complexity
int64
1
139
fun_name
stringlengths
1
80
code
stringlengths
101
62.2k
commit_id
stringlengths
40
40
ast_errors
stringlengths
0
3.11k
ast_levels
int64
6
36
file_name
stringlengths
5
79
n_ast_nodes
int64
17
19.2k
commit_message
stringlengths
3
15.3k
d_id
int64
12
121k
n_ast_errors
int64
0
9
n_whitespaces
int64
4
10.8k
token_counts
int64
5
3.06k
vocab_size
int64
4
1.11k
id
int64
20
338k
n_words
int64
4
4.82k
repo
stringlengths
3
22
n_identifiers
int64
2
176
path
stringlengths
7
134
language
stringclasses
1 value
nloc
int64
1
413
documentation
dict
url
stringlengths
31
59
4
spatial_3d_padding
def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None): assert len(padding) == 3 assert len(padding[0]) == 2 assert len(padding[1]) == 2 assert len(padding[2]) == 2 if data_format is None: data_format = image_data_format() if data_format not in {"channels_first", "channels_last"}: raise ValueError("Unknown data_format: " + str(data_format)) if data_format == "channels_first": pattern = [ [0, 0], [0, 0], [padding[0][0], padding[0][1]], [padding[1][0], padding[1][1]], [padding[2][0], padding[2][1]], ] else: pattern = [ [0, 0], [padding[0][0], padding[0][1]], [padding[1][0], padding[1][1]], [padding[2][0], padding[2][1]], [0, 0], ] return tf.compat.v1.pad(x, pattern) @keras_export("keras.backend.stack") @tf.__internal__.dispatch.add_dispatch_support @doc_controls.do_not_generate_docs
84afc5193d38057e2e2badf9c889ea87d80d8fbf
@keras_export("keras.backend.stack") @tf.__internal__.dispatch.add_dispatch_support @doc_controls.do_not_generate_docs
13
backend.py
396
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
80,148
1
262
259
50
269,517
83
keras
19
keras/backend.py
Python
49
{ "docstring": "Pads 5D tensor with zeros along the depth, height, width dimensions.\n\n Pads these dimensions with respectively\n \"padding[0]\", \"padding[1]\" and \"padding[2]\" zeros left and right.\n\n For 'channels_last' data_format,\n the 2nd, 3rd and 4th dimension will be padded.\n For 'channels_first' data_format,\n the 3rd, 4th and 5th dimension will be padded.\n\n Args:\n x: Tensor or variable.\n padding: Tuple of 3 tuples, padding pattern.\n data_format: One of `channels_last` or `channels_first`.\n\n Returns:\n A padded 5D tensor.\n\n Raises:\n ValueError: if `data_format` is neither\n `channels_last` or `channels_first`.\n\n ", "language": "en", "n_whitespaces": 156, "n_words": 80, "vocab_size": 59 }
https://github.com/keras-team/keras.git
2
list_local
def list_local(): result = [] for dist_name in get_hub_packages_dir().glob(r'*/v*.dist-info'): result.append(dist_name) return result
a5fd192b186c66aa983137ca3a179caac7f6b786
9
hubapi.py
53
feat: optimize create hub root (#4388)
2,043
0
31
30
11
11,454
12
jina
6
jina/hubble/hubapi.py
Python
5
{ "docstring": "List the locally-available executor packages.\n\n :return: the list of local executors (if found)\n ", "language": "en", "n_whitespaces": 19, "n_words": 13, "vocab_size": 12 }
https://github.com/jina-ai/jina.git
1
test_render_mention_stream_api
def test_render_mention_stream_api(self) -> None: content = "This mentions #**Denmark** and @**King Hamlet**." result = self.api_post( self.example_user("othello"), "/api/v1/messages/render", dict(content=content), ) response_dict = self.assert_json_success(result) user_id = self.example_user("hamlet").id stream_id = get_stream("Denmark", get_realm("zulip")).id self.assertEqual( response_dict["rendered"], f'<p>This mentions <a class="stream" data-stream-id="{stream_id}" href="/#narrow/stream/{stream_id}-Denmark">#Denmark</a> and <span class="user-mention" data-user-id="{user_id}">@King Hamlet</span>.</p>', )
a142fbff85302c5e3acb2e204eca2e9c75dbc74b
12
test_markdown.py
149
tests: Refactor away result.json() calls with helpers. Signed-off-by: Zixuan James Li <[email protected]>
17,769
0
161
78
36
84,081
43
zulip
15
zerver/tests/test_markdown.py
Python
15
{ "docstring": "Determines whether we're correctly passing the realm context", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
https://github.com/zulip/zulip.git
4
strip_accents_unicode
def strip_accents_unicode(s): try: # If `s` is ASCII-compatible, then it does not contain any accented # characters and we can avoid an expensive list comprehension s.encode("ASCII", errors="strict") return s except UnicodeEncodeError: normalized = unicodedata.normalize("NFKD", s) return "".join([c for c in normalized if not unicodedata.combining(c)])
c925b7e24c4b58e7191eec935d724e23d351c58b
15
text.py
97
DOC Ensures that strip_accents_unicode passes numpydoc (#24232) Co-authored-by: Thomas J. Fan <[email protected]>
76,422
0
95
54
40
260,694
44
scikit-learn
11
sklearn/feature_extraction/text.py
Python
7
{ "docstring": "Transform accentuated unicode symbols into their simple counterpart.\n\n Warning: the python-level loop and join operations make this\n implementation 20 times slower than the strip_accents_ascii basic\n normalization.\n\n Parameters\n ----------\n s : str\n The string to strip.\n\n Returns\n -------\n s : str\n The stripped string.\n\n See Also\n --------\n strip_accents_ascii : Remove accentuated char for any unicode symbol that\n has a direct ASCII equivalent.\n ", "language": "en", "n_whitespaces": 121, "n_words": 61, "vocab_size": 52 }
https://github.com/scikit-learn/scikit-learn.git
1
test_default_float_converter_exception
def test_default_float_converter_exception(self): c = TextIO("qrs tuv") # Invalid values for default float converter with pytest.raises(ValueError, match="could not convert string 'qrs' to float64"): np.loadtxt(c)
b8c82404855d317a9ac77b4743d3db39f009c6aa
11
test_io.py
58
TST: Fixup current loadtxt tests for changes
38,416
0
71
30
23
159,748
23
numpy
10
numpy/lib/tests/test_io.py
Python
5
{ "docstring": "\n Ensure that the exception message raised during failed floating point\n conversion is correct. Regression test related to gh-19598.\n ", "language": "en", "n_whitespaces": 40, "n_words": 18, "vocab_size": 18 }
https://github.com/numpy/numpy.git
5
_check_axes_shape
def _check_axes_shape(self, axes, axes_num=None, layout=None, figsize=None): from pandas.plotting._matplotlib.tools import flatten_axes if figsize is None: figsize = (6.4, 4.8) visible_axes = self._flatten_visible(axes) if axes_num is not None: assert len(visible_axes) == axes_num for ax in visible_axes: # check something drawn on visible axes assert len(ax.get_children()) > 0 if layout is not None: result = self._get_axes_layout(flatten_axes(axes)) assert result == layout tm.assert_numpy_array_equal( visible_axes[0].figure.get_size_inches(), np.array(figsize, dtype=np.float64), )
03fef5f0e35200aa5828975b62782bcf11faa0d2
14
common.py
196
TST: Clean tests/plotting (#45992)
39,622
0
225
133
46
164,926
62
pandas
26
pandas/tests/plotting/common.py
Python
16
{ "docstring": "\n Check expected number of axes is drawn in expected layout\n\n Parameters\n ----------\n axes : matplotlib Axes object, or its list-like\n axes_num : number\n expected number of axes. Unnecessary axes should be set to\n invisible.\n layout : tuple\n expected layout, (expected number of rows , columns)\n figsize : tuple\n expected figsize. default is matplotlib default\n ", "language": "en", "n_whitespaces": 155, "n_words": 54, "vocab_size": 35 }
https://github.com/pandas-dev/pandas.git
9
cg_command
async def cg_command(ctx, ticker="", length="14", start="", end=""): try: # Debug if cfg.DEBUG: logger.debug( "!stocks.ta.cg %s %s %s %s", ticker, length, start, end, ) # Check for argument if ticker == "": raise Exception("Stock ticker is required") if start == "": start = datetime.now() - timedelta(days=365) else: start = datetime.strptime(start, cfg.DATE_FORMAT) if end == "": end = datetime.now() else: end = datetime.strptime(end, cfg.DATE_FORMAT) if not length.lstrip("-").isnumeric(): raise Exception("Number has to be an integer") length = float(length) ticker = ticker.upper() df_stock = discordbot.helpers.load(ticker, start) if df_stock.empty: raise Exception("Stock ticker is invalid") # Retrieve Data df_stock = df_stock.loc[(df_stock.index >= start) & (df_stock.index < end)] df_ta = momentum_model.cg("1440min", df_stock, length) # Output Data fig, axes = plt.subplots(2, 1, figsize=plot_autoscale(), dpi=PLOT_DPI) ax = axes[0] ax.set_title(f"{ticker} Centre of Gravity") ax.plot(df_stock.index, df_stock["Adj Close"].values, "k", lw=1) ax.set_xlim(df_stock.index[0], df_stock.index[-1]) ax.set_ylabel("Share Price ($)") ax.grid(b=True, which="major", color="#666666", linestyle="-") ax2 = axes[1] ax2.plot(df_ta.index, df_ta.values, "b", lw=2, label="CG") # shift cg 1 bar forward for signal signal = df_ta.values signal = np.roll(signal, 1) ax2.plot(df_ta.index, signal, "g", lw=1, label="Signal") ax2.set_xlim(df_stock.index[0], df_stock.index[-1]) ax2.grid(b=True, which="major", color="#666666", linestyle="-") plt.gcf().autofmt_xdate() fig.tight_layout(pad=1) plt.legend() plt.savefig("ta_cg.png") uploaded_image = gst_imgur.upload_image("ta_cg.png", title="something") image_link = uploaded_image.link if cfg.DEBUG: logger.debug("Image URL: %s", image_link) title = "Stocks: Center-of-Gravity " + ticker embed = discord.Embed(title=title, colour=cfg.COLOR) embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) embed.set_image(url=image_link) os.remove("ta_cg.png") await ctx.send(embed=embed) except Exception as e: embed = discord.Embed( title="ERROR Stocks: Center-of-Gravity", colour=cfg.COLOR, description=e, ) embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) await ctx.send(embed=embed)
f40ba0d256a78ab2b8461f0df3a9a52ca7dc5704
14
cg.py
948
Bot logging fix (#1105) * Write bot logs to stdout instead of a file Heroku's logging uses the stdout and has problems with files * Send "you snooze you lose" only if debug flag is enabled * Replace print statements with logger entries in the economy menu * Add logging to bot menu command calls * Silence bandit warnings about the REPLACE_ME token * Organize imports and update logging in economy menu * Organize imports and update logging in dps menu * Organize imports and update logging in dd menu * Organize imports and update logging in gov menu * Organize imports and update logging in options menu * Organize imports and update logging in screener menu * Organize imports and update logging in ta menu * Revert automatic import sorting * Add logging to the options reaction helper
83,602
0
854
574
155
281,196
226
OpenBBTerminal
85
discordbot/stocks/technical_analysis/cg.py
Python
71
{ "docstring": "Displays chart with centre of gravity [Yahoo Finance]", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
https://github.com/OpenBB-finance/OpenBBTerminal.git
1
csv_io_kwargs
def csv_io_kwargs(mode): # type: (str) -> Dict[str, Any] return {'mode': mode, 'newline': '', 'encoding': 'utf-8'}
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
8
wheel.py
43
upd; format
12,349
0
24
20
15
60,934
15
transferlearning
2
.venv/lib/python3.8/site-packages/pip/_internal/operations/install/wheel.py
Python
2
{ "docstring": "Return keyword arguments to properly open a CSV file\n in the given mode.\n ", "language": "en", "n_whitespaces": 19, "n_words": 13, "vocab_size": 13 }
https://github.com/jindongwang/transferlearning.git
12
change_node_label
def change_node_label(self, label, new_label): if label not in self._node_labels: raise ValueError("No such node exists for the Truss") else: for node in self._nodes: if node[0] == label: if self._supports[label] == 'pinned': if 'R_'+str(label)+'_x' in list(self._reaction_loads) and 'R_'+str(label)+'_y' in list(self._reaction_loads): self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x'] self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y'] self._reaction_loads.pop('R_'+str(label)+'_x') self._reaction_loads.pop('R_'+str(label)+'_y') self._loads['R_'+str(new_label)+'_x'] = self._loads['R_'+str(label)+'_x'] self._loads['R_'+str(new_label)+'_y'] = self._loads['R_'+str(label)+'_y'] self._loads.pop('R_'+str(label)+'_x') self._loads.pop('R_'+str(label)+'_y') elif self._supports[label] == 'roller': if 'R_'+str(label)+'_y' in list(self._reaction_loads): self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y'] self._reaction_loads.pop('R_'+str(label)+'_y') self._loads['R_'+str(new_label)+'_y'] = self._loads['R_'+str(label)+'_y'] self._loads.pop('R_'+str(label)+'_y') for member in self._members: if member[1] == node[0]: member[1] = new_label self._member_nodes[member[0]] = [new_label, member[2]] self._nodes_occupied[(new_label, member[2])] = True self._nodes_occupied[(member[2], new_label)] = True self._nodes_occupied.pop(tuple([label, member[2]])) self._nodes_occupied.pop(tuple([member[2], label])) elif member[2] == node[0]: member[2] = new_label self._member_nodes[member[0]] = [member[1], new_label] self._nodes_occupied[(member[1], new_label)] = True self._nodes_occupied[(new_label, member[1])] = True self._nodes_occupied.pop(tuple([member[1], label])) self._nodes_occupied.pop(tuple([label, member[1]])) self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2]) self._node_labels[self._node_labels.index(node[0])] = new_label self._loads[new_label] = self._loads[node[0]] self._loads.pop(node[0]) self._supports[new_label] = self._supports[node[0]] self._supports.pop(node[0])
99ede53223eafb56b2c2b4ab7b8a6764b628c9d9
23
truss.py
1,114
remove_load method added along with other changes
48,980
0
1,084
682
80
198,528
138
sympy
20
sympy/physics/continuum_mechanics/truss.py
Python
43
{ "docstring": "\n This method changes the label of a node.\n\n Parameters\n ==========\n label: String or Symbol\n The label of the node for which the label has\n to be changed.\n\n new_label: String or Symbol\n The new label of the node.\n\n Examples\n ========\n\n >>> from sympy.physics.continuum_mechanics.truss import Truss\n >>> t = Truss()\n >>> t.add_node('A', 0, 0)\n >>> t.add_node('B', 3, 0)\n >>> t.nodes\n [('A', 0, 0), ('B', 3, 0)]\n >>> t.change_node_label('A', 'C')\n >>> t.nodes\n [('C', 0, 0), ('B', 3, 0)]\n >>> t.add_member('BC', 'B', 'C')\n >>> t.members\n [['BC', 'B', 'C']]\n >>> t.change_member_label('BC', 'BC_new')\n >>> t.members\n [['BC_new', 'B', 'C']]\n ", "language": "en", "n_whitespaces": 287, "n_words": 92, "vocab_size": 55 }
https://github.com/sympy/sympy.git
1
get_cat_ids
def get_cat_ids(self, idx): return self.get_ann_info(idx)['labels'].astype(np.int).tolist()
4aaaf4dccfe26ac2265f77069f09aa8204f23337
12
openimages.py
50
[Feature] Support Class Aware Sampler (#7436) * [Feature] Support Class Aware Sampler * minor fix * minor fix * rename get_label_dict to get_index_dict * fix cas logic * minor fix * minor fix * minor fix * minor fix * minor fix
70,290
0
19
29
5
244,226
5
mmdetection
8
mmdet/datasets/openimages.py
Python
2
{ "docstring": "Get category ids by index.\n\n Args:\n idx (int): Index of data.\n\n Returns:\n list[int]: All categories in the image of specified index.\n ", "language": "en", "n_whitespaces": 64, "n_words": 21, "vocab_size": 19 }
https://github.com/open-mmlab/mmdetection.git
1
print_stack
def print_stack(self, *, limit=None, file=None): return base_tasks._task_print_stack(self, limit, file)
8198943edd73a363c266633e1aa5b2a9e9c9f526
7
tasks.py
41
add python 3.10.4 for windows
56,120
0
23
27
9
220,797
9
XX-Net
6
python3.10.4/Lib/asyncio/tasks.py
Python
2
{ "docstring": "Print the stack or traceback for this task's coroutine.\n\n This produces output similar to that of the traceback module,\n for the frames retrieved by get_stack(). The limit argument\n is passed to get_stack(). The file argument is an I/O stream\n to which the output is written; by default output is written\n to sys.stderr.\n ", "language": "en", "n_whitespaces": 96, "n_words": 52, "vocab_size": 35 }
https://github.com/XX-net/XX-Net.git
13
_get_aligned_offsets
def _get_aligned_offsets(hd_list, height, align="baseline"): if height is None: height = max(h for h, d in hd_list) _api.check_in_list( ["baseline", "left", "top", "right", "bottom", "center"], align=align) if align == "baseline": height_descent = max(h - d for h, d in hd_list) descent = max(d for h, d in hd_list) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left", "bottom"]: descent = 0. offsets = [d for h, d in hd_list] elif align in ["right", "top"]: descent = 0. offsets = [height - h + d for h, d in hd_list] elif align == "center": descent = 0. offsets = [(height - h) * .5 + d for h, d in hd_list] return height, descent, offsets
b51c471f0bea8ad2bd3e295ebf896cba0efbb5ef
14
offsetbox.py
294
FIX: VPacker and HPacker bottom/top alignment The bottom and top alignments were incorrectly defined before, this updates them to have the expected alignment.
24,176
0
228
186
50
110,473
120
matplotlib
12
lib/matplotlib/offsetbox.py
Python
20
{ "docstring": "\n Align boxes each specified by their ``(height, descent)`` pair.\n\n For simplicity of the description, the terminology used here assumes a\n horizontal layout (i.e., vertical alignment), but the function works\n equally for a vertical layout.\n\n Parameters\n ----------\n hd_list\n List of (height, xdescent) of boxes to be aligned.\n height : float or None\n Intended total height. If None, the maximum of the heights in *hd_list*\n is used.\n align : {'baseline', 'left', 'top', 'right', 'bottom', 'center'}\n The alignment anchor of the boxes.\n\n Returns\n -------\n height\n The total height of the packing (if a value was originally passed in,\n it is returned without checking that it is actually large enough).\n descent\n The descent of the packing.\n offsets\n The bottom offsets of the boxes.\n ", "language": "en", "n_whitespaces": 221, "n_words": 119, "vocab_size": 87 }
https://github.com/matplotlib/matplotlib.git
1
duplicate_interleave
def duplicate_interleave(m): dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m # Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
d6b6fb9963e094216daa30ebf61224ca1c46921e
9
modeling_codegen.py
81
Add CodeGen model (#17443) * Add CodeGen model * Add missing key and switch order of super() * Fix torch.ones init with uint8 instead of bool * Address comments: copy statements and doc * update tests * remove old model parallel * fix batch gen tests * fix batch gen test * update test_gpt2_sample_max_time * fix codgen test and revert gpt2 test change * Fix incorrect tie_word_embedding value, typo, URL * Fix model order in README and styling * Reorder model list alphabetically * Set tie_word_embedding to False by default * Apply suggestions from code review * Better attn mask name & remove attn masked_bias * add tokenizer for codegen * quality * doc tokenizer * fix-copies * add CodeGenTokenizer in converter * make truncation optional * add test for truncation * add copyright * fix-copies * fix fast tokenizer decode * Update src/transformers/models/codegen/tokenization_codegen.py Co-authored-by: Patrick von Platen <[email protected]> * increase vocab_size in tests Co-authored-by: patil-suraj <[email protected]> Co-authored-by: Patrick von Platen <[email protected]>
5,777
0
63
48
31
31,640
43
transformers
6
src/transformers/models/codegen/modeling_codegen.py
Python
6
{ "docstring": "\n A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.\n ", "language": "en", "n_whitespaces": 20, "n_words": 13, "vocab_size": 13 }
https://github.com/huggingface/transformers.git
1
get_granger_causality
def get_granger_causality(time_series_y, time_series_x, lags): granger_set = pd.concat([time_series_y, time_series_x], axis=1) granger = grangercausalitytests(granger_set, [lags], verbose=False) return granger
f2ca215132de40804667feb4deaa0c6b8bfc3d25
9
econometrics_model.py
63
Econometrics Menu (#1403) * Add Statistics Menu * Add Granger Causality test * Apply Black formatting * Add Cointegration Tests * Adjust plotting for Cointegration test * Add Significant parameter to Cointegration tests * Move regression functions to seperate .py files * Progress on Panel Data * A lot of progress for Panel Data * Make functions robust and improve documentation * Re-enable Breusch-Godfrey * Add modify functionality * Improve modify functionality * Add Breusch-Pagan heteroscedasticity test * Capitalize a word * Include documentatin for the Statistics Menu * Update _index.md * Update _index.md * Update _index.md * Fix export statements and add Example datasets * Update example with Longley's dataset * Update documentation with a legit source * Compare the results from each regression models based on the wage_panel dataset * Updated with all relevant types of regression tables * Update with all relevant regression types for Panel data * Update _index.md * Add change column type, improve OLS, add time and entity effects for FE * Update documentation and fix a small bug * Add in Statistics menu, replacing Custom menu * Remove custom menu * Add in documentation * Add in gst files * Cointegration can be used on any amount of columns * Add Tests * Make tests time invariant * Update Poetry and Requirements * Change name of Statistics menu to Econometrics menu * Rename scripts * Add type in Documentation * Change names from Statistics to Econometrics * Add graph * Update tests with rounding and naming * Make minor adjustments to fix the tests * Updating tests : allow extra args for capture * Apply recorder formatting * Adding some minor formatting * Fix error with MyPy * Attempt to fix MyPy annoyance * super small style things * Fix small bugs and add plot command to dwat * Small description mistake * Update documentation with missing argument * Update styling * Add error handling and add improve show functionality * Fix merge issue * Allow import from custom_imports Co-authored-by: Jeroen Bouma <[email protected]> Co-authored-by: jmaslek <[email protected]> Co-authored-by: Chavithra PARANA <[email protected]>
84,280
0
28
42
14
282,731
16
OpenBBTerminal
11
gamestonk_terminal/econometrics/econometrics_model.py
Python
4
{ "docstring": "Calculate granger tests\n\n Parameters\n ----------\n time_series_y : Series\n The series you want to test Granger Causality for.\n time_series_x : Series\n The series that you want to test whether it Granger-causes time_series_y\n lags : int\n The amoiunt of lags for the Granger test. By default, this is set to 3.\n ", "language": "en", "n_whitespaces": 88, "n_words": 49, "vocab_size": 35 }
https://github.com/OpenBB-finance/OpenBBTerminal.git
5
_load_bboxes
def _load_bboxes(self, results): ann_info = results['ann_info'] results['gt_bboxes'] = ann_info['bboxes'].copy() if self.denorm_bbox: h, w = results['img_shape'][:2] bbox_num = results['gt_bboxes'].shape[0] if bbox_num != 0: results['gt_bboxes'][:, 0::2] *= w results['gt_bboxes'][:, 1::2] *= h results['gt_bboxes'] = results['gt_bboxes'].astype(np.float32) gt_bboxes_ignore = ann_info.get('bboxes_ignore', None) if gt_bboxes_ignore is not None: results['gt_bboxes_ignore'] = gt_bboxes_ignore.copy() results['bbox_fields'].append('gt_bboxes_ignore') results['bbox_fields'].append('gt_bboxes') gt_is_group_ofs = ann_info.get('gt_is_group_ofs', None) if gt_is_group_ofs is not None: results['gt_is_group_ofs'] = gt_is_group_ofs.copy() return results
1516986a616fee8bb741d0ab2be40683045efccd
13
loading.py
303
[Feature] Support OpenImages Dataset (#6331) * [Feature] support openimage group of eval * [Feature] support openimage group of eval * support openimage dataset * support openimage challenge dataset * fully support OpenImages-V6 and OpenImages Challenge 2019 * Fix some logic error * update config file * fix get data_infos error * fully support OpenImages evaluation * update OpenImages config files * [Feature] support OpenImages datasets * fix bug * support load image metas from pipeline * fix bug * fix get classes logic error * update code * support get image metas * support openimags * support collect image metas * support Open Images * fix openimages logic * minor fix * add a new function to compute openimages tpfp * minor fix * fix ci error * minor fix * fix indication * minor fix * fix returns * fix returns * fix returns * fix returns * fix returns * minor fix * update readme * support loading image level labels and fix some logic * minor fix * minor fix * add class names * minor fix * minor fix * minor fix * add openimages test unit * minor fix * minor fix * fix test unit * minor fix * fix logic error * minor fix * fully support openimages * minor fix * fix docstring * fix docstrings in readthedocs * update get image metas script * label_description_file -> label_file * update openimages readme * fix test unit * fix test unit * minor fix * update readme file * Update get_image_metas.py
70,196
0
238
176
39
244,007
61
mmdetection
17
mmdet/datasets/pipelines/loading.py
Python
19
{ "docstring": "Private function to load bounding box annotations.\n\n Args:\n results (dict): Result dict from :obj:`mmdet.CustomDataset`.\n\n Returns:\n dict: The dict contains loaded bounding box annotations.\n ", "language": "en", "n_whitespaces": 66, "n_words": 23, "vocab_size": 19 }
https://github.com/open-mmlab/mmdetection.git
5
hstack
def hstack(tup, *, dtype=None, casting="same_kind"): if not overrides.ARRAY_FUNCTION_ENABLED: # raise warning if necessary _arrays_for_stack_dispatcher(tup, stacklevel=2) arrs = atleast_1d(*tup) if not isinstance(arrs, list): arrs = [arrs] # As a special case, dimension 0 of 1-dimensional arrays is "horizontal" if arrs and arrs[0].ndim == 1: return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting) else: return _nx.concatenate(arrs, 1, dtype=dtype, casting=casting)
126046f84449fffeb0c75ae88657ce6b90236eee
11
shape_base.py
154
ENH: adding casting option to numpy.stack. (#21627) np.concatenate and np.stack are similar methods, but only np.concatenate has the casting option. This PR puts the casting option into the np.stack method to control what kind of data casting may occur Closes gh-20959 * ENH: adding casting option to numpy.stack. See #20959 * ENH: adding dtype option to numpy.stack. See #20959 * REV: removing auto-generated file loops_modulo.dispatch.c See numpy#20959 * REV: removing auto-generated file loops_modulo.dispatch.c See numpy#20959 * REV: removing inserted newlines See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * DOC: inserting versionadded info in dtype and casting parameters. See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * TST: writing tests to stack method with dtype and casting options See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * DOC: adding upcoming_change file for new options casting and dtype in method stack. See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * REV: reverting lint errors. See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * DOC: inserting hstack and vstack methods in upcoming changes See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * ENH: adding dtype and casting keyword arguments to numpy.vstack and numpy.hstack. See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * TST: writing tests to vstack and hstack methods with dtype and casting keyword arguments. See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * REV: reverting the 'out' option type in stack method. See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> * REV: Reverting out type changes in overload of shape_base.pyi file. See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: jhonatancunha <[email protected]> Co-authored-by: patriarka <[email protected]> * DOC: correcting some english erros in upcoming_changes file. See numpy#20959 Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: alescrocaro <[email protected]> Co-authored-by: JessePires <[email protected]> Co-authored-by: patriarka <[email protected]>
38,661
0
110
99
42
160,598
54
numpy
15
numpy/core/shape_base.py
Python
10
{ "docstring": "\n Stack arrays in sequence horizontally (column wise).\n\n This is equivalent to concatenation along the second axis, except for 1-D\n arrays where it concatenates along the first axis. Rebuilds arrays divided\n by `hsplit`.\n\n This function makes most sense for arrays with up to 3 dimensions. For\n instance, for pixel-data with a height (first axis), width (second axis),\n and r/g/b channels (third axis). The functions `concatenate`, `stack` and\n `block` provide more general stacking and concatenation operations.\n\n Parameters\n ----------\n tup : sequence of ndarrays\n The arrays must have the same shape along all but the second axis,\n except 1-D arrays which can be any length.\n\n dtype : str or dtype\n If provided, the destination array will have this dtype. Cannot be\n provided together with `out`.\n\n .. versionadded:: 1.24\n\n casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional\n Controls what kind of data casting may occur. Defaults to 'same_kind'.\n\n .. versionadded:: 1.24\n\n Returns\n -------\n stacked : ndarray\n The array formed by stacking the given arrays.\n\n See Also\n --------\n concatenate : Join a sequence of arrays along an existing axis.\n stack : Join a sequence of arrays along a new axis.\n block : Assemble an nd-array from nested lists of blocks.\n vstack : Stack arrays in sequence vertically (row wise).\n dstack : Stack arrays in sequence depth wise (along third axis).\n column_stack : Stack 1-D arrays as columns into a 2-D array.\n hsplit : Split an array into multiple sub-arrays horizontally (column-wise).\n\n Examples\n --------\n >>> a = np.array((1,2,3))\n >>> b = np.array((4,5,6))\n >>> np.hstack((a,b))\n array([1, 2, 3, 4, 5, 6])\n >>> a = np.array([[1],[2],[3]])\n >>> b = np.array([[4],[5],[6]])\n >>> np.hstack((a,b))\n array([[1, 4],\n [2, 5],\n [3, 6]])\n\n ", "language": "en", "n_whitespaces": 447, "n_words": 270, "vocab_size": 172 }
https://github.com/numpy/numpy.git
3
d2_tweedie_score
def d2_tweedie_score(y_true, y_pred, *, sample_weight=None, power=0): y_type, y_true, y_pred, _ = _check_reg_targets( y_true, y_pred, None, dtype=[np.float64, np.float32] ) if y_type == "continuous-multioutput": raise ValueError("Multioutput not supported in d2_tweedie_score") if _num_samples(y_pred) < 2: msg = "D^2 score is not well-defined with less than two samples." warnings.warn(msg, UndefinedMetricWarning) return float("nan") y_true, y_pred = np.squeeze(y_true), np.squeeze(y_pred) numerator = mean_tweedie_deviance( y_true, y_pred, sample_weight=sample_weight, power=power ) y_avg = np.average(y_true, weights=sample_weight) denominator = _mean_tweedie_deviance( y_true, y_avg, sample_weight=sample_weight, power=power ) return 1 - numerator / denominator
75a94f518f7bd7d0bf581ffb67d9f961e3c4efbc
11
_regression.py
225
ENH migrate GLMs / TweedieRegressor to linear loss (#22548) Co-authored-by: Olivier Grisel <[email protected]> Co-authored-by: Thomas J. Fan <[email protected]>
75,790
0
164
147
58
259,460
79
scikit-learn
27
sklearn/metrics/_regression.py
Python
19
{ "docstring": "D^2 regression score function, percentage of Tweedie deviance explained.\n\n Best possible score is 1.0 and it can be negative (because the model can be\n arbitrarily worse). A model that always uses the empirical mean of `y_true` as\n constant prediction, disregarding the input features, gets a D^2 score of 0.0.\n\n Read more in the :ref:`User Guide <d2_tweedie_score>`.\n\n .. versionadded:: 1.0\n\n Parameters\n ----------\n y_true : array-like of shape (n_samples,)\n Ground truth (correct) target values.\n\n y_pred : array-like of shape (n_samples,)\n Estimated target values.\n\n sample_weight : array-like of shape (n_samples,), optional\n Sample weights.\n\n power : float, default=0\n Tweedie power parameter. Either power <= 0 or power >= 1.\n\n The higher `p` the less weight is given to extreme\n deviations between true and predicted targets.\n\n - power < 0: Extreme stable distribution. Requires: y_pred > 0.\n - power = 0 : Normal distribution, output corresponds to r2_score.\n y_true and y_pred can be any real numbers.\n - power = 1 : Poisson distribution. Requires: y_true >= 0 and\n y_pred > 0.\n - 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0\n and y_pred > 0.\n - power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.\n - power = 3 : Inverse Gaussian distribution. Requires: y_true > 0\n and y_pred > 0.\n - otherwise : Positive stable distribution. Requires: y_true > 0\n and y_pred > 0.\n\n Returns\n -------\n z : float or ndarray of floats\n The D^2 score.\n\n Notes\n -----\n This is not a symmetric function.\n\n Like R^2, D^2 score may be negative (it need not actually be the square of\n a quantity D).\n\n This metric is not well-defined for single samples and will return a NaN\n value if n_samples is less than two.\n\n References\n ----------\n .. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J.\n Wainwright. \"Statistical Learning with Sparsity: The Lasso and\n Generalizations.\" (2015). https://trevorhastie.github.io\n\n Examples\n --------\n >>> from sklearn.metrics import d2_tweedie_score\n >>> y_true = [0.5, 1, 2.5, 7]\n >>> y_pred = [1, 1, 5, 3.5]\n >>> d2_tweedie_score(y_true, y_pred)\n 0.285...\n >>> d2_tweedie_score(y_true, y_pred, power=1)\n 0.487...\n >>> d2_tweedie_score(y_true, y_pred, power=2)\n 0.630...\n >>> d2_tweedie_score(y_true, y_true, power=2)\n 1.0\n ", "language": "en", "n_whitespaces": 630, "n_words": 353, "vocab_size": 196 }
https://github.com/scikit-learn/scikit-learn.git
11
find_requirement
def find_requirement(self, req, upgrade): # type: (InstallRequirement, bool) -> Optional[InstallationCandidate] hashes = req.hashes(trust_internet=False) best_candidate_result = self.find_best_candidate( req.name, specifier=req.specifier, hashes=hashes, ) best_candidate = best_candidate_result.best_candidate installed_version = None # type: Optional[_BaseVersion] if req.satisfied_by is not None: installed_version = parse_version(req.satisfied_by.version)
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
12
package_finder.py
106
upd; format
12,265
0
118
214
30
60,728
37
transferlearning
15
.venv/lib/python3.8/site-packages/pip/_internal/index/package_finder.py
Python
55
{ "docstring": "Try to find a Link matching req\n\n Expects req, an InstallRequirement and upgrade, a boolean\n Returns a InstallationCandidate if found,\n Raises DistributionNotFound or BestVersionAlreadyInstalled otherwise\n ", "language": "en", "n_whitespaces": 53, "n_words": 25, "vocab_size": 23 }
https://github.com/jindongwang/transferlearning.git
1
add_handler
def add_handler(self, handler): sympy_deprecation_warning( , deprecated_since_version="1.8", active_deprecations_target='deprecated-askhandler', ) self.handlers.append(handler)
ad766d1c02943e86f50559abfd0c72e582c9ca6a
9
assume.py
48
Update the AskHandler deprecation warnings n.b., the issue number in the original warning message was wrong. It should have been #20837.
48,153
0
62
28
9
196,757
9
sympy
8
sympy/assumptions/assume.py
Python
10
{ "docstring": "\n The AskHandler system is deprecated. Predicate.add_handler()\n should be replaced with the multipledispatch handler of Predicate.\n ", "language": "en", "n_whitespaces": 49, "n_words": 15, "vocab_size": 15 }
https://github.com/sympy/sympy.git
1
get_revision
def get_revision(cls, location): # type: (str) -> str raise NotImplementedError
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
6
versioncontrol.py
19
upd; format
12,574
0
31
10
10
61,435
10
transferlearning
4
.venv/lib/python3.8/site-packages/pip/_internal/vcs/versioncontrol.py
Python
2
{ "docstring": "\n Return the current commit id of the files at the given location.\n ", "language": "en", "n_whitespaces": 27, "n_words": 12, "vocab_size": 10 }
https://github.com/jindongwang/transferlearning.git
1
get_config_profile_type_map
def get_config_profile_type_map() -> t.Dict[t.Type[HostConfig], t.Type[HostProfile]]: return get_type_map(HostProfile, HostConfig)
3eb0485dd92c88cc92152d3656d94492db44b183
7
host_profiles.py
48
ansible-test - Use more native type hints. (#78435) * ansible-test - Use more native type hints. Simple search and replace to switch from comments to native type hints for return types of functions with no arguments. * ansible-test - Use more native type hints. Conversion of simple single-line function annotation type comments to native type hints. * ansible-test - Use more native type hints. Conversion of single-line function annotation type comments with default values to native type hints. * ansible-test - Use more native type hints. Manual conversion of type annotation comments for functions which have pylint directives.
79,291
0
14
31
8
268,017
8
ansible
7
test/lib/ansible_test/_internal/host_profiles.py
Python
3
{ "docstring": "Create and return a mapping of HostConfig types to HostProfile types.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
https://github.com/ansible/ansible.git
2
query_task
def query_task(doctype, txt, searchfield, start, page_len, filters): from frappe.desk.reportview import build_match_conditions search_string = "%%%s%%" % txt order_by_string = "%s%%" % txt match_conditions = build_match_conditions("Task") match_conditions = ("and" + match_conditions) if match_conditions else "" return frappe.db.sql( % (searchfield, "%s", "%s", match_conditions, "%s", searchfield, "%s", searchfield, "%s", "%s"), (search_string, search_string, order_by_string, order_by_string, page_len, start), )
00ef499739959630cd7cf97419fbb6ca59be05f2
10
utils.py
150
refactor: use db independent offset syntax (#31345) * chore: use db independent offset syntax * fix: typo * style: reformat code to black spec Co-authored-by: Ankush Menat <[email protected]>
14,887
0
43
96
37
68,806
53
erpnext
16
erpnext/projects/utils.py
Python
18
{ "docstring": "select name, subject from `tabTask`\n\t\twhere (`%s` like %s or `subject` like %s) %s\n\t\torder by\n\t\t\tcase when `subject` like %s then 0 else 1 end,\n\t\t\tcase when `%s` like %s then 0 else 1 end,\n\t\t\t`%s`,\n\t\t\tsubject\n\t\tlimit %s offset %s", "language": "en", "n_whitespaces": 34, "n_words": 42, "vocab_size": 25 }
https://github.com/frappe/erpnext.git
3
_project_out
def _project_out(basis, U): # See Sec. 6.9 of The Symmetric Eigenvalue Problem by Beresford Parlett [1] # which motivates two loop iterations for basis subtraction. This # "twice is enough" approach is due to Kahan. See also a practical note # by SLEPc developers [2]. # # Interspersing with orthonormalization isn't directly grounded in the # original analysis, but taken from Algorithm 5 of [3]. In practice, due to # normalization, I have noticed that that the orthonormalized basis # does not always end up as a subspace of the starting basis in practice. # There may be room to refine this procedure further, but the adjustment # in the subsequent block handles this edge case well enough for now. # # [1]: https://epubs.siam.org/doi/abs/10.1137/1.9781611971163 # [2]: http://slepc.upv.es/documentation/reports/str1.pdf # [3]: https://arxiv.org/abs/1704.07458 for _ in range(2): U -= _mm(basis, _mm(basis.T, U)) U = _orthonormalize(U) # It's crucial to end on a subtraction of the original basis. # This seems to be a detail not present in [2], possibly because of # of reliance on soft locking. # # Near convergence, if the residuals R are 0 and our last # operation when projecting (X, P) out from R is the orthonormalization # done above, then due to catastrophic cancellation we may re-introduce # (X, P) subspace components into U, which can ruin the Rayleigh-Ritz # conditioning. # # We zero out any columns that are even remotely suspicious, so the invariant # that [basis, U] is zero-or-orthogonal is ensured. for _ in range(2): U -= _mm(basis, _mm(basis.T, U)) normU = jnp.linalg.norm(U, ord=2, axis=0, keepdims=True) U *= (normU >= 0.99).astype(U.dtype) return U
76fcf63fb4e53fd82faece677ed46db8b0c71707
13
linalg.py
176
Add initial LOBPCG top-k eigenvalue solver (#3112) This initial version is f32-only for accelerators, since it relies on an eigh call (which itself is f32 at most) in its inner loop. For details, see jax.experimental.linalg.standard_lobpcg documentation. This is a partial implementation of the similar [scipy lobpcg function](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html).
27,026
0
311
101
171
121,063
269
jax
17
jax/experimental/sparse/linalg.py
Python
9
{ "docstring": "Derives component of U in the orthogonal complement of basis.\n\n This method iteratively subtracts out the basis component and orthonormalizes\n the remainder. To an extent, these two operations can oppose each other\n when the remainder norm is near-zero (since normalization enlarges a vector\n which may possibly lie in the subspace `basis` to be subtracted).\n\n We make sure to prioritize orthogonality between `basis` and `U`, favoring\n to return a lower-rank space thank `rank(U)`, in this tradeoff.\n\n Args:\n basis : An `(n, m)` array which describes a linear subspace of R^n, this\n is assumed to be orthonormal but zero columns are allowed.\n U : An `(n, k)` array representing another subspace of R^n, whose `basis`\n component is to be projected out.\n\n Returns:\n An `(n, k)` array, with some columns possibly zeroed out, representing\n the component of `U` in the complement of `basis`. The nonzero columns\n are mutually orthonormal.\n ", "language": "en", "n_whitespaces": 184, "n_words": 146, "vocab_size": 96 }
https://github.com/google/jax.git
7
filter_empty_contents
def filter_empty_contents(self, ocr_info): new_ocr_info = [] empty_index = [] for idx, info in enumerate(ocr_info): if len(info["transcription"]) > 0: new_ocr_info.append(copy.deepcopy(info)) else: empty_index.append(info["id"]) for idx, info in enumerate(new_ocr_info): new_link = [] for link in info["linking"]: if link[0] in empty_index or link[1] in empty_index: continue new_link.append(link) new_ocr_info[idx]["linking"] = new_link return new_ocr_info
7a99588dd8b678233eff0391aac13ebd0f7000f6
14
label_ops.py
188
add more dataset yamls and fix re exceptions (#6791) * add more dataset yamls and fix re exceptions
4,713
0
224
114
31
24,246
48
PaddleOCR
14
ppocr/data/imaug/label_ops.py
Python
16
{ "docstring": "\n find out the empty texts and remove the links\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 8 }
https://github.com/PaddlePaddle/PaddleOCR.git
1
test_performance_issue_alert_user
def test_performance_issue_alert_user(self, mock_func): event = self.create_performance_issue() action_data = { "id": "sentry.mail.actions.NotifyEmailAction", "targetType": "Member", "targetIdentifier": str(self.user.id), } rule = Rule.objects.create( project=self.project, label="ja rule", data={ "match": "all", "actions": [action_data], }, ) notification = AlertRuleNotification( Notification(event=event, rule=rule), ActionTargetType.MEMBER, self.user.id ) with self.feature("organizations:performance-issues"), self.tasks(): notification.send() attachment, text = get_attachment() assert attachment["title"] == "N+1 Query" assert ( attachment["text"] == "db - SELECT `books_author`.`id`, `books_author`.`name` FROM `books_author` WHERE `books_author`.`id` = %s LIMIT 21" ) assert ( attachment["footer"] == f"{self.project.slug} | production | <http://testserver/settings/account/notifications/alerts/?referrer=issue_alert-slack-user|Notification Settings>" )
495d45c6547e398a5d4d3c1fa8cb97e69b1751f8
12
test_issue_alert.py
268
ref(slack): Update workflow alerts for perf issues (#40463) Slack workflow alerts for performance issues are showing a text value of "no value". This PR adds feature parity with error issues for workflow alerts so that they are shown with the proper data.
18,279
0
357
149
65
87,324
79
sentry
28
tests/sentry/integrations/slack/notifications/test_issue_alert.py
Python
30
{ "docstring": "Test that performance issue alerts are sent to a Slack user.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
https://github.com/getsentry/sentry.git
1
save_pretrained
def save_pretrained(self, save_directory): self.feature_extractor.save_pretrained(save_directory) self.tokenizer.save_pretrained(save_directory)
ac227093e41cecb07c7e0f2fc9a504850907bd06
8
processing_vilt.py
41
Add ViLT (#14895) * First commit * Add conversion script * Make conversion script work for base model * More improvements * Update conversion script, works for vqa * Add indexing argument to meshgrid * Make conversion script work for ViltForPreTraining * Add ViltForPreTraining to docs * Fix device issue * Add processor * Add MinMaxResize to feature extractor * Implement call method of ViltProcessor * Fix tests * Add integration test * Add loss calculation for VQA * Improve tests * Improve some more tests * Debug tests * Small improvements * Add support for attention_mask * Remove mask_it * Add pixel_mask * Add tests for ViltFeatureExtractor * Improve tests * Add ViltForNaturalLanguageVisualReasoning * Add ViltForNaturalLanguageVisualReasoning to conversion script * Minor fixes * Add support for image_embeds, update docstrings to markdown * Update docs to markdown * Improve conversion script * Rename ViltForPreTraining to ViltForMaskedLM * Improve conversion script * Convert docstrings to markdown * Fix code example of retrieval model * Properly convert masked language model * Add integration test for nlvr * Fix code quality * Apply suggestions from code review * Add copied from statements * Fix pretrained_config_archive_map * Fix docs * Add model to README * Apply suggestions from code review Co-authored-by: Sylvain Gugger <[email protected]> * Apply more suggestions from code review * Make code more readable * Add ViltForNaturalLanguageVisualReasoning to the tests * Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering * Replace pixel_values_2 by single tensor * Add hidden_states and attentions * Fix one more test * Fix all tests * Update year * Fix rebase issues * Fix another rebase issue * Remove ViltForPreTraining from auto mapping * Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval * Make it possible to use BertTokenizerFast in the processor * Use BertTokenizerFast by default * Rename ViltForNaturalLanguageVisualReasoning, define custom model output Co-authored-by: Sylvain Gugger <[email protected]>
6,259
0
26
24
5
34,328
5
transformers
5
src/transformers/models/vilt/processing_vilt.py
Python
3
{ "docstring": "\n Save a ViLT feature_extractor object and BERT tokenizer object to the directory `save_directory`, so that it\n can be re-loaded using the [`~ViltProcessor.from_pretrained`] class method.\n\n <Tip>\n\n This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and\n [`~tokenization_utils_base.PreTrainedTokenizer.save_pretrained`]. Please refer to the docstrings of the methods\n above for more information.\n\n </Tip>\n\n Args:\n save_directory (`str` or `os.PathLike`):\n Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will\n be created if it does not exist).\n ", "language": "en", "n_whitespaces": 180, "n_words": 75, "vocab_size": 60 }
https://github.com/huggingface/transformers.git
1
client_entity_removed_fixture
def client_entity_removed_fixture(hass): with patch( "homeassistant.components.webostv.WebOsClient", autospec=True ) as mock_client_class: client = mock_client_class.return_value client.hello_info = {"deviceUUID": "some-fake-uuid"} client.connected = False
eb487480381bff3aa87f4d80145b162863dc0a27
11
conftest.py
70
Add webostv 100% tests coverage for init (#64801)
109,493
0
56
64
17
310,821
19
core
9
tests/components/webostv/conftest.py
Python
12
{ "docstring": "Patch of client library, entity removed waiting for connect.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
https://github.com/home-assistant/core.git
1
test_calling_start_ray_head
def test_calling_start_ray_head(call_ray_stop_only): # Test that we can call ray start with various command line # parameters. # Test starting Ray with a redis port specified. check_call_ray(["start", "--head", "--port", "0"]) check_call_ray(["stop"]) # Test starting Ray with a node IP address specified. check_call_ray( ["start", "--head", "--node-ip-address", "127.0.0.1", "--port", "0"]) check_call_ray(["stop"]) # Test starting Ray with a system config parameter set. check_call_ray([ "start", "--head", "--system-config", "{\"metrics_report_interval_ms\":100}", "--port", "0" ]) check_call_ray(["stop"]) # Test starting Ray with the object manager and node manager ports # specified. check_call_ray([ "start", "--head", "--object-manager-port", "22345", "--node-manager-port", "54321", "--port", "0" ]) check_call_ray(["stop"]) # Test starting Ray with the worker port range specified. check_call_ray([ "start", "--head", "--min-worker-port", "51000", "--max-worker-port", "51050", "--port", "0" ]) check_call_ray(["stop"]) # Test starting Ray with a worker port list. check_call_ray(["start", "--head", "--worker-port-list", "10002,10003"]) check_call_ray(["stop"]) # Test starting Ray with a non-int in the worker port list. with pytest.raises(subprocess.CalledProcessError): check_call_ray(["start", "--head", "--worker-port-list", "10002,a"]) check_call_ray(["stop"]) # Test starting Ray with an invalid port in the worker port list. with pytest.raises(subprocess.CalledProcessError): check_call_ray(["start", "--head", "--worker-port-list", "100"]) check_call_ray(["stop"]) # Test starting Ray with the number of CPUs specified. check_call_ray(["start", "--head", "--num-cpus", "2", "--port", "0"]) check_call_ray(["stop"]) # Test starting Ray with the number of GPUs specified. check_call_ray(["start", "--head", "--num-gpus", "100", "--port", "0"]) check_call_ray(["stop"]) # Test starting Ray with redis shard ports specified. check_call_ray([ "start", "--head", "--redis-shard-ports", "6380,6381,6382", "--port", "0" ]) check_call_ray(["stop"]) # Test starting Ray with all arguments specified. check_call_ray([ "start", "--head", "--redis-shard-ports", "6380,6381,6382", "--object-manager-port", "22345", "--num-cpus", "2", "--num-gpus", "0", "--resources", "{\"Custom\": 1}", "--port", "0" ]) check_call_ray(["stop"]) # Test starting Ray with invalid external address. # It will fall back to creating a new one. check_call_ray( ["start", "--head", "--address", "127.0.0.1:6379", "--port", "0"]) check_call_ray(["stop"]) # Test starting Ray with RAY_REDIS_ADDRESS env. os.environ["RAY_REDIS_ADDRESS"] = "127.0.0.1:6379" check_call_ray(["start", "--head", "--port", "0"]) check_call_ray(["stop"]) del os.environ["RAY_REDIS_ADDRESS"] # Test --block. Killing a child process should cause the command to exit. blocked = subprocess.Popen( ["ray", "start", "--head", "--block", "--port", "0"]) blocked.poll() assert blocked.returncode is None # Make sure ray cluster is up run_string_as_driver() # Make sure ray cluster is up run_string_as_driver() kill_process_by_name("raylet", SIGKILL=True) wait_for_children_of_pid_to_exit(blocked.pid, timeout=30) blocked.wait() assert blocked.returncode != 0, "ray start shouldn't return 0 on bad exit" # Test --block. Killing the command should clean up all child processes. blocked = subprocess.Popen( ["ray", "start", "--head", "--block", "--port", "0"]) blocked.poll() assert blocked.returncode is None wait_for_children_of_pid(blocked.pid, num_children=7, timeout=30) blocked.terminate() wait_for_children_of_pid_to_exit(blocked.pid, timeout=30) blocked.wait() assert blocked.returncode != 0, "ray start shouldn't return 0 on bad exit"
8cc268096cb79ededff67b90806b4e4d996ca775
11
test_multi_node_3.py
970
[GCS][Bootstrap 3/n] Refactor to support GCS bootstrap (#21295) This PR refactors several components to support switching to GCS address bootstrapping later: - Treat address from `ray.init()` and `ray` CLI as bootstrap address instead of assuming it is Redis address. - Ray client servers support `--address` flag instead of `--redis-address`. - A few other miscellaneous cleanup. Also, add a test for starting non-head node with `ray start`.
28,858
0
732
495
143
128,960
392
ray
23
python/ray/tests/test_multi_node_3.py
Python
88
{ "docstring": "\nimport ray\nfrom time import sleep\nfor i in range(0, 5):\n try:\n ray.init(address='auto')\n break\n except:\n sleep(1)\n\nimport ray\nfrom time import sleep\nfor i in range(0, 5):\n try:\n ray.init(address='auto')\n break\n except:\n sleep(1)\n", "language": "en", "n_whitespaces": 80, "n_words": 32, "vocab_size": 15 }
https://github.com/ray-project/ray.git
3
check_task_fail_for_duplicates
def check_task_fail_for_duplicates(session): metadata = reflect_tables([TaskFail], session) task_fail = metadata.tables.get(TaskFail.__tablename__) # type: ignore if task_fail is None: # table not there return if "run_id" in task_fail.columns: # upgrade already applied return yield from check_table_for_duplicates( table_name=task_fail.name, uniqueness=['dag_id', 'task_id', 'execution_date'], session=session, )
f06b3955b1d937138fb38021a6a373b94ae8f9e8
11
db.py
115
Add map_index and run_id to TaskFail (#22260) TaskFail entities always belong to a TaskInstance. The PK for TaskInstance has changed, so we need to update TaskFail to have the new columns.
8,873
0
98
67
33
46,402
39
airflow
14
airflow/utils/db.py
Python
12
{ "docstring": "Check that there are no duplicates in the task_fail table before creating FK", "language": "en", "n_whitespaces": 12, "n_words": 13, "vocab_size": 13 }
https://github.com/apache/airflow.git
1
add_to_apply_calls
def add_to_apply_calls(self, func, length=None, width=None, *args, **kwargs): return cuDFOnRayDataframePartition( self.gpu_manager, self.apply(func, *args, **kwargs), length=length, width=width, )
d6d503ac7c3028d871c34d9e99e925ddb0746df6
10
partition.py
73
FIX-#4597: Refactor Partition handling of func, args, kwargs (#4715) Co-authored-by: Iaroslav Igoshev <[email protected]> Signed-off-by: Jonathan Shi <[email protected]>
36,023
0
81
51
15
154,500
16
modin
10
modin/core/execution/ray/implementations/cudf_on_ray/partitioning/partition.py
Python
7
{ "docstring": "\n Apply `func` to this partition and create new.\n\n Parameters\n ----------\n func : callable\n A function to apply.\n length : ray.ObjectRef or int, optional\n Length, or reference to length, of wrapped ``pandas.DataFrame``.\n width : ray.ObjectRef or int, optional\n Width, or reference to width, of wrapped ``pandas.DataFrame``.\n *args : tuple\n Positional arguments to be passed in `func`.\n **kwargs : dict\n Additional keywords arguments to be passed in `func`.\n\n Returns\n -------\n cuDFOnRayDataframePartition\n New partition based on result of `func`.\n\n Notes\n -----\n We eagerly schedule the apply `func` and produce a new ``cuDFOnRayDataframePartition``.\n ", "language": "en", "n_whitespaces": 261, "n_words": 89, "vocab_size": 60 }
https://github.com/modin-project/modin.git
13
get_feature_names_out
def get_feature_names_out(self, input_features=None): check_is_fitted(self) input_features = _check_feature_names_in(self, input_features) # List of tuples (name, feature_names_out) transformer_with_feature_names_out = [] for name, trans, column, _ in self._iter(fitted=True): feature_names_out = self._get_feature_name_out_for_transformer( name, trans, column, input_features ) if feature_names_out is None: continue transformer_with_feature_names_out.append((name, feature_names_out)) if not transformer_with_feature_names_out: # No feature names return np.array([], dtype=object) if self.verbose_feature_names_out: # Prefix the feature names out with the transformers name names = list( chain.from_iterable( (f"{name}__{i}" for i in feature_names_out) for name, feature_names_out in transformer_with_feature_names_out ) ) return np.asarray(names, dtype=object) # verbose_feature_names_out is False # Check that names are all unique without a prefix feature_names_count = Counter( chain.from_iterable(s for _, s in transformer_with_feature_names_out) ) top_6_overlap = [ name for name, count in feature_names_count.most_common(6) if count > 1 ] top_6_overlap.sort() if top_6_overlap: if len(top_6_overlap) == 6: # There are more than 5 overlapping names, we only show the 5 # of the feature names names_repr = str(top_6_overlap[:5])[:-1] + ", ...]" else: names_repr = str(top_6_overlap) raise ValueError( f"Output feature names: {names_repr} are not unique. Please set " "verbose_feature_names_out=True to add prefixes to feature names" ) return np.concatenate( [name for _, name in transformer_with_feature_names_out], )
279388d9ed2ea83194dd45a2d78161be30b43aa7
16
_column_transformer.py
380
DOC Improve get_feature_names_out docstrings (#22718) Co-authored-by: Thomas J. Fan <[email protected]>
75,571
0
683
231
113
259,112
182
scikit-learn
38
sklearn/compose/_column_transformer.py
Python
40
{ "docstring": "Get output feature names for transformation.\n\n Parameters\n ----------\n input_features : array-like of str or None, default=None\n Input features.\n\n - If `input_features` is `None`, then `feature_names_in_` is\n used as feature names in. If `feature_names_in_` is not defined,\n then the following input feature names are generated:\n `[\"x0\", \"x1\", ..., \"x(n_features_in_ - 1)\"]`.\n - If `input_features` is an array-like, then `input_features` must\n match `feature_names_in_` if `feature_names_in_` is defined.\n\n Returns\n -------\n feature_names_out : ndarray of str objects\n Transformed feature names.\n ", "language": "en", "n_whitespaces": 221, "n_words": 76, "vocab_size": 53 }
https://github.com/scikit-learn/scikit-learn.git
7
parse_query_string
def parse_query_string(query_string, operator=None, zero_terms=MATCH_NONE): filters, query_string = separate_filters_from_query(query_string) is_phrase = False tokens = [] for part in query_string.split('"'): part = part.strip() if part: if is_phrase: tokens.append(Phrase(part)) else: tokens.append( PlainText(part, operator=operator or PlainText.DEFAULT_OPERATOR) ) is_phrase = not is_phrase if tokens: if operator == "or": search_query = OR(tokens) else: search_query = AND(tokens) else: search_query = zero_terms return filters, search_query
d10f15e55806c6944827d801cd9c2d53f5da4186
19
utils.py
193
Reformat with black
16,438
0
231
115
38
75,890
57
wagtail
19
wagtail/search/utils.py
Python
22
{ "docstring": "\n This takes a query string typed in by a user and extracts the following:\n\n - Quoted terms (for phrase search)\n - Filters\n\n For example, the following query:\n\n `hello \"this is a phrase\" live:true` would be parsed into:\n\n filters: {'live': 'true'}\n tokens: And([PlainText('hello'), Phrase('this is a phrase')])\n ", "language": "en", "n_whitespaces": 75, "n_words": 46, "vocab_size": 40 }
https://github.com/wagtail/wagtail.git
1
preprocess_input
def preprocess_input(x, data_format=None): return x @keras_export("keras.applications.resnet_rs.decode_predictions")
9c24fc4057303172ad977cebd626da2b7adb63d4
@keras_export("keras.applications.resnet_rs.decode_predictions")
7
resnet_rs.py
32
Add ResNet-RS to keras.applications - code refactor
79,882
1
11
12
6
269,080
6
keras
4
keras/applications/resnet_rs.py
Python
2
{ "docstring": "A placeholder method for backward compatibility.\n\n The preprocessing logic has been included in the ResnetRS model\n implementation. Users are no longer required to call this method to normalize\n the input data. This method does nothing and only kept as a placeholder to\n align the API surface between old and new version of model.\n\n Args:\n x: A floating point `numpy.array` or a `tf.Tensor`.\n data_format: Optional data format of the image tensor/array. Defaults to\n None, in which case the global setting\n `tf.keras.backend.image_data_format()` is used (unless you changed it, it\n defaults to \"channels_last\").{mode}\n\n Returns:\n Unchanged `numpy.array` or `tf.Tensor`.\n ", "language": "en", "n_whitespaces": 152, "n_words": 95, "vocab_size": 76 }
https://github.com/keras-team/keras.git
10
check_credit_limit
def check_credit_limit(customer, company, ignore_outstanding_sales_order=False, extra_amount=0): credit_limit = get_credit_limit(customer, company) if not credit_limit: return customer_outstanding = get_customer_outstanding(customer, company, ignore_outstanding_sales_order) if extra_amount > 0: customer_outstanding += flt(extra_amount) if credit_limit > 0 and flt(customer_outstanding) > credit_limit: msgprint( _("Credit limit has been crossed for customer {0} ({1}/{2})").format( customer, customer_outstanding, credit_limit ) ) # If not authorized person raise exception credit_controller_role = frappe.db.get_single_value("Accounts Settings", "credit_controller") if not credit_controller_role or credit_controller_role not in frappe.get_roles(): # form a list of emails for the credit controller users credit_controller_users = get_users_with_role(credit_controller_role or "Sales Master Manager") # form a list of emails and names to show to the user credit_controller_users_formatted = [ get_formatted_email(user).replace("<", "(").replace(">", ")") for user in credit_controller_users ] if not credit_controller_users_formatted: frappe.throw( _("Please contact your administrator to extend the credit limits for {0}.").format(customer) ) message = .format( customer, "<li>".join(credit_controller_users_formatted) ) # if the current user does not have permissions to override credit limit, # prompt them to send out an email to the controller users frappe.msgprint( message, title="Notify", raise_exception=1, primary_action={ "label": "Send Email", "server_action": "erpnext.selling.doctype.customer.customer.send_emails", "args": { "customer": customer, "customer_outstanding": customer_outstanding, "credit_limit": credit_limit, "credit_controller_users_list": credit_controller_users, }, }, ) @frappe.whitelist()
494bd9ef78313436f0424b918f200dab8fc7c20b
@frappe.whitelist()
18
customer.py
383
style: format code with black
14,497
1
133
218
118
67,329
181
erpnext
31
erpnext/selling/doctype/customer/customer.py
Python
43
{ "docstring": "Please contact any of the following users to extend the credit limits for {0}:\n\t\t\t\t<br><br><ul><li>{1}</li></ul>", "language": "en", "n_whitespaces": 13, "n_words": 15, "vocab_size": 14 }
https://github.com/frappe/erpnext.git
1
test__linux_lvm_no_logical_volumes
def test__linux_lvm_no_logical_volumes(self): vgs_out = {"pid": 123, "retcode": 0, "stdout": " vg00\n vg01", "stderr": ""} lvs_out = {"pid": 456, "retcode": 0, "stdout": "", "stderr": ""} cmd_out = MagicMock(autospec=True, side_effect=[vgs_out, lvs_out, lvs_out]) patch_which = patch( "salt.utils.path.which", autospec=True, return_value="/usr/sbin/lvm" ) patch_cmd_lvm = patch.dict(lvm.__salt__, {"cmd.run_all": cmd_out}) with patch_which, patch_cmd_lvm: ret = lvm._linux_lvm() assert ret == {"lvm": {"vg00": [], "vg01": []}}, ret
637e74f0f2e80723fa30eb8f83a86af440c6ba4e
11
test_lvm.py
222
Uses only command's stdout to populate lvm grain
53,878
0
144
124
44
215,192
57
salt
17
tests/unit/grains/test_lvm.py
Python
11
{ "docstring": "\n Test grains._linux_lvm, lvm is installed, volume groups created but\n no logical volumes present.\n Should return a dictionary only with the header\n ", "language": "en", "n_whitespaces": 50, "n_words": 21, "vocab_size": 21 }
https://github.com/saltstack/salt.git
4
jaxpr_collectives
def jaxpr_collectives(jaxpr): for eqn in jaxpr.eqns: if eqn.primitive in _collective_primitives: yield eqn.primitive for subjaxpr in core.subjaxprs(jaxpr): yield from jaxpr_collectives(subjaxpr) ### xla_call underlying jit
4354f355a858e6e99a0853dde90812bf8e846ee5
11
xla.py
67
prototyping dynamic shapes Co-authored-by: Dougal Maclaurin <[email protected]>
26,784
0
33
40
18
120,148
23
jax
9
jax/interpreters/xla.py
Python
5
{ "docstring": "Generates all the collective primitives anywhere inside a Jaxpr.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
https://github.com/google/jax.git
3
_conda_version
def _conda_version(self): if not self._is_conda: return "N/A" with Popen("conda --version", shell=True, stdout=PIPE, stderr=PIPE) as conda: stdout, stderr = conda.communicate() if stderr: return "Conda is used, but version not found" version = stdout.decode(self._encoding, errors="replace").splitlines() return "\n".join(version)
48c886b3dce3d3117ad16edaf35c8abd28dc51f5
12
sysinfo.py
130
Allow decoding errors
21,436
0
110
73
29
102,071
35
faceswap
16
lib/sysinfo.py
Python
9
{ "docstring": " str: The installed version of Conda, or `N/A` if Conda is not installed. ", "language": "en", "n_whitespaces": 14, "n_words": 13, "vocab_size": 13 }
https://github.com/deepfakes/faceswap.git
2
_multi_dot
def _multi_dot(arrays, order, i, j, precision): if i == j: return arrays[i] else: return jnp.dot(_multi_dot(arrays, order, i, order[i, j], precision), _multi_dot(arrays, order, order[i, j] + 1, j, precision), precision=precision)
2416d154355f19e77b5c1ddf1de1f8552e4a98ad
14
linalg.py
99
Call _check_arraylike for jnp.linalg & jnp.fft functions
27,181
0
74
73
21
122,412
29
jax
8
jax/_src/third_party/numpy/linalg.py
Python
7
{ "docstring": "Actually do the multiplication with the given order.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 7 }
https://github.com/google/jax.git
2
unique_id
def unique_id(self): if self.serial is None: return f"{self._bridge_unique_id}_{self.device_id}" return super().unique_id
8b1713a691bd0c90824261be785f1998ad89f66f
10
__init__.py
53
Add support for non-serialized devices (light, switch, cover, fan in RA3 Zones) (#75323) Co-authored-by: J. Nick Koston <[email protected]>
103,304
0
42
22
9
304,497
10
core
6
homeassistant/components/lutron_caseta/__init__.py
Python
4
{ "docstring": "Return a unique identifier if serial number is None.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
https://github.com/home-assistant/core.git
7
eval
def eval(self, args, assumptions=True): # Support for deprecated design # When old design is removed, this will always return None sympy_deprecation_warning( , deprecated_since_version="1.8", active_deprecations_target='deprecated-askhandler', stacklevel=5, ) expr, = args res, _res = None, None mro = inspect.getmro(type(expr)) for handler in self.handlers: cls = get_class(handler) for subclass in mro: eval_ = getattr(cls, subclass.__name__, None) if eval_ is None: continue res = eval_(expr, assumptions) # Do not stop if value returned is None # Try to check for higher classes if res is None: continue if _res is None: _res = res else: # only check consistency if both resolutors have concluded if _res != res: raise ValueError('incompatible resolutors') break return res @contextmanager
ad766d1c02943e86f50559abfd0c72e582c9ca6a
@contextmanager
17
assume.py
206
Update the AskHandler deprecation warnings n.b., the issue number in the original warning message was wrong. It should have been #20837.
48,154
1
491
123
73
196,758
111
sympy
25
sympy/assumptions/assume.py
Python
30
{ "docstring": "\n The AskHandler system is deprecated. Evaluating UndefinedPredicate\n objects should be replaced with the multipledispatch handler of\n Predicate.\n ", "language": "en", "n_whitespaces": 62, "n_words": 17, "vocab_size": 17 }
https://github.com/sympy/sympy.git
9
_translate_tick_params
def _translate_tick_params(kw, reverse=False): kw_ = {**kw} # The following lists may be moved to a more accessible location. allowed_keys = [ 'size', 'width', 'color', 'tickdir', 'pad', 'labelsize', 'labelcolor', 'zorder', 'gridOn', 'tick1On', 'tick2On', 'label1On', 'label2On', 'length', 'direction', 'left', 'bottom', 'right', 'top', 'labelleft', 'labelbottom', 'labelright', 'labeltop', 'labelrotation', *_gridline_param_names] keymap = { # tick_params key -> axis key 'length': 'size', 'direction': 'tickdir', 'rotation': 'labelrotation', 'left': 'tick1On', 'bottom': 'tick1On', 'right': 'tick2On', 'top': 'tick2On', 'labelleft': 'label1On', 'labelbottom': 'label1On', 'labelright': 'label2On', 'labeltop': 'label2On', } if reverse: kwtrans = { oldkey: kw_.pop(newkey) for oldkey, newkey in keymap.items() if newkey in kw_ } else: kwtrans = { newkey: kw_.pop(oldkey) for oldkey, newkey in keymap.items() if oldkey in kw_ } if 'colors' in kw_: c = kw_.pop('colors') kwtrans['color'] = c kwtrans['labelcolor'] = c # Maybe move the checking up to the caller of this method. for key in kw_: if key not in allowed_keys: raise ValueError( "keyword %s is not recognized; valid keywords are %s" % (key, allowed_keys)) kwtrans.update(kw_) return kwtrans
6c88dd95935bcc5125ebaa81cd8202c347f3941c
13
axis.py
426
Add translation from internal kw to ones in tick_params()
23,860
0
663
230
109
109,967
162
matplotlib
16
lib/matplotlib/axis.py
Python
44
{ "docstring": "\n Translate the kwargs supported by `.Axis.set_tick_params` to kwargs\n supported by `.Tick._apply_params`.\n\n In particular, this maps axis specific names like 'top', 'left'\n to the generic tick1, tick2 logic of the axis. Additionally, there\n are some other name translations.\n\n Returns a new dict of translated kwargs.\n\n Note: Use reverse=True to translate from those supported by\n `.Tick._apply_params` back to those supported by\n `.Axis.set_tick_params`.\n ", "language": "en", "n_whitespaces": 131, "n_words": 60, "vocab_size": 46 }
https://github.com/matplotlib/matplotlib.git
14
get_order_by
def get_order_by(self): result = [] seen = set() for expr, is_ref in self._order_by_pairs(): resolved = expr.resolve_expression(self.query, allow_joins=True, reuse=None) if self.query.combinator and self.select: src = resolved.get_source_expressions()[0] expr_src = expr.get_source_expressions()[0] # Relabel order by columns to raw numbers if this is a combined # query; necessary since the columns can't be referenced by the # fully qualified name and the simple column names may collide. for idx, (sel_expr, _, col_alias) in enumerate(self.select): if is_ref and col_alias == src.refs: src = src.source elif col_alias and not ( isinstance(expr_src, F) and col_alias == expr_src.name ): continue if src == sel_expr: resolved.set_source_expressions([RawSQL("%d" % (idx + 1), ())]) break else: if col_alias: raise DatabaseError( "ORDER BY term does not match any column in the result set." ) # Add column used in ORDER BY clause to the selected # columns and to each combined query. order_by_idx = len(self.query.select) + 1 col_name = f"__orderbycol{order_by_idx}" for q in self.query.combined_queries: q.add_annotation(expr_src, col_name) self.query.add_select_col(resolved, col_name) resolved.set_source_expressions([RawSQL(f"{order_by_idx}", ())]) sql, params = self.compile(resolved) # Don't add the same column twice, but the order direction is # not taken into account so we strip it. When this entire method # is refactored into expressions, then we can check each part as we # generate it. without_ordering = self.ordering_parts.search(sql)[1] params_hash = make_hashable(params) if (without_ordering, params_hash) in seen: continue seen.add((without_ordering, params_hash)) result.append((resolved, (sql, params, is_ref))) return result
9c19aff7c7561e3a82978a272ecdaad40dda5c00
21
compiler.py
469
Refs #33476 -- Reformatted code with Black.
51,231
0
948
288
147
205,832
222
django
48
django/db/models/sql/compiler.py
Python
37
{ "docstring": "\n Return a list of 2-tuples of the form (expr, (sql, params, is_ref)) for\n the ORDER BY clause.\n\n The order_by clause can alter the select clause (for example it can add\n aliases to clauses that do not yet have one, or it can add totally new\n select clauses).\n ", "language": "en", "n_whitespaces": 90, "n_words": 47, "vocab_size": 38 }
https://github.com/django/django.git
6
engine
async def engine(self) -> AsyncEngine: if sqlite3.sqlite_version_info < self.MIN_SQLITE_VERSION: required = ".".join(str(v) for v in self.MIN_SQLITE_VERSION) raise RuntimeError( f"Orion requires sqlite >= {required} but we found version " f"{sqlite3.sqlite_version}" ) kwargs = {} loop = get_running_loop() cache_key = ( loop, self.connection_url, self.echo, self.timeout, ) if cache_key not in self.ENGINES: # apply database timeout if self.timeout is not None: kwargs["connect_args"] = dict(timeout=self.timeout) # use `named` paramstyle because of edge cases where `qmark` # results in params being sent in the wrong positional order # https://github.com/PrefectHQ/prefect/pull/6645 kwargs["paramstyle"] = "named" # ensure a long-lasting pool is used with in-memory databases # because they disappear when the last connection closes if ":memory:" in self.connection_url: kwargs.update(poolclass=sa.pool.SingletonThreadPool) engine = create_async_engine(self.connection_url, echo=self.echo, **kwargs) sa.event.listen(engine.sync_engine, "engine_connect", self.setup_sqlite) self.ENGINES[cache_key] = engine await self.schedule_engine_disposal(cache_key) return self.ENGINES[cache_key]
6ec2dcd6d424da1d069b2ecf378b4e4ddfdd43e3
14
configurations.py
305
Resolve SQLite param ordering issue
11,816
0
462
178
99
58,817
126
prefect
32
src/prefect/orion/database/configurations.py
Python
39
{ "docstring": "Retrieves an async SQLAlchemy engine.\n\n Args:\n connection_url (str, optional): The database connection string.\n Defaults to self.connection_url\n echo (bool, optional): Whether to echo SQL sent\n to the database. Defaults to self.echo\n timeout (float, optional): The database statement timeout, in seconds.\n Defaults to self.timeout\n\n Returns:\n AsyncEngine: a SQLAlchemy engine\n ", "language": "en", "n_whitespaces": 157, "n_words": 47, "vocab_size": 35 }
https://github.com/PrefectHQ/prefect.git
2
test_highlighted
def test_highlighted(qtbot): doc = QTextDocument() completiondelegate._Highlighter(doc, 'Hello', Qt.GlobalColor.red) doc.setPlainText('Hello World') # Needed so the highlighting actually works. edit = QTextEdit() qtbot.add_widget(edit) edit.setDocument(doc) colors = [f.foreground().color() for f in doc.allFormats()] assert QColor('red') in colors
0877fb0d78635692e481c8bde224fac5ad0dd430
11
test_completiondelegate.py
133
Run scripts/dev/rewrite_enums.py
117,670
0
63
76
29
321,337
33
qutebrowser
20
tests/unit/completion/test_completiondelegate.py
Python
9
{ "docstring": "Make sure highlighting works.\n\n Note that with Qt > 5.12.1 we need to call setPlainText *after*\n creating the highlighter for highlighting to work. Ideally, we'd test\n whether CompletionItemDelegate._get_textdoc() works properly, but testing\n that is kind of hard, so we just test it in isolation here.\n ", "language": "en", "n_whitespaces": 60, "n_words": 45, "vocab_size": 40 }
https://github.com/qutebrowser/qutebrowser.git
10
topological_sort
def topological_sort(cls, assignments): if not all(isinstance(i, Assignment) for i in assignments): # Will support more things later raise NotImplementedError("CodeBlock.topological_sort only supports Assignments") if any(isinstance(i, AugmentedAssignment) for i in assignments): raise NotImplementedError("CodeBlock.topological_sort does not yet work with AugmentedAssignments") # Create a graph where the nodes are assignments and there is a directed edge # between nodes that use a variable and nodes that assign that # variable, like # [(x := 1, y := x + 1), (x := 1, z := y + z), (y := x + 1, z := y + z)] # If we then topologically sort these nodes, they will be in # assignment order, like # x := 1 # y := x + 1 # z := y + z # A = The nodes # # enumerate keeps nodes in the same order they are already in if # possible. It will also allow us to handle duplicate assignments to # the same variable when those are implemented. A = list(enumerate(assignments)) # var_map = {variable: [nodes for which this variable is assigned to]} # like {x: [(1, x := y + z), (4, x := 2 * w)], ...} var_map = defaultdict(list) for node in A: i, a = node var_map[a.lhs].append(node) # E = Edges in the graph E = [] for dst_node in A: i, a = dst_node for s in a.rhs.free_symbols: for src_node in var_map[s]: E.append((src_node, dst_node)) ordered_assignments = topological_sort([A, E]) # De-enumerate the result return cls(*[a for i, a in ordered_assignments])
65be461082dda54c8748922f9c29a19af1279fe1
14
ast.py
254
Remove abbreviations in documentation
48,439
0
558
150
130
197,296
251
sympy
26
sympy/codegen/ast.py
Python
18
{ "docstring": "\n Return a CodeBlock with topologically sorted assignments so that\n variables are assigned before they are used.\n\n Examples\n ========\n\n The existing order of assignments is preserved as much as possible.\n\n This function assumes that variables are assigned to only once.\n\n This is a class constructor so that the default constructor for\n CodeBlock can error when variables are used before they are assigned.\n\n Examples\n ========\n\n >>> from sympy import symbols\n >>> from sympy.codegen.ast import CodeBlock, Assignment\n >>> x, y, z = symbols('x y z')\n\n >>> assignments = [\n ... Assignment(x, y + z),\n ... Assignment(y, z + 1),\n ... Assignment(z, 2),\n ... ]\n >>> CodeBlock.topological_sort(assignments)\n CodeBlock(\n Assignment(z, 2),\n Assignment(y, z + 1),\n Assignment(x, y + z)\n )\n\n ", "language": "en", "n_whitespaces": 315, "n_words": 115, "vocab_size": 71 }
https://github.com/sympy/sympy.git
1
adapt
def adapt(self, data, batch_size=None, steps=None): super().adapt(data, batch_size=batch_size, steps=steps)
84afc5193d38057e2e2badf9c889ea87d80d8fbf
9
discretization.py
49
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
81,075
0
22
32
8
272,918
8
keras
6
keras/layers/preprocessing/discretization.py
Python
2
{ "docstring": "Computes bin boundaries from quantiles in a input dataset.\n\n Calling `adapt()` on a `Discretization` layer is an alternative to passing\n in a `bin_boundaries` argument during construction. A `Discretization` layer\n should always be either adapted over a dataset or passed `bin_boundaries`.\n\n During `adapt()`, the layer will estimate the quantile boundaries of the\n input dataset. The number of quantiles can be controlled via the `num_bins`\n argument, and the error tolerance for quantile boundaries can be controlled\n via the `epsilon` argument.\n\n In order to make `Discretization` efficient in any distribution context, the\n computed boundaries are kept static with respect to any compiled `tf.Graph`s\n that call the layer. As a consequence, if the layer is adapted a second\n time, any models using the layer should be re-compiled. For more information\n see `tf.keras.layers.experimental.preprocessing.PreprocessingLayer.adapt`.\n\n `adapt()` is meant only as a single machine utility to compute layer state.\n To analyze a dataset that cannot fit on a single machine, see\n [Tensorflow Transform](https://www.tensorflow.org/tfx/transform/get_started)\n for a multi-machine, map-reduce solution.\n\n Arguments:\n data: The data to train on. It can be passed either as a\n `tf.data.Dataset`, or as a numpy array.\n batch_size: Integer or `None`.\n Number of samples per state update.\n If unspecified, `batch_size` will default to 32.\n Do not specify the `batch_size` if your data is in the\n form of datasets, generators, or `keras.utils.Sequence` instances\n (since they generate batches).\n steps: Integer or `None`.\n Total number of steps (batches of samples)\n When training with input tensors such as\n TensorFlow data tensors, the default `None` is equal to\n the number of samples in your dataset divided by\n the batch size, or 1 if that cannot be determined. If x is a\n `tf.data` dataset, and 'steps' is None, the epoch will run until\n the input dataset is exhausted. When passing an infinitely\n repeating dataset, you must specify the `steps` argument. This\n argument is not supported with array inputs.\n ", "language": "en", "n_whitespaces": 653, "n_words": 305, "vocab_size": 175 }
https://github.com/keras-team/keras.git
10
parse_datetime
def parse_datetime(value): try: return datetime.datetime.fromisoformat(value) except ValueError: if match := datetime_re.match(value): kw = match.groupdict() kw["microsecond"] = kw["microsecond"] and kw["microsecond"].ljust(6, "0") tzinfo = kw.pop("tzinfo") if tzinfo == "Z": tzinfo = utc elif tzinfo is not None: offset_mins = int(tzinfo[-2:]) if len(tzinfo) > 3 else 0 offset = 60 * int(tzinfo[1:3]) + offset_mins if tzinfo[0] == "-": offset = -offset tzinfo = get_fixed_timezone(offset) kw = {k: int(v) for k, v in kw.items() if v is not None} return datetime.datetime(**kw, tzinfo=tzinfo)
9c19aff7c7561e3a82978a272ecdaad40dda5c00
20
dateparse.py
282
Refs #33476 -- Reformatted code with Black.
51,588
0
272
170
53
206,617
78
django
21
django/utils/dateparse.py
Python
18
{ "docstring": "Parse a string and return a datetime.datetime.\n\n This function supports time zone offsets. When the input contains one,\n the output uses a timezone with a fixed offset from UTC.\n\n Raise ValueError if the input is well formatted but not a valid datetime.\n Return None if the input isn't well formatted.\n ", "language": "en", "n_whitespaces": 65, "n_words": 50, "vocab_size": 39 }
https://github.com/django/django.git
1
create_module
def create_module(self, spec): # By default, defer to default semantics for the new module. return None # We don't define exec_module() here since that would break # hasattr checks we do to support backward compatibility.
8198943edd73a363c266633e1aa5b2a9e9c9f526
6
_abc.py
21
add python 3.10.4 for windows
55,084
0
62
10
32
218,022
35
XX-Net
3
python3.10.4/Lib/importlib/_abc.py
Python
2
{ "docstring": "Return a module to initialize and into which to load.\n\n This method should raise ImportError if anything prevents it\n from creating a new module. It may return None to indicate\n that the spec should create the new module.\n ", "language": "en", "n_whitespaces": 67, "n_words": 38, "vocab_size": 31 }
https://github.com/XX-net/XX-Net.git
3
responder
def responder(request): # Find an available port with socket.socket() as sock: sock.bind(("localhost", 0)) port = sock.getsockname()[1] server_process = multiprocessing.Process( target=process_server, args=(request.param, port) ) server_process.start() yield port server_process.join(10) server_process.terminate() kill_time = 5 wait_time = 0 while server_process.is_alive(): if wait_time > kill_time: server_process.kill() break else: wait_time += 0.1 time.sleep(0.1) server_process.close() @pytest.mark.parametrize( "responder, read_method, parquet_engine", [ (CSVUserAgentResponder, pd.read_csv, None), (JSONUserAgentResponder, pd.read_json, None), (ParquetPyArrowUserAgentResponder, pd.read_parquet, "pyarrow"), pytest.param( ParquetFastParquetUserAgentResponder, pd.read_parquet, "fastparquet", # TODO(ArrayManager) fastparquet marks=[ td.skip_array_manager_not_yet_implemented, pytest.mark.xfail(PY310, reason="fastparquet failing on 3.10"), ], ), (PickleUserAgentResponder, pd.read_pickle, None), (StataUserAgentResponder, pd.read_stata, None), (GzippedCSVUserAgentResponder, pd.read_csv, None), (GzippedJSONUserAgentResponder, pd.read_json, None), ], indirect=["responder"], )
c5ff649b11bd625ca36ad218539badb1c2057668
@pytest.mark.parametrize( "responder, read_method, parquet_engine", [ (CSVUserAgentResponder, pd.read_csv, None), (JSONUserAgentResponder, pd.read_json, None), (ParquetPyArrowUserAgentResponder, pd.read_parquet, "pyarrow"), pytest.param( ParquetFastParquetUserAgentResponder, pd.read_parquet, "fastparquet", # TODO(ArrayManager) fastparquet marks=[ td.skip_array_manager_not_yet_implemented, pytest.mark.xfail(PY310, reason="fastparquet failing on 3.10"), ], ), (PickleUserAgentResponder, pd.read_pickle, None), (StataUserAgentResponder, pd.read_stata, None), (GzippedCSVUserAgentResponder, pd.read_csv, None), (GzippedJSONUserAgentResponder, pd.read_json, None), ], indirect=["responder"], )
15
test_user_agent.py
366
CI/TST: Call join on server process test (#45628)
39,497
1
380
117
75
163,775
93
pandas
48
pandas/tests/io/test_user_agent.py
Python
21
{ "docstring": "\n Fixture that starts a local http server in a separate process on localhost\n and returns the port.\n\n Running in a separate process instead of a thread to allow termination/killing\n of http server upon cleanup.\n ", "language": "en", "n_whitespaces": 50, "n_words": 34, "vocab_size": 25 }
https://github.com/pandas-dev/pandas.git
3
_dirmatch
def _dirmatch(path, matchwith): matchlen = len(matchwith) if (path.startswith(matchwith) and path[matchlen:matchlen + 1] in [os.sep, '']): return True return False
4c73560b313821fbfbb8c943e02c8b298b7c1731
11
_clonevirtualenv.py
73
[runtime env] Support clone `virtualenv` from an existing `virtualenv` (#22309) Before this PR, we can't run ray in virtualenv, cause `runtime_env` does not support create a new virtualenv from an existing virtualenv. More details:https://github.com/ray-project/ray/pull/21801#discussion_r796848499 Co-authored-by: ๆ•็‰› <[email protected]>
33,344
0
45
45
18
144,928
19
ray
8
python/ray/_private/runtime_env/_clonevirtualenv.py
Python
6
{ "docstring": "Check if path is within matchwith's tree.\n >>> _dirmatch('/home/foo/bar', '/home/foo/bar')\n True\n >>> _dirmatch('/home/foo/bar/', '/home/foo/bar')\n True\n >>> _dirmatch('/home/foo/bar/etc', '/home/foo/bar')\n True\n >>> _dirmatch('/home/foo/bar2', '/home/foo/bar')\n False\n >>> _dirmatch('/home/foo/bar2/etc', '/home/foo/bar')\n False\n ", "language": "en", "n_whitespaces": 60, "n_words": 27, "vocab_size": 16 }
https://github.com/ray-project/ray.git
2
max_mireds
def max_mireds(self) -> int: if color_temp := self.resource.color_temperature: return color_temp.mirek_schema.mirek_maximum # return a fallback value to prevent issues with mired->kelvin conversions return FALLBACK_MAX_MIREDS
10e796e9d5916ce214d23e6aeaf5d757638b07b1
9
light.py
43
Fix issues with Color temperature conversions in Hue (#83982)
96,740
0
62
25
21
297,779
23
core
9
homeassistant/components/hue/v2/light.py
Python
5
{ "docstring": "Return the warmest color_temp that this light supports.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
https://github.com/home-assistant/core.git
5
prde_no_cancel_b_large
def prde_no_cancel_b_large(b, Q, n, DE): db = b.degree(DE.t) m = len(Q) H = [Poly(0, DE.t)]*m for N, i in itertools.product(range(n, -1, -1), range(m)): # [n, ..., 0] si = Q[i].nth(N + db)/b.LC() sitn = Poly(si*DE.t**N, DE.t) H[i] = H[i] + sitn Q[i] = Q[i] - derivation(sitn, DE) - b*sitn if all(qi.is_zero for qi in Q): dc = -1 M = zeros(0, 2, DE.t) else: dc = max([qi.degree(DE.t) for qi in Q]) M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i), DE.t) A, u = constant_system(M, zeros(dc + 1, 1, DE.t), DE) c = eye(m, DE.t) A = A.row_join(zeros(A.rows, m, DE.t)).col_join(c.row_join(-c)) return (H, A)
e94a7b45d7b033ccbd57395dca28b654f875c54c
15
prde.py
421
Improve loop performance
48,922
0
194
281
70
198,413
104
sympy
39
sympy/integrals/prde.py
Python
19
{ "docstring": "\n Parametric Poly Risch Differential Equation - No cancellation: deg(b) large enough.\n\n Explanation\n ===========\n\n Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with\n b != 0 and either D == d/dt or deg(b) > max(0, deg(D) - 1), returns\n h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that\n if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and\n Dq + b*q == Sum(ci*qi, (i, 1, m)), then q = Sum(dj*hj, (j, 1, r)), where\n d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.\n ", "language": "en", "n_whitespaces": 137, "n_words": 106, "vocab_size": 75 }
https://github.com/sympy/sympy.git
5
_discrete_log_shanks_steps
def _discrete_log_shanks_steps(n, a, b, order=None): a %= n b %= n if order is None: order = n_order(b, n) m = isqrt(order) + 1 T = {} x = 1 for i in range(m): T[x] = i x = x * b % n z = mod_inverse(b, n) z = pow(z, m, n) x = a for i in range(m): if x in T: return i * m + T[x] x = x * z % n raise ValueError("Log does not exist")
9d58006fc0a23afcba38f641c9472917c436428a
11
residue_ntheory.py
194
Code cleanup
48,963
0
167
126
41
198,500
82
sympy
16
sympy/ntheory/residue_ntheory.py
Python
19
{ "docstring": "\n Baby-step giant-step algorithm for computing the discrete logarithm of\n ``a`` to the base ``b`` modulo ``n``.\n\n The algorithm is a time-memory trade-off of the method of exhaustive\n search. It uses `O(sqrt(m))` memory, where `m` is the group order.\n\n Examples\n ========\n\n >>> from sympy.ntheory.residue_ntheory import _discrete_log_shanks_steps\n >>> _discrete_log_shanks_steps(41, 15, 7)\n 3\n\n See Also\n ========\n\n discrete_log\n\n References\n ==========\n\n .. [1] \"Handbook of applied cryptography\", Menezes, A. J., Van, O. P. C., &\n Vanstone, S. A. (1997).\n ", "language": "en", "n_whitespaces": 130, "n_words": 74, "vocab_size": 63 }
https://github.com/sympy/sympy.git
7
get_lead_data
def get_lead_data(filters, based_on): based_on_field = frappe.scrub(based_on) conditions = get_filter_conditions(filters) lead_details = frappe.db.sql( .format( based_on_field=based_on_field, conditions=conditions ), filters, as_dict=1, ) lead_map = frappe._dict() for d in lead_details: lead_map.setdefault(d.get(based_on_field), []).append(d.name) data = [] for based_on_value, leads in lead_map.items(): row = {based_on_field: based_on_value, "lead_count": len(leads)} row["quot_count"] = get_lead_quotation_count(leads) row["opp_count"] = get_lead_opp_count(leads) row["order_count"] = get_quotation_ordered_count(leads) row["order_value"] = get_order_amount(leads) or 0 row["opp_lead"] = flt(row["opp_count"]) / flt(row["lead_count"] or 1.0) * 100.0 row["quot_lead"] = flt(row["quot_count"]) / flt(row["lead_count"] or 1.0) * 100.0 row["order_quot"] = flt(row["order_count"]) / flt(row["quot_count"] or 1.0) * 100.0 data.append(row) return data
494bd9ef78313436f0424b918f200dab8fc7c20b
15
campaign_efficiency.py
381
style: format code with black
14,000
0
61
241
58
65,748
86
erpnext
31
erpnext/crm/report/campaign_efficiency/campaign_efficiency.py
Python
29
{ "docstring": "\n\t\tselect {based_on_field}, name\n\t\tfrom `tabLead`\n\t\twhere {based_on_field} is not null and {based_on_field} != '' {conditions}\n\t", "language": "en", "n_whitespaces": 12, "n_words": 15, "vocab_size": 14 }
https://github.com/frappe/erpnext.git
5
gen_flat_decoded_field_dicts
def gen_flat_decoded_field_dicts(self) -> Generator[Dict, None, None]: selected_decoding, decoded_val = self.safe_decode_as(self.preferred_decoding, self.try_unpack) field_desc_dict = { "tag": self._gen_tag_str(), "wireType": self._wire_type_str(), "decoding": self._decoding_str(selected_decoding), "name": self.name, } if isinstance(decoded_val, list): if ( selected_decoding == ProtoParser.DecodedTypes.message # field is a message with subfields and not self.is_packed_parent # field is a message, but replaced by packed fields ): # Field is a message, not packed, thus include it as message header field_desc_dict["val"] = "" yield field_desc_dict # add sub-fields of messages or packed fields for f in decoded_val: yield from f.gen_flat_decoded_field_dicts() else: field_desc_dict["val"] = decoded_val yield field_desc_dict
9d1e3107e851b3187c1270df189da74236e447f7
12
grpc.py
204
`pyupgrade --keep-runtime-typing --py38-plus`
73,562
0
423
120
68
250,874
91
mitmproxy
21
mitmproxy/contentviews/grpc.py
Python
28
{ "docstring": "\n Returns a generator which passes the field as a dict.\n\n In order to return the field value it gets decoded (based on a failover strategy and\n provided ParserRules).\n If the field holds a nested message, the fields contained in the message are appended.\n Ultimately this flattens all fields recursively.\n ", "language": "en", "n_whitespaces": 116, "n_words": 49, "vocab_size": 39 }
https://github.com/mitmproxy/mitmproxy.git
3
test_change_view
def test_change_view(self): change_dict = { "title": "Ikke fordรธmt", "content": "<p>edited article</p>", "date_0": "2008-03-18", "date_1": "10:54:39", "section": self.s1.pk, } article_change_url = reverse( "admin:admin_views_article_change", args=(self.a1.pk,) ) article_changelist_url = reverse("admin:admin_views_article_changelist") # add user should not be able to view the list of article or change any of them self.client.force_login(self.adduser) response = self.client.get(article_changelist_url) self.assertEqual(response.status_code, 403) response = self.client.get(article_change_url) self.assertEqual(response.status_code, 403) post = self.client.post(article_change_url, change_dict) self.assertEqual(post.status_code, 403) self.client.get(reverse("admin:logout")) # view user can view articles but not make changes. self.client.force_login(self.viewuser) response = self.client.get(article_changelist_url) self.assertContains( response, "<title>Select article to view | Django site admin</title>", ) self.assertContains(response, "<h1>Select article to view</h1>") self.assertEqual(response.context["title"], "Select article to view") response = self.client.get(article_change_url) self.assertContains(response, "<title>View article | Django site admin</title>") self.assertContains(response, "<h1>View article</h1>") self.assertContains(response, "<label>Extra form field:</label>") self.assertContains( response, '<a href="/test_admin/admin/admin_views/article/" class="closelink">Close</a>', ) self.assertEqual(response.context["title"], "View article") post = self.client.post(article_change_url, change_dict) self.assertEqual(post.status_code, 403) self.assertEqual( Article.objects.get(pk=self.a1.pk).content, "<p>Middle content</p>" ) self.client.get(reverse("admin:logout")) # change user can view all items and edit them self.client.force_login(self.changeuser) response = self.client.get(article_changelist_url) self.assertEqual(response.context["title"], "Select article to change") self.assertContains( response, "<title>Select article to change | Django site admin</title>", ) self.assertContains(response, "<h1>Select article to change</h1>") response = self.client.get(article_change_url) self.assertEqual(response.context["title"], "Change article") self.assertContains( response, "<title>Change article | Django site admin</title>", ) self.assertContains(response, "<h1>Change article</h1>") post = self.client.post(article_change_url, change_dict) self.assertRedirects(post, article_changelist_url) self.assertEqual( Article.objects.get(pk=self.a1.pk).content, "<p>edited article</p>" ) # one error in form should produce singular error message, multiple errors plural change_dict["title"] = "" post = self.client.post(article_change_url, change_dict) self.assertContains( post, "Please correct the error below.", msg_prefix="Singular error message not found in response to post with one error", ) change_dict["content"] = "" post = self.client.post(article_change_url, change_dict) self.assertContains( post, "Please correct the errors below.", msg_prefix="Plural error message not found in response to post with multiple errors", ) self.client.get(reverse("admin:logout")) # Test redirection when using row-level change permissions. Refs #11513. r1 = RowLevelChangePermissionModel.objects.create(id=1, name="odd id") r2 = RowLevelChangePermissionModel.objects.create(id=2, name="even id") r3 = RowLevelChangePermissionModel.objects.create(id=3, name="odd id mult 3") r6 = RowLevelChangePermissionModel.objects.create(id=6, name="even id mult 3") change_url_1 = reverse( "admin:admin_views_rowlevelchangepermissionmodel_change", args=(r1.pk,) ) change_url_2 = reverse( "admin:admin_views_rowlevelchangepermissionmodel_change", args=(r2.pk,) ) change_url_3 = reverse( "admin:admin_views_rowlevelchangepermissionmodel_change", args=(r3.pk,) ) change_url_6 = reverse( "admin:admin_views_rowlevelchangepermissionmodel_change", args=(r6.pk,) ) logins = [ self.superuser, self.viewuser, self.adduser, self.changeuser, self.deleteuser, ] for login_user in logins: with self.subTest(login_user.username): self.client.force_login(login_user) response = self.client.get(change_url_1) self.assertEqual(response.status_code, 403) response = self.client.post(change_url_1, {"name": "changed"}) self.assertEqual( RowLevelChangePermissionModel.objects.get(id=1).name, "odd id" ) self.assertEqual(response.status_code, 403) response = self.client.get(change_url_2) self.assertEqual(response.status_code, 200) response = self.client.post(change_url_2, {"name": "changed"}) self.assertEqual( RowLevelChangePermissionModel.objects.get(id=2).name, "changed" ) self.assertRedirects(response, self.index_url) response = self.client.get(change_url_3) self.assertEqual(response.status_code, 200) response = self.client.post(change_url_3, {"name": "changed"}) self.assertEqual(response.status_code, 403) self.assertEqual( RowLevelChangePermissionModel.objects.get(id=3).name, "odd id mult 3", ) response = self.client.get(change_url_6) self.assertEqual(response.status_code, 200) response = self.client.post(change_url_6, {"name": "changed"}) self.assertEqual( RowLevelChangePermissionModel.objects.get(id=6).name, "changed" ) self.assertRedirects(response, self.index_url) self.client.get(reverse("admin:logout")) for login_user in [self.joepublicuser, self.nostaffuser]: with self.subTest(login_user.username): self.client.force_login(login_user) response = self.client.get(change_url_1, follow=True) self.assertContains(response, "login-form") response = self.client.post( change_url_1, {"name": "changed"}, follow=True ) self.assertEqual( RowLevelChangePermissionModel.objects.get(id=1).name, "odd id" ) self.assertContains(response, "login-form") response = self.client.get(change_url_2, follow=True) self.assertContains(response, "login-form") response = self.client.post( change_url_2, {"name": "changed again"}, follow=True ) self.assertEqual( RowLevelChangePermissionModel.objects.get(id=2).name, "changed" ) self.assertContains(response, "login-form") self.client.get(reverse("admin:logout"))
9c19aff7c7561e3a82978a272ecdaad40dda5c00
15
tests.py
1,865
Refs #33476 -- Reformatted code with Black.
52,122
0
2,165
1,131
202
207,831
462
django
49
tests/admin_views/tests.py
Python
156
{ "docstring": "Change view should restrict access and allow users to edit items.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
https://github.com/django/django.git
5
nested_concat
def nested_concat(tensors, new_tensors, padding_index=-100): assert type(tensors) == type( new_tensors ), f"Expected `tensors` and `new_tensors` to have the same type but found {type(tensors)} and {type(new_tensors)}." if isinstance(tensors, (list, tuple)): return type(tensors)(nested_concat( t, n, padding_index=padding_index) for t, n in zip(tensors, new_tensors)) elif isinstance(tensors, paddle.Tensor): return paddle_pad_and_concatenate( tensors, new_tensors, padding_index=padding_index) elif isinstance(tensors, np.ndarray): return numpy_pad_and_concatenate( tensors, new_tensors, padding_index=padding_index) else: raise TypeError( f"Unsupported type for concatenation: got {type(tensors)}")
44a290e94d1becd1f09fddc3d873f9e19c9d6919
14
helper.py
200
[Trainer] Add init version of paddlenlp trainer and apply finetune for ernie-1.0 pretraining. (#1761) * add some datasets for finetune. * support fine tune for all tastks. * add trainer prototype. * init verison for paddlenlp trainer. * refine trainer. * update for some details. * support multi-cards training evaluation. * support load from ckpt. * support for export inference model. * first version of trainer. * seq cls support clue. * trainer support for token classification and question answersing tasks. * fix as reviews. Co-authored-by: Zeyu Chen <[email protected]>
118,400
0
192
116
50
323,181
64
PaddleNLP
18
paddlenlp/trainer/utils/helper.py
Python
17
{ "docstring": "\n Concat the `new_tensors` to `tensors` on the first dim and pad them on the second if needed. Works for tensors or\n nested list/tuples of tensors.\n ", "language": "en", "n_whitespaces": 35, "n_words": 25, "vocab_size": 22 }
https://github.com/PaddlePaddle/PaddleNLP.git
1
test_light_none_color_value
async def test_light_none_color_value(hass, light_color_null_values, integration): entity_id = "light.repeater" state = hass.states.get(entity_id) assert state assert state.state == STATE_ON assert state.attributes[ATTR_SUPPORTED_FEATURES] == LightEntityFeature.TRANSITION assert state.attributes[ATTR_SUPPORTED_COLOR_MODES] == ["hs"]
fe0120b65a5e685b1aed06e8bd3cf10b561a710b
9
test_light.py
87
Use light enums in zwave_js (#70791)
97,970
0
46
53
18
299,032
25
core
14
tests/components/zwave_js/test_light.py
Python
7
{ "docstring": "Test the light entity can handle None value in current color Value.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 12 }
https://github.com/home-assistant/core.git
2
contains_points
def contains_points(self, points, transform=None, radius=0.0): if transform is not None: transform = transform.frozen() result = _path.points_in_path(points, radius, self, transform) return result.astype('bool')
03a0b5ea238014ba87f74ef766928287726aa00a
10
path.py
78
Doc: Fix grammar and spelling
24,047
0
60
52
19
110,307
21
matplotlib
10
lib/matplotlib/path.py
Python
5
{ "docstring": "\n Return whether the area enclosed by the path contains the given points.\n\n The path is always treated as closed; i.e. if the last code is not\n CLOSEPOLY an implicit segment connecting the last vertex to the first\n vertex is assumed.\n\n Parameters\n ----------\n points : (N, 2) array\n The points to check. Columns contain x and y values.\n transform : `matplotlib.transforms.Transform`, optional\n If not ``None``, *points* will be compared to ``self`` transformed\n by *transform*; i.e. for a correct check, *transform* should\n transform the path into the coordinate system of *points*.\n radius : float, default: 0\n Additional margin on the path in coordinates of *points*.\n The path is extended tangentially by *radius/2*; i.e. if you would\n draw the path with a linewidth of *radius*, all points on the line\n would still be considered to be contained in the area. Conversely,\n negative values shrink the area: Points on the imaginary line\n will be considered outside the area.\n\n Returns\n -------\n length-N bool array\n\n Notes\n -----\n The current algorithm has some limitations:\n\n - The result is undefined for points exactly at the boundary\n (i.e. at the path shifted by *radius/2*).\n - The result is undefined if there is no enclosed area, i.e. all\n vertices are on a straight line.\n - If bounding lines start to cross each other due to *radius* shift,\n the result is not guaranteed to be correct.\n ", "language": "en", "n_whitespaces": 496, "n_words": 225, "vocab_size": 137 }
https://github.com/matplotlib/matplotlib.git
1
test_advanced_customization
def test_advanced_customization(scene): chart = BarChart(values=[10, 40, 10, 20], bar_names=["one", "two", "three", "four"]) c_x_lbls = chart.x_axis.labels c_x_lbls.set_color_by_gradient(GREEN, RED, YELLOW) c_y_nums = chart.y_axis.numbers c_y_nums.set_color_by_gradient(BLUE, WHITE).shift(LEFT) c_y_axis = chart.y_axis c_y_axis.ticks.set_color(YELLOW) c_bar_lbls = chart.get_bar_labels() scene.add(chart, c_bar_lbls) @frames_comparison
149479f9132daf2266c27caa7a3e11ce06be501d
@frames_comparison
11
test_probability.py
162
Refactored :class:`~.BarChart` and made it inherit from :class:`~.Axes`. (#2387) * rebase * fixed None bar_names * fixed scale issues * fixed to accept negative bar values * fixed some bugs * Added docs for parameters (DRAFT) * clean up parameters * more clean up * clean up __init__ * replace add_x_labels with built-in functionality * adjust default font_size for labels * Update docs descriptions * Add bar_width and adjust get_bar_labels * Add bar_width and adjust get_bar_labels * Add docs to class and methods * remove unecessary imports * remove getters * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Attempt to fix duplicated parameters section * adjust BarChart example to include title * switch order around * change_bar_values * back to get_bar_values * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add docs for _update_default_config and fix method * remove print(dicts) * allow negative_numbers to work with bar chart * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * allow negative numbers to work with change_bar_values * add test_probability.py * add control data * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * change example * update examples again * rewrite test * rewrite other test * remove comma after list in example * improve wording in docs * add parameter/docs for label_constructor * change create_label_tex and update methods * update docs * use decimal number * switch default to Tex * update instances of create_label_tex in coordinate_systems.py * hardcode for add_labels * add TODO * use label_constructor * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix indentation in docs * Fix minor doc typo Co-authored-by: Led Me Explain <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
46,049
1
62
99
29
189,420
33
manim
27
tests/test_graphical_units/test_probability.py
Python
10
{ "docstring": "Tests to make sure advanced customization can be done through :class:`~.BarChart`", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
https://github.com/ManimCommunity/manim.git
3
newer
def newer(source, target): if not os.path.exists(source): raise ValueError("file '%s' does not exist" % os.path.abspath(source)) if not os.path.exists(target): return 1 mtime1 = os.stat(source)[ST_MTIME] mtime2 = os.stat(target)[ST_MTIME] return mtime1 > mtime2
f2ccee6761ddcdde2c6502146ca1b37730d46d6d
13
_generate_pyx.py
118
MAINT: Remove `distutils` usage and add `newer`
69,778
0
61
72
22
242,078
29
scipy
12
scipy/linalg/_generate_pyx.py
Python
8
{ "docstring": "\n Return true if 'source' exists and is more recently modified than\n 'target', or if 'source' exists and 'target' doesn't. Return false if\n both exist and 'target' is the same age or younger than 'source'.\n ", "language": "en", "n_whitespaces": 48, "n_words": 34, "vocab_size": 23 }
https://github.com/scipy/scipy.git
1
test_list_invalid_query_parameter
def test_list_invalid_query_parameter(self) -> None: channel = self.make_request( "GET", self.url + "?valid=x", {}, access_token=self.admin_user_tok, ) self.assertEqual(400, channel.code, msg=channel.json_body)
2281427175e4c93a30c39607fb4ac23c2a1f399f
10
test_registration_tokens.py
77
Use literals in place of `HTTPStatus` constants in tests (#13488) * Use literals in place of `HTTPStatus` constants in tests * newsfile * code style * code style
72,831
0
89
48
17
249,328
17
synapse
11
tests/rest/admin/test_registration_tokens.py
Python
9
{ "docstring": "Test with `valid` query parameter not `true` or `false`.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
https://github.com/matrix-org/synapse.git
1
test_get_parsed_simple_text_mail
def test_get_parsed_simple_text_mail(self): # Parse Test file and check relevant content parsed1 = self.parser.get_parsed( os.path.join(self.SAMPLE_FILES, "simple_text.eml"), ) self.assertEqual(parsed1.date.year, 2022) self.assertEqual(parsed1.date.month, 10) self.assertEqual(parsed1.date.day, 12) self.assertEqual(parsed1.date.hour, 21) self.assertEqual(parsed1.date.minute, 40) self.assertEqual(parsed1.date.second, 43) self.assertEqual(parsed1.date.tzname(), "UTC+02:00") self.assertEqual(parsed1.from_, "[email protected]") self.assertEqual(parsed1.subject, "Simple Text Mail") self.assertEqual(parsed1.text, "This is just a simple Text Mail.\n") self.assertEqual(parsed1.to, ("[email protected]",))
00f39d8b581c358f2484680275222f6ad909758c
11
test_parsers.py
254
add test comments
117,103
0
162
157
45
320,273
46
paperless-ngx
22
src/paperless_mail/tests/test_parsers.py
Python
15
{ "docstring": "\n GIVEN:\n - Fresh parser\n WHEN:\n - A .eml file should be parsed\n THEN:\n - The content of the mail should be available in the parse result.\n ", "language": "en", "n_whitespaces": 88, "n_words": 26, "vocab_size": 21 }
https://github.com/paperless-ngx/paperless-ngx.git
1
from_pydict
def from_pydict(cls, *args, **kwargs): return cls(pa.Table.from_pydict(*args, **kwargs))
e35be138148333078284b942ccc9ed7b1d826f97
10
table.py
46
Update docs to new frontend/UI (#3690) * WIP: update docs to new UI * make style * Rm unused * inject_arrow_table_documentation __annotations__ * hasattr(arrow_table_method, "__annotations__") * Update task_template.rst * Codeblock PT-TF-SPLIT * Convert loading scripts * Convert docs to mdx * Fix mdx * Add <Tip> * Convert mdx tables * Fix codeblock * Rm unneded hashlinks * Update index.mdx * Redo dev change * Rm circle ci `build_doc` & `deploy_doc` * Rm unneeded files * Update docs reamde * Standardize to `Example::` * mdx logging levels doc * Table properties inject_arrow_table_documentation * ``` to ```py mdx * Add Tips mdx * important,None -> <Tip warning={true}> * More misc * Center imgs * Update instllation page * `setup.py` docs section * Rm imgs since they are in hf.co * Update docs/source/access.mdx Co-authored-by: Steven Liu <[email protected]> * Update index mdx * Update docs/source/access.mdx Co-authored-by: Steven Liu <[email protected]> * just `Dataset` obj * Addedversion just italics * Update ReadInstruction doc example syntax * Change docstring for `prepare_for_task` * Chore * Remove `code` syntax from headings * Rm `code` syntax from headings * Hashlink backward compatability * S3FileSystem doc * S3FileSystem doc updates * index.mdx updates * Add darkmode gifs * Index logo img css classes * Index mdx dataset logo img size * Docs for DownloadMode class * Doc DownloadMode table * format docstrings * style * Add doc builder scripts (#3790) * add doc builder scripts * fix docker image * Docs new UI actions no self hosted (#3793) * No self hosted * replace doc injection by actual docstrings * Docstring formatted Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Mishig Davaadorj <[email protected]> Co-authored-by: Lysandre Debut <[email protected]> Co-authored-by: Mishig Davaadorj <[email protected]> * Rm notebooks from docs actions since they dont exi * Update tsting branch * More docstring * Chore * bump up node version * bump up node * ``` -> ```py for audio_process.mdx * Update .github/workflows/build_documentation.yml Co-authored-by: Quentin Lhoest <[email protected]> * Uodate dev doc build * remove run on PR * fix action * Fix gh doc workflow * forgot this change when merging master * Update build doc Co-authored-by: Steven Liu <[email protected]> Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Lysandre Debut <[email protected]>
21,830
0
21
28
7
104,393
7
datasets
6
src/datasets/table.py
Python
2
{ "docstring": "\n Construct a Table from Arrow arrays or columns\n\n Args:\n mapping (:obj:`Union[dict, Mapping]`):\n A mapping of strings to Arrays or Python lists.\n schema (:obj:`Schema`, defaults to :obj:`None`):\n If not passed, will be inferred from the Mapping values\n metadata (:obj:`Union[dict, Mapping]`, default None):\n Optional metadata for the schema (if inferred).\n\n Returns:\n :class:`datasets.table.Table`:\n ", "language": "en", "n_whitespaces": 168, "n_words": 50, "vocab_size": 42 }
https://github.com/huggingface/datasets.git
3
_check_deprecated_resample_kwargs
def _check_deprecated_resample_kwargs(kwargs, origin): # Deprecation warning of `base` and `loffset` since v1.1.0: # we are raising the warning here to be able to set the `stacklevel` # properly since we need to raise the `base` and `loffset` deprecation # warning from three different cases: # core/generic.py::NDFrame.resample # core/groupby/groupby.py::GroupBy.resample # core/groupby/grouper.py::Grouper # raising these warnings from TimeGrouper directly would fail the test: # tests/resample/test_deprecated.py::test_deprecating_on_loffset_and_base if kwargs.get("base", None) is not None: warnings.warn( "'base' in .resample() and in Grouper() is deprecated.\n" "The new arguments that you should use are 'offset' or 'origin'.\n" '\n>>> df.resample(freq="3s", base=2)\n' "\nbecomes:\n" '\n>>> df.resample(freq="3s", offset="2s")\n', FutureWarning, stacklevel=find_stack_level(inspect.currentframe()), ) if kwargs.get("loffset", None) is not None: warnings.warn( "'loffset' in .resample() and in Grouper() is deprecated.\n" '\n>>> df.resample(freq="3s", loffset="8H")\n' "\nbecomes:\n" "\n>>> from pandas.tseries.frequencies import to_offset" '\n>>> df = df.resample(freq="3s").mean()' '\n>>> df.index = df.index.to_timestamp() + to_offset("8H")\n', FutureWarning, stacklevel=find_stack_level(inspect.currentframe()), )
2f8d0a36703e81e4dca52ca9fe4f58c910c1b304
14
grouper.py
176
PERF cache find_stack_level (#48023) cache stacklevel
40,239
0
373
83
85
168,224
136
pandas
11
pandas/core/groupby/grouper.py
Python
22
{ "docstring": "\n Check for use of deprecated parameters in ``resample`` and related functions.\n\n Raises the appropriate warnings if these parameters are detected.\n Only sets an approximate ``stacklevel`` for the warnings (see #37603, #36629).\n\n Parameters\n ----------\n kwargs : dict\n Dictionary of keyword arguments to check for deprecated parameters.\n origin : object\n From where this function is being called; either Grouper or TimeGrouper. Used\n to determine an approximate stacklevel.\n ", "language": "en", "n_whitespaces": 111, "n_words": 65, "vocab_size": 54 }
https://github.com/pandas-dev/pandas.git
2
is_platform_arm
def is_platform_arm() -> bool: return platform.machine() in ("arm64", "aarch64") or platform.machine().startswith( "armv" )
c7da9ea5b089ebd0a57a62309e63dff08d26b2c8
10
__init__.py
57
TST: Create is_ci_environment helper (#45812)
39,565
0
29
30
13
164,509
13
pandas
5
pandas/compat/__init__.py
Python
12
{ "docstring": "\n Checking if the running platform use ARM architecture.\n\n Returns\n -------\n bool\n True if the running platform uses ARM architecture.\n ", "language": "en", "n_whitespaces": 42, "n_words": 19, "vocab_size": 13 }
https://github.com/pandas-dev/pandas.git
2
broadcast_shapes
def broadcast_shapes(*shapes): # NOTE: We have both cached and uncached versions to handle Tracers in shapes. try: return _broadcast_shapes_cached(*shapes) except: return _broadcast_shapes_uncached(*shapes) @cache()
78ed03c4c2970e5e0d11f14a8d4fc968a4efbca2
@cache()
11
lax.py
52
[typing] add annotations to jax.numpy.linalg
27,122
1
32
23
22
122,213
23
jax
5
jax/_src/lax/lax.py
Python
5
{ "docstring": "Returns the shape that results from NumPy broadcasting of `shapes`.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
https://github.com/google/jax.git
1
subscription_channel_updated_webhook
def subscription_channel_updated_webhook(subscription_webhook): return subscription_webhook( CHANNEL_UPDATED_SUBSCRIPTION_QUERY, WebhookEventAsyncType.CHANNEL_UPDATED ) CHANNEL_DELETED_SUBSCRIPTION_QUERY = @pytest.fixture
e5d78c63edd2620e67671e713ef594e924b0e1c9
@pytest.fixture
8
fixtures.py
36
New events for changes related to channels (#9570) * Channel webhooks events added * use isActive instead od channel status property * correct CHOICES value for channel_created event
5,063
1
21
14
10
26,788
10
saleor
8
saleor/plugins/webhook/tests/subscription_webhooks/fixtures.py
Python
4
{ "docstring": "\n subscription{\n event{\n ...on ChannelDeleted{\n channel{\n id\n }\n }\n }\n }\n", "language": "en", "n_whitespaces": 69, "n_words": 10, "vocab_size": 7 }
https://github.com/saleor/saleor.git
1
mixin_worker_runtime_parser
def mixin_worker_runtime_parser(parser): gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=, ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=, ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=, ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=, ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=, ) gp.add_argument( '--port-in', type=int, default=helper.random_port(), dest='port', help='The port for input data to bind to, default a random port between [49152, 65535]', ) gp.add_argument( '--host-in', type=str, default=__default_host__, help=f'The host address for binding to, by default it is {__default_host__}', ) gp.add_argument( '--native', action='store_true', default=False, help='If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime.', ) gp.add_argument( '--output-array-type', type=str, default=None, help=, )
ceb51082b4ec6f31811945ffc67b734acbbebac2
10
worker.py
363
feat: convert embedding/tensor array type at executor level (#4484)
2,127
0
460
216
71
11,824
110
jina
21
jina/parsers/orchestrate/runtimes/worker.py
Python
92
{ "docstring": "Mixing in arguments required by :class:`WorkerRuntime` into the given parser.\n :param parser: the parser instance to which we add arguments\n \n The config of the executor, it could be one of the followings:\n * an Executor YAML file (.yml, .yaml, .jaml)\n * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`)\n * a docker image (must start with `docker://`)\n * the string literal of a YAML config (must start with `!` or `jtype: `)\n * the string literal of a JSON config\n\n When use it under Python, one can use the following values additionally:\n - a Python dict that represents the config\n - a text file stream has `.read()` interface\n \n Dictionary of keyword arguments that will override the `with` configuration in `uses`\n \n Dictionary of keyword arguments that will override the `metas` configuration in `uses`\n \n Dictionary of keyword arguments that will override the `requests` configuration in `uses`\n \nThe customized python modules need to be imported before loading the executor\n\nNote that the recommended way is to only import a single module - a simple python file, if your\nexecutor can be defined in a single file, or an ``__init__.py`` file if you have multiple files,\nwhich should be structured as a python package. For more details, please see the\n`Executor cookbook <https://docs.jina.ai/fundamentals/executor/repository-structure/>`__\n\nThe type of array `tensor` and `embedding` will be serialized to.\n\nSupports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found \n`here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`.\nDefaults to retaining whatever type is returned by the Executor.\n", "language": "en", "n_whitespaces": 343, "n_words": 245, "vocab_size": 138 }
https://github.com/jina-ai/jina.git
6
_sparsemax_threshold_and_support
def _sparsemax_threshold_and_support(X, dim=-1, k=None): if k is None or k >= X.shape[dim]: # do full sort topk, _ = torch.sort(X, dim=dim, descending=True) else: topk, _ = torch.topk(X, k=k, dim=dim) topk_cumsum = topk.cumsum(dim) - 1 rhos = _make_ix_like(topk, dim) support = rhos * topk > topk_cumsum support_size = support.sum(dim=dim).unsqueeze(dim) tau = topk_cumsum.gather(dim, support_size - 1) tau /= support_size.to(X.dtype) if k is not None and k < X.shape[dim]: unsolved = (support_size == k).squeeze(dim) if torch.any(unsolved): in_ = _roll_last(X, dim)[unsolved] tau_, ss_ = _sparsemax_threshold_and_support(in_, dim=-1, k=2 * k) _roll_last(tau, dim)[unsolved] = tau_ _roll_last(support_size, dim)[unsolved] = ss_ return tau, support_size
20a8a6fdb516e543d4598c852063ba0fb407f3ba
14
activations.py
336
Removes dependency on entmax from PyPI, adds entmax source to utils (#1778) * Removes dependency on entmax from PyPi, add entmax source code into utils instead. * Removes build status and image from README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix python formatting in docs for pre-commit. * Removes __main__ from test_losses.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update entmax imports. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: Daniel Treiman <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
947
0
202
221
64
6,266
96
ludwig
29
ludwig/utils/entmax/activations.py
Python
19
{ "docstring": "Core computation for sparsemax: optimal threshold and support size.\n\n Parameters\n ----------\n X : torch.Tensor\n The input tensor to compute thresholds over.\n\n dim : int\n The dimension along which to apply sparsemax.\n\n k : int or None\n number of largest elements to partial-sort over. For optimal\n performance, should be slightly bigger than the expected number of\n nonzeros in the solution. If the solution is more than k-sparse,\n this function is recursively called with a 2*k schedule.\n If `None`, full sorting is performed from the beginning.\n\n Returns\n -------\n tau : torch.Tensor like `X`, with all but the `dim` dimension intact\n the threshold value for each vector\n support_size : torch LongTensor, shape like `tau`\n the number of nonzeros in each vector.\n ", "language": "en", "n_whitespaces": 211, "n_words": 118, "vocab_size": 85 }
https://github.com/ludwig-ai/ludwig.git
23
bulk_update
def bulk_update(self, objs, fields, batch_size=None): if batch_size is not None and batch_size < 0: raise ValueError('Batch size must be a positive integer.') if not fields: raise ValueError('Field names must be given to bulk_update().') objs = tuple(objs) if any(obj.pk is None for obj in objs): raise ValueError('All bulk_update() objects must have a primary key set.') fields = [self.model._meta.get_field(name) for name in fields] if any(not f.concrete or f.many_to_many for f in fields): raise ValueError('bulk_update() can only be used with concrete fields.') if any(f.primary_key for f in fields): raise ValueError('bulk_update() cannot be used with primary key fields.') if not objs: return 0 for obj in objs: obj._prepare_related_fields_for_save(operation_name='bulk_update', fields=fields) # PK is used twice in the resulting update query, once in the filter # and once in the WHEN. Each field will also have one CAST. connection = connections[self.db] max_batch_size = connection.ops.bulk_batch_size(['pk', 'pk'] + fields, objs) batch_size = min(batch_size, max_batch_size) if batch_size else max_batch_size requires_casting = connection.features.requires_casted_case_in_updates batches = (objs[i:i + batch_size] for i in range(0, len(objs), batch_size)) updates = [] for batch_objs in batches: update_kwargs = {} for field in fields: when_statements = [] for obj in batch_objs: attr = getattr(obj, field.attname) if not hasattr(attr, 'resolve_expression'): attr = Value(attr, output_field=field) when_statements.append(When(pk=obj.pk, then=attr)) case_statement = Case(*when_statements, output_field=field) if requires_casting: case_statement = Cast(case_statement, output_field=field) update_kwargs[field.attname] = case_statement updates.append(([obj.pk for obj in batch_objs], update_kwargs)) rows_updated = 0 with transaction.atomic(using=self.db, savepoint=False): for pks, update_kwargs in updates: rows_updated += self.filter(pk__in=pks).update(**update_kwargs) return rows_updated bulk_update.alters_data = True
0af9a5fc7d765aa05ea784e2c3237675f3bb4b49
17
query.py
609
Fixed #33463 -- Fixed QuerySet.bulk_update() with F() expressions.
50,240
0
704
381
135
203,160
237
django
61
django/db/models/query.py
Python
42
{ "docstring": "\n Update the given fields in each of the given objects in the database.\n ", "language": "en", "n_whitespaces": 28, "n_words": 13, "vocab_size": 9 }
https://github.com/django/django.git
4
call_hm
def call_hm(self, other_args): parser = argparse.ArgumentParser( prog="hm", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, description=, ) parser.add_argument( "-l", "--limit", dest="limit", type=int, help="Display N items", default=10, ) parser.add_argument( "-c", "--category", default="", dest="category", help="Category (e.g., stablecoins). Empty for no category", ) if other_args and not other_args[0][0] == "-": other_args.insert(0, "-c") ns_parser = parse_known_args_and_warn( parser, other_args, EXPORT_ONLY_FIGURES_ALLOWED ) if ns_parser: pycoingecko_view.display_crypto_heatmap( category=ns_parser.category, top=ns_parser.limit, export=ns_parser.export, )
a5848af9088466ae711ce403c9f344b964d581b8
11
overview_controller.py
222
Crypto heatmaps (#1416) * added hm feature * updated requirements * updated tests * updated tests * updated charts convention and removed duplicated autocompletion * added percentage * lint Co-authored-by: jmaslek <[email protected]>
84,248
0
388
137
50
282,685
57
OpenBBTerminal
27
gamestonk_terminal/cryptocurrency/overview/overview_controller.py
Python
37
{ "docstring": "Process hm commandDisplay cryptocurrencies heatmap [Source: https://coingecko.com]\n Accepts --category or -c to display only coins of a certain category\n (default no category to display all coins ranked by market cap).\n You can look on only top N number of records with --limit.\n ", "language": "en", "n_whitespaces": 86, "n_words": 42, "vocab_size": 36 }
https://github.com/OpenBB-finance/OpenBBTerminal.git
3
parsedate_tz
def parsedate_tz(data): res = _parsedate_tz(data) if not res: return if res[9] is None: res[9] = 0 return tuple(res)
8198943edd73a363c266633e1aa5b2a9e9c9f526
9
_parseaddr.py
61
add python 3.10.4 for windows
57,010
0
47
36
14
223,619
18
XX-Net
5
python3.10.4/Lib/email/_parseaddr.py
Python
7
{ "docstring": "Convert a date string to a time tuple.\n\n Accounts for military timezones.\n ", "language": "en", "n_whitespaces": 18, "n_words": 12, "vocab_size": 11 }
https://github.com/XX-net/XX-Net.git
10
get_type
def get_type(self) -> str: # values of the dict are functions evaluating whether components of this pipeline match the pipeline type # specified by dict keys pipeline_types = { "GenerativeQAPipeline": lambda x: {"Generator", "Retriever"} <= set(x.keys()), "FAQPipeline": lambda x: {"Docs2Answers"} <= set(x.keys()), "ExtractiveQAPipeline": lambda x: {"Reader", "Retriever"} <= set(x.keys()), "SearchSummarizationPipeline": lambda x: {"Retriever", "Summarizer"} <= set(x.keys()), "TranslationWrapperPipeline": lambda x: {"InputTranslator", "OutputTranslator"} <= set(x.keys()), "RetrieverQuestionGenerationPipeline": lambda x: {"Retriever", "QuestionGenerator"} <= set(x.keys()), "QuestionAnswerGenerationPipeline": lambda x: {"QuestionGenerator", "Reader"} <= set(x.keys()), "DocumentSearchPipeline": lambda x: {"Retriever"} <= set(x.keys()), "QuestionGenerationPipeline": lambda x: {"QuestionGenerator"} <= set(x.keys()), "MostSimilarDocumentsPipeline": lambda x: len(x.values()) == 1 and isinstance(list(x.values())[0], BaseDocumentStore), } retrievers = [type(comp).__name__ for comp in self.components.values() if isinstance(comp, BaseRetriever)] doc_stores = [type(comp).__name__ for comp in self.components.values() if isinstance(comp, BaseDocumentStore)] pipeline_type = next( (p_type for p_type, eval_f in pipeline_types.items() if eval_f(self.components)), "Unknown pipeline" ) retrievers_used = retrievers if retrievers else "None" doc_stores_used = doc_stores if doc_stores else "None" return f"{pipeline_type} (retriever: {retrievers_used}, doc_store: {doc_stores_used})"
938e6fda5b686ec49c52cb23f786a74d9321e048
17
base.py
556
Classify pipeline's type based on its components (#3132) * Add pipeline get_type mehod * Add pipeline uptime * Add pipeline telemetry event sending * Send pipeline telemetry once a day (at most) * Add pipeline invocation counter, change invocation counter logic * Update allowed telemetry parameters - allow pipeline parameters * PR review: add unit test
75,161
0
369
317
89
257,868
153
haystack
26
haystack/pipelines/base.py
Python
25
{ "docstring": "\n Returns the type of the pipeline.\n ", "language": "en", "n_whitespaces": 21, "n_words": 6, "vocab_size": 5 }
https://github.com/deepset-ai/haystack.git
1
record_states
def record_states(hass): mp = "media_player.test" mp2 = "media_player.test2" mp3 = "media_player.test3" therm = "thermostat.test" therm2 = "thermostat.test2" zone = "zone.home" script_c = "script.can_cancel_this_one"
29bda196b5e0a90a2bea7e1797742236114afc1c
7
test_init.py
62
Break apart recorder into tasks and core modules (#71222)
98,729
0
47
446
17
299,827
23
core
9
tests/components/history/test_init.py
Python
60
{ "docstring": "Record some test states.\n\n We inject a bunch of state updates from media player, zone and\n thermostat.\n ", "language": "en", "n_whitespaces": 26, "n_words": 17, "vocab_size": 17 }
https://github.com/home-assistant/core.git
3
labels_to_dataset
def labels_to_dataset(labels, label_mode, num_classes): label_ds = tf.data.Dataset.from_tensor_slices(labels) if label_mode == 'binary': label_ds = label_ds.map( lambda x: tf.expand_dims(tf.cast(x, 'float32'), axis=-1), num_parallel_calls=tf.data.AUTOTUNE) elif label_mode == 'categorical': label_ds = label_ds.map(lambda x: tf.one_hot(x, num_classes), num_parallel_calls=tf.data.AUTOTUNE) return label_ds
3073e00912838454359079a35f1638ccf06e855f
16
dataset_utils.py
154
Fix the issue in the other two places it occurs
79,896
0
85
96
24
269,098
33
keras
17
keras/preprocessing/dataset_utils.py
Python
10
{ "docstring": "Create a tf.data.Dataset from the list/tuple of labels.\n\n Args:\n labels: list/tuple of labels to be converted into a tf.data.Dataset.\n label_mode: String describing the encoding of `labels`. Options are:\n - 'binary' indicates that the labels (there can be only 2) are encoded as\n `float32` scalars with values 0 or 1 (e.g. for `binary_crossentropy`).\n - 'categorical' means that the labels are mapped into a categorical vector.\n (e.g. for `categorical_crossentropy` loss).\n num_classes: number of classes of labels.\n\n Returns:\n A `Dataset` instance.\n ", "language": "en", "n_whitespaces": 109, "n_words": 78, "vocab_size": 58 }
https://github.com/keras-team/keras.git
1
test_change_view_without_object_change_permission
def test_change_view_without_object_change_permission(self): change_url = reverse("admin9:admin_views_article_change", args=(self.a1.pk,)) self.client.force_login(self.viewuser) response = self.client.get(change_url) self.assertEqual(response.context["title"], "View article") self.assertContains(response, "<title>View article | Django site admin</title>") self.assertContains(response, "<h1>View article</h1>") self.assertContains( response, '<a href="/test_admin/admin9/admin_views/article/" class="closelink">Close</a>', )
9c19aff7c7561e3a82978a272ecdaad40dda5c00
12
tests.py
138
Refs #33476 -- Reformatted code with Black.
52,110
0
114
81
27
207,805
29
django
15
tests/admin_views/tests.py
Python
11
{ "docstring": "\n The object should be read-only if the user has permission to view it\n and change objects of that type but not to change the current object.\n ", "language": "en", "n_whitespaces": 48, "n_words": 26, "vocab_size": 23 }
https://github.com/django/django.git
3
get_party_type
def get_party_type(doctype, txt, searchfield, start, page_len, filters): cond = "" if filters and filters.get("account"): account_type = frappe.db.get_value("Account", filters.get("account"), "account_type") cond = "and account_type = '%s'" % account_type return frappe.db.sql( .format( key=searchfield, cond=cond ), {"txt": "%" + txt + "%", "start": start, "page_len": page_len}, )
494bd9ef78313436f0424b918f200dab8fc7c20b
13
party_type.py
155
style: format code with black
14,544
0
33
91
36
67,491
44
erpnext
16
erpnext/setup/doctype/party_type/party_type.py
Python
13
{ "docstring": "select name from `tabParty Type`\n\t\t\twhere `{key}` LIKE %(txt)s {cond}\n\t\t\torder by name limit %(start)s, %(page_len)s", "language": "en", "n_whitespaces": 13, "n_words": 16, "vocab_size": 15 }
https://github.com/frappe/erpnext.git
2
get_collection_path_regexes
def get_collection_path_regexes() -> t.Tuple[t.Optional[t.Pattern], t.Optional[t.Pattern]]: if data_context().content.collection: collection_search_re = re.compile(r'/%s/' % data_context().content.collection.directory) collection_sub_re = re.compile(r'^.*?/%s/' % data_context().content.collection.directory) else: collection_search_re = None collection_sub_re = None return collection_search_re, collection_sub_re
3eb0485dd92c88cc92152d3656d94492db44b183
16
__init__.py
141
ansible-test - Use more native type hints. (#78435) * ansible-test - Use more native type hints. Simple search and replace to switch from comments to native type hints for return types of functions with no arguments. * ansible-test - Use more native type hints. Conversion of simple single-line function annotation type comments to native type hints. * ansible-test - Use more native type hints. Conversion of single-line function annotation type comments with default values to native type hints. * ansible-test - Use more native type hints. Manual conversion of type annotation comments for functions which have pylint directives.
79,100
0
67
87
18
267,819
27
ansible
13
test/lib/ansible_test/_internal/commands/coverage/__init__.py
Python
9
{ "docstring": "Return a pair of regexes used for identifying and manipulating collection paths.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 12 }
https://github.com/ansible/ansible.git
5
available
def available(self) -> bool: return ( self.poe_mode is not None and self.controller.available and self.client.switch_port and self.client.switch_mac and self.client.switch_mac in self.controller.api.devices )
3798d28bec6dc257da8387a6751949d47fb29a29
12
switch.py
77
Improve entity type hints [u] (#77884)
105,376
0
97
49
17
306,592
21
core
10
homeassistant/components/unifi/switch.py
Python
13
{ "docstring": "Return if switch is available.\n\n Poe_mode None means its POE state is unknown.\n Sw_mac unavailable means restored client.\n ", "language": "en", "n_whitespaces": 39, "n_words": 18, "vocab_size": 16 }
https://github.com/home-assistant/core.git
2
async_shutdown
async def async_shutdown(self): if self.task: self.task.cancel() await asyncio.wait((self.task,)) self._unschedule_refresh() await self.connection.stop()
551fb449752e1c3f55eb688d24509876020852d1
12
__init__.py
76
Stop coordinator before connection in nibe_heatpump (#80396) Stop coordinator in nibe_heatpump
88,359
0
61
43
10
289,215
11
core
9
homeassistant/components/nibe_heatpump/__init__.py
Python
6
{ "docstring": "Make sure a coordinator is shut down as well as it's connection.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 11 }
https://github.com/home-assistant/core.git
3
autorun_get_interactive_session
def autorun_get_interactive_session(cmds, **kargs): # type: (str, **Any) -> Tuple[str, Any] sstdout, sstderr, sexcepthook = sys.stdout, sys.stderr, sys.excepthook sw = StringWriter() h_old = log_scapy.handlers[0] log_scapy.removeHandler(h_old) log_scapy.addHandler(logging.StreamHandler(stream=sw)) try: try: sys.stdout = sys.stderr = sw sys.excepthook = sys.__excepthook__ # type: ignore res = autorun_commands_timeout(cmds, **kargs) except StopAutorun as e: e.code_run = sw.s raise finally: sys.stdout, sys.stderr, sys.excepthook = sstdout, sstderr, sexcepthook log_scapy.removeHandler(log_scapy.handlers[0]) log_scapy.addHandler(h_old) return sw.s, res
b754f97d346e2db6e4a9e9cc6ff88010f502db89
13
autorun.py
228
Update Mypy version
52,584
0
184
142
43
209,035
63
scapy
27
scapy/autorun.py
Python
19
{ "docstring": "Create an interactive session and execute the\n commands passed as \"cmds\" and return all output\n\n :param cmds: a list of commands to run\n :param timeout: timeout in seconds\n :returns: (output, returned) contains both sys.stdout and sys.stderr logs\n ", "language": "en", "n_whitespaces": 52, "n_words": 37, "vocab_size": 33 }
https://github.com/secdev/scapy.git
1
generate_gexf
def generate_gexf(G, encoding="utf-8", prettyprint=True, version="1.2draft"): writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version) writer.add_graph(G) yield from str(writer).splitlines() @open_file(0, mode="rb")
54e36acb36c75e09bc53dfcb81c73386b82a20c9
@open_file(0, mode="rb")
10
gexf.py
99
Update gexf website link in documentation (#5275) Hi, we've recently put the GEXF website again into its own domain http://gexf.net/ so this documentation should be updated. Thanks!
41,768
1
27
50
16
176,215
16
networkx
12
networkx/readwrite/gexf.py
Python
4
{ "docstring": "Generate lines of GEXF format representation of G.\n\n \"GEXF (Graph Exchange XML Format) is a language for describing\n complex networks structures, their associated data and dynamics\" [1]_.\n\n Parameters\n ----------\n G : graph\n A NetworkX graph\n encoding : string (optional, default: 'utf-8')\n Encoding for text data.\n prettyprint : bool (optional, default: True)\n If True use line breaks and indenting in output XML.\n version : string (default: 1.2draft)\n Version of GEFX File Format (see http://gexf.net/schema.html)\n Supported values: \"1.1draft\", \"1.2draft\"\n\n\n Examples\n --------\n >>> G = nx.path_graph(4)\n >>> linefeed = chr(10) # linefeed=\\n\n >>> s = linefeed.join(nx.generate_gexf(G))\n >>> for line in nx.generate_gexf(G): # doctest: +SKIP\n ... print(line)\n\n Notes\n -----\n This implementation does not support mixed graphs (directed and undirected\n edges together).\n\n The node id attribute is set to be the string of the node label.\n If you want to specify an id use set it as node data, e.g.\n node['a']['id']=1 to set the id of node 'a' to 1.\n\n References\n ----------\n .. [1] GEXF File Format, https://gephi.org/gexf/format/\n ", "language": "en", "n_whitespaces": 262, "n_words": 163, "vocab_size": 120 }
https://github.com/networkx/networkx.git
2
_can_use_libjoin
def _can_use_libjoin(self) -> bool: if type(self) is Index: # excludes EAs return isinstance(self.dtype, np.dtype) return not is_interval_dtype(self.dtype) # -------------------------------------------------------------------- # Uncategorized Methods
4248b23371a70b339a2c16b8e5caca9c2e5897f8
10
base.py
61
ENH: ExtensionEngine (#45514)
39,495
0
71
35
19
163,773
22
pandas
9
pandas/core/indexes/base.py
Python
7
{ "docstring": "\n Whether we can use the fastpaths implement in _libs.join\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 9 }
https://github.com/pandas-dev/pandas.git
18
remount
def remount(name, device, mkmnt=False, fstype="", opts="defaults", user=None): force_mount = False if __grains__["os"] in ["MacOS", "Darwin"]: if opts == "defaults": opts = "noowners" if fstype == "smbfs": force_mount = True if "AIX" in __grains__["os"]: if opts == "defaults": opts = [] if isinstance(opts, str): opts = opts.split(",") mnts = active() if name in mnts: # The mount point is mounted, attempt to remount it with the given data if "remount" not in opts and __grains__["os"] not in [ "OpenBSD", "MacOS", "Darwin", ]: opts.append("remount") if force_mount: # We need to force the mount but first we should unmount umount(name, device, user=user) args = "" if opts: lopts = ",".join(opts) args = "-o {}".format(lopts) if fstype: # use of fstype on AIX differs from typical Linux use of # -t functionality AIX uses -v vfsname, -t fstype mounts # all with fstype in /etc/filesystems if "AIX" in __grains__["os"]: args += " -v {}".format(fstype) elif "solaris" in __grains__["os"].lower(): args += " -F {}".format(fstype) else: args += " -t {}".format(fstype) if __grains__["os"] not in ["OpenBSD", "MacOS", "Darwin"] or force_mount: cmd = "mount {} {} {} ".format(args, device, name) else: cmd = "mount -u {} {} {} ".format(args, device, name) out = __salt__["cmd.run_all"](cmd, runas=user, python_shell=False) if out["retcode"]: return out["stderr"] return True # Mount a filesystem that isn't already return mount(name, device, mkmnt, fstype, opts, user=user)
9354c15e0818715d055242d14b1308643a6918d7
16
mount.py
529
Convert Py 2'isms to Python 3, and add tests for set_filesystems on AIX
54,317
0
623
299
124
216,005
219
salt
27
salt/modules/mount.py
Python
42
{ "docstring": "\n Attempt to remount a device, if the device is not already mounted, mount\n is called\n\n CLI Example:\n\n .. code-block:: bash\n\n salt '*' mount.remount /mnt/foo /dev/sdz1 True\n ", "language": "en", "n_whitespaces": 49, "n_words": 26, "vocab_size": 25 }
https://github.com/saltstack/salt.git
3
close
async def close(self): if not self._is_closed: await asyncio.gather(*[q.close() for q in self._all_batch_queues()]) self._executor.close() self._is_closed = True
46d7973043e2e599149812cc6fc7671b935c13f8
15
request_handling.py
80
feat: dynamic batching (#5410) Co-authored-by: Johannes Messner <[email protected]> Co-authored-by: Alaeddine Abdessalem <[email protected]>
2,779
0
63
46
16
13,871
16
jina
8
jina/serve/runtimes/worker/request_handling.py
Python
5
{ "docstring": "Close the data request handler, by closing the executor and the batch queues.", "language": "en", "n_whitespaces": 12, "n_words": 13, "vocab_size": 11 }
https://github.com/jina-ai/jina.git
3
filter_symbols
def filter_symbols(iterator, exclude): exclude = set(exclude) for s in iterator: if s not in exclude: yield s
f3b08522003f40868afb20304fc0fa5b16d13f6a
10
iterables.py
45
Cleanup documentation
48,434
0
44
27
14
197,287
17
sympy
5
sympy/utilities/iterables.py
Python
5
{ "docstring": "\n Only yield elements from `iterator` that do not occur in `exclude`.\n\n Parameters\n ==========\n\n iterator : iterable\n iterator to take elements from\n\n exclude : iterable\n elements to exclude\n\n Returns\n =======\n\n iterator : iterator\n filtered iterator\n ", "language": "en", "n_whitespaces": 83, "n_words": 34, "vocab_size": 22 }
https://github.com/sympy/sympy.git
4
edit_focus_options
def edit_focus_options(self) -> typing.Sequence[str]: flow = self.master.view.focus.flow focus_options = [] if isinstance(flow, tcp.TCPFlow): focus_options = ["tcp-message"] elif isinstance(flow, http.HTTPFlow): focus_options = [ "cookies", "urlencoded form", "multipart form", "path", "method", "query", "reason", "request-headers", "response-headers", "request-body", "response-body", "status_code", "set-cookies", "url", ] elif isinstance(flow, dns.DNSFlow): raise exceptions.CommandError("Cannot edit DNS flows yet, please submit a patch.") return focus_options
fab7016b318d7c37fc30cef9c0567b9b620b883e
11
consoleaddons.py
181
beautify flowtable dns entries this isn't perfect (the whole table needs to be refactored properly), but good enough for now.
73,587
0
357
104
44
251,073
54
mitmproxy
19
mitmproxy/tools/console/consoleaddons.py
Python
28
{ "docstring": "\n Possible components for console.edit.focus.\n ", "language": "en", "n_whitespaces": 23, "n_words": 4, "vocab_size": 4 }
https://github.com/mitmproxy/mitmproxy.git
4
_check_status
def _check_status(self) -> bool: job_status = self._job["async_status"] percent = self._job["async_percent_completion"] logger.info(f"{self}: is {percent} complete ({job_status})") if self.elapsed_time > self.job_timeout: logger.info(f"{self}: run more than maximum allowed time {self.job_timeout}.") self._finish_time = pendulum.now() self._failed = True return True elif job_status == Status.COMPLETED: self._finish_time = pendulum.now() # TODO: is not actual running time, but interval between check_status calls return True elif job_status in [Status.FAILED, Status.SKIPPED]: self._finish_time = pendulum.now() self._failed = True logger.info(f"{self}: has status {job_status} after {self.elapsed_time.in_seconds()} seconds.") return True return False
a3aae8017a0a40ff2006e2567f71dccb04c997a5
15
async_job.py
243
๐ŸŽ‰ ๐ŸŽ‰ Source FB Marketing: performance and reliability fixes (#9805) * Facebook Marketing performance improvement * add comments and little refactoring * fix integration tests with the new config * improve job status handling, limit concurrency to 10 * fix campaign jobs, refactor manager * big refactoring of async jobs, support random order of slices * update source _read_incremental to hook new state logic * fix issues with timeout * remove debugging and clean up, improve retry logic * merge changes from #8234 * fix call super _read_increment * generalize batch execution, add use_batch flag * improve coverage, do some refactoring of spec * update test, remove overrides of source * add split by AdSet * add smaller insights * fix end_date < start_date case * add account_id to PK * add notes * fix new streams * fix reversed incremental stream * update spec.json for SAT * upgrade CDK and bump version Co-authored-by: Dmytro Rezchykov <[email protected]> Co-authored-by: Eugene Kulak <[email protected]>
532
0
245
119
54
3,743
78
airbyte
19
airbyte-integrations/connectors/source-facebook-marketing/source_facebook_marketing/streams/async_job.py
Python
22
{ "docstring": "Perform status check\n\n :return: True if the job is completed, False - if the job is still running\n ", "language": "en", "n_whitespaces": 32, "n_words": 18, "vocab_size": 14 }
https://github.com/airbytehq/airbyte.git
2
_reset_layer_losses
def _reset_layer_losses(parent_layer): losses_dict = {} for layer in utils.list_all_layers_and_sublayers(parent_layer): losses_dict[layer] = { 'losses': layer._losses[:], 'eager_losses': layer._eager_losses[:] } with utils.no_automatic_dependency_tracking_scope(layer): layer._losses = [] layer._eager_losses = [] return losses_dict
e61cbc52fd3b0170769c120e9b8dabc8c4205322
12
save_impl.py
113
Support Keras saving/loading for ShardedVariables with arbitrary partitions. PiperOrigin-RevId: 439837516
79,929
0
64
66
22
269,147
27
keras
9
keras/saving/saved_model/save_impl.py
Python
11
{ "docstring": "Resets losses of layer and its sublayers, and returns original losses.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 10 }
https://github.com/keras-team/keras.git
11
list
def list(self, verbose=True): self._check() for tarinfo in self: if verbose: print(filemode(tarinfo.mode), end=' ') print("%s/%s" % (tarinfo.uname or tarinfo.uid, tarinfo.gname or tarinfo.gid), end=' ') if tarinfo.ischr() or tarinfo.isblk(): print("%10s" % ("%d,%d" \ % (tarinfo.devmajor, tarinfo.devminor)), end=' ') else: print("%10d" % tarinfo.size, end=' ') print("%d-%02d-%02d %02d:%02d:%02d" \ % time.localtime(tarinfo.mtime)[:6], end=' ') print(tarinfo.name + ("/" if tarinfo.isdir() else ""), end=' ') if verbose: if tarinfo.issym(): print("->", tarinfo.linkname, end=' ') if tarinfo.islnk(): print("link to", tarinfo.linkname, end=' ') print()
c69d55f7c82d5ae2cce542bcfb98d043ca4836a0
18
tarfile.py
341
Vendor in pip 22.1.2
3,836
0
408
200
46
21,440
74
pipenv
26
pipenv/patched/notpip/_vendor/distlib/_backport/tarfile.py
Python
21
{ "docstring": "Print a table of contents to sys.stdout. If `verbose' is False, only\n the names of the members are printed. If it is True, an `ls -l'-like\n output is produced.\n ", "language": "en", "n_whitespaces": 56, "n_words": 29, "vocab_size": 24 }
https://github.com/pypa/pipenv.git
6
_find_all_or_none
def _find_all_or_none(qt_library_info, mandatory_dll_patterns, optional_dll_patterns=None): optional_dll_patterns = optional_dll_patterns or [] # Resolve path to the the corresponding python package (actually, its parent directory). Used to preserve directory # structure when DLLs are collected from the python package (e.g., PyPI wheels). package_parent_path = pathlib.Path(qt_library_info.package_location).resolve().parent # In PyQt5/PyQt6, the DLLs we are looking for are located in location['BinariesPath'], whereas in PySide2/PySide6, # they are located in location['PrefixPath']. dll_path = qt_library_info.location['BinariesPath' if qt_library_info.is_pyqt else 'PrefixPath'] dll_path = pathlib.Path(dll_path).resolve() # Helper for processing single DLL pattern
49abfa5498b1db83b8f1b2e859e461b1e8540c6f
12
qt.py
105
hookutils: qt: ensure ANGLE DLLs are collected from Anaconda Qt5 Anaconda's Qt5 ships ANGLE DLLs (`libEGL.dll` and `libGLESv2.dll`) but does not seem to provide the `d3dcompiler_XY.dll`. Therefore, we need to adjust the extra Qt DLL collection to consider the latter an optional dependency whose absence does not preclude the collection of the ANGLE DLL group. Rework the `get_qt_binaries` hook utility function and its `_find_all_or_none` helper to peform collection based on a list of mandatory and a list of optional patterns, instead of a single list and number of expected matches (since up until now, all matches were always expected to be found).
77,505
0
111
100
58
263,901
81
pyinstaller
13
PyInstaller/utils/hooks/qt.py
Python
15
{ "docstring": "\n Try to find Qt DLLs from the specified mandatory pattern list. If all mandatory patterns resolve to DLLs, collect\n them all, as well as any DLLs from the optional pattern list. If a mandatory pattern fails to resolve to a DLL,\n return an empty list.\n\n This allows all-or-none collection of particular groups of Qt DLLs that may or may not be available.\n ", "language": "en", "n_whitespaces": 78, "n_words": 62, "vocab_size": 42 }
https://github.com/pyinstaller/pyinstaller.git
1
test_double_stamping
def test_double_stamping(self, subtests): self.app.conf.task_always_eager = True self.app.conf.task_store_eager_result = True self.app.conf.result_extended = True sig_1 = self.add.s(2, 2) sig_1.stamp(stamp1="stamp1") sig_1.stamp(stamp2="stamp2") sig_1_res = sig_1.freeze() sig_1.apply() with subtests.test("sig_1_res is stamped with stamp1", stamp1=["stamp1"]): assert sig_1_res._get_task_meta()["stamp1"] == ["stamp1"] with subtests.test("sig_1_res is stamped with stamp2", stamp2=["stamp2"]): assert sig_1_res._get_task_meta()["stamp2"] == ["stamp2"] with subtests.test("sig_1_res is stamped twice", stamped_headers=["stamp2", "stamp1"]): assert sig_1_res._get_task_meta()["stamped_headers"] == ["stamp2", "stamp1", "groups"]
1c4ff33bd22cf94e297bd6449a06b5a30c2c1fbc
12
test_canvas.py
291
Canvas Header Stamping (#7384) * Strip down the header-stamping PR to the basics. * Serialize groups. * Add groups to result backend meta data. * Fix spelling mistake. * Revert changes to canvas.py * Revert changes to app/base.py * Add stamping implementation to canvas.py * Send task to AMQP with groups. * Successfully pass single group to result. * _freeze_gid dict merge fixed * First draft of the visitor API. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * OptionsVisitor created * Fixed canvas.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test for simple test for chord and fixed chord implementation * Changed _IMMUTABLE_OPTIONS * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed list order * Fixed tests (stamp test and chord test), fixed order in groups * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixed lint and elements * Changed implementation of stamp API and fix lint * Added documentation to Stamping API. Added chord with groups test * Implemented stamping inside replace and added test for an implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Splitted into subtests * Group stamping rollback * group.id is None fixed * Added integration test * Added integration test * apply_async fixed * Integration test and test_chord fixed * Lint fixed * chord freeze fixed * Minor fixes. * Chain apply_async fixed and tests fixed * lint fixed * Added integration test for chord * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * type -> isinstance * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Redo header stamping (#7341) * _freeze_gid dict merge fixed * OptionsVisitor created * Fixed canvas.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test for simple test for chord and fixed chord implementation * Changed _IMMUTABLE_OPTIONS * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed list order * Fixed tests (stamp test and chord test), fixed order in groups * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixed lint and elements * Changed implementation of stamp API and fix lint * Added documentation to Stamping API. Added chord with groups test * Implemented stamping inside replace and added test for an implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Splitted into subtests * Group stamping rollback * group.id is None fixed * Added integration test * Added integration test * apply_async fixed * Integration test and test_chord fixed * Lint fixed * chord freeze fixed * Minor fixes. * Chain apply_async fixed and tests fixed * lint fixed * Added integration test for chord * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * type -> isinstance * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Omer Katz <[email protected]> * Added stamping mechanism * Manual stamping improved * flake8 fixed * Added subtests * Add comma. * Moved groups to stamps * Fixed chord and added test for that * Strip down the header-stamping PR to the basics. * Serialize groups. * Add groups to result backend meta data. * Fix spelling mistake. * Revert changes to canvas.py * Revert changes to app/base.py * Add stamping implementation to canvas.py * Send task to AMQP with groups. * Successfully pass single group to result. * _freeze_gid dict merge fixed * First draft of the visitor API. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * OptionsVisitor created * Fixed canvas.py * Added test for simple test for chord and fixed chord implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Changed _IMMUTABLE_OPTIONS * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed list order * Fixed tests (stamp test and chord test), fixed order in groups * Fixed lint and elements * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Changed implementation of stamp API and fix lint * Added documentation to Stamping API. Added chord with groups test * Implemented stamping inside replace and added test for an implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Splitted into subtests * Group stamping rollback * group.id is None fixed * Added integration test * Added integration test * apply_async fixed * Integration test and test_chord fixed * Lint fixed * chord freeze fixed * Minor fixes. * Chain apply_async fixed and tests fixed * lint fixed * Added integration test for chord * type -> isinstance * Added stamping mechanism * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Manual stamping improved * fail_ci_if_error uncommented * flake8 fixed * Added subtests * Changes * Add comma. * Fixed chord and added test for that * canvas.py fixed * Test chord.py fixed * Fixed stamped_headers * collections import fixed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * collections import fixed * Update celery/backends/base.py Co-authored-by: Omer Katz <[email protected]> * ampq.py fixed * Refrain from using deprecated import path. * Fix test_complex_chain regression. Whenever we stamp a group we need to freeze it first if it wasn't already frozen. Somewhere along the line, the group id changed because we were freezing twice. This commit places the stamping operation after preparing the chain's steps which fixes the problem somehow. We don't know why yet. * Fixed integration tests * Fixed integration tests * Fixed integration tests * Fixed integration tests * Fixed issues with maybe_list. Add documentation * Fixed potential issue with integration tests * Fixed issues with _regen * Fixed issues with _regen * Fixed test_generator issues * Fixed _regen stamping * Fixed _regen stamping * Fixed TimeOut issue * Fixed TimeOut issue * Fixed TimeOut issue * Update docs/userguide/canvas.rst Co-authored-by: Omer Katz <[email protected]> * Fixed Couchbase * Better stamping intro * New GroupVisitor example * Adjust documentation. Co-authored-by: Naomi Elstein <[email protected]> Co-authored-by: Omer Katz <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Asif Saif Uddin <[email protected]> Co-authored-by: Omer Katz <[email protected]>
52,214
0
174
162
37
208,123
57
celery
20
t/unit/tasks/test_canvas.py
Python
15
{ "docstring": "\n Test manual signature stamping with two different stamps.\n ", "language": "en", "n_whitespaces": 23, "n_words": 8, "vocab_size": 8 }
https://github.com/celery/celery.git
2
arraylist_to_blobprotovector_str
def arraylist_to_blobprotovector_str(arraylist): vec = caffe_pb2.BlobProtoVector() vec.blobs.extend([array_to_blobproto(arr) for arr in arraylist]) return vec.SerializeToString()
cc4d0564756ca067516f71718a3d135996525909
10
io.py
61
Balanced joint maximum mean discrepancy for deep transfer learning
12,051
0
24
36
12
60,260
12
transferlearning
10
code/deep/BJMMD/caffe/python/caffe/io.py
Python
4
{ "docstring": "Converts a list of arrays to a serialized blobprotovec, which could be\n then passed to a network for processing.\n ", "language": "en", "n_whitespaces": 25, "n_words": 19, "vocab_size": 16 }
https://github.com/jindongwang/transferlearning.git
4
cleanup
def cleanup(self): cleanup_filename = set(self._uid2filename.values()) if Path(self._cache_folder / SETTING_FILENAME).exists(): with Path(self._cache_folder / SETTING_FILENAME).open(mode='r') as f: uid2filename: Dict[str, str] = json_tricks.load(f) cleanup_filename = cleanup_filename.difference(uid2filename.values()) for filename in cleanup_filename: filepath = self._data_folder / filename if filepath.exists(): os.remove(str(filepath))
9c19236902c2c66238c75f149cf9cefa411494c9
16
storage.py
178
[Compression] update distillation utils (#5215)
25,012
0
141
106
26
113,714
35
nni
24
nni/contrib/distillation/storage.py
Python
10
{ "docstring": "\n Cleanup the saved files under `cache_folder`.\n ", "language": "en", "n_whitespaces": 21, "n_words": 6, "vocab_size": 6 }
https://github.com/microsoft/nni.git
2
column_names
def column_names(self) -> Dict[str, List[str]]: self._check_values_type() return {k: dataset.column_names for k, dataset in self.items()}
1904d0c0a3a96330d9b870cdca3e9a3a137f2977
9
dataset_dict.py
62
Add code examples for DatasetDict (#4245) * ๐Ÿ“ add code examples for DatasetDict * ๐Ÿ– apply quentin review
21,968
0
35
39
14
104,786
14
datasets
9
src/datasets/dataset_dict.py
Python
16
{ "docstring": "Names of the columns in each split of the dataset.\n\n Example:\n\n ```py\n >>> from datasets import load_dataset\n >>> ds = load_dataset(\"rotten_tomatoes\")\n >>> ds.column_names\n {'test': ['text', 'label'],\n 'train': ['text', 'label'],\n 'validation': ['text', 'label']}\n ```\n ", "language": "en", "n_whitespaces": 105, "n_words": 33, "vocab_size": 26 }
https://github.com/huggingface/datasets.git
2
test_merge_asof_on_variations
def test_merge_asof_on_variations(): left = {"a": [1, 5, 10], "left_val": ["a", "b", "c"]} left_index = [6, 8, 12] right = {"a": [1, 2, 3, 6, 7], "right_val": ["d", "e", "f", "g", "h"]} right_index = [6, 7, 8, 9, 15] pandas_left, pandas_right = ( pandas.DataFrame(left, index=left_index), pandas.DataFrame(right, index=right_index), ) modin_left, modin_right = ( pd.DataFrame(left, index=left_index), pd.DataFrame(right, index=right_index), ) for on_arguments in [ {"on": "a"}, {"left_on": "a", "right_on": "a"}, {"left_on": "a", "right_index": True}, {"left_index": True, "right_on": "a"}, {"left_index": True, "right_index": True}, ]: pandas_merged = pandas.merge_asof(pandas_left, pandas_right, **on_arguments) with warns_that_defaulting_to_pandas(): modin_merged = pd.merge_asof(modin_left, modin_right, **on_arguments) df_equals(pandas_merged, modin_merged)
be2716f393fddd2f669f26616f80e051fc7ceee6
13
test_general.py
367
TEST-#3655: Check that Modin is defaulting to Pandas. (#3656) Co-authored-by: Dmitry Chigarev <[email protected]> Co-authored-by: Devin Petersohn <[email protected]> Signed-off-by: mvashishtha <[email protected]>
35,224
0
221
226
68
153,002
93
modin
19
modin/pandas/test/test_general.py
Python
24
{ "docstring": "on=,left_on=,right_on=,right_index=,left_index= options match Pandas.", "language": "en", "n_whitespaces": 3, "n_words": 4, "vocab_size": 4 }
https://github.com/modin-project/modin.git
1
train_and_predict_model
def train_and_predict_model(input_features, output_features, data_csv, output_directory): config = { "input_features": input_features, "output_features": output_features, "combiner": {"type": "concat", "fc_size": 14}, "training": {"epochs": 2}, } model = LudwigModel(config, backend=LocalTestBackend()) model.train( dataset=data_csv, skip_save_processed_input=True, skip_save_progress=True, skip_save_unprocessed_output=True, output_directory=output_directory, ) model.predict(dataset=data_csv, output_directory=output_directory) return model
4fb8f63181f5153b4f6778c6ef8dad61022c4f3f
11
test_server.py
153
Use tempfile to automatically garbage collect data and modeling artifacts in ludwig integration tests. (#1642) * Use tmpdir to automatically garbage collect data and modeling artifacts in ludwig integration tests.
859
0
123
95
33
5,863
36
ludwig
16
tests/integration_tests/test_server.py
Python
17
{ "docstring": "Helper method to avoid code repetition for training a model and using it for prediction.\n\n :param input_features: input schema\n :param output_features: output schema\n :param data_csv: path to data\n :param output_directory: model output directory\n :return: None\n ", "language": "en", "n_whitespaces": 53, "n_words": 35, "vocab_size": 27 }
https://github.com/ludwig-ai/ludwig.git
3
calc_second_derivative
def calc_second_derivative(self, x): if x < self.x[0]: return None elif x > self.x[-1]: return None i = self.__search_index(x) dx = x - self.x[i] ddy = 2.0 * self.c[i] + 6.0 * self.d[i] * dx return ddy
def289b723e9216830c2a7b2577cb31b55710167
11
cubic_spline_planner.py
115
enhance cubic spline path doc (#698) * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cublic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc * enhance cubic spline path doc
2,948
0
107
78
25
19,360
36
PythonRobotics
9
PathPlanning/CubicSpline/cubic_spline_planner.py
Python
9
{ "docstring": "\n Calc second derivative at given x.\n\n if x is outside the input x, return None\n\n Returns\n -------\n ddy : float\n second derivative for given x.\n ", "language": "en", "n_whitespaces": 79, "n_words": 25, "vocab_size": 21 }
https://github.com/AtsushiSakai/PythonRobotics.git
5
remove_edge
def remove_edge(self, u, v, key=None): try: d = self._adj[u][v] except KeyError as err: raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err # remove the edge with specified data if key is None: d.popitem() else: try: del d[key] except KeyError as err: msg = f"The edge {u}-{v} with key {key} is not in the graph." raise NetworkXError(msg) from err if len(d) == 0: # remove the key entries if last edge del self._succ[u][v] del self._pred[v][u]
c8fdab5d87235cbf5c2142531087fadfa653887a
14
multidigraph.py
184
Update multigraph docstrings to reflect `remove_edges_from` behavior. (#5699) * Update MG docstring to reflect rm_edges_from behavior. Also adds example. * Update remove_edge docstring in MG and MDG. * Fix MDG examples.
42,123
0
259
103
48
176,827
77
networkx
15
networkx/classes/multidigraph.py
Python
16
{ "docstring": "Remove an edge between u and v.\n\n Parameters\n ----------\n u, v : nodes\n Remove an edge between nodes u and v.\n key : hashable identifier, optional (default=None)\n Used to distinguish multiple edges between a pair of nodes.\n If None, remove a single edge between u and v. If there are\n multiple edges, removes the last edge added in terms of\n insertion order.\n\n Raises\n ------\n NetworkXError\n If there is not an edge between u and v, or\n if there is no edge with the specified key.\n\n See Also\n --------\n remove_edges_from : remove a collection of edges\n\n Examples\n --------\n >>> G = nx.MultiDiGraph()\n >>> nx.add_path(G, [0, 1, 2, 3])\n >>> G.remove_edge(0, 1)\n >>> e = (1, 2)\n >>> G.remove_edge(*e) # unpacks e from an edge tuple\n\n For multiple edges\n\n >>> G = nx.MultiDiGraph()\n >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned\n [0, 1, 2]\n\n When ``key=None`` (the default), edges are removed in the opposite\n order that they were added:\n\n >>> G.remove_edge(1, 2)\n >>> G.edges(keys=True)\n OutMultiEdgeView([(1, 2, 0), (1, 2, 1)])\n\n For edges with keys\n\n >>> G = nx.MultiDiGraph()\n >>> G.add_edge(1, 2, key=\"first\")\n 'first'\n >>> G.add_edge(1, 2, key=\"second\")\n 'second'\n >>> G.remove_edge(1, 2, key=\"first\")\n >>> G.edges(keys=True)\n OutMultiEdgeView([(1, 2, 'second')])\n\n ", "language": "en", "n_whitespaces": 528, "n_words": 197, "vocab_size": 109 }
https://github.com/networkx/networkx.git