing the following keys:\n - 'start': start pos of label in sentence 'text' (0-based)\n - 'end': end pos of label in sentence 'text' (0-based)\n - 'name': name of label (e.g. 'NN1')\n\n Under the hood, this implementation looks up the lexical unit information\n in the *frame* definition file. That file does not contain\n corpus annotations, so the LU files will be accessed on demand if those are\n needed. In principle, valence patterns could be loaded here too,\n though these are not currently supported.\n\n :param fn_luid: The id number of the lexical unit\n :type fn_luid: int\n :param ignorekeys: The keys to ignore. These keys will not be\n included in the output. (optional)\n :type ignorekeys: list(str)\n :return: All information about the lexical unit\n :rtype: dict\n ",
"language": "en",
"n_whitespaces": 2239,
"n_words": 723,
"vocab_size": 328
} | https://github.com/nltk/nltk.git |
|
1 | combine_expression | def combine_expression(self, connector, sub_expressions):
conn = " %s " % connector
return conn.join(sub_expressions)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 8 | operations.py | 38 | Refs #33476 -- Reformatted code with Black. | 50,952 | 0 | 34 | 22 | 12 | 204,879 | 13 | django | 6 | django/db/backends/base/operations.py | Python | 3 | {
"docstring": "\n Combine a list of subexpressions into a single expression, using\n the provided connecting operator. This is required because operators\n can vary between backends (e.g., Oracle with %% and &) and between\n subexpression types (e.g., date expressions).\n ",
"language": "en",
"n_whitespaces": 72,
"n_words": 36,
"vocab_size": 32
} | https://github.com/django/django.git |
|
7 | _map_infrequent_categories | def _map_infrequent_categories(self, X_int, X_mask):
if not self._infrequent_enabled:
return
for col_idx in range(X_int.shape[1]):
infrequent_idx = self._infrequent_indices[col_idx]
if infrequent_idx is None:
continue
X_int[~X_mask[:, col_idx], col_idx] = infrequent_idx[0]
if self.handle_unknown == "infrequent_if_exist":
# All the unknown values are now mapped to the
# infrequent_idx[0], which makes the unknown values valid
# This is needed in `transform` when the encoding is formed
# using `X_mask`.
X_mask[:, col_idx] = True
# Remaps encoding in `X_int` where the infrequent categories are
# grouped together.
for i, mapping in enumerate(self._default_to_infrequent_mappings):
if mapping is None:
continue
X_int[:, i] = np.take(mapping, X_int[:, i])
| 7f0006c8aad1a09621ad19c3db19c3ff0555a183 | 12 | _encoders.py | 182 | ENH Adds infrequent categories to OneHotEncoder (#16018)
* ENH Completely adds infrequent categories
* STY Linting
* STY Linting
* DOC Improves wording
* DOC Lint
* BUG Fixes
* CLN Address comments
* CLN Address comments
* DOC Uses math to description float min_frequency
* DOC Adds comment regarding drop
* BUG Fixes method name
* DOC Clearer docstring
* TST Adds more tests
* FIX Fixes mege
* CLN More pythonic
* CLN Address comments
* STY Flake8
* CLN Address comments
* DOC Fix
* MRG
* WIP
* ENH Address comments
* STY Fix
* ENH Use functiion call instead of property
* ENH Adds counts feature
* CLN Rename variables
* DOC More details
* CLN Remove unneeded line
* CLN Less lines is less complicated
* CLN Less diffs
* CLN Improves readiabilty
* BUG Fix
* CLN Address comments
* TST Fix
* CLN Address comments
* CLN Address comments
* CLN Move docstring to userguide
* DOC Better wrapping
* TST Adds test to handle_unknown='error'
* ENH Spelling error in docstring
* BUG Fixes counter with nan values
* BUG Removes unneeded test
* BUG Fixes issue
* ENH Sync with main
* DOC Correct settings
* DOC Adds docstring
* DOC Immprove user guide
* DOC Move to 1.0
* DOC Update docs
* TST Remove test
* DOC Update docstring
* STY Linting
* DOC Address comments
* ENH Neater code
* DOC Update explaination for auto
* Update sklearn/preprocessing/_encoders.py
Co-authored-by: Roman Yurchak <[email protected]>
* TST Uses docstring instead of comments
* TST Remove call to fit
* TST Spelling error
* ENH Adds support for drop + infrequent categories
* ENH Adds infrequent_if_exist option
* DOC Address comments for user guide
* DOC Address comments for whats_new
* DOC Update docstring based on comments
* CLN Update test with suggestions
* ENH Adds computed property infrequent_categories_
* DOC Adds where the infrequent column is located
* TST Adds more test for infrequent_categories_
* DOC Adds docstring for _compute_drop_idx
* CLN Moves _convert_to_infrequent_idx into its own method
* TST Increases test coverage
* TST Adds failing test
* CLN Careful consideration of dropped and inverse_transform
* STY Linting
* DOC Adds docstrinb about dropping infrequent
* DOC Uses only
* DOC Numpydoc
* TST Includes test for get_feature_names_out
* DOC Move whats new
* DOC Address docstring comments
* DOC Docstring changes
* TST Better comments
* TST Adds check for handle_unknown='ignore' for infrequent
* CLN Make _infrequent_indices private
* CLN Change min_frequency default to None
* DOC Adds comments
* ENH adds support for max_categories=1
* ENH Describe lexicon ordering for ties
* DOC Better docstring
* STY Fix
* CLN Error when explicity dropping an infrequent category
* STY Grammar
Co-authored-by: Joel Nothman <[email protected]>
Co-authored-by: Roman Yurchak <[email protected]>
Co-authored-by: Guillaume Lemaitre <[email protected]> | 75,641 | 0 | 318 | 114 | 62 | 259,203 | 94 | scikit-learn | 17 | sklearn/preprocessing/_encoders.py | Python | 14 | {
"docstring": "Map infrequent categories to integer representing the infrequent category.\n\n This modifies X_int in-place. Values that were invalid based on `X_mask`\n are mapped to the infrequent category if there was an infrequent\n category for that feature.\n\n Parameters\n ----------\n X_int: ndarray of shape (n_samples, n_features)\n Integer encoded categories.\n\n X_mask: ndarray of shape (n_samples, n_features)\n Bool mask for valid values in `X_int`.\n ",
"language": "en",
"n_whitespaces": 137,
"n_words": 59,
"vocab_size": 46
} | https://github.com/scikit-learn/scikit-learn.git |
|
1 | test_is_wis_on_estimate_on_dataset | def test_is_wis_on_estimate_on_dataset(self):
config = self.dqn_on_fake_ds.copy()
config = config.evaluation(
off_policy_estimation_methods={
"is": {"type": ImportanceSampling},
"wis": {"type": WeightedImportanceSampling},
},
)
num_actions = config.action_space.n
algo = config.build()
evaluated_results = algo.evaluate()
ope_results = evaluated_results["evaluation"]["off_policy_estimator"]
policy = algo.get_policy()
wis_gain, wis_ste = compute_expected_is_or_wis_estimator(
self.train_df, policy, num_actions=num_actions, is_wis=True
)
is_gain, is_ste = compute_expected_is_or_wis_estimator(
self.train_df, policy, num_actions=num_actions, is_wis=False
)
check(wis_gain, ope_results["wis"]["v_gain_mean"])
check(wis_ste, ope_results["wis"]["v_gain_ste"])
check(is_gain, ope_results["is"]["v_gain_mean"])
check(is_ste, ope_results["is"]["v_gain_ste"])
| e368dd9b4e10026767df66d1811a92bd8ca2d8f9 | 14 | test_ope.py | 281 | [RLlib] By-pass Evaluation workers when doing OPE (#30135)
Signed-off-by: Kourosh Hakhamaneshi <[email protected]> | 30,916 | 0 | 251 | 168 | 42 | 136,429 | 58 | ray | 27 | rllib/offline/estimators/tests/test_ope.py | Python | 23 | {
"docstring": "Test that the IS and WIS estimators work.\n\n First we compute the estimates with RLlib's algorithm and then compare the\n results to the estimates that are manually computed on raw data frame version\n of the dataset to check correctness.\n ",
"language": "en",
"n_whitespaces": 67,
"n_words": 39,
"vocab_size": 31
} | https://github.com/ray-project/ray.git |
|
1 | f2cexpr | def f2cexpr(expr):
# TODO: support Fortran `len` function with optional kind parameter
expr = re.sub(r'\blen\b', 'f2py_slen', expr)
return expr
| d4e11c7a2eb64861275facb076d47ccd135fa28c | 9 | capi_maps.py | 38 | ENH: Support character string arrays
TST: added test for issue #18684
ENH: f2py opens files with correct encoding, fixes #635
TST: added test for issue #6308
TST: added test for issue #4519
TST: added test for issue #3425
ENH: Implement user-defined hooks support for post-processing f2py data structure. Implement character BC hook.
ENH: Add support for detecting utf-16 and utf-32 encodings. | 38,648 | 0 | 31 | 21 | 18 | 160,521 | 19 | numpy | 4 | numpy/f2py/capi_maps.py | Python | 3 | {
"docstring": "Rewrite Fortran expression as f2py supported C expression.\n\n Due to the lack of a proper expression parser in f2py, this\n function uses a heuristic approach that assumes that Fortran\n arithmetic expressions are valid C arithmetic expressions when\n mapping Fortran function calls to the corresponding C function/CPP\n macros calls.\n\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 48,
"vocab_size": 36
} | https://github.com/numpy/numpy.git |
|
2 | _setup_connection | def _setup_connection(self):
# noqa
cur = self.connection.cursor()
if ('store',) not in list(cur.execute("SELECT name FROM sqlite_master WHERE type='table';")):
cur.execute(
)
self.internal_registry.commit()
| 27a34a6a706a06e1241671d29c8cab93d77a19c1 | 11 | storage_handler.py | 83 | feat: add docs, improve base class signatures | 25,164 | 0 | 79 | 45 | 20 | 114,363 | 20 | mindsdb | 9 | mindsdb/integrations/libs/storage_handler.py | Python | 6 | {
"docstring": " Checks that a key-value table exists, otherwise creates it. create table store (key text, value text)",
"language": "en",
"n_whitespaces": 16,
"n_words": 16,
"vocab_size": 15
} | https://github.com/mindsdb/mindsdb.git |
|
5 | export_table | def export_table(self, table, columns=None):
exclude_columns = {'pk', 'actions'}
if columns:
all_columns = [col_name for col_name, _ in table.selected_columns + table.available_columns]
exclude_columns.update({
col for col in all_columns if col not in columns
})
exporter = TableExport(
export_format=TableExport.CSV,
table=table,
exclude_columns=exclude_columns
)
return exporter.response(
filename=f'netbox_{self.queryset.model._meta.verbose_name_plural}.csv'
)
| 1024adca72570f58ac899850c5ca66bf782ee528 | 14 | object_views.py | 147 | Exclude actions column from export | 77,639 | 0 | 184 | 84 | 33 | 264,189 | 43 | netbox | 22 | netbox/netbox/views/generic/object_views.py | Python | 15 | {
"docstring": "\n Export all table data in CSV format.\n\n :param table: The Table instance to export\n :param columns: A list of specific columns to include. If not specified, all columns will be exported.\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 31,
"vocab_size": 27
} | https://github.com/netbox-community/netbox.git |
|
1 | euler_poly | def euler_poly(n, x=None, polys=False):
return appell_poly(n, [[1], [1, QQ(-1,2)]], 1, lambda p, i: -p / 2, QQ, x, polys)
@public | e875bdb804b0285e4a9bd8de0158436e792c03cb | @public | 12 | appellseqs.py | 81 | Initial definition of Appell sequences | 49,296 | 1 | 25 | 55 | 20 | 199,618 | 20 | sympy | 9 | sympy/polys/appellseqs.py | Python | 2 | {
"docstring": "Generates the Euler polynomial of degree `n` in `x`.\n\n Parameters\n ==========\n\n n : int\n Degree of the polynomial.\n x : optional\n polys : bool, optional\n If True, return a Poly, otherwise (default) return an expression.\n ",
"language": "en",
"n_whitespaces": 67,
"n_words": 35,
"vocab_size": 29
} | https://github.com/sympy/sympy.git |
1 | test_retention_event_purged_without_state_event | def test_retention_event_purged_without_state_event(self) -> None:
room_id = self.helper.create_room_as(self.user_id, tok=self.token)
self._test_retention_event_purged(room_id, one_day_ms * 2)
| 1901cb1d4a8b7d9af64493fbd336e9aa2561c20c | 10 | test_retention.py | 58 | Add type hints to `tests/rest/client` (#12084) | 71,470 | 0 | 33 | 36 | 12 | 247,060 | 12 | synapse | 10 | tests/rest/client/test_retention.py | Python | 6 | {
"docstring": "Tests that expired events are correctly purged when the room's retention policy\n is defined by the server's configuration's default retention policy.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 21,
"vocab_size": 19
} | https://github.com/matrix-org/synapse.git |
|
3 | test_reconnect | async def test_reconnect(hass, caplog, config):
patch_key, entity_id, config_entry = _setup(config)
config_entry.add_to_hass(hass)
with patchers.PATCH_ADB_DEVICE_TCP, patchers.patch_connect(True)[
patch_key
], patchers.patch_shell(SHELL_RESPONSE_OFF)[
patch_key
], patchers.PATCH_KEYGEN, patchers.PATCH_ANDROIDTV_OPEN, patchers.PATCH_SIGNER:
assert await hass.config_entries.async_setup(config_entry.entry_id)
await hass.async_block_till_done()
await async_update_entity(hass, entity_id)
state = hass.states.get(entity_id)
assert state is not None
assert state.state == STATE_OFF
caplog.clear()
caplog.set_level(logging.WARNING)
with patchers.patch_connect(False)[patch_key], patchers.patch_shell(error=True)[
patch_key
], patchers.PATCH_ANDROIDTV_OPEN, patchers.PATCH_SIGNER:
for _ in range(5):
await async_update_entity(hass, entity_id)
state = hass.states.get(entity_id)
assert state is not None
assert state.state == STATE_UNAVAILABLE
assert len(caplog.record_tuples) == 2
assert caplog.record_tuples[0][1] == logging.ERROR
assert caplog.record_tuples[1][1] == logging.WARNING
caplog.set_level(logging.DEBUG)
with patchers.patch_connect(True)[patch_key], patchers.patch_shell(
SHELL_RESPONSE_STANDBY
)[patch_key], patchers.PATCH_ANDROIDTV_OPEN, patchers.PATCH_SIGNER:
await async_update_entity(hass, entity_id)
state = hass.states.get(entity_id)
assert state is not None
assert state.state == STATE_STANDBY
if patch_key == "python":
assert (
"ADB connection to 127.0.0.1:5555 successfully established"
in caplog.record_tuples[2]
)
else:
assert (
"ADB connection to 127.0.0.1:5555 via ADB server 127.0.0.1:5037 successfully established"
in caplog.record_tuples[2]
)
@pytest.mark.parametrize(
"config",
[
CONFIG_ANDROIDTV_PYTHON_ADB,
CONFIG_FIRETV_PYTHON_ADB,
CONFIG_ANDROIDTV_ADB_SERVER,
CONFIG_FIRETV_ADB_SERVER,
],
) | d645e80ccd5acb92c5ee6bce30c20bc634fc3e77 | @pytest.mark.parametrize(
"config",
[
CONFIG_ANDROIDTV_PYTHON_ADB,
CONFIG_FIRETV_PYTHON_ADB,
CONFIG_ANDROIDTV_ADB_SERVER,
CONFIG_FIRETV_ADB_SERVER,
],
) | 13 | test_media_player.py | 536 | Clean up async_update_entity helper usage (#68641) | 93,474 | 1 | 455 | 320 | 78 | 294,438 | 145 | core | 47 | tests/components/androidtv/test_media_player.py | Python | 45 | {
"docstring": "Test that the error and reconnection attempts are logged correctly.\n\n \"Handles device/service unavailable. Log a warning once when\n unavailable, log once when reconnected.\"\n\n https://developers.home-assistant.io/docs/en/integration_quality_scale_index.html\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 24,
"vocab_size": 22
} | https://github.com/home-assistant/core.git |
1 | test_missing_required_field | def test_missing_required_field(self):
cf3 = CustomField(type=CustomFieldTypeChoices.TYPE_TEXT, name='baz', required=True)
cf3.save()
cf3.content_types.set([ContentType.objects.get_for_model(Site)])
site = Site(name='Test Site', slug='test-site')
# Set custom field data with a required field omitted
site.custom_field_data['foo'] = 'abc'
with self.assertRaises(ValidationError):
site.clean()
site.custom_field_data['baz'] = 'def'
site.clean()
| ea6d86e6c4bb6037465410db6205a7471bc81a6c | 11 | test_customfields.py | 165 | Closes #10052: The cf attribute now returns deserialized custom field data | 78,274 | 0 | 115 | 92 | 28 | 266,037 | 34 | netbox | 22 | netbox/extras/tests/test_customfields.py | Python | 10 | {
"docstring": "\n Check that a ValidationError is raised if any required custom fields are not present.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 14
} | https://github.com/netbox-community/netbox.git |
|
5 | get_account_type_based_gl_data | def get_account_type_based_gl_data(company, start_date, end_date, account_type, filters=None):
cond = ""
filters = frappe._dict(filters or {})
if filters.include_default_book_entries:
company_fb = frappe.db.get_value("Company", company, "default_finance_book")
cond = % (
frappe.db.escape(filters.finance_book),
frappe.db.escape(company_fb),
)
else:
cond = " AND (finance_book in (%s, '') OR finance_book IS NULL)" % (
frappe.db.escape(cstr(filters.finance_book))
)
gl_sum = frappe.db.sql_list(
.format(
cond=cond
),
(company, start_date, end_date, account_type),
)
return gl_sum[0] if gl_sum and gl_sum[0] else 0
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 16 | cash_flow.py | 214 | style: format code with black | 13,820 | 0 | 45 | 137 | 48 | 65,186 | 64 | erpnext | 19 | erpnext/accounts/report/cash_flow/cash_flow.py | Python | 27 | {
"docstring": " AND (finance_book in (%s, %s, '') OR finance_book IS NULL)\n\t\t\t\n\t\tselect sum(credit) - sum(debit)\n\t\tfrom `tabGL Entry`\n\t\twhere company=%s and posting_date >= %s and posting_date <= %s\n\t\t\tand voucher_type != 'Period Closing Voucher'\n\t\t\tand account in ( SELECT name FROM tabAccount WHERE account_type = %s) {cond}\n\t",
"language": "en",
"n_whitespaces": 41,
"n_words": 46,
"vocab_size": 40
} | https://github.com/frappe/erpnext.git |
|
7 | get_customer_stats | def get_customer_stats(filters, tree_view=False):
company_condition = ""
if filters.get("company"):
company_condition = " and company=%(company)s"
customers = []
customers_in = {}
for si in frappe.db.sql(
.format(
company_condition=company_condition
),
filters,
as_dict=1,
):
key = si.territory if tree_view else si.posting_date.strftime("%Y-%m")
new_or_repeat = "new" if si.customer not in customers else "repeat"
customers_in.setdefault(key, {"new": [0, 0.0], "repeat": [0, 0.0]})
# if filters.from_date <= si.posting_date.strftime('%Y-%m-%d'):
if getdate(filters.from_date) <= getdate(si.posting_date):
customers_in[key][new_or_repeat][0] += 1
customers_in[key][new_or_repeat][1] += si.base_grand_total
if new_or_repeat == "new":
customers.append(si.customer)
return customers_in
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 13 | customer_acquisition_and_loyalty.py | 272 | style: format code with black | 14,515 | 0 | 52 | 170 | 56 | 67,399 | 75 | erpnext | 24 | erpnext/selling/report/customer_acquisition_and_loyalty/customer_acquisition_and_loyalty.py | Python | 24 | {
"docstring": "Calculates number of new and repeated customers and revenue.select territory, posting_date, customer, base_grand_total from `tabSales Invoice`\n\t\twhere docstatus=1 and posting_date <= %(to_date)s\n\t\t{company_condition} order by posting_date",
"language": "en",
"n_whitespaces": 23,
"n_words": 26,
"vocab_size": 23
} | https://github.com/frappe/erpnext.git |
|
2 | _safe_read | def _safe_read(self, amt):
data = self.fp.read(amt)
if len(data) < amt:
raise IncompleteRead(data, amt-len(data))
return data
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 12 | client.py | 65 | add python 3.10.4 for windows | 54,889 | 0 | 54 | 40 | 14 | 217,703 | 15 | XX-Net | 8 | python3.10.4/Lib/http/client.py | Python | 5 | {
"docstring": "Read the number of bytes requested.\n\n This function should be used when <amt> bytes \"should\" be present for\n reading. If the bytes are truly not available (due to EOF), then the\n IncompleteRead exception can be used to detect the problem.\n ",
"language": "en",
"n_whitespaces": 68,
"n_words": 40,
"vocab_size": 31
} | https://github.com/XX-net/XX-Net.git |
|
2 | cell_length | def cell_length(self) -> int:
# Done on demand and cached, as this is an O(n) operation
if self._cell_length is None:
self._cell_length = Segment.get_line_length(self._segments)
return self._cell_length
| 6f82ad9c4a2e17812a68d3c76d7eae89aee3a515 | 11 | strip.py | 53 | adds Strip primitive | 45,438 | 0 | 64 | 31 | 22 | 186,299 | 25 | textual | 7 | src/textual/strip.py | Python | 5 | {
"docstring": "Get the number of cells required to render this object.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/Textualize/textual.git |
|
1 | add_metadata_summerizer | def add_metadata_summerizer():
docs = [
Document(
content=,
meta={
"sub_content": "Pegasus Example",
"topic": "California's Electricity",
"context": "Dummy - PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires.",
},
),
Document(
content=,
meta={"sub_content": "Paris best tour best tour", "topic": "Eiffel tower"},
),
]
# Original input is overwrote after the "predict". So adding the same input as check_output to assess the output
check_output = deepcopy(docs)
summarizer = TransformersSummarizer(model_name_or_path="google/pegasus-xsum")
summary = summarizer.predict(documents=docs)
assert len(summary[0].meta) == len(check_output[0].meta)
assert len(summary[1].meta) - 1 == len(check_output[1].meta)
assert (
summary[0].meta["context"]
==
)
summary = summarizer.predict(documents=docs, generate_single_summary=True)
assert len(summary) == 1
assert not summary[0].meta # Metadata is not returned in case of a single summary
| 4d8f40425bc4e7346359b7609720a50ac10b8af9 | 13 | test_summarizer.py | 273 | Passing the meta-data in the summerizer response (#2179)
* Passing the all the meta-data in the summerizer
* Disable metadata forwarding if `generate_single_summary` is `True`
* Update Documentation & Code Style
* simplify tests
* Update Documentation & Code Style
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | 75,094 | 0 | 304 | 162 | 88 | 257,543 | 122 | haystack | 15 | test/nodes/test_summarizer.py | Python | 27 | {
"docstring": "PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
"language": "en",
"n_whitespaces": 221,
"n_words": 222,
"vocab_size": 117
} | https://github.com/deepset-ai/haystack.git |
|
1 | _draw_linenumber | def _draw_linenumber(self, posno, lineno):
self._draw_text(
self._get_linenumber_pos(posno),
str(lineno).rjust(self.line_number_chars),
font=self.fonts.get_font(self.line_number_bold,
self.line_number_italic),
text_fg=self.line_number_fg,
text_bg=None,
)
| f3166e673fe8d40277b804d35d77dcdb760fc3b3 | 11 | img.py | 91 | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 3,336 | 0 | 124 | 61 | 12 | 20,345 | 12 | pipenv | 17 | pipenv/patched/notpip/_vendor/pygments/formatters/img.py | Python | 9 | {
"docstring": "\n Remember a line number drawable to paint later.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 8
} | https://github.com/pypa/pipenv.git |
|
12 | qr | def qr(a, mode='reduced'):
if mode not in ('reduced', 'complete', 'r', 'raw'):
if mode in ('f', 'full'):
# 2013-04-01, 1.8
msg = "".join((
"The 'full' option is deprecated in favor of 'reduced'.\n",
"For backward compatibility let mode default."))
warnings.warn(msg, DeprecationWarning, stacklevel=3)
mode = 'reduced'
elif mode in ('e', 'economic'):
# 2013-04-01, 1.8
msg = "The 'economic' option is deprecated."
warnings.warn(msg, DeprecationWarning, stacklevel=3)
mode = 'economic'
else:
raise ValueError(f"Unrecognized mode '{mode}'")
a, wrap = _makearray(a)
_assert_stacked_2d(a)
m, n = a.shape[-2:]
t, result_t = _commonType(a)
a = a.astype(t, copy=True)
a = _to_native_byte_order(a)
mn = min(m, n)
if m <= n:
gufunc = _umath_linalg.qr_r_raw_m
else:
gufunc = _umath_linalg.qr_r_raw_n
signature = 'D->D' if isComplexType(t) else 'd->d'
extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
tau = gufunc(a, signature=signature, extobj=extobj)
# handle modes that don't return q
if mode == 'r':
r = triu(a[..., :mn, :])
r = r.astype(result_t, copy=False)
return wrap(r)
if mode == 'raw':
q = transpose(a)
q = q.astype(result_t, copy=False)
tau = tau.astype(result_t, copy=False)
return wrap(q), tau
if mode == 'economic':
a = a.astype(result_t, copy=False)
return wrap(a)
# mc is the number of columns in the resulting q
# matrix. If the mode is complete then it is
# same as number of rows, and if the mode is reduced,
# then it is the minimum of number of rows and columns.
if mode == 'complete' and m > n:
mc = m
gufunc = _umath_linalg.qr_complete
else:
mc = mn
gufunc = _umath_linalg.qr_reduced
signature = 'DD->D' if isComplexType(t) else 'dd->d'
extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
q = gufunc(a, tau, signature=signature, extobj=extobj)
r = triu(a[..., :mc, :])
q = q.astype(result_t, copy=False)
r = r.astype(result_t, copy=False)
return wrap(q), wrap(r)
# Eigenvalues
@array_function_dispatch(_unary_dispatcher) | 7dd53bce20121b3818a5960371dfdd1f138296bd | @array_function_dispatch(_unary_dispatcher) | 14 | linalg.py | 694 | DOC: Update linalg.qr docstring with numerically stable example (#21149)
Co-authored-by: Melissa Weber Mendonça <[email protected]> | 38,478 | 1 | 625 | 407 | 130 | 160,078 | 270 | numpy | 43 | numpy/linalg/linalg.py | Python | 53 | {
"docstring": "\n Compute the qr factorization of a matrix.\n\n Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is\n upper-triangular.\n\n Parameters\n ----------\n a : array_like, shape (..., M, N)\n An array-like object with the dimensionality of at least 2.\n mode : {'reduced', 'complete', 'r', 'raw'}, optional\n If K = min(M, N), then\n\n * 'reduced' : returns q, r with dimensions\n (..., M, K), (..., K, N) (default)\n * 'complete' : returns q, r with dimensions (..., M, M), (..., M, N)\n * 'r' : returns r only with dimensions (..., K, N)\n * 'raw' : returns h, tau with dimensions (..., N, M), (..., K,)\n\n The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,\n see the notes for more information. The default is 'reduced', and to\n maintain backward compatibility with earlier versions of numpy both\n it and the old default 'full' can be omitted. Note that array h\n returned in 'raw' mode is transposed for calling Fortran. The\n 'economic' mode is deprecated. The modes 'full' and 'economic' may\n be passed using only the first letter for backwards compatibility,\n but all others must be spelled out. See the Notes for more\n explanation.\n\n\n Returns\n -------\n q : ndarray of float or complex, optional\n A matrix with orthonormal columns. When mode = 'complete' the\n result is an orthogonal/unitary matrix depending on whether or not\n a is real/complex. The determinant may be either +/- 1 in that\n case. In case the number of dimensions in the input array is\n greater than 2 then a stack of the matrices with above properties\n is returned.\n r : ndarray of float or complex, optional\n The upper-triangular matrix or a stack of upper-triangular\n matrices if the number of dimensions in the input array is greater\n than 2.\n (h, tau) : ndarrays of np.double or np.cdouble, optional\n The array h contains the Householder reflectors that generate q\n along with r. The tau array contains scaling factors for the\n reflectors. In the deprecated 'economic' mode only h is returned.\n\n Raises\n ------\n LinAlgError\n If factoring fails.\n\n See Also\n --------\n scipy.linalg.qr : Similar function in SciPy.\n scipy.linalg.rq : Compute RQ decomposition of a matrix.\n\n Notes\n -----\n This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,\n ``dorgqr``, and ``zungqr``.\n\n For more information on the qr factorization, see for example:\n https://en.wikipedia.org/wiki/QR_factorization\n\n Subclasses of `ndarray` are preserved except for the 'raw' mode. So if\n `a` is of type `matrix`, all the return values will be matrices too.\n\n New 'reduced', 'complete', and 'raw' options for mode were added in\n NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In\n addition the options 'full' and 'economic' were deprecated. Because\n 'full' was the previous default and 'reduced' is the new default,\n backward compatibility can be maintained by letting `mode` default.\n The 'raw' option was added so that LAPACK routines that can multiply\n arrays by q using the Householder reflectors can be used. Note that in\n this case the returned arrays are of type np.double or np.cdouble and\n the h array is transposed to be FORTRAN compatible. No routines using\n the 'raw' return are currently exposed by numpy, but some are available\n in lapack_lite and just await the necessary work.\n\n Examples\n --------\n >>> a = np.random.randn(9, 6)\n >>> q, r = np.linalg.qr(a)\n >>> np.allclose(a, np.dot(q, r)) # a does equal qr\n True\n >>> r2 = np.linalg.qr(a, mode='r')\n >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full'\n True\n >>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input\n >>> q, r = np.linalg.qr(a)\n >>> q.shape\n (3, 2, 2)\n >>> r.shape\n (3, 2, 2)\n >>> np.allclose(a, np.matmul(q, r))\n True\n\n Example illustrating a common use of `qr`: solving of least squares\n problems\n\n What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for\n the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points\n and you'll see that it should be y0 = 0, m = 1.) The answer is provided\n by solving the over-determined matrix equation ``Ax = b``, where::\n\n A = array([[0, 1], [1, 1], [1, 1], [2, 1]])\n x = array([[y0], [m]])\n b = array([[1], [0], [2], [1]])\n\n If A = qr such that q is orthonormal (which is always possible via\n Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice,\n however, we simply use `lstsq`.)\n\n >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])\n >>> A\n array([[0, 1],\n [1, 1],\n [1, 1],\n [2, 1]])\n >>> b = np.array([1, 2, 2, 3])\n >>> q, r = np.linalg.qr(A)\n >>> p = np.dot(q.T, b)\n >>> np.dot(np.linalg.inv(r), p)\n array([ 1., 1.])\n\n ",
"language": "en",
"n_whitespaces": 1269,
"n_words": 761,
"vocab_size": 356
} | https://github.com/numpy/numpy.git |
3 | members | def members(self) -> list[ZHAGroupMember]:
return [
ZHAGroupMember(self, self._zha_gateway.devices[member_ieee], endpoint_id)
for (member_ieee, endpoint_id) in self._zigpy_group.members.keys()
if member_ieee in self._zha_gateway.devices
]
| fb108533580d5f4c326ca970d8e6fd4998cc5593 | 11 | group.py | 80 | Fix mypy issues in zha core modules (#74028)
* Fix mypy issues in zha gateway, group and helpers
* Cleanup device
* Apply suggestion
* Raise ValueError
* Use hass.config.path | 113,184 | 0 | 73 | 53 | 17 | 314,578 | 19 | core | 10 | homeassistant/components/zha/core/group.py | Python | 7 | {
"docstring": "Return the ZHA devices that are members of this group.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/home-assistant/core.git |
|
1 | get_dummy_message | def get_dummy_message(doc):
return frappe.render_template(
,
dict(doc=doc, payment_url="{{ payment_url }}"),
)
@frappe.whitelist() | 494bd9ef78313436f0424b918f200dab8fc7c20b | @frappe.whitelist() | 11 | payment_request.py | 51 | style: format code with black | 13,757 | 1 | 5 | 24 | 11 | 64,929 | 11 | erpnext | 7 | erpnext/accounts/doctype/payment_request/payment_request.py | Python | 17 | {
"docstring": "{% if doc.contact_person -%}\n<p>Dear {{ doc.contact_person }},</p>\n{%- else %}<p>Hello,</p>{% endif %}\n\n<p>{{ _(\"Requesting payment against {0} {1} for amount {2}\").format(doc.doctype,\n\tdoc.name, doc.get_formatted(\"grand_total\")) }}</p>\n\n<a href=\"{{ payment_url }}\">{{ _(\"Make Payment\") }}</a>\n\n<p>{{ _(\"If you have any questions, please get back to us.\") }}</p>\n\n<p>{{ _(\"Thank you for your business!\") }}</p>\n",
"language": "en",
"n_whitespaces": 43,
"n_words": 51,
"vocab_size": 44
} | https://github.com/frappe/erpnext.git |
4 | call_find | def call_find(self, other_args):
parser = argparse.ArgumentParser(
prog="find",
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=,
)
parser.add_argument(
"-c",
"--coin",
help="Symbol Name or Id of Coin",
dest="coin",
required="-h" not in other_args,
type=str,
)
parser.add_argument(
"-k",
"--key",
dest="key",
help="Specify by which column you would like to search: symbol, name, id",
type=str,
choices=FIND_KEYS,
default="symbol",
)
parser.add_argument(
"-l",
"--limit",
default=10,
dest="limit",
help="Number of records to display",
type=check_positive,
)
parser.add_argument(
"--source",
dest="source",
choices=CRYPTO_SOURCES.keys(),
default="cg",
help="Source of data.",
type=str,
)
parser.add_argument(
"-s",
"--skip",
default=0,
dest="skip",
help="Skip n of records",
type=check_positive,
)
if other_args and not other_args[0][0] == "-":
other_args.insert(0, "-c")
ns_parser = parse_known_args_and_warn(
parser, other_args, EXPORT_ONLY_RAW_DATA_ALLOWED
)
# TODO: merge find + display_all_coins
if ns_parser:
find(
coin=ns_parser.coin,
source=ns_parser.source,
key=ns_parser.key,
top=ns_parser.limit,
export=ns_parser.export,
)
display_all_coins(
coin=ns_parser.coin,
source=ns_parser.source,
top=ns_parser.limit,
skip=ns_parser.skip,
show_all=bool("ALL" in other_args),
export=ns_parser.export,
)
| 4501dfd442d371150b8785d379c5354095b6954b | 14 | crypto_controller.py | 446 | Crypto features: Replace coingecko scrapping (#1156)
* replaced cgcategories with api
* added coingecko categories
* refactoring commands to use api, added coins to cryptocontroller and merged find and coins
* autocompletion for coins
* removed unused vars
* added dappradar features
* refactoring commands position
* refactoring commands position
* adding visual commands and fixed report
* skipped tests for now
* lint notebook
* correct report
* black formatter keeps crying because notebook
* removed unused imports
* Fixed black
* Keep kernel metadata 'cause it's required by papermill
* Change jupyter cleanup hook to one based on nbconvert
* Try fix the hook I just broke
* Fix trailing commas in the crypto notebook
* Change the jupyter hook to a one that's featured on pre-commit's page
* Format report notebook and test new notebook hook
* Black the notebook
* Remove deleted functions from the crypto discovery API
* Remove deleted functions from the crypto overview API
* replaced print for console print and removed print from table
* replaced print for console print and removed print from table
* auto completion + sort for all discovery commands
* replacing help messages
* fix linting
* added docs and removed unused commands
* added todos and fixed help messages
* lint
* pr issues fixed
* updated tests
* tests merge
* replaced with new rich table function
Co-authored-by: Colin Delahunty <[email protected]>
Co-authored-by: Theodore Aptekarev <[email protected]> | 84,022 | 0 | 863 | 281 | 93 | 282,059 | 121 | OpenBBTerminal | 38 | gamestonk_terminal/cryptocurrency/crypto_controller.py | Python | 86 | {
"docstring": "Process find command\n Find similar coin by coin name,symbol or id. If you don't remember exact name or id of the Coin at CoinGecko,\n Binance, Coinbase or CoinPaprika you can use this command to display coins with similar name, symbol or id\n to your search query.\n Example of usage: coin name is something like \"polka\". So I can try: find -c polka -k name -t 25\n It will search for coin that has similar name to polka and display top 25 matches.\n -c, --coin stands for coin - you provide here your search query\n -k, --key it's a searching key. You can search by symbol, id or name of coin\n -l, --limit it displays top N number of records.\n coins: Shows list of coins available on CoinGecko, CoinPaprika and Binance.If you provide name of\n coin then in result you will see ids of coins with best match for all mentioned services.\n If you provide ALL keyword in your search query, then all coins will be displayed. To move over coins you\n can use pagination mechanism with skip, top params. E.g. coins ALL --skip 100 --limit 30 then all coins\n from 100 to 130 will be displayed. By default skip = 0, limit = 10.\n If you won't provide source of the data everything will be displayed (CoinGecko, CoinPaprika, Binance).\n If you want to search only in given source then use --source flag. E.g. if you want to find coin with name\n uniswap on CoinPaprika then use: coins uniswap --source cp --limit 10\n ",
"language": "en",
"n_whitespaces": 439,
"n_words": 252,
"vocab_size": 140
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
|
4 | _needs_cache_invalidation | def _needs_cache_invalidation(self, command):
invalidate = False
cfg_cmds = []
try:
# AnsiblePlugin base class in Ansible 2.9 does not have has_option() method.
# TO-DO: use has_option() when we drop 2.9 support.
cfg_cmds = self.cliconf.get_option("config_commands")
except AttributeError:
cfg_cmds = []
if (self._is_in_config_mode()) or (to_text(command) in cfg_cmds):
invalidate = True
return invalidate
| 76b746655a36807fa9198064ca9fe7c6cc00083a | 11 | network_cli.py | 100 | Add `use_rsa_sha2_algorithms` option for paramiko (#78789)
Fixes #76737
Fixes #77673
Co-authored-by: Matt Clay <[email protected]> | 79,529 | 0 | 154 | 57 | 37 | 268,500 | 50 | ansible | 10 | test/support/network-integration/collections/ansible_collections/ansible/netcommon/plugins/connection/network_cli.py | Python | 10 | {
"docstring": "\n This method determines if it is necessary to invalidate\n the existing cache based on whether the device has entered\n configuration mode or if the last command sent to the device\n is potentially capable of making configuration changes.\n\n :param command: The last command sent to the target device.\n :returns: A boolean indicating if cache invalidation is required or not.\n ",
"language": "en",
"n_whitespaces": 108,
"n_words": 58,
"vocab_size": 41
} | https://github.com/ansible/ansible.git |
|
4 | transform | def transform(self, X):
if self.solver == "lsqr":
raise NotImplementedError(
"transform not implemented for 'lsqr' solver (use 'svd' or 'eigen')."
)
check_is_fitted(self)
X = self._validate_data(X, reset=False)
if self.solver == "svd":
X_new = np.dot(X - self.xbar_, self.scalings_)
elif self.solver == "eigen":
X_new = np.dot(X, self.scalings_)
return X_new[:, : self._max_components]
| ab08e4dba5f1f87b8c3395f32469a6ddb5e34f89 | 12 | discriminant_analysis.py | 147 | DOC Add documentation on output shape of LDA.transform (#22238) | 75,274 | 0 | 155 | 88 | 38 | 258,522 | 47 | scikit-learn | 14 | sklearn/discriminant_analysis.py | Python | 12 | {
"docstring": "Project data to maximize class separation.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Input data.\n\n Returns\n -------\n X_new : ndarray of shape (n_samples, n_components) or \\\n (n_samples, min(rank, n_components))\n Transformed data. In the case of the 'svd' solver, the shape\n is (n_samples, min(rank, n_components)).\n ",
"language": "en",
"n_whitespaces": 139,
"n_words": 46,
"vocab_size": 34
} | https://github.com/scikit-learn/scikit-learn.git |
|
2 | get_object_with_snapshot | def get_object_with_snapshot(self):
obj = super().get_object()
if hasattr(obj, 'snapshot'):
obj.snapshot()
return obj
| efd5a73a187f1183a278595d7345046abee5800b | 10 | __init__.py | 55 | Refactor API views | 77,754 | 0 | 50 | 30 | 10 | 264,557 | 11 | netbox | 7 | netbox/netbox/api/viewsets/__init__.py | Python | 5 | {
"docstring": "\n Save a pre-change snapshot of the object immediately after retrieving it. This snapshot will be used to\n record the \"before\" data in the changelog.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 24,
"vocab_size": 21
} | https://github.com/netbox-community/netbox.git |
|
1 | prepare_all_coins_df | def prepare_all_coins_df() -> pd.DataFrame:
gecko_coins_df = load_coins_list("coingecko_coins.json")
paprika_coins_df = load_coins_list("coinpaprika_coins.json")
paprika_coins_df = paprika_coins_df[paprika_coins_df["is_active"]]
paprika_coins_df = paprika_coins_df[["rank", "id", "name", "symbol", "type"]]
yahoofinance_coins_df = load_coins_list("yahoofinance_coins.json")
# TODO: Think about scheduled job, that once a day will update data
binance_coins_df = load_binance_map().rename(columns={"symbol": "Binance"})
coinbase_coins_df = load_coinbase_map().rename(columns={"symbol": "Coinbase"})
gecko_paprika_coins_df = pd.merge(
gecko_coins_df, paprika_coins_df, on="name", how="left"
)
df_merged = pd.merge(
left=gecko_paprika_coins_df,
right=binance_coins_df,
left_on="id_x",
right_on="id",
how="left",
)
df_merged.rename(
columns={
"id_x": "CoinGecko",
"symbol_x": "Symbol",
"id_y": "CoinPaprika",
},
inplace=True,
)
df_merged = pd.merge(
left=df_merged,
right=coinbase_coins_df,
left_on="CoinGecko",
right_on="id",
how="left",
)
yahoofinance_coins_df.rename(
columns={
"symbol": "Symbol",
},
inplace=True,
)
df_merged = pd.merge(
left=df_merged,
right=yahoofinance_coins_df[["Symbol", "id"]],
on="Symbol",
how="left",
)
df_merged.rename(
columns={
"id": "YahooFinance",
},
inplace=True,
)
return df_merged[
["CoinGecko", "CoinPaprika", "Binance", "Coinbase", "YahooFinance", "Symbol"]
]
| 9923c6974cdb659164d7aefd5523de4bfd563553 | 12 | cryptocurrency_helpers.py | 464 | Add YahooFinance to crypto load (#1533)
* Add yf to crypto load
* silence pylint too many branches
* Add yf chart
* Add exception handling when coins are not found
* Fix tests failing
* Address PR Comments
* Change the backwards yf crypto chart and volume label
* fix gst file
Co-authored-by: jmaslek <[email protected]>
Co-authored-by: Theodore Aptekarev <[email protected]> | 84,446 | 0 | 418 | 265 | 76 | 283,133 | 113 | OpenBBTerminal | 23 | gamestonk_terminal/cryptocurrency/cryptocurrency_helpers.py | Python | 71 | {
"docstring": "Helper method which loads coins from all sources: CoinGecko, CoinPaprika,\n Binance, Yahoo Finance and merge those coins on keys:\n\n CoinGecko - > name < - CoinPaprika\n CoinGecko - > id <- Binance\n\n Returns\n -------\n pd.DataFrame\n CoinGecko - id for coin in CoinGecko API: uniswap\n CoinPaprika - id for coin in CoinPaprika API: uni-uniswap\n Binance - symbol (baseAsset) for coin in Binance API: UNI\n Coinbase - symbol for coin in Coinbase Pro API e.g UNI\n Yahoo Finance - symbol for coin in Yahoo Finance e.g. UNI1-USD\n\n Symbol: uni\n ",
"language": "en",
"n_whitespaces": 158,
"n_words": 87,
"vocab_size": 47
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
|
1 | _get_autoscaling_config_with_overrides | def _get_autoscaling_config_with_overrides() -> dict:
config = _get_basic_autoscaling_config()
config["available_node_types"]["small-group"]["resources"]["memory"] = 300000000
config["available_node_types"]["small-group"]["resources"]["GPU"] = 100
config["available_node_types"]["small-group"]["resources"]["CPU"] = 100
config["available_node_types"]["gpu-group"]["resources"]["GPU"] = 100
return config
| 7d3ceb222c8af98a5c101b1c28ab37ffcb0a3793 | 11 | test_autoscaling_config.py | 143 | [kuberay][autoscaler] Improve CPU, GPU, and memory detection. (#26219)
This PR improves the autoscaler's resource detection logic | 27,528 | 0 | 42 | 74 | 14 | 124,153 | 21 | ray | 4 | python/ray/tests/kuberay/test_autoscaling_config.py | Python | 8 | {
"docstring": "Autoscaling config with memory and gpu annotations.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/ray-project/ray.git |
|
1 | test_launcher_ensures_stdio | def test_launcher_ensures_stdio(self):
from kitty.constants import kitty_exe
import subprocess
exe = kitty_exe()
cp = subprocess.run([exe, '+runpy', ])
self.assertEqual(cp.returncode, 0)
| 6604e0d015fbd7a3e5602a6f3831d786b4ed659d | 10 | check_build.py | 71 | Fix regression in 0.26.0 that caused launching kitty without working STDIO handles to result in high CPU usage and prewarming failing
Fixes #5444 | 21,711 | 0 | 52 | 42 | 16 | 103,727 | 18 | kitty | 11 | kitty_tests/check_build.py | Python | 15 | {
"docstring": "\\\nimport os, sys\nif sys.stdin:\n os.close(sys.stdin.fileno())\nif sys.stdout:\n os.close(sys.stdout.fileno())\nif sys.stderr:\n os.close(sys.stderr.fileno())\nos.execlp('kitty', 'kitty', '+runpy', 'import sys; raise SystemExit(1 if sys.stdout is None or sys.stdin is None or sys.stderr is None else 0)')\n",
"language": "en",
"n_whitespaces": 37,
"n_words": 34,
"vocab_size": 26
} | https://github.com/kovidgoyal/kitty.git |
|
2 | _get_device_coords | def _get_device_coords(self, position, height):
x = self.legend_width + RACK_ELEVATION_BORDER_WIDTH
y = RACK_ELEVATION_BORDER_WIDTH
if self.rack.desc_units:
y += int((position - 1) * self.unit_height)
else:
y += int((self.rack.u_height - position + 1) * self.unit_height) - int(height * self.unit_height)
return x, y
| 0c915f7de9612c7485da3713cc6d63f368698a5d | 18 | svg.py | 121 | Clean up rack elevation rendering | 77,991 | 0 | 102 | 76 | 24 | 265,105 | 38 | netbox | 13 | netbox/dcim/svg.py | Python | 8 | {
"docstring": "\n Return the X, Y coordinates of the top left corner for a device in the specified rack unit.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 18,
"vocab_size": 16
} | https://github.com/netbox-community/netbox.git |
|
1 | test_notset_idval | def test_notset_idval(self) -> None:
assert IdMaker([], [], None, None, None, None)._idval(NOTSET, "a", 0) == "a0"
| b21b008118fc8cf65b4bcd9b059f1cd704e05c68 | 11 | metafunc.py | 57 | Refactor idmaker functions into class IdMaker
This commit only refactors, it does not change or add functionality yet. Public
API is retained. Reason or refactoring:
User provided parameter IDs (e.g. Metafunc.parametrize(ids=...)) had so far
only been used to calculate a unique test ID for each test invocation. That
test ID was a joined string where each parameter contributed some partial ID.
We're soon going to reuse functionality to generate parameter keys for
reorder_items and FixtureDef cache. We will be interested in the partial
IDs, and only if they originate from explicit user information. Refactoring
makes logic and data accessible for reuse, and increases cohesion in general. | 46,371 | 0 | 29 | 36 | 13 | 190,662 | 15 | pytest | 5 | testing/python/metafunc.py | Python | 7 | {
"docstring": "Test that a NOTSET value (used by an empty parameterset) generates\n a proper ID.\n\n Regression test for #7686.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 18,
"vocab_size": 17
} | https://github.com/pytest-dev/pytest.git |
|
1 | fork_env | def fork_env(self, prev_eid, eid):
assert isstr(prev_eid), "prev_eid should be a string"
assert isstr(eid), "eid should be a string"
return self._send(msg={"prev_eid": prev_eid, "eid": eid}, endpoint="fork_env")
| 5b8b7f267cfaf76a2a39a727ef31a62b3909a093 | 11 | __init__.py | 77 | apply black py to all python files | 22,475 | 0 | 52 | 45 | 18 | 106,852 | 24 | visdom | 8 | py/visdom/__init__.py | Python | 4 | {
"docstring": "This function allows the user to fork environments.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/fossasia/visdom.git |
|
3 | update_event_summary | def update_event_summary(self):
avail_resources = self.load_metrics.resources_avail_summary()
if not self.readonly_config and avail_resources != self.last_avail_resources:
self.event_summarizer.add(
"Resized to {}.", # e.g., Resized to 100 CPUs, 4 GPUs.
quantity=avail_resources,
aggregate=lambda old, new: new,
)
self.last_avail_resources = avail_resources
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 12 | monitor.py | 89 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,289 | 0 | 133 | 54 | 29 | 130,510 | 33 | ray | 13 | python/ray/autoscaler/_private/monitor.py | Python | 9 | {
"docstring": "Report the current size of the cluster.\n\n To avoid log spam, only cluster size changes (CPU or GPU count change)\n are reported to the event summarizer. The event summarizer will report\n only the latest cluster size per batch.\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 38,
"vocab_size": 30
} | https://github.com/ray-project/ray.git |
|
8 | get_formatter_for_filename | def get_formatter_for_filename(fn, **options):
fn = basename(fn)
for modname, name, _, filenames, _ in FORMATTERS.values():
for filename in filenames:
if _fn_matches(fn, filename):
if name not in _formatter_cache:
_load_formatters(modname)
return _formatter_cache[name](**options)
for cls in find_plugin_formatters():
for filename in cls.filenames:
if _fn_matches(fn, filename):
return cls(**options)
raise ClassNotFound("no formatter found for file name %r" % fn)
| f3166e673fe8d40277b804d35d77dcdb760fc3b3 | 15 | __init__.py | 155 | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 3,311 | 0 | 167 | 99 | 37 | 20,288 | 52 | pipenv | 17 | pipenv/patched/notpip/_vendor/pygments/formatters/__init__.py | Python | 13 | {
"docstring": "Lookup and instantiate a formatter by filename pattern.\n\n Raises ClassNotFound if not found.\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 13,
"vocab_size": 13
} | https://github.com/pypa/pipenv.git |
|
4 | get_work_queues | async def get_work_queues(self) -> Iterator[WorkQueue]:
for name in self.work_queues:
try:
work_queue = await self.client.read_work_queue_by_name(name)
except ObjectNotFound:
# if the work queue wasn't found, create it
try:
work_queue = await self.client.create_work_queue(name=name)
# if creating it raises an exception, it was probably just
# created by some other agent; rather than entering a re-read
# loop with new error handling, we log the exception and
# continue.
except Exception as exc:
self.logger.exception(exc)
continue
yield work_queue
| ab657b5b3e2235e836ef017d9c58d580e1c254c6 | 17 | agent.py | 116 | Handle errors gracefully and yield queues | 11,764 | 0 | 297 | 65 | 59 | 58,397 | 73 | prefect | 15 | src/prefect/agent.py | Python | 15 | {
"docstring": "\n Loads the work queue objects corresponding to the agent's target work\n queues. If any of them don't exist, they are created.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 19
} | https://github.com/PrefectHQ/prefect.git |
|
2 | cancel | def cancel(self, msg=None):
self.__log_traceback = False
if self._state != _PENDING:
return False
self._state = _CANCELLED
self._cancel_message = msg
self.__schedule_callbacks()
return True
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 7 | futures.py | 68 | add python 3.10.4 for windows | 56,036 | 0 | 81 | 41 | 16 | 220,529 | 21 | XX-Net | 9 | python3.10.4/Lib/asyncio/futures.py | Python | 8 | {
"docstring": "Cancel the future and schedule callbacks.\n\n If the future is already done or cancelled, return False. Otherwise,\n change the future's state to cancelled, schedule the callbacks and\n return True.\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 29,
"vocab_size": 21
} | https://github.com/XX-net/XX-Net.git |
|
1 | test_fed_caching | def test_fed_caching(self):
fed_hostname = self.hs.hostname + "2"
fed_subspace = "#space:" + fed_hostname
fed_room = "#room:" + fed_hostname
# Add a room to the space which is on another server.
self._add_child(self.space, fed_subspace, self.token, via=[fed_hostname])
federation_requests = 0
| af13a3be29dd2d84d9255f8e613ca70c16819436 | 9 | test_room_summary.py | 83 | Fix a bug that corrupted the cache of federated space hierarchies (#11775)
`FederationClient.get_room_hierarchy()` caches its return values, so
refactor the code to avoid modifying the returned room summary. | 70,985 | 0 | 85 | 238 | 29 | 246,073 | 36 | synapse | 12 | tests/handlers/test_room_summary.py | Python | 33 | {
"docstring": "\n Federation `/hierarchy` responses should be cached.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 6,
"vocab_size": 6
} | https://github.com/matrix-org/synapse.git |