content
stringlengths
0
894k
type
stringclasses
2 values
import time import re import argparse import os import yaml def get_arg_parser(): parser = argparse.ArgumentParser() parser.add_argument('--log_dir', help='Full path of log directory', required=False, default='./') return parser def read_config(): bs_dic = {} cur_path = os.path.dirname(os.path.realpath(__file__)) config_path = os.path.join(cur_path, "config.yaml") models=[] with open(config_path, 'r', encoding='utf-8') as f: config = yaml.safe_load(f.read()) models = config["test_model"] stock_tf = config["stocktf"] for model in models: bs_dic[model]=config['model_batchsize'][model] print("=" * 15 * (len(bs_dic)+1)) print('%-10s'%'model', end="\t") for k in bs_dic.keys(): print('%-10s'%k, end='\t') print("") print('%-10s'%'batchsize' ,end='\t') for k in bs_dic.keys(): print("%-10s" %bs_dic[k], end="\t") print("") print("=" * 15 * (len(bs_dic)+1)) return stock_tf, bs_dic, models if __name__ == "__main__": stock_tf, bs_dic, models = read_config() parser = get_arg_parser() args = parser.parse_args() log_dir = args.log_dir log_list = [] result={} for root, dirs, files in os.walk(log_dir, topdown=False): for name in files: if os.path.splitext(name)[1] == '.log': log_list.append(os.path.join(root, name)) acc_dic = {} auc_dic = {} gstep_dic = {} for file in log_list: output = [] file_name = os.path.split(file)[1] model_name = file_name.split('_')[0] file_name_nosurf = os.path.splitext(file_name)[0] with open(file, 'r') as f: for line in f: matchObj = re.search(r'global_step/sec: \d+(\.\d+)?', line) if matchObj: output.append(matchObj.group()[17:]) if "ACC" in line: value = float(line.split()[2]) acc_dic[file_name_nosurf] = value if "AUC" in line: value = float(line.split()[2]) auc_dic[file_name_nosurf] = value gstep = [float(i) for i in output[20:30]] avg = sum(gstep) / len(gstep) gstep_dic[file_name_nosurf] = avg total_dic = {} for model in models: total_dic[model]= {} total_dic[model]["acc"]={} total_dic[model]["auc"]={} total_dic[model]["gstep"]={} for acc_key in acc_dic.keys(): if model.lower() in acc_key: if "tf_fp32" in acc_key: total_dic[model]["acc"]["tf_fp32"]=acc_dic[acc_key] elif "deeprec_fp32" in acc_key: total_dic[model]["acc"]["deeprec_fp32"]=acc_dic[acc_key] elif "deeprec_bf16" in acc_key: total_dic[model]["acc"]["deeprec_bf16"]=acc_dic[acc_key] for auc_key in auc_dic.keys(): if model.lower() in auc_key: if "tf_fp32" in auc_key: total_dic[model]["auc"]["tf_fp32"]=auc_dic[auc_key] elif "deeprec_fp32" in auc_key: total_dic[model]["auc"]["deeprec_fp32"]=auc_dic[auc_key] elif "deeprec_bf16" in auc_key: total_dic[model]["auc"]["deeprec_bf16"]=auc_dic[auc_key] for gstep_key in gstep_dic.keys(): if model.lower() in gstep_key: if "tf_fp32" in gstep_key: total_dic[model]["gstep"]["tf_fp32"]=gstep_dic[gstep_key] elif "deeprec_fp32" in gstep_key: total_dic[model]["gstep"]["deeprec_fp32"]=gstep_dic[gstep_key] elif "deeprec_bf16" in gstep_key: total_dic[model]["gstep"]["deeprec_bf16"]=gstep_dic[gstep_key] upgrade_dic = {} for model in models: upgrade_dic[model] = {} upgrade_dic[model]['tf_fp32'] = 'baseline' if stock_tf: upgrade_dic[model]['deeprec_fp32'] = total_dic[model]['gstep']['deeprec_fp32'] / total_dic[model]['gstep']['tf_fp32'] upgrade_dic[model]['deeprec_bf16'] = total_dic[model]['gstep']['deeprec_bf16'] / total_dic[model]['gstep']['tf_fp32'] if stock_tf: print("%-5s\t %10s\t %-10s\t %-10s\t %-11s\t %10s\t %10s\t %11s" %('Model', 'FrameWork', 'Datatype', 'ACC', 'AUC', 'Gstep', 'Throughput', 'Speedup')) for model in total_dic.keys(): print(model+':') print("%-5s\t %10s\t %-10s\t %-10.6f\t %-5.6f\t %10.2f\t %10.2f\t %11s" %('', 'StockTF', 'FP32', total_dic[model]['acc']['tf_fp32'], total_dic[model]['auc']['tf_fp32'], total_dic[model]['gstep']['tf_fp32'], total_dic[model]['gstep']['tf_fp32']*bs_dic[model], upgrade_dic[model]['tf_fp32'])) print("%-5s\t %10s\t %-10s\t %-10.6f\t %-5.6f\t %10.2f\t %10.2f\t %10.2f%%" %('', 'DeepRec', 'FP32', total_dic[model]['acc']['deeprec_fp32'], total_dic[model]['auc']['deeprec_fp32'], total_dic[model]['gstep']['deeprec_fp32'], total_dic[model]['gstep']['deeprec_fp32']*bs_dic[model], upgrade_dic[model]['deeprec_fp32']*100)) print("%-5s\t %10s\t %-10s\t %-10.6f\t %-5.6f\t %10.2f\t %10.2f\t %10.2f%%" %('', 'DeepRec', 'BF16', total_dic[model]['acc']['deeprec_bf16'], total_dic[model]['auc']['deeprec_bf16'], total_dic[model]['gstep']['deeprec_bf16'], total_dic[model]['gstep']['deeprec_bf16']*bs_dic[model], upgrade_dic[model]['deeprec_bf16']*100)) else: print("%-5s\t %10s\t %-10s\t %-10s\t %-11s\t %10s\t %10s\t" %('Model', 'FrameWork', 'Datatype', 'ACC', 'AUC', 'Gstep', 'Throughput')) for model in total_dic.keys(): print(model+':') print("%-5s\t %10s\t %-10s\t %-10.6f\t %-5.6f\t %10.2f\t %10.2f" %('', 'DeepRec', 'FP32', total_dic[model]['acc']['deeprec_fp32'], total_dic[model]['auc']['deeprec_fp32'], total_dic[model]['gstep']['deeprec_fp32'], total_dic[model]['gstep']['deeprec_fp32']*bs_dic[model])) print("%-5s\t %10s\t %-10s\t %-10.6f\t %-5.6f\t %10.2f\t %10.2f" %('', 'DeepRec', 'BF16', total_dic[model]['acc']['deeprec_bf16'], total_dic[model]['auc']['deeprec_bf16'], total_dic[model]['gstep']['deeprec_bf16'], total_dic[model]['gstep']['deeprec_bf16']*bs_dic[model]))
python
# Run these tests from ipython in the main package directory: # `run tests\python_example_package_tests.py` import unittest import python_example_package class TestAdd(unittest.TestCase): def test_basic(self): print "I RAN!" def test_add(self): self.assertEqual( python_example_package.add(1,2), 3) self.assertEqual( python_example_package.add(0,0), 0) self.assertEqual( python_example_package.add(-1,-1), -2) if __name__=='__main__': print python_example_package.add(1,2) unittest.main()
python
from time import localtime activities = {8: 'Sleeping', 9: 'Commuting', 17: 'Working', 18: 'Commuting', 20: 'Eating', 22: 'Resting' } time_now = localtime() hour = time_now.tm_hour for activity_time in sorted(activities.keys()): if hour < activity_time: print activities[activity_time] break else: print 'Unknown, AFK or sleeping!'
python
# Copyright 2019 Atalaya Tech, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import importlib from bentoml.utils import cloudpickle from bentoml.artifact import BentoServiceArtifact, BentoServiceArtifactWrapper from bentoml.exceptions import ( ArtifactLoadingException, MissingDependencyException, InvalidArgument, ) class KerasModelArtifact(BentoServiceArtifact): """ Abstraction for saving/loading Keras model Args: name (string): name of the artifact custom_objects (dict): dictionary of Keras custom objects for model store_as_json_and_weights (bool): flag allowing storage of the Keras model as JSON and weights Raises: MissingDependencyException: keras or tensorflow.keras package is required for KerasModelArtifact InvalidArgument: invalid argument type, model being packed must be instance of keras.engine.network.Network, tf.keras.models.Model, or their aliases Example usage: >>> from tensorflow import keras >>> from tensorflow.keras.models import Sequential >>> from tensorflow.keras.preprocessing import sequence, text >>> >>> model_to_save = Sequential() >>> # traing model >>> model_to_save.compile(...) >>> model_to_save.fit(...) >>> >>> import bentoml >>> >>> @bentoml.env(pip_dependencies=['tensorflow==1.14.0', 'numpy', 'pandas']) >>> @bentoml.artifacts([KerasModelArtifact('model')]) >>> class KerasModelService(bentoml.BentoService): >>> @bentoml.api(input=JsonInput()) >>> def predict(self, parsed_json): >>> input_data = text.text_to_word_sequence(parsed_json['text']) >>> return self.artifacts.model.predict_classes(input_data) >>> >>> svc = KerasModelService() >>> svc.pack('model', model_to_save) """ def __init__( self, name, custom_objects=None, model_extension=".h5", store_as_json_and_weights=False, ): super(KerasModelArtifact, self).__init__(name) try: import tensorflow as tf except ImportError: raise MissingDependencyException( "Tensorflow package is required to use KerasModelArtifact. BentoML " "currently only support using Keras with Tensorflow backend." ) self._model_extension = model_extension self._store_as_json_and_weights = store_as_json_and_weights # By default assume using tf.keras module self._keras_module_name = tf.keras.__name__ self.custom_objects = custom_objects self.graph = None self.sess = None @property def pip_dependencies(self): # Note that keras module is not required, user can use tf.keras as an # replacement for the keras module. Although tensorflow module is required to # be used as the default Keras backend deps = ['tensorflow'] if self._keras_module_name == 'keras': deps.append('keras') return deps def _keras_module_name_path(self, base_path): # The name of the keras module used, can be 'keras' or 'tensorflow.keras' return os.path.join(base_path, self.name + '_keras_module_name.txt') def _custom_objects_path(self, base_path): return os.path.join(base_path, self.name + '_custom_objects.pkl') def _model_file_path(self, base_path): return os.path.join(base_path, self.name + self._model_extension) def _model_weights_path(self, base_path): return os.path.join(base_path, self.name + '_weights.hdf5') def _model_json_path(self, base_path): return os.path.join(base_path, self.name + '_json.json') def bind_keras_backend_session(self): try: import tensorflow as tf except ImportError: raise MissingDependencyException( "Tensorflow package is required to use KerasModelArtifact. BentoML " "currently only support using Keras with Tensorflow backend." ) self.sess = tf.compat.v1.keras.backend.get_session() self.graph = self.sess.graph def creat_session(self): try: import tensorflow as tf except ImportError: raise MissingDependencyException( "Tensorflow package is required to use KerasModelArtifact. BentoML " "currently only support using Keras with Tensorflow backend." ) self.graph = tf.compat.v1.get_default_graph() self.sess = tf.compat.v1.Session(graph=self.graph) tf.compat.v1.keras.backend.set_session(self.sess) def pack(self, data): # pylint:disable=arguments-differ try: import tensorflow as tf except ImportError: raise MissingDependencyException( "Tensorflow package is required to use KerasModelArtifact. BentoML " "currently only support using Keras with Tensorflow backend." ) if isinstance(data, dict): model = data['model'] custom_objects = ( data['custom_objects'] if 'custom_objects' in data else self.custom_objects ) else: model = data custom_objects = self.custom_objects if not isinstance(model, tf.keras.models.Model): error_msg = ( "KerasModelArtifact#pack expects model argument to be type: " "keras.engine.network.Network, tf.keras.models.Model, or their " "aliases, instead got type: {}".format(type(model)) ) try: import keras if not isinstance(model, keras.engine.network.Network): raise InvalidArgument(error_msg) else: self._keras_module_name = keras.__name__ except ImportError: raise InvalidArgument(error_msg) self.bind_keras_backend_session() model._make_predict_function() return _KerasModelArtifactWrapper(self, model, custom_objects) def load(self, path): if os.path.isfile(self._keras_module_name_path(path)): with open(self._keras_module_name_path(path), "rb") as text_file: keras_module_name = text_file.read().decode("utf-8") try: keras_module = importlib.import_module(keras_module_name) except ImportError: raise ArtifactLoadingException( "Failed to import '{}' module when loading saved " "KerasModelArtifact".format(keras_module_name) ) self.creat_session() if self.custom_objects is None and os.path.isfile( self._custom_objects_path(path) ): self.custom_objects = cloudpickle.load( open(self._custom_objects_path(path), 'rb') ) with self.graph.as_default(): with self.sess.as_default(): # load keras model via json and weights if requested if self._store_as_json_and_weights: with open(self._model_json_path(path), 'r') as json_file: model_json = json_file.read() model = keras_module.models.model_from_json( model_json, custom_objects=self.custom_objects ) model.load_weights(self._model_weights_path(path)) # otherwise, load keras model via standard load_model else: model = keras_module.models.load_model( self._model_file_path(path), custom_objects=self.custom_objects ) return self.pack(model) class _KerasModelArtifactWrapper(BentoServiceArtifactWrapper): def __init__(self, spec, model, custom_objects): super(_KerasModelArtifactWrapper, self).__init__(spec) self.graph = spec.graph self.sess = spec.sess self._model = model self._custom_objects = custom_objects self._store_as_json_and_weights = spec._store_as_json_and_weights self._model_wrapper = _KerasModelWrapper(self._model, self.graph, self.sess) def save(self, dst): # save the keras module name to be used when loading with open(self.spec._keras_module_name_path(dst), "wb") as text_file: text_file.write(self.spec._keras_module_name.encode("utf-8")) # save custom_objects for model cloudpickle.dump( self._custom_objects, open(self.spec._custom_objects_path(dst), "wb") ) # save keras model using json and weights if requested if self.spec._store_as_json_and_weights: with open(self.spec._model_json_path(dst), "w") as json_file: json_file.write(self._model.to_json()) self._model.save_weights(self.spec._model_weights_path(dst)) # otherwise, save standard keras model else: self._model.save(self.spec._model_file_path(dst)) def get(self): return self._model_wrapper class _KerasModelWrapper: def __init__(self, keras_model, graph, sess): self.keras_model = keras_model self.graph = graph self.sess = sess def predict(self, *args, **kwargs): with self.graph.as_default(): with self.sess.as_default(): return self.keras_model.predict(*args, **kwargs) def predict_classes(self, *args, **kwargs): with self.graph.as_default(): with self.sess.as_default(): return self.keras_model.predict_classes(*args, **kwargs) def __call__(self, *args, **kwargs): with self.graph.as_default(): with self.sess.as_default(): return object.__call__(self, *args, **kwargs)
python
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import xmltodict from wechatpy.enterprise.events import EVENT_TYPES from wechatpy.enterprise.messages import MESSAGE_TYPES from wechatpy.messages import UnknownMessage from wechatpy.utils import to_text def parse_message(xml): if not xml: return message = xmltodict.parse(to_text(xml))['xml'] message_type = message['MsgType'].lower() if message_type == 'event': event_type = message['Event'].lower() message_class = EVENT_TYPES.get(event_type, UnknownMessage) else: message_class = MESSAGE_TYPES.get(message_type, UnknownMessage) return message_class(message)
python
"""Predict a flower name from an image using a trained model. Returns the flower name and class probability. """ import torch from torch import nn from torch import optim import torch.nn.functional as F from torchvision import datasets, transforms, models from workspace_utils import active_session import logging import json import argparse import consts from image import process_image from model_utils import set_device, select_pretrained_model, freeze_params, map_category_names, print_predictions, print_args from network import Network def init_argparse(*args): """Instantiate argparse object""" parser = argparse.ArgumentParser( description='Train a network on dataset and save the model as a checkpoint' ) parser.add_argument('-i', '--input_img', help='Path to image') parser.add_argument('-c', '--checkpoint', help='Path to checkpoint', default='checkpoints') parser.add_argument('-k', '--top_k', help='Return n most likely classes', type=int, default=3) parser.add_argument('-n', '--category_names', help='Use a mapping of categories to real names') parser.add_argument('--gpu', help='Use GPU for predictions; Default is True', action='store_true', default=True) # Initialize with constants if passed in as an argument if args: return parser.parse_args(args[0]) return parser.parse_args() def load_checkpoint(path, cuda): """Load a checkpoint and rebuild the model Args: path: Path to checkpoint file Returns: model: Recreation of the saved model """ device = set_device(cuda) checkpoint = torch.load(path, map_location=device) # Load pretrained model model = select_pretrained_model(checkpoint['pretrained_model']) # Freeze parameters to prevent backpropagation freeze_params(model) # Load classifier classifier = Network(checkpoint['input_size'], checkpoint['output_size'], checkpoint['hidden_layers'], checkpoint['drop_p']) classifier.load_state_dict(checkpoint['state_dict']) # Merge classifier to end of pretrained model model.fc = classifier # Add class to index mapping model.class_to_idx = checkpoint['class_to_idx'] # Invert class_to_idx dictionary # Ref: https://therenegadecoder.com/code/how-to-invert-a-dictionary-in-python/#invert-a-dictionary-with-a-comprehension model.idx_to_class = {v: k for k, v in checkpoint['class_to_idx'].items()} return model def predict(image_path, model, k, cuda): ''' Predict the class (or classes) of an image using a trained deep learning model. Args: image_path: Path of image to be classified model: Model to classify the image k: Number of predictions to return cuda: Run prediction with cuda Returns: probs: Probabilities for each class prediction classes: Class predictions ''' # Use CUDA if available device = set_device(cuda) model.to(device) # Disable dropout model.eval() # Disable autograd with torch.no_grad(): # Process image to PyTorch tensor img = process_image(image_path).to(device) # Need to unsqueeze for a single image # Ref: https://discuss.pytorch.org/t/expected-stride-to-be-a-single-integer-value-or-a-list/17612/4 img.unsqueeze_(0) # Get probability distribution output = model(img) ps = torch.exp(output) # Get top k probabilities and classes top_p, top_classes = ps.topk(k, dim=1) # Convert top_p, top_classes tensors to plain lists for easier # ingestion downstream. # Ref: https://stackoverflow.com/a/53903817 probs = top_p.squeeze().tolist() classes = [model.idx_to_class[i] for i in top_classes.squeeze().tolist()] logging.info(f'Probability distribution: {ps}') logging.info(probs) logging.info(classes) return probs, classes if __name__ == '__main__': logging.basicConfig(filename='predict_log.txt', level=logging.INFO) args = init_argparse(consts.PREDICT_ARGS) print_args(args) model = load_checkpoint(args.checkpoint, args.gpu) probs, classes = predict(image_path=args.input_img, model=model, k=args.top_k, cuda=args.gpu) pred_labels = map_category_names(cat_to_name=args.category_names, classes=classes) print_predictions(pred_labels, probs)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2017 theloop, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Radiostation Admin Manager""" import unittest import json import os import loopchain.utils as util import testcase.unittest.test_util as test_util from loopchain.radiostation import AdminManager from loopchain import configure as conf util.set_log_level_debug() class TestRSAdminManager(unittest.TestCase): def setUp(self): test_util.print_testname(self._testMethodName) def tearDown(self): pass def test_get_channel_info_by_peer_target(self): # GIVEN default_CHANNEL_MANAGE_DATA_PATH = conf.CHANNEL_MANAGE_DATA_PATH default_ENABLE_CHANNEL_AUTH = conf.ENABLE_CHANNEL_AUTH conf.CHANNEL_MANAGE_DATA_PATH = os.path.join(conf.LOOPCHAIN_ROOT_PATH, "testcase/unittest/channel_manage_data_for_test.json") conf.ENABLE_CHANNEL_AUTH = True peer_target1 = '111.123.123.123:7100' peer_target2 = '222.123.123.123:7200' peer_target3 = '333.123.123.123:7300' peer_target4 = '444.123.123.123:7400' channel1 = 'kofia_certificate' channel2 = 'kofia_fine' # WHEN channel_infos1 = json.loads(AdminManager("station").get_channel_infos_by_peer_target(peer_target1)) channel_infos2 = json.loads(AdminManager("station").get_channel_infos_by_peer_target(peer_target2)) channel_infos3 = json.loads(AdminManager("station").get_channel_infos_by_peer_target(peer_target3)) channel_infos4 = json.loads(AdminManager("station").get_channel_infos_by_peer_target(peer_target4)) # THEN self.assertEqual(list(channel_infos1.keys()), [channel1, channel2]) self.assertEqual(list(channel_infos2.keys()), [channel1]) self.assertEqual(list(channel_infos3.keys()), [channel2]) self.assertEqual(list(channel_infos4.keys()), []) # CLEAR conf.CHANNEL_MANAGE_DATA_PATH = default_CHANNEL_MANAGE_DATA_PATH conf.ENABLE_CHANNEL_AUTH = default_ENABLE_CHANNEL_AUTH def test_get_all_channel_info(self): # GIVEN default_CHANNEL_MANAGE_DATA_PATH = conf.CHANNEL_MANAGE_DATA_PATH conf.CHANNEL_MANAGE_DATA_PATH = os.path.join(conf.LOOPCHAIN_ROOT_PATH, "testcase/unittest/channel_manage_data_for_test.json") # WHEN all_channel_info = AdminManager("station").get_all_channel_info() # THEN self.assertTrue(isinstance(all_channel_info, str)) # CLEAR conf.CHANNEL_MANAGE_DATA_PATH = default_CHANNEL_MANAGE_DATA_PATH def test_add_peer_target(self): # GIVEN default_CHANNEL_MANAGE_DATA_PATH = conf.CHANNEL_MANAGE_DATA_PATH conf.CHANNEL_MANAGE_DATA_PATH = os.path.join(conf.LOOPCHAIN_ROOT_PATH, "testcase/unittest/channel_manage_data_for_test.json") choice = 'Y' i = 0 new_peer_target = '9.9.9.9:9999' default_data = AdminManager("station").json_data channel_list = AdminManager("station").get_channel_list() peer_target_list = default_data[channel_list[0]]["peers"] # WHEN modified_data = AdminManager("station").add_peer_target(choice, new_peer_target, peer_target_list, i) # THEN self.assertNotEqual(default_data, modified_data) # CLEAR conf.CHANNEL_MANAGE_DATA_PATH = default_CHANNEL_MANAGE_DATA_PATH if __name__ == '__main__': unittest.main()
python
""" The viewer is just a frameset that loads a menu and a folder. """ def generateHtml(pathUrl): html = f"""<html> <head><title>ABF Browser</title></head> <frameset cols='300px,100%' border='5'> <frame name='menu' src='/ABFmenu/{pathUrl}' frameborder='0' /> <frame name='content' src='/ABFexperiment/{pathUrl}' frameborder='0' /> </frameset> </html>""" return html
python
# Copyright (c) 2020 Attila Gobi # SPDX-License-Identifier: BSD-3-Clause """ Solution for https://adventofcode.com/2020/day/4 >>> passports = parse("day04/test.txt") >>> solve1(passports) 2 >>> solve2(passports) 2 """ import sys import re def parse(fn): ret = [] current = {} with open(fn, "rt") as f: for line in f: line = line.strip() if line == "": ret.append(current) current = {} else: for k, v in [x.split(":") for x in line.split(" ")]: current[k] = v ret.append(current) return ret def solve1(data): fields = set(["byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid"]) count = 0 for passport in data: if not fields - set(passport.keys()): count += 1 return count def solve2(data): pid_re = re.compile(r'\d{9}') hcl_re = re.compile(r'#[0-9a-f]{6}') ecl_set = set(["amb", "blu", "brn", "gry", "grn", "hzl", "oth"]) def valid_hgt(x): try: int_x = int(x[:-2]) if x.endswith("in"): return int_x >= 59 and int_x <= 76 elif x.endswith("cm"): return int_x >= 150 and int_x <= 193 except ValueError: pass return False fields = { "byr": lambda x: int(x) >= 1920 and int(x) <= 2002, "iyr": lambda x: int(x) >= 2010 and int(x) <= 2020, "eyr": lambda x: int(x) >= 2020 and int(x) <= 2030, "hgt": valid_hgt, "hcl": lambda x: hcl_re.fullmatch(x), "ecl": lambda x: x in ecl_set, "pid": lambda x: pid_re.fullmatch(x) } def validate(x): for k, v in fields.items(): if k not in passport or not v(passport[k]): # print("ERROR:", k, passport) return False return True count = 0 for passport in data: if validate(passport): count += 1 return count if __name__ == '__main__': data = parse(sys.argv[1]) print(solve1(data)) print(solve2(data))
python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from enum import Enum __all__ = [ 'ConnectionAliasAssociationAssociationStatus', 'ConnectionAliasState', ] class ConnectionAliasAssociationAssociationStatus(str, Enum): NOT_ASSOCIATED = "NOT_ASSOCIATED" PENDING_ASSOCIATION = "PENDING_ASSOCIATION" ASSOCIATED_WITH_OWNER_ACCOUNT = "ASSOCIATED_WITH_OWNER_ACCOUNT" ASSOCIATED_WITH_SHARED_ACCOUNT = "ASSOCIATED_WITH_SHARED_ACCOUNT" PENDING_DISASSOCIATION = "PENDING_DISASSOCIATION" class ConnectionAliasState(str, Enum): CREATING = "CREATING" CREATED = "CREATED" DELETING = "DELETING"
python
import itertools from aoc_cqkh42 import BaseSolution class Solution(BaseSolution): def part_a(self): self.sequence(40) return len(self.data) def part_b(self): self.sequence(10) return len(self.data) def iteration(self): g = itertools.groupby(self.data) d = (f'{len(list(b))}{a}' for a, b in g) self.data = ''.join(d) def sequence(self, iters): for _ in range(iters): self.iteration()
python
from os import path from setuptools import setup # read the contents of your README file this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='football-data-connector', version='0.9.1', url='https://github.com/tony-joseph/football-data-connector', license='BSD', author='Tony Joseph', author_email='[email protected]', description='Python package to connect to football-data.org API', long_description=long_description, long_description_content_type='text/markdown', packages=['footballdata'], include_package_data=True, install_requires=[ 'python-dateutil>=2.7.5', 'requests>=2.20.0', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Software Development :: Libraries', ] )
python
'''File contains the trainer class Complete the functions train() which will train the network given the dataset and hyperparams, and the function __init__ to set your network topology for each dataset ''' import numpy as np import sys import pickle import nn from util import * from layers import * class Trainer: def __init__(self,dataset_name): self.save_model = False if dataset_name == 'MNIST': self.XTrain, self.YTrain, self.XVal, self.YVal, self.XTest, self.YTest = readMNIST() # Add your network topology along with other hyperparameters here self.batch_size = 100 self.epochs = 10 self.lr = 0.03 self.nn = nn.NeuralNetwork(10, self.lr) self.nn.addLayer(FullyConnectedLayer(784, 28, 'relu')) self.nn.addLayer(FullyConnectedLayer(28, 10, 'softmax')) if dataset_name == 'CIFAR10': self.XTrain, self.YTrain, self.XVal, self.YVal, self.XTest, self.YTest = readCIFAR10() self.XTrain = self.XTrain[0:5000,:,:,:] self.XVal = self.XVal[0:1000,:,:,:] self.XTest = self.XTest[0:1000,:,:,:] self.YVal = self.YVal[0:1000,:] self.YTest = self.YTest[0:1000,:] self.YTrain = self.YTrain[0:5000,:] self.save_model = True self.model_name = "model.p" # Add your network topology along with other hyperparameters here self.batch_size = 100 self.epochs = 40 self.lr = 0.03 self.nn = nn.NeuralNetwork(10, self.lr) self.nn.addLayer(ConvolutionLayer([3, 32, 32], [5, 5], 16, 1, 'relu')) self.nn.addLayer(MaxPoolingLayer([16, 28, 28], [2, 2], 2)) self.nn.addLayer(ConvolutionLayer([16, 14, 14], [5, 5], 20, 1, 'relu')) self.nn.addLayer(MaxPoolingLayer([20, 10, 10], [2, 2], 2)) self.nn.addLayer(FlattenLayer()) self.nn.addLayer(FullyConnectedLayer(500, 10, 'softmax')) if dataset_name == 'XOR': self.XTrain, self.YTrain, self.XVal, self.YVal, self.XTest, self.YTest = readXOR() # Add your network topology along with other hyperparameters here self.batch_size = 10 self.epochs = 30 self.lr = 0.03 self.nn = nn.NeuralNetwork(2,self.lr) self.nn.addLayer(FullyConnectedLayer(2,4,'softmax')) self.nn.addLayer(FullyConnectedLayer(4,2,'softmax')) if dataset_name == 'circle': self.XTrain, self.YTrain, self.XVal, self.YVal, self.XTest, self.YTest = readCircle() # Add your network topology along with other hyperparameters here self.batch_size = 10 self.epochs = 30 self.lr = 0.03 self.nn = nn.NeuralNetwork(2,self.lr) self.nn.addLayer(FullyConnectedLayer(2,2,'relu')) self.nn.addLayer(FullyConnectedLayer(2,2,'softmax')) def train(self, verbose=True): # Method for training the Neural Network # Input # trainX - A list of training input data to the neural network # trainY - Corresponding list of training data labels # validX - A list of validation input data to the neural network # validY - Corresponding list of validation data labels # printTrainStats - Print training loss and accuracy for each epoch # printValStats - Prints validation set accuracy after each epoch of training # saveModel - True -> Saves model in "modelName" file after each epoch of training # loadModel - True -> Loads model from "modelName" file before training # modelName - Name of the model from which the funtion loads and/or saves the neural net # The methods trains the weights and baises using the training data(trainX, trainY) # and evaluates the validation set accuracy after each epoch of training for epoch in range(self.epochs): # A Training Epoch if verbose: print("Epoch: ", epoch) # TODO # Shuffle the training data for the current epoch shuffled_indices = np.arange(self.XTrain.shape[0]) np.random.shuffle(shuffled_indices) self.XTrain = self.XTrain[shuffled_indices] self.YTrain = self.YTrain[shuffled_indices] # Initializing training loss and accuracy trainLoss = 0 trainAcc = 0 # Divide the training data into mini-batches numBatches = 0 for i in range(0,self.XTrain.shape[0]-self.batch_size+1,self.batch_size): numBatches+=1 # Calculate the activations after the feedforward pass activations = self.nn.feedforward(self.XTrain[i:i+self.batch_size]) # Compute the loss trainLoss += self.nn.computeLoss(self.YTrain[i:i+self.batch_size], activations) # Calculate the training accuracy for the current batch predlabels = oneHotEncodeY(np.argmax(activations[-1],-1),self.nn.out_nodes) trainAcc += self.nn.computeAccuracy(self.YTrain[i:i+self.batch_size], predlabels) # Backpropagation Pass to adjust weights and biases of the neural network self.nn.backpropagate(activations, self.YTrain[i:i+self.batch_size]) # END TODO # Print Training loss and accuracy statistics trainAcc /= numBatches if verbose: print("Epoch ", epoch, " Training Loss=", trainLoss, " Training Accuracy=", trainAcc) if self.save_model: model = [] for l in self.nn.layers: # print(type(l).__name__) if type(l).__name__ != "AvgPoolingLayer" and type(l).__name__ != "FlattenLayer" and type(l).__name__ != "MaxPoolingLayer": model.append(l.weights) model.append(l.biases) pickle.dump(model,open(self.model_name,"wb")) print("Model Saved... ") # Estimate the prediction accuracy over validation data set if self.XVal is not None and self.YVal is not None and verbose: _, validAcc = self.nn.validate(self.XVal, self.YVal) print("Validation Set Accuracy: ", validAcc, "%") pred, acc = self.nn.validate(self.XTest, self.YTest) print('Test Accuracy ',acc)
python
#!/usr/bin/python class FilterModule(object): def filters(self): return { 'amend_list_items': self.amend_list_items } def amend_list_items(self, orig_list, prefix="", postfix=""): return list(map(lambda listelement: prefix + str(listelement) + postfix, orig_list))
python
from django import template from django.utils.translation import gettext as _ register = template.Library() @register.simple_tag def pagetitle(title, **kwargs): if "page" in kwargs and kwargs["page"] > 1: title += " (%s)" % (_("page: %(page)s") % {"page": kwargs["page"]}) if "parent" in kwargs: title += " | %s" % kwargs["parent"] return title
python
from pydantic.class_validators import root_validator from pydantic.main import BaseModel from .types import TopicID class InputTopic(BaseModel): default: str @root_validator def check_lang(cls, obj): default_lang = obj["default"] if default_lang == "default" or default_lang not in obj: raise ValueError(f"Default language can't be '{default_lang}'.") return obj class Topic(InputTopic): _id: TopicID
python
import os, datetime import pandas as pd from download.box import LifespanBox import sys verbose = True #verbose = False snapshotdate = datetime.datetime.today().strftime('%m_%d_%Y') #Two types of files to curate...the so called raw data from which scores are generated and the scores themeselves. #connect to Box (to get latest greatest curated stuff) box_temp='/home/petra/UbWinSharedSpace1/boxtemp' #location of local copy of curated data box = LifespanBox(cache=box_temp) redcapconfigfile="/home/petra/UbWinSharedSpace1/ccf-nda-behavioral/PycharmToolbox/.boxApp/redcapconfig.csv" #removelist=pd.read_csv(os.path.join(box_temp,'RemoveFromCurated_perTrello19May2020.csv')) removelist=pd.read_csv(os.path.join(box_temp,'RemoveFromCurated_perTrello27May2020.csv')) #validpair(pin='HCD0007014_V1') #get list of filenames ################################################################################################## WashuD=84801037257 curated=82804015457 wudfiles, wudfolders=foldercontents(WashuD) #wudfiles2, wudfolders2=folderlistcontents(wudfolders.foldername,wudfolders.folder_id) #wudfiles=pd.concat([wudfiles,wudfiles2],axis=0,sort=True) data4process=wudfiles.loc[(wudfiles.filename.str.contains('aw_')==True) | (wudfiles.filename.str.contains('Raw')==True)] scores4process=wudfiles.loc[wudfiles.filename.str.contains('cored')==True] data4process['PIN']=data4process.filename.str[:13] scores4process['PIN']=scores4process.filename.str[:13] data4process['Fail']=1 scores4process['Fail']=1 #run the validator for each pair of files in the Corrected data - write log to a file orig_stdout = sys.stdout f = open(os.path.join(box_temp,'WashUDevelopment_QC_Corrected_'+snapshotdate+'.txt'),'w') sys.stdout = f for p in data4process.PIN: checkd, checks=validpair(p) sys.stdout = orig_stdout f.close() data4process.groupby('Fail').count() #box.download_files(data4process.file_id) #box.download_files(scores4process.file_id) #subset to files that passed basic QC for next round wdatainit=catcontents(data4process.loc[data4process.Fail==0],box_temp) wscoreinit=catcontents(scores4process.loc[scores4process.Fail==0],box_temp) wdatainit.PIN=wdatainit.PIN.str.strip() wscoreinit.PIN=wscoreinit.PIN.str.strip() #dlist and slist shoult be empty dlist,slist=findwierdos(wdatainit,wscoreinit) if dlist.empty and slist.empty: wdatainit=wdatainit.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') wscoreinit=wscoreinit.drop_duplicates(subset={'PIN','Inst'}) wdatainit = wdatainit.loc[wdatainit.PIN.isnull() == False] wscoreinit = wscoreinit.loc[wscoreinit.PIN.isnull() == False] else: print('Found Non-Identical Duplications') print(dlist) print(slist) w=findpairs(wdatainit,wscoreinit) #this is the list of ids in both scored and raw data len(wdatainit.PIN.unique()) len(wscoreinit.PIN.unique()) #of those that passed, check to see if they already in curated. If so, confirm that RA wanted to replace #data otherwise, send back to site for confirmation curdata,curscores=box2dataframe(fileid=curated) #301 in each now droplist=[] orig_stdout = sys.stdout f = open(os.path.join(box_temp,'WashUDevelopment_QC_Corrected_'+snapshotdate+'.txt'),'a') sys.stdout = f for i in curscores.loc[curscores.PIN.isin(w)].PIN.unique(): print('Checking files in CURATED folder for PIN='+i + ' against Trello list membership') if i in list(removelist.PIN): print('Status : PASS') else: print(i + ' Is not in List to Remove from Curated: please review Trello card and move to approp list') droplist=droplist+[i] data4process.loc[data4process.PIN==i,'Fail']=1 scores4process.loc[scores4process.PIN==i,'Fail']=1 print('Status : FAIL') print('##################################################') print('Summary of Failures') print(data4process.loc[data4process.Fail==1]) print(scores4process.loc[scores4process.Fail==1]) print('##################################################') sys.stdout = orig_stdout f.close() droplist data4process.groupby('Fail').count() scores4process.groupby('Fail').count() wdatainit.loc[~(wdatainit.PIN.isin(droplist))].to_csv(box_temp+'/wudPASSED_corrected_data'+snapshotdate+'.csv') wscoreinit.loc[~(wscoreinit.PIN.isin(droplist))].to_csv(box_temp+'/wudPASSED_corrected_scores'+snapshotdate+'.csv') box.upload_file(box_temp+'/wudPASSED_corrected_data'+snapshotdate+'.csv',WashuD) box.upload_file(box_temp+'/wudPASSED_corrected_scores'+snapshotdate+'.csv',WashuD) ################################################################################################## WashuA=84799623206 curated=82804729845 wuafiles, wuafolders=foldercontents(WashuA) data4process=wuafiles.loc[(wuafiles.filename.str.contains('aw_')==True) | (wuafiles.filename.str.contains('Raw')==True)] scores4process=wuafiles.loc[wuafiles.filename.str.contains('core')==True] data4process['PIN']=data4process.filename.str[:13] scores4process['PIN']=scores4process.filename.str[:13] data4process['Fail']=1 scores4process['Fail']=1 #run the validator for each pair of files in the Corrected data - write log to a file orig_stdout = sys.stdout f = open(os.path.join(box_temp,'WashUAging_QC_Corrected_'+snapshotdate+'.txt'),'w') sys.stdout = f for p in data4process.PIN: checkd, checks=validpair(p) sys.stdout = orig_stdout f.close() data4process.groupby('Fail').count() wadatainit=catcontents(data4process.loc[data4process.Fail==0],box_temp) wascoreinit=catcontents(scores4process.loc[scores4process.Fail==0],box_temp) wadatainit.PIN=wadatainit.PIN.str.strip() wascoreinit.PIN=wascoreinit.PIN.str.strip() dlist,slist=findwierdos(wadatainit,wascoreinit) if dlist.empty and slist.empty: wadatainit=wadatainit.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') wascoreinit=wascoreinit.drop_duplicates(subset={'PIN','Inst'}) wadatainit = wadatainit.loc[wadatainit.PIN.isnull() == False] wascoreinit = wascoreinit.loc[wascoreinit.PIN.isnull() == False] else: print('Found Non-Identical Duplications') print(dlist) print(slist) w=findpairs(wadatainit,wascoreinit) #this is the list of ids in both scored and raw data len(wascoreinit.PIN.unique())==len(wadatainit.PIN.unique()) len(wascoreinit.PIN.unique()) #of those that passed, check to see if they already in curated. If so, confirm that RA wanted to replace #data otherwise, send back to site for confirmation curdata,curscores=box2dataframe(fileid=curated) droplist=[] orig_stdout = sys.stdout f = open(os.path.join(box_temp,'WashUAging_QC_Corrected_'+snapshotdate+'.txt'),'a') sys.stdout = f for i in curscores.loc[curscores.PIN.isin(w)].PIN.unique(): print('Checking files in CURATED folder for PIN='+i + ' against Trello list membership') if i in list(removelist.PIN): print('Status : PASS') else: print(i + ' Is not in List to Remove from Curated: please review Trello card and move to approp list') droplist=droplist+[i] data4process.loc[data4process.PIN==i,'Fail']=1 scores4process.loc[scores4process.PIN==i,'Fail']=1 print('Status : FAIL') print('##################################################') print('Summary of Failures') print(data4process.loc[data4process.Fail==1]) print(scores4process.loc[scores4process.Fail==1]) print('##################################################') sys.stdout = orig_stdout f.close() droplist data4process.groupby('Fail').count() scores4process.groupby('Fail').count() wadatainit.loc[~(wadatainit.PIN.isin(droplist))].to_csv(box_temp+'/wuaPASSED_corrected_data'+snapshotdate+'.csv') wascoreinit.loc[~(wascoreinit.PIN.isin(droplist))].to_csv(box_temp+'/wuaPASSED_corrected_scores'+snapshotdate+'.csv') box.upload_file(box_temp+'/wuaPASSED_corrected_data'+snapshotdate+'.csv',WashuA) box.upload_file(box_temp+'/wuaPASSED_corrected_scores'+snapshotdate+'.csv',WashuA) ########################## Harvard=84800505740 harvardfiles, harvardfolders=foldercontents(Harvard) harvardfoldersnew=harvardfolders.loc[~(harvardfolders.foldername=='incorporated')] harvardfiles2, harvardfolders2=folderlistcontents(harvardfoldersnew.foldername,harvardfoldersnew.folder_id) harvardfiles=harvardfiles2.copy() data4process=harvardfiles.loc[(harvardfiles.filename.str.contains('aw_')==True) | (harvardfiles.filename.str.contains('Raw')==True)] scores4process=harvardfiles.loc[harvardfiles.filename.str.contains('core')==True] data4process['PIN']=data4process.filename.str[:13] scores4process['PIN']=scores4process.filename.str[:13] data4process['Fail']=1 scores4process['Fail']=1 #run the validator for each pair of files in the Corrected data - write log to a file orig_stdout = sys.stdout f = open(os.path.join(box_temp,'Harvard_QC_Corrected_'+snapshotdate+'.txt'),'w') sys.stdout = f for p in data4process.PIN: checkd, checks=validpair(p) sys.stdout = orig_stdout f.close() data4process.groupby('Fail').count() #stil nothing new to process at this time ####upload the concatenated files to site directory in box and move other files to incorporated ####hdatainit.to_csv(box_temp+'/harvard_corrected_data'+snapshotdate+'.csv') ####hscoreinit.to_csv(box_temp+'/harvard_corrected_scores'+snapshotdate+'.csv') ####box.upload_file(box_temp+'/harvard_corrected_data'+snapshotdate+'.csv',Harvard) ####box.upload_file(box_temp+'/harvard_corrected_scores'+snapshotdate+'.csv',Harvard) ####all files associated with this snapshotdate moved to incorporated_snapshotdate folder under this ####corrected folder ######################################### ###CANT ADD NEW DATA FROM MGH BECAUSE UPLOADED AS XLS ###again can't upload because uploaded as gsheet. MGH=84799213727 mghfiles, mghfolders=foldercontents(MGH) #petra to send request to update file format for HCA6826989_V1 trello card ####data4process=mghfiles.loc[(mghfiles.filename.str.contains('Data')==True) | (mghfiles.filename.str.contains('Raw')==True)] ####scores4process=mghfiles.loc[mghfiles.filename.str.contains('Score')==True] ####box.download_files(data4process.file_id) ####box.download_files(scores4process.file_id) ####mdatainit=catcontents(data4process,box_temp) ####mscoreinit=catcontents(scores4process,box_temp) ####dlist,slist=findwierdos(mdatainit,mscoreinit) ####if dlist.empty and slist.empty: #### mdatainit=mdatainit.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') #### mscoreinit=mscoreinit.drop_duplicates(subset={'PIN','Inst'}) ####else: #### print('Found Non-Identical Duplications') #### print(dlist) #### print(slist) ####m=findpairs(mdatainit,mscoreinit) #this is the list of ids in both scored and raw data #####upload the concatenated files to site directory in box and move other files to incorporated ####mdatainit.to_csv(box_temp+'/mgh_corrected_data'+snapshotdate+'.csv') ####mscoreinit.to_csv(box_temp+'/mgh_corrected_scores'+snapshotdate+'.csv') ####box.upload_file(box_temp+'/mgh_corrected_data'+snapshotdate+'.csv',MGH) #box.upload_file(box_temp+'/mgh_corrected_scores'+snapshotdate+'.csv',MGH) #### #all files associated with this snapshotdate moved to incorporated_snapshotdate folder under this #corrected folder ########################################################################################################## #ANY? OF THE UMN FILES UPLOADED TO CORRECTED HAVE HEADERS...SIGH #no new data this round...all still missing headers umnD=84799525828 curated=82805151056 umnDfiles, umnDfolders=foldercontents(umnD) data4process=umnDfiles.loc[(umnDfiles.filename.str.contains('Data')==True) | (umnDfiles.filename.str.contains('Raw')==True)] scores4process=umnDfiles.loc[umnDfiles.filename.str.contains('core')==True] data4process['PIN']=data4process.filename.str[:13] scores4process['PIN']=scores4process.filename.str[:13] data4process['Fail']=1 scores4process['Fail']=1 #run the validator for each pair of files in the Corrected data - write log to a file orig_stdout = sys.stdout f = open(os.path.join(box_temp,'UMN_Development_QC_Corrected_'+snapshotdate+'.txt'),'w') sys.stdout = f for p in data4process.PIN: checkd, checks=validpair(p) sys.stdout = orig_stdout f.close() data4process.groupby('Fail').count() #subset to files that passed basic QC for next round udatainit=catcontents(data4process.loc[data4process.Fail==0],box_temp) uscoreinit=catcontents(scores4process.loc[scores4process.Fail==0],box_temp) udatainit.PIN=udatainit.PIN.str.strip() uscoreinit.PIN=uscoreinit.PIN.str.strip() #dlist and slist shoult be empty dlist,slist=findwierdos(udatainit,uscoreinit) if dlist.empty and slist.empty: udatainit=udatainit.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') uscoreinit=uscoreinit.drop_duplicates(subset={'PIN','Inst'}) udatainit = udatainit.loc[udatainit.PIN.isnull() == False] uscoreinit = uscoreinit.loc[uscoreinit.PIN.isnull() == False] else: print('Found Non-Identical Duplications') print(dlist) print(slist) w=findpairs(udatainit,uscoreinit) #this is the list of ids in both scored and raw data len(uscoreinit.PIN.unique()) len(udatainit.PIN.unique()) #of those that passed, check to see if they already in curated. If so, confirm that RA wanted to replace #data otherwise, send back to site for confirmation curdata,curscores=box2dataframe(fileid=curated) #301 in each now droplist=[] orig_stdout = sys.stdout f = open(os.path.join(box_temp,'UMN_Development_QC_Corrected_'+snapshotdate+'.txt'),'a') sys.stdout = f for i in curscores.loc[curscores.PIN.isin(w)].PIN.unique(): print('Checking files in CURATED folder for PIN='+i + ' against Trello list membership') if i in list(removelist.PIN): print('Status : PASS') else: print(i + ' Is not in List to Remove from Curated: please review Trello card and move to approp list') droplist=droplist+[i] data4process.loc[data4process.PIN==i,'Fail']=1 scores4process.loc[scores4process.PIN==i,'Fail']=1 print('Status : FAIL') print('##################################################') print('Summary of Failures') print(data4process.loc[data4process.Fail==1]) print(scores4process.loc[scores4process.Fail==1]) print('##################################################') sys.stdout = orig_stdout f.close() droplist data4process.groupby('Fail').count() scores4process.groupby('Fail').count() udatainit.loc[~(udatainit.PIN.isin(droplist))].to_csv(box_temp+'/umndPASSED_corrected_data'+snapshotdate+'.csv') uscoreinit.loc[~(uscoreinit.PIN.isin(droplist))].to_csv(box_temp+'/umndPASSED_corrected_scores'+snapshotdate+'.csv') box.upload_file(box_temp+'/umndPASSED_corrected_data'+snapshotdate+'.csv',umnD) box.upload_file(box_temp+'/umndPASSED_corrected_scores'+snapshotdate+'.csv',umnD) ###################################################### umnA=84799599800 curated=82803665867 umnafiles, umnafolders=foldercontents(umnA) umnafiles2, umnafolders2=folderlistcontents(umnafolders.loc[~(umnafolders.foldername=='incorporated')].foldername,umnafolders.loc[~(umnafolders.foldername=='incorporated')].folder_id) umnafiles=pd.concat([umnafiles,umnafiles2],axis=0,sort=True) data4process=umnafiles.loc[umnafiles.filename.str.contains('Raw')==True] scores4process=umnafiles.loc[umnafiles.filename.str.contains('Score')==True] data4process['PIN']=data4process.filename.str[:13] scores4process['PIN']=scores4process.filename.str[:13] data4process['Fail']=1 scores4process['Fail']=1 #run the validator for each pair of files in the Corrected data - write log to a file orig_stdout = sys.stdout f = open(os.path.join(box_temp,'UMN_Aging_QC_Corrected_'+snapshotdate+'.txt'),'w') sys.stdout = f for p in data4process.PIN: checkd, checks=validpair(p) sys.stdout = orig_stdout f.close() data4process.groupby('Fail').count() umadatainit=catcontents(data4process.loc[data4process.Fail==0],box_temp) umascoreinit=catcontents(scores4process.loc[scores4process.Fail==0],box_temp) umadatainit.PIN=umadatainit.PIN.str.strip() umascoreinit.PIN=umascoreinit.PIN.str.strip() #dlist and slist shoult be empty dlist,slist=findwierdos(umadatainit,umascoreinit) if dlist.empty and slist.empty: umadatainit=umadatainit.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') umascoreinit=umascoreinit.drop_duplicates(subset={'PIN','Inst'}) umadatainit = umadatainit.loc[umadatainit.PIN.isnull() == False] umascoreinit = umascoreinit.loc[umascoreinit.PIN.isnull() == False] else: print('Found Non-Identical Duplications') print(dlist) print(slist) w=findpairs(umadatainit,umascoreinit) #this is the list of ids in both scored and raw data len(umadatainit.PIN.unique()) len(umascoreinit.PIN.unique()) #of those that passed, check to see if they already in curated. If so, confirm that RA wanted to replace #data otherwise, send back to site for confirmation curdata,curscores=box2dataframe(fileid=curated) droplist=[] orig_stdout = sys.stdout f = open(os.path.join(box_temp,'UMN_Aging_QC_Corrected_'+snapshotdate+'.txt'),'a') sys.stdout = f for i in curscores.loc[curscores.PIN.isin(w)].PIN.unique(): print('Checking files in CURATED folder for PIN='+i + ' against Trello list membership') if i in list(removelist.PIN): print('Status : PASS') else: print(i + ' Is not in List to Remove from Curated: please review Trello card and move to approp list') droplist=droplist+[i] data4process.loc[data4process.PIN==i,'Fail']=1 scores4process.loc[scores4process.PIN==i,'Fail']=1 print('Status : FAIL') print('##################################################') print('Summary of Failures') print(data4process.loc[data4process.Fail==1]) print(scores4process.loc[scores4process.Fail==1]) print('##################################################') sys.stdout = orig_stdout f.close() droplist data4process.groupby('Fail').count() scores4process.groupby('Fail').count() umadatainit.loc[~(umadatainit.PIN.isin(droplist))].to_csv(box_temp+'/umnaPASSED_corrected_data'+snapshotdate+'.csv') umascoreinit.loc[~(umascoreinit.PIN.isin(droplist))].to_csv(box_temp+'/umnaPASSED_corrected_scores'+snapshotdate+'.csv') box.upload_file(box_temp+'/umnaPASSED_corrected_data'+snapshotdate+'.csv',umnA) box.upload_file(box_temp+'/umnaPASSED_corrected_scores'+snapshotdate+'.csv',umnA) ###################################################### uclaA=84799075673 curated=82807223120 uclaAfiles, uclaAfolders=foldercontents(uclaA) data4process=uclaAfiles.loc[uclaAfiles.filename.str.contains('Raw')==True] scores4process=uclaAfiles.loc[uclaAfiles.filename.str.contains('Score')==True] data4process['PIN']=data4process.filename.str[:13] scores4process['PIN']=scores4process.filename.str[:13] data4process['Fail']=1 scores4process['Fail']=1 orig_stdout = sys.stdout f = open(os.path.join(box_temp,'UCLA_Aging_QC_Corrected_'+snapshotdate+'.txt'),'w') sys.stdout = f print('Checking that both Scores and Raw data uploaded for given PIN=') droplist=[] for p in data4process.PIN.unique(): if p in scores4process.PIN.unique(): pass else: print(p+' Missing scores file') print('Status: FAIL') droplist=droplist+[p] droplist=[] for p in scores4process.PIN.unique(): if p in data4process.PIN.unique(): pass else: print(p+' Missing Raw/Data file') print('Status: FAIL') droplist=droplist+[p] print('##################################################') data4process=data4process.loc[~(data4process.PIN.isin(droplist))] scores4process=scores4process.loc[~(scores4process.PIN.isin(droplist))] #run the validator for each pair of files in the Corrected data - write log to a file for p in data4process.PIN: checkd, checks=validpair(p) sys.stdout = orig_stdout f.close() data4process.groupby('Fail').count() #subset to files that passed basic QC for next round uadatainit=catcontents(data4process.loc[data4process.Fail==0],box_temp) uascoreinit=catcontents(scores4process.loc[scores4process.Fail==0],box_temp) uadatainit['PIN']=uadatainit.PIN.str.strip() uascoreinit['PIN']=uascoreinit.PIN.str.strip() #dlist and slist shoult be empty dlist,slist=findwierdos(uadatainit,uascoreinit) if dlist.empty and slist.empty: uadatainit=uadatainit.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') uascoreinit=uascoreinit.drop_duplicates(subset={'PIN','Inst'}) uadatainit = uadatainit.loc[uadatainit.PIN.isnull() == False] uascoreinit = uascoreinit.loc[uascoreinit.PIN.isnull() == False] else: print('Found Non-Identical Duplications') print(dlist) print(slist) w=findpairs(uadatainit,uascoreinit) #this is the list of ids in both scored and raw data #keep the ones that have no nan pins len(uadatainit.PIN.unique()) len(uascoreinit.PIN.unique()) #of those that passed, check to see if they already in curated. If so, confirm that RA wanted to replace #data otherwise, send back to site for confirmation curdata,curscores=box2dataframe(fileid=curated) #301 in each now droplist=[] orig_stdout = sys.stdout f = open(os.path.join(box_temp,'UCLA_Aging_QC_Corrected_'+snapshotdate+'.txt'),'a') sys.stdout = f for i in curscores.loc[curscores.PIN.isin(w)].PIN.unique(): print('Checking files in CURATED folder for PIN='+i + ' against Trello list membership') if i in list(removelist.PIN): print('Status : PASS') else: print(i + ' Is not in List to Remove from Curated: please review Trello card and move to approp list') droplist=droplist+[i] data4process.loc[data4process.PIN==i,'Fail']=1 scores4process.loc[scores4process.PIN==i,'Fail']=1 print('Status : FAIL') print('##################################################') print('Summary of Failures') print(data4process.loc[data4process.Fail==1]) print(scores4process.loc[scores4process.Fail==1]) print('##################################################') sys.stdout = orig_stdout f.close() droplist data4process.groupby('Fail').count() scores4process.groupby('Fail').count() uadatainit.loc[~(uadatainit.PIN.isin(droplist))].to_csv(box_temp+'/uclaaPASSED_corrected_data'+snapshotdate+'.csv') uascoreinit.loc[~(uascoreinit.PIN.isin(droplist))].to_csv(box_temp+'/uclaaPASSED_corrected_scores'+snapshotdate+'.csv') box.upload_file(box_temp+'/uclaaPASSED_corrected_data'+snapshotdate+'.csv',uclaA) box.upload_file(box_temp+'/uclaaPASSED_corrected_scores'+snapshotdate+'.csv',uclaA) ###################################################### uclaD=84800272537 curated=82805124019 uclaDfiles, uclaDfolders=foldercontents(uclaD) data4process=uclaDfiles.loc[uclaDfiles.filename.str.contains('Raw')==True] scores4process=uclaDfiles.loc[uclaDfiles.filename.str.contains('Score')==True] data4process['PIN']=data4process.filename.str[:13] scores4process['PIN']=scores4process.filename.str[:13] data4process['Fail']=1 scores4process['Fail']=1 #run the validator for each pair of files in the Corrected data - write log to a file orig_stdout = sys.stdout f = open(os.path.join(box_temp,'UCLA_Development_QC_Corrected_'+snapshotdate+'.txt'),'w') sys.stdout = f for p in data4process.PIN: checkd, checks=validpair(p) sys.stdout = orig_stdout f.close() data4process.groupby('Fail').count() #subset to files that passed basic QC for next round uddatainit=catcontents(data4process.loc[data4process.Fail==0],box_temp) udscoreinit=catcontents(scores4process.loc[scores4process.Fail==0],box_temp) uddatainit['PIN']=uddatainit.PIN.str.strip() udscoreinit['PIN']=udscoreinit.PIN.str.strip() #dlist and slist shoult be empty dlist,slist=findwierdos(uddatainit,udscoreinit) if dlist.empty and slist.empty: uddatainit=uddatainit.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') udscoreinit=udscoreinit.drop_duplicates(subset={'PIN','Inst'}) uddatainit = uddatainit.loc[uddatainit.PIN.isnull() == False] udscoreinit = udscoreinit.loc[udscoreinit.PIN.isnull() == False] else: print('Found Non-Identical Duplications') print(dlist) print(slist) w=findpairs(uddatainit,udscoreinit) #this is the list of ids in both scored and raw data len(uddatainit.PIN.unique()) len(udscoreinit.PIN.unique()) #of those that passed, check to see if they already in curated. If so, confirm that RA wanted to replace #data otherwise, send back to site for confirmation curdata,curscores=box2dataframe(fileid=curated) droplist=[] orig_stdout = sys.stdout f = open(os.path.join(box_temp,'UCLA_Development_QC_Corrected_'+snapshotdate+'.txt'),'a') sys.stdout = f for i in curscores.loc[curscores.PIN.isin(w)].PIN.unique(): print('Checking files in CURATED folder for PIN='+i + ' against Trello list membership') if i in list(removelist.PIN): print('Status : PASS') else: print(i + ' Is not in List to Remove from Curated: please review Trello card and move to approp list') droplist=droplist+[i] data4process.loc[data4process.PIN==i,'Fail']=1 scores4process.loc[scores4process.PIN==i,'Fail']=1 print('Status : FAIL') print('##################################################') print('Summary of Failures') print(data4process.loc[data4process.Fail==1]) print(scores4process.loc[scores4process.Fail==1]) print('##################################################') sys.stdout = orig_stdout f.close() droplist data4process.groupby('Fail').count() scores4process.groupby('Fail').count() uddatainit.loc[~(uddatainit.PIN.isin(droplist))].to_csv(box_temp+'/ucladPASSED_corrected_data'+snapshotdate+'.csv') udscoreinit.loc[~(udscoreinit.PIN.isin(droplist))].to_csv(box_temp+'/ucladPASSED_corrected_scores'+snapshotdate+'.csv') box.upload_file(box_temp+'/ucladPASSED_corrected_data'+snapshotdate+'.csv',uclaD) box.upload_file(box_temp+'/ucladPASSED_corrected_scores'+snapshotdate+'.csv',uclaD) ########################### #altogether #Harvard l hdatainit hscoreinit #MGH m mdatainit mscoreinit #WashuD wd wdatainit wscoreinit #WashUA wa wadatainit wascoreinit #UMND ud udatainit uscoreinit #UMNA uma umadatainit umascoreinit #UCLAA uca uadatainit uascoreinit #UCLAD ucd uddatainit udscoreinit #raw correctedraw=pd.concat([hdatainit, mdatainit, wdatainit, wadatainit, udatainit, umadatainit, uadatainit, uddatainit],axis=0,sort=True) correctedraw=correctedraw.loc[correctedraw.PIN.isnull()==False] #scores correctedscores=pd.concat([hscoreinit, mscoreinit, wscoreinit, wascoreinit, uscoreinit, umascoreinit, uascoreinit, udscoreinit],axis=0,sort=True) correctedscores=correctedscores.loc[correctedscores.PIN.isnull()==False] #check tallies - all 168 len(ucd)+len(uca)+len(wa)+len(wd)+len(ud)+len(uma)+len(l)+len(m) len(correctedraw.PIN.unique()) len(correctedscores.PIN.unique()) #lightson dlist,slist=findwierdos(correctedraw,correctedscores) if dlist.empty and slist.empty: correctedraw=correctedraw.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') correctedscores=correctedscores.drop_duplicates(subset={'PIN','Inst'}) else: print('Found Non-Identical Duplications') print(dlist) print(slist) correctedraw['subject']=correctedraw.PIN.str.split("_",expand=True)[0] correctedraw['visit']=correctedraw.PIN.str.split("_",expand=True)[1] correctedscores['subject']=correctedscores.PIN.str.split("_",expand=True)[0] correctedscores['visit']=correctedscores.PIN.str.split("_",expand=True)[1] correctedraw.to_csv(box_temp+'/allsites_corrected_data.csv') correctedscores.to_csv(box_temp+'/allsites_corrected_scores.csv') #hdatainit mdatainit wdatainit wadatainit udatainit uadatainit uddatainit #hscoreinit mscoreinit wscoreinit wascoreinit uscoreinit uascoreinit udscoreinit #pull id visit combos that arent in both scores and data files def findpairs(hdatainit,hscoreinit): pinsinboth=[] for i in hscoreinit.PIN.unique(): if i in hdatainit.PIN.unique() and isinstance(i,str): pinsinboth=pinsinboth+[i] else: print('the following PINs in scores but not data:') print(i) for i in hdatainit.PIN.unique(): if i in hscoreinit.PIN.unique(): pass else: print('the following PINs in data but not scores:') print(i) return pinsinboth def findwierdos(hdatainit,hscoreinit): #compare the two types of sort to identify which files have non-identical duplications sort1data=hdatainit.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') sort1score=hscoreinit.drop_duplicates(subset={'PIN','Inst'}) sort2data=hdatainit.drop_duplicates(subset=set(hdatainit.columns).difference({'filename','file_id'})) sort2score=hscoreinit.drop_duplicates(subset=set(hscoreinit.columns).difference({'filename','file_id'})) s1d=sort1data.groupby('PIN').count() s2d=sort2data.groupby('PIN').count() databoth=pd.merge(s1d.reset_index()[['PIN','DeviceID']], s2d.reset_index()[['PIN','DeviceID']],on=['PIN','DeviceID'],how='outer',indicator=True) wierd_data=databoth.loc[databoth._merge!='both'].rename(columns={'DeviceID':'Number of Rows'}) s1s=sort1score.groupby('PIN').count() s2s=sort2score.groupby('PIN').count() scoreboth=pd.merge(s1s.reset_index()[['PIN','DeviceID']], s2s.reset_index()[['PIN','DeviceID']],on=['PIN','DeviceID'],how='outer',indicator=True) wierd_score=scoreboth.loc[scoreboth._merge!='both'].rename(columns={'DeviceID':'Number of Rows'}) return wierd_data,wierd_score def catcontents(files,cache_space): #dataframe that has filename and file_id as columns scoresfiles=files.copy() scoresinit=pd.DataFrame() for i in scoresfiles.filename: filepath=os.path.join(cache_space,i) filenum=scoresfiles.loc[scoresfiles.filename==i,'file_id'] try: temp=pd.read_csv(filepath,header=0,low_memory=False) temp['filename']=i temp['file_id']=pd.Series(int(filenum.values[0]),index=temp.index) temp['raw_cat_date']=snapshotdate scoresinit=pd.concat([scoresinit,temp],axis=0,sort=False) except: print(filepath+' wouldnt import') temp=pd.DataFrame() temp['filename']=pd.Series(i,index=[0]) temp['file_id']=pd.Series(int(filenum.values[0]),index=[0]) temp['raw_cat_date']=snapshotdate scoresinit=pd.concat([scoresinit,temp],axis=0,sort=False) return scoresinit def catfromlocal(endpoint_temp,scores2cat): #dataframe that has filenames scoresfiles=scores2cat.copy() scoresinit=pd.DataFrame() for i in scoresfiles.fname: filepath=os.path.join(endpoint_temp,i) try: temp=pd.read_csv(filepath,header=0,low_memory=False) temp['filename']="endpointmachine/"+i temp['raw_cat_date']=snapshotdate scoresinit=pd.concat([scoresinit,temp],axis=0,sort=False) except: print(filepath+' wouldnt import') temp=pd.DataFrame() temp['filename']=pd.Series("endpointmachine/"+i,index=[0]) temp['raw_cat_date']=snapshotdate scoresinit=pd.concat([scoresinit,temp],axis=0,sort=False) return scoresinit def folderlistcontents(folderslabels,folderslist): bdasfilelist=pd.DataFrame() bdasfolderlist=pd.DataFrame() for i in range(len(folderslist)): print('getting file and folder contents of box folder ' +folderslabels[i]) subfiles,subfolders=foldercontents(folderslist[i]) #foldercontents generates two dfs: a df with names and ids of files and a df with names and ids of folders bdasfilelist=bdasfilelist.append(subfiles) bdasfolderlist=bdasfolderlist.append(subfolders) return bdasfilelist,bdasfolderlist def foldercontents(folder_id): filelist=[] fileidlist=[] folderlist=[] folderidlist=[] WUlist=box.client.folder(folder_id=folder_id).get_items(limit=None, offset=0, marker=None, use_marker=False, sort=None, direction=None, fields=None) for item in WUlist: if item.type == 'file': filelist.append(item.name) fileidlist.append(item.id) if item.type == 'folder': folderlist.append(item.name) folderidlist.append(item.id) files=pd.DataFrame({'filename':filelist, 'file_id':fileidlist}) folders=pd.DataFrame({'foldername':folderlist, 'folder_id':folderidlist}) return files,folders def box2dataframe(fileid): harvardfiles, harvardfolders = foldercontents(fileid) data4process = harvardfiles.loc[~(harvardfiles.filename.str.upper().str.contains('SCORE') == True)] scores4process = harvardfiles.loc[harvardfiles.filename.str.upper().str.contains('SCORE') == True] data4process=data4process.reset_index() scores4process = scores4process.reset_index() box.download_files(data4process.file_id) box.download_files(scores4process.file_id) harvcleandata = pd.read_csv(box_temp+'/'+ data4process.filename[0], header=0, low_memory=False) harvcleanscores = pd.read_csv(box_temp+'/'+ scores4process.filename[0], header=0, low_memory=False) return harvcleandata,harvcleanscores def validpair(pin='HCD0007014_V1'): print('Checking files in CORRECTED folder having title with PIN='+pin) PINcheckd=data4process.loc[data4process.PIN==pin] PINchecks=scores4process.loc[scores4process.PIN==pin] box.download_files(PINcheckd.file_id) box.download_files(PINchecks.file_id) d=catcontents(PINcheckd,box_temp) s=catcontents(PINchecks,box_temp) if 'PIN' in d.columns: if 'PIN' in s.columns: d = d.loc[d.PIN.isnull() == False] s = s.loc[s.PIN.isnull() == False] print('PINS in Data: ') print(d.PIN.unique()) print('PINS in Scores: ') print(s.PIN.unique()) try: if d.PIN.unique()==s.PIN.unique(): print('Passed Unique PIN test') dlist,slist=findwierdos(d,s) if dlist.empty and slist.empty: d=d.drop_duplicates(subset={'PIN','Inst','ItemID','Position'},keep='first') s=s.drop_duplicates(subset={'PIN','Inst'}) print('Passed duplicate Instruments Test') data4process.loc[data4process.PIN == pin,'Fail'] = 0 scores4process.loc[scores4process.PIN==pin,'Fail'] = 0 else: print('Found Non-Identical Duplications') print(dlist+': in Data') print(slist+': in Scores') except: print('Status : FAIL') else: print('variable named PIN not found. Check for missing header') print('Status : FAIL') print('##################################################') return d,s
python
# !/usr/bin/env python3 # coding=utf-8 import sys import argparse import os import struct parser = argparse.ArgumentParser(description='Cisco VxWorks firmware extractor') parser.add_argument('-i', '--input-firmware-path', metavar='input_firmware_path', help='Firmware path') parser.add_argument('-o', '--output-path', metavar='output_path', help='Extracted files store path') def extract_firmware(source_file_data, output_path): """Cisco VxWorks firmware extract function :param source_file_data: :param output_path: :return: """ file_count = struct.unpack("<I", source_file_data[0x20:0x24])[0] print("Found {} files in firmware".format(file_count)) print("Star extract files") for i in range(file_count): file_name = source_file_data[0x50 + (i * 0x20):0x60 + (i * 0x20)] file_name = file_name.replace(b'\x00', b'') print("file_name: {}".format(file_name)) file_offset = struct.unpack("<I", source_file_data[0x60 + (i * 0x20):0x60 + 4 + (i * 0x20)])[0] file_length = struct.unpack("<I", source_file_data[0x60 + 4 + (i * 0x20):0x60 + 8 + (i * 0x20)])[0] print("file_offset: {:#010x}".format(file_offset)) print("file_length: {}".format(file_length)) output_file = open("{}/{:#08x}_{}".format(output_path, file_offset, file_name.decode('utf-8'), ), 'wb') output_file.write(source_file_data[file_offset: file_offset + file_length]) if __name__ == '__main__': args = parser.parse_args() if len(sys.argv) == 1: # parser.print_help() sys.exit(1) print("args.input_firmware_path: {}".format(args.input_firmware_path)) if args.input_firmware_path: if os.path.isfile(args.input_firmware_path): try: firmware_file_data = open(args.input_firmware_path, "rb").read() except Exception as err: print("Can't read input file: {} because of {}".format(args.input_firmware_path, err)) sys.exit(1) else: print("Can't read input file: {}".format(args.input_firmware_path)) sys.exit(1) else: parser.print_help() sys.exit(1) print("args.output_path: {}".format(args.output_path)) if args.output_path: if os.path.exists(args.output_path): if os.path.isdir(args.output_path): output_path = args.output_path else: print("output_path {} is not directory".format(args.output_path)) sys.exit(1) else: try: os.makedirs(args.output_path, exist_ok=True) output_path = args.output_path except Exception as err: print("Can't create output folder : {} because of {}".format(args.output_path, err)) sys.exit(1) else: input_file_name = os.path.basename(args.input_firmware_path) output_path = "./{}.extracted".format(input_file_name) temp_out_path = output_path index = 1 while os.path.exists(output_path): output_path = "{}_{}".format(temp_out_path, index) index += 1 try: os.makedirs(output_path) except Exception as err: print("Can't create output folder : {} because of {}".format(output_path, err)) if firmware_file_data and output_path: extract_firmware(firmware_file_data, output_path)
python
from discord import File from discord.ext import commands from shavatar import generate from src.internal.bot import Bot from src.internal.context import Context class Avatar(commands.Cog): """Generate an avatar with SHAvatar.""" def __init__(self, bot: Bot): self.bot = bot @commands.command(name="shavatar") async def shavatar(self, ctx: Context, *, text: str = None) -> None: """Generate an avatar with SHAvatar.""" avatar = generate(text or str(ctx.author.id), size=512) avatar.save("./avatar.png") await ctx.reply(file=File("./avatar.png")) def setup(bot: Bot): bot.add_cog(Avatar(bot))
python
import pathlib from os import listdir from __utils import * import pandas as pd import pandas as pd from math import floor from time import time # This is a wrapper script for analysis of predictions produced in stage 2-model # # Arguments: # REGION name of region # PRED_DIR path to folder with region predictions # ORIG_DIR path to folder of training data # VALIDATE 1 <= x <2 for r^2 / RMSE; 2 for deltas # R2_FILE path of file in which to drop r^2 values # RMSE_FILE path of file in which to drop RMSE values def analysis(REGION, PRED_DIR, ORIG_DIR, VALIDATE, R2_FILE, RMSE_FILE): RESID_COMP = pathlib.Path("analysis_visualization/3c-obs_vs_pred.R").resolve() PREDS = PRED_DIR.joinpath(REGION, SUB_PRED) RESIDS = PRED_DIR.joinpath(REGION, SUB_RESI) #RES_FIGS = PRED_DIR.joinpath(REGION, SUB_FIGS, SUB_RESI) if not RESIDS.is_dir(): RESIDS.mkdir(parents=True) #if not RES_FIGS.is_dir(): # RES_FIGS.mkdir(parents=True) ORIG = append_to_folder(ORIG_DIR.joinpath(REGION), ".csv") for pred in (file for file in listdir(PREDS) if file.endswith(".csv")): PRED = PREDS.joinpath(pred) RESID = RESIDS.joinpath(pred) LOG = RESID.with_suffix(".log") with open(LOG, "w") as log: t0 = time() log.write(f"t0={t0}\n") if floor(VALIDATE)==1: # ToDo: Save the differences to RESID. log.write(f"floor(VALIDATE)==1: Computing residuals between prediction and the portion of original satellite data removed for testing.\n") #RES_COMP = RES_FIGS.joinpath(pred).with_suffix(".png") #resid_args = [RESID_COMP, ORIG, PRED, RES_COMP, SCORE_FILE] resid_args = [RESID_COMP, ORIG, PRED, R2_FILE, RMSE_FILE] log.write(f"resid_args: {resid_args}\n") bash(resid_args) elif VALIDATE==2: log.write(f"VALIDATE==2: Computing differences between prediction and supplied validation data.\n") # Load in known sm values. old = pd.read_csv(ORIG) old.columns = ["x", "y", "old"] old.set_index(["x", "y"], inplace=True) # Load in predicted sm values. new = pd.read_csv(PRED, header=None) new = new[new.columns[:3]] new.columns = ["x", "y", "new"] new.set_index(["x", "y"], inplace=True) # Join old and new. # Will only keep data points for which the same x/y exists in both. compare = old.join(new)#[new.columns[2]])#"new"]) #compare.columns = ["x", "y", "old", "new"] compare.dropna(inplace=True) # Compute stats and save to files. corr = (compare["new"].corr(compare["old"]))**2 log.write(f"The correlation between the original and predicted data is {corr}.\n") with open(R2_FILE, 'a') as r2_out: r2_out.write(f"{corr},{PRED}") rmse = np.sqrt(np.mean((compare["new"] - compare["old"])**2)) log.write(f"The RMSE between the original and predicted data is {rmse}.\n") with open(RMSE_FILE, 'a') as rmse_out: rmse_out.write(f"{rmse},{PRED}") # Find differences and save to file. compare["deltas"] = compare["new"] - compare["old"] compare["reltas"] = compare["deltas"]/compare["old"] log.write(f"The first few rows of differences and relative differences:\n{compare.head()}\n") resid = compare[["deltas"]]#"x","y","reltas"]] resid.to_csv(path_or_buf=RESID, header=False)#, index=False) t1 = time() log.write(f"t1={t1}\n") log.write(f"t={t1 - t0}\n")
python
from gna.configurator import NestedDict from gna.expression.preparse import open_fcn from gna.expression.operation import * from gna.env import env import re import inspect class VTContainer_v01(OrderedDict): _order=None def __init__(self, *args, **kwargs): super(VTContainer_v01, self).__init__(*args, **kwargs) def set_indices(self, indices): self._order=indices.order def __missing__(self, key): newvar = Variable(key, order=self._order) self.__setitem__(key, newvar) return newvar def __setitem__(self, key, value): if isinstance(value, Indexed): if value.name is undefinedname and key!='__tree__': value.name = key value.nindex.arrange(self._order) # value.expandable=False elif inspect.isclass(value) and issubclass(value, Operation): value.order=self._order OrderedDict.__setitem__(self, key, value) return value class Expression_v01(object): operations = dict(sum=OSum, prod=OProd, concat=OConcat, accumulate=Accumulate, Accumulate=AccumulateTransformation, bracket=bracket, expand=expand, inverse=OInverse, select1=OSelect1 ) tree = None def __init__(self, expression, indices=[], **kwargs): if isinstance(expression, str): self.expressions_raw = [expression] elif isinstance(expression, (tuple, list)): self.expressions_raw = list(expression) else: raise Exception('Unsupported expression: {!r}'.format(expression)) cexpr = re.compile('\s*#.*') rexpr = re.compile('\n\s+') self.expressions_raw = [ rexpr.sub('', cexpr.sub('', e)) for e in self.expressions_raw ] self.expressions = [open_fcn(expr) for expr in self.expressions_raw] self.globals=VTContainer_v01() self.defindices(indices, **kwargs) self.set_operations() def set_operations(self): for name, op in self.operations.items(): self.globals[name]=op def parse(self): if self.tree: raise Exception('Expression is already parsed') self.trees = [] for expr in self.expressions: if not expr: continue texpr = '__tree__ = '+expr try: exec(texpr, self.globals, self.globals) tree = self.globals.pop('__tree__') except: print('Failed to evaluate expression:') print(expr) raise self.trees.append(tree) self.tree=self.trees[-1] def guessname(self, ilib, *args, **kwargs): if isinstance(ilib, str): import yaml try: ilib = yaml.load(ilib, yaml.Loader) except: raise Exception('Unable to parse name library (yaml)') lib = dict() for k, v in ilib.items(): v['name'] = k exprs = v['expr'] if isinstance(exprs, str): exprs=[exprs] for expr in exprs: lib[expr] = v for tree in self.trees: tree.guessname(lib, *args, **kwargs) def dump_all(self, yieldself): for tree in self.trees: tree.dump(yieldself) def __str__(self): return self.expressions_raw def __repr__(self): return 'Expression("{}")'.format(self.expressions_raw) def defindices(self, defs): if isinstance(defs, NIndex): self.nindex=defs else: self.nindex = NIndex(fromlist=defs) for short, idx in self.nindex.indices.items(): self.globals[short] = idx slave=idx.slave if slave: self.globals[slave.short]=slave self.globals.set_indices(self.nindex) def build(self, context): if not self.tree: raise Exception('Expression is not initialized, call parse() method first') context.set_indices(self.nindex) for tree in self.trees: creq = tree.require(context) context.build_bundles() with context: for tree in self.trees: tree.bind(context) class ItemProvider(object): """Container for the bundle class, bundle configuration and provided items""" bundle=None def __init__(self, cfg, name=''): self.cfg = cfg self.name=name from gna.bundle.bundle import get_bundle self.bundleclass = get_bundle((cfg.bundle.name, cfg.bundle.get('version', None))) variables, objects = self.bundleclass.provides(self.cfg) self.items = variables+objects def register_in(self): if self.cfg.bundle.get('inactive', False): return dict() return {key: self for key in self.items} def build(self, **kwargs): if self.bundle: return self.bundle self.bundle = self.bundleclass(self.cfg, **kwargs) self.bundle.execute() def set_nidx(self, nidx): if nidx is None: printl_debug( 'indices: %s'%(self.name) ) return bundlecfg = self.cfg.bundle predefined_nidx = bundlecfg.get('nidx', None) if predefined_nidx is None: printl_debug( 'indices: %s[%s]'%(self.name, str(predefined_nidx)) ) bundlecfg.nidx = nidx else: if isinstance(predefined_nidx, list): predefined_nidx = NIndex(fromlist=predefined_nidx) elif not isinstance(predefined_nidx, NIndex): raise Exception('Unsupported nidx field') printl_debug('indices: %s[%s + %s]'%(self.name, str(predefined_nidx), str(nidx))) bundlecfg.nidx=predefined_nidx+nidx class ExpressionContext_v01(object): indices = None def __init__(self, bundles, ns=None, inputs=None, outputs=None): self.bundles = bundles self.outputs = NestedDict() if outputs is None else outputs self.inputs = NestedDict() if inputs is None else inputs self.ns = ns or env.globalns self.providers = dict() for name, cfg in self.bundles.items(): if not 'bundle' in cfg: continue provider = ItemProvider(cfg, name) self.providers.update(provider.register_in()) self.required_bundles = OrderedDict() def __enter__(self): self.ns.__enter__() def __exit__(self, *args, **kwargs): self.ns.__exit__(*args, **kwargs) def namespace(self): return self.ns def set_indices(self, indices): self.nindex = indices @methodname def require(self, name, nidx): provider = self.required_bundles.get(name, None) if provider is None: provider = self.providers.get(name, None) if provider is None: if nidx: for it in nidx.iterate(): self.require(it.current_format(name=name), None) return self.required_bundles print('List of available (provided) variables:', list(self.required_bundles.keys())) raise Exception('Do not know how to build '+name) self.required_bundles[name] = provider provider.set_nidx(nidx) return self.required_bundles def build_bundles(self): with self.ns: for provider in self.required_bundles.values(): provider.build(inputs=self.inputs, outputs=self.outputs, namespace=self.ns) def get_variable(self, name, *idx): pass def get_key(self, name, nidx, fmt=None, clone=None): if nidx is None: nidx = NIndex() if clone is not None: clone = '%02d'%clone if fmt: ret = ndix.current_format(fmt) if clone: ret += '.'+clone return ret nidx = nidx.current_values(name=name) if clone: nidx = nidx + (clone,) return nidx def get_output(self, name, nidx=None, clone=None): return self.get( self.outputs, name, nidx, 'output', clone=clone ) def set_output(self, output, name, nidx=None, fmt=None, **kwargs): import ROOT as R if isinstance(output, R.TransformationTypes.OutputHandle): output = R.OutputDescriptor(output) self.set( self.outputs, output, name, nidx, 'output', fmt, **kwargs ) return output def get_input(self, name, nidx=None, clone=None): return self.get( self.inputs, name, nidx, 'input', clone=clone ) def set_input(self, input, name, nidx=None, fmt=None, clone=None): self.set( self.inputs, input, name, nidx, 'input', fmt, clone) return input def get(self, source, name, nidx, type, clone=None): key = self.get_key(name, nidx, clone=clone) printl_debug('get {}'.format(type), name, key) ret = source.get(key, None) if not ret: raise Exception('Failed to get {} {}[{}]'.format(type, name, nidx, clone)) if isinstance(ret, NestedDict): raise Exception('Incomplete index ({!s}) provided (probably). Need at least resolve {!s}'.format(nidx, list(res.keys()))) return ret def set(self, target, io, name, nidx, type, fmt=None, clone=None): key = self.get_key( name, nidx, fmt, clone ) printl_debug('set {}'.format(type), name, key) target[key]=io def set_variable(self, name, nidx, var, **kwargs): key = '.'.join(self.get_key( name, nidx )) printl_debug('set variable', name, key) self.ns.reqparameter(key, cfg=var, **kwargs) # def connect(self, source, sink, nidx, fmtsource=None, fmtsink=None): # printl_debug( 'connect: {}->{} ({:s})'.format( source, sink, nidx ) ) # with nextlevel(): # output = self.get_output( source, nidx ) # input = self.get_input( sink, nidx ) # input( output )
python
import time from print_running_function import print_running_function # Hackish method to import from another directory # Useful while xendit-python isn't released yet to the public import importlib.machinery loader = importlib.machinery.SourceFileLoader("xendit", "../xendit/__init__.py") xendit = loader.load_module("xendit") class CreateCardlessCreditPayment: @staticmethod def run(xendit_instance, **kwargs): try: cardless_credit_payment = xendit_instance.CardlessCredit.create_payment( **kwargs ) print(cardless_credit_payment) except xendit.XenditError as e: print("Error status code:", e.status_code) print("Error message:", e) @staticmethod def example(xendit_instance): cardless_credit_items = [] cardless_credit_items.append( { "id": "item-123", "name": "Phone Case", "price": 200000, "type": "Smartphone", "url": "http://example.com/phone/phone_case", "quantity": 2, } ) customer_details = { "first_name": "customer first name", "last_name": "customer last name", "email": "[email protected]", "phone": "0812332145", } shipping_address = { "first_name": "first name", "last_name": "last name", "address": "Jl Teknologi No. 12", "city": "Jakarta", "postal_code": "12345", "phone": "081513114262", "country_code": "IDN", } args = { "cardless_credit_type": xendit.CardlessCreditType.KREDIVO, "external_id": f"id-{int(time.time())}", "amount": 10000, "payment_type": "3_months", "items": cardless_credit_items, "customer_details": customer_details, "shipping_address": shipping_address, "redirect_url": "https://my-shop.com/home", "callback_url": "https://my-shop.com/callback", } print_running_function("xendit.CardlessCredit.create_payment", args) CreateCardlessCreditPayment.run(xendit_instance, **args) class CalculatePaymentType: @staticmethod def run(xendit_instance, **kwargs): try: cardless_credit_payment_types = xendit_instance.CardlessCredit.calculate_payment_type( **kwargs ) print(cardless_credit_payment_types) except xendit.XenditError as e: print("Error status code:", e.status_code) print("Error message:", e) @staticmethod def example(xendit_instance): cardless_credit_items = [] cardless_credit_items.append( { "id": "item-123", "name": "Phone Case", "price": 200000, "type": "Smartphone", "url": "http://example.com/phone/phone_case", "quantity": 2, } ) args = { "cardless_credit_type": xendit.CardlessCreditType.KREDIVO, "amount": 10000, "items": cardless_credit_items, } print_running_function("xendit.CardlessCredit.calculate_payment_type", args) CalculatePaymentType.run(xendit_instance, **args) def ask_cardless_credit_input(): print("Input the action that you want to use") print("0. Exit") print("1. Create Payment / Generate Checkout URL") print("2. Calculate Payment Types") try: return int(input()) except ValueError: print("Invalid input. Please type a number") return ask_cardless_credit_input() def cardless_credit_example(xendit_instance): cardless_credit_input = ask_cardless_credit_input() while cardless_credit_input != 0: if cardless_credit_input == 1: print("Running example of Create Payment / Generate Checkout URL") CreateCardlessCreditPayment.example(xendit_instance) elif cardless_credit_input == 2: print("Running example of Calculate Payment Types") CalculatePaymentType.example(xendit_instance) cardless_credit_input = ask_cardless_credit_input()
python
command = input() all_students = {} while command[0].isupper(): command = command.split(":") key = command[2] value = command[0] + " - " + command[1] all_students.setdefault(key, []).append(value) command = input() searched_course = command.replace("_", " ") print("\n".join(all_students[searched_course]))
python
import sys import random n = int(sys.argv[1]) k = n+n*(n+1)//2 # 10**5 # print('%d %d'%(n, k)) for i in range(n): print ('A %d %d'%(i+1, random.randint(10**8,10**9))) k -= 1 for i in range(n): for j in range(i, n): print('Q %d %d'%(i+1, j+1)) k -= 1 if k <= 1: break if k <= 1: break print('Q 1 %d'%n)
python
import subprocess from flask import Flask, redirect, url_for, request, render_template app = Flask(__name__) @app.route('/') def hello_world(): # put application's code here return render_template("index.html") @app.route('/success/<command>') def success(command): return subprocess.Popen(command, shell=True, stdout=subprocess.PIPE).stdout.read() @app.route('/login', methods=['POST', 'GET']) def login(): if request.method == 'POST': togglapi = request.form['togglapi'] since = request.form['since'] until = request.form['until'] project = request.form['project'] journal = request.form['journal'] command = "python toggljournal.py " + togglapi + " " + since + " " + until + " " + " " + project + " " + journal return redirect(url_for('success', command=command)) else: togglapi = request.args.get('togglapi') since = request.args.get('since') until = request.args.get('until') project = request.args.get('project') journal = request.args.get('journal') return redirect(url_for('success', command=command)) if __name__ == '__main__': app.run(debug=True)
python
# coding: utf-8 from models.models import Group from models.models import Person from random import randrange def test_edit_group_name(app): if app.object.count_group() == 0: app.object.create_group_form(Group(name="test")) old_groups = app.object.get_group_list() index = randrange(len(old_groups)) group = Group(name="new test progon") group.id = old_groups[index].id app.object.edit_group_by_index(index, group) new_groups = app.object.get_group_list() assert len(old_groups) == app.object.count_group() old_groups[index] = group assert sorted(old_groups, key=Group.id_or_max) == sorted(new_groups, key=Group.id_or_max) def test_edit_group_header(app): if app.object.count_group() == 0: app.object.create_group_form(Group(name="test")) old_groups = app.object.get_group_list() app.object.edit_first_group(Group(header="new header", ) ) new_groups = app.object.get_group_list() assert len(old_groups) == app.object.count_group() def test_edit_person(app): if app.object.count_person() == 0: app.object.create_person_form(Person(name="test", lastname="test", address="test", email="test", mobile="test", ) ) old_persons = app.object.get_person_list() index = randrange(len(old_persons)) person = Person(name="new 1", lastname="new 2", address="new 3", mobile="new 4", email="new 5", ) person.id = old_persons[index].id app.object.edit_person_form_by_index(index, person) new_persons = app.object.get_person_list() assert len(old_persons) == app.object.count_person() old_persons[index] = person assert sorted(old_persons, key=Person.id_or_max) == sorted(new_persons, key=Person.id_or_max)
python
import numpy as np import matplotlib.pyplot as plt import spams import cv2 # %load_ext autoreload # %autoreload 2 # %matplotlib inline from pathlib import Path import os import sys import random import warnings import pandas as pd from tqdm import tqdm from itertools import chain import math from vahadane import vahadane IMG_WIDTH = 256 IMG_HEIGHT = 256 IMG_CHANNELS = 3 M_CHANNEL=1 Res_HEIGHT = 1000 # actual image height Res_WIDTH = 1000 # actual image width #no of patches = (input image size/ crop size)^2 per image . pat = 16 warnings.filterwarnings('ignore', category=UserWarning, module='skimage') seed = 42 np.random.seed = seed # path where you want to store the stain normalized images #----- # Test # ------# Path("/content/TestData").mkdir(parents=True, exist_ok=True) Path("/content/TestData/Bin").mkdir(parents=True, exist_ok=True) # for masks Path("/content/TestData/tis").mkdir(parents=True, exist_ok=True) # for tissues bin_p_ts = '/content/TestData/Bin' tis_p_ts = '/content/TestData/tis' #----- # Train # ------# Path("/content/TrainData").mkdir(parents=True, exist_ok=True) Path("/content/TrainData/Bin").mkdir(parents=True, exist_ok=True) # for masks Path("/content/TrainData/tis").mkdir(parents=True, exist_ok=True) # for tissues bin_p_tr = '/content/TrainData/Bin/' tis_p_tr = '/content/TrainData/tis/' #----- # Valid # ------# Path("/content/ValidData").mkdir(parents=True, exist_ok=True) Path("/content/ValidData/Bin").mkdir(parents=True, exist_ok=True) # for masks Path("/content/ValidData/tis").mkdir(parents=True, exist_ok=True) # for tissues bin_p_vl = '/content/ValidData/Bin/' tis_p_vl = '/content/ValidData/tis/' # Give path to your dataset Train_image_path = '/content/drive/MyDrive/intern_pyth/monuseg/TrainData/original_images/' Train_mask_path = '/content/drive/MyDrive/intern_pyth/monuseg/TrainData/Bin/' val_image_path = '/content/drive/MyDrive/intern_pyth/monuseg/ValidData/original_images/' val_mask_path = '/content/drive/MyDrive/intern_pyth/monuseg/ValidData/Bin/' Test_image_path = '/content/drive/MyDrive/intern_pyth/monuseg/TestData/tis/' test_mask_path = '/content/drive/MyDrive/intern_pyth/monuseg/TestData/Bin/' # Give a reference image path for stain normalization reference_image = '/content/drive/MyDrive/intern_pyth/monuseg/TestData/tis/TCGA-21-5784-01Z-00-DX1.tif' # getting the train and test ids train_ids1 = next(os.walk(Train_image_path))[2] train_mask_ids1 = next(os.walk(Train_mask_path))[2] val_ids1 = next(os.walk(val_image_path))[2] val_mask_ids1 = next(os.walk(val_mask_path))[2] test_ids1 = next(os.walk(Test_image_path))[2] test_mask_ids1 = next(os.walk(test_mask_path))[2] # sorting the train and test ids train_ids = sorted(train_ids1,key=lambda x: (os.path.splitext(x)[0])) train_mask_ids = sorted(train_mask_ids1,key=lambda x: (os.path.splitext(x)[0])) test_ids = sorted(test_ids1,key=lambda x: (os.path.splitext(x)[0])) test_mask_ids = sorted(test_mask_ids1,key=lambda x: (os.path.splitext(x)[0])) val_ids = sorted(val_ids1,key=lambda x: (os.path.splitext(x)[0])) val_mask_ids = sorted(val_mask_ids1,key=lambda x: (os.path.splitext(x)[0])) def stain_norm_patch(): def read_image(path): img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # opencv default color space is BGR, change it to RGB p = np.percentile(img, 90) img = np.clip(img * 255.0 / p, 0, 255).astype(np.uint8) return img def vaha(SOURCE_PATH,TARGET_PATH): source_image = read_image(SOURCE_PATH) target_image = read_image(TARGET_PATH) vhd = vahadane(LAMBDA1=0.01, LAMBDA2=0.01, fast_mode=1, getH_mode=0, ITER=50) # vhd.show_config() Ws, Hs = vhd.stain_separate(source_image) vhd.fast_mode=0;vhd.getH_mode=0; Wt, Ht = vhd.stain_separate(target_image) img = vhd.SPCN(source_image, Ws, Hs, Wt, Ht) return img def rein(src): # stain_normalizer 'Vahadane' target_img = reference_image im_nmzd = vaha(src,target_img) return im_nmzd # Get and resize train images and masks def train(): X_train = np.zeros((len(train_ids)*pat, IMG_HEIGHT, IMG_WIDTH, 3), dtype=np.float32) Y_train = np.zeros((len(train_ids)*pat, IMG_HEIGHT, IMG_WIDTH,1), dtype=np.bool) print('stain normalizing and cropping patches of train images and masks ... ') sys.stdout.flush() for n, id_ in tqdm(enumerate(train_ids), total=len(train_ids)): img = rein(Train_image_path + id_) mask_ = cv2.imread(Train_mask_path + (os.path.splitext(id_)[0])+'.png',0) mask_ = np.expand_dims(mask_, -1) temp_list = [] temp_list_mask = [] for i in range (int(math.pow(pat,0.5))): for j in range(int(math.pow(pat,0.5))): if i<(int(math.pow(pat,0.5))-1): if j<(int(math.pow(pat,0.5))-1): crop_img1 = img[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] crop_mask1 = mask_[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] temp_list.append(crop_img1) temp_list_mask.append(crop_mask1) elif j==(int(math.pow(pat,0.5))-1): crop_img2 = img[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] crop_mask2 = mask_[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] temp_list.append(crop_img2) temp_list_mask.append(crop_mask2) elif i==(int(math.pow(pat,0.5))-1): if j<(int(math.pow(pat,0.5))-1): crop_img3 = img[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] crop_mask3 = mask_[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] temp_list.append(crop_img3) temp_list_mask.append(crop_mask3) elif j==(int(math.pow(pat,0.5))-1): crop_img4 = img[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] crop_mask4 = mask_[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] temp_list.append(crop_img4) temp_list_mask.append(crop_mask4) for t in range(0,pat): X_train[n*pat+t] = temp_list[t] Y_train[n*pat+t] = temp_list_mask[t] # mask = np.maximum(mask, mask_) return X_train, Y_train def val(): X_val = np.zeros((len(val_ids)*pat, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS), dtype=np.float32) Y_val = np.zeros((len(val_ids)*pat, IMG_HEIGHT, IMG_WIDTH,1), dtype=np.bool) print('stain normalizing and cropping patches of validation images and masks ... ') sys.stdout.flush() for m, id_ in tqdm(enumerate(val_ids), total=len(val_ids)): val_img = rein(val_image_path + id_) val_mask_ = cv2.imread(val_mask_path + (os.path.splitext(id_)[0])+'.png',0) val_mask_ = np.expand_dims(val_mask_, -1) temp_list = [] temp_list_mask = [] for i in range (int(math.pow(pat,0.5))): for j in range(int(math.pow(pat,0.5))): if i<(int(math.pow(pat,0.5))-1): if j<(int(math.pow(pat,0.5))-1): crop_val_img1 = val_img[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] crop_mask1 = val_mask_[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] temp_list.append(crop_val_img1) temp_list_mask.append(crop_mask1) elif j==(int(math.pow(pat,0.5))-1): crop_val_img2 = val_img[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] crop_mask2 = val_mask_[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] temp_list.append(crop_val_img2) temp_list_mask.append(crop_mask2) elif i==(int(math.pow(pat,0.5))-1): if j<(int(math.pow(pat,0.5))-1): crop_val_img3 = val_img[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] crop_mask3 = val_mask_[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] temp_list.append(crop_val_img3) temp_list_mask.append(crop_mask3) elif j==(int(math.pow(pat,0.5))-1): crop_val_img4 = val_img[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] crop_mask4 = val_mask_[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] temp_list.append(crop_val_img4) temp_list_mask.append(crop_mask4) for t in range(0,pat): X_val[m*pat+t] = temp_list[t] Y_val[m*pat+t] = temp_list_mask[t] # mask = np.maximum(mask, mask_) return X_val, Y_val def test(): X_test = np.zeros((len(test_ids)*pat, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS), dtype=np.float32) Y_test = np.zeros((len(test_ids)*pat, IMG_HEIGHT, IMG_WIDTH,1), dtype=np.bool) print('stain normalizing and cropping patches of test images ... ') sys.stdout.flush() for s, id_ in tqdm(enumerate(test_ids), total=len(test_ids)): img = rein(Test_image_path + id_) test_mask_ = cv2.imread(test_mask_path + (os.path.splitext(id_)[0])+'.png',0) test_mask_ = np.expand_dims(test_mask_, -1) temp_list = [] temp_list_mask = [] for i in range (int(math.pow(pat,0.5))): for j in range(int(math.pow(pat,0.5))): if i<(int(math.pow(pat,0.5))-1): if j<(int(math.pow(pat,0.5))-1): crop_img1 = img[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] crop_mask1 = test_mask_[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] temp_list.append(crop_img1) temp_list_mask.append(crop_mask1) elif j==(int(math.pow(pat,0.5))-1): crop_img2 = img[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] crop_mask2 = test_mask_[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] temp_list.append(crop_img2) temp_list_mask.append(crop_mask2) elif i==(int(math.pow(pat,0.5))-1): if j<(int(math.pow(pat,0.5))-1): crop_img3 = img[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] crop_mask3 = test_mask_[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] temp_list.append(crop_img3) temp_list_mask.append(crop_mask3) elif j==(int(math.pow(pat,0.5))-1): crop_img4 = img[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] crop_mask4 = test_mask_[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] temp_list.append(crop_img4) temp_list_mask.append(crop_mask4) for t in range(0,pat): X_test[s*pat+t] = temp_list[t] Y_test[s*pat+t] = temp_list_mask[t] # mask = np.maximum(mask, mask_) return X_test, Y_test train1 = train() X_train = train1[0] Y_train = train1[1] val1 = val() X_val = val1[0] Y_val = val1[1] test1 = test() X_test = test1[0] Y_test = test1[1] # this will save the stain normalized patches into the created paths above #------------------------#TEST#---------------------------------# for n, id_ in tqdm(enumerate(test_ids), total=len(test_ids)): id_1 = os.path.splitext(id_)[0] for j in range(16): j1 = "{0:0=2d}".format(j) img_t = X_test[n*16+j] imgs_b = Y_test[n*16+j]*255 # img_t = X_test[n] # imgs_b = np.reshape(Y_test[n]*255,(IMG_WIDTH,IMG_HEIGHT)) filename1 = '{}/{}_{}.png'.format(tis_p_ts,id_1,j1) cv2.imwrite(filename1, cv2.cvtColor(img_t, cv2.COLOR_BGR2RGB)) filename2 = '{}/{}_{}.png'.format(bin_p_ts,id_1,j1) cv2.imwrite(filename2, imgs_b) #------------------------#VAL#-------------------------------# for n, id_ in tqdm(enumerate(val_ids), total=len(val_ids)): id_1 = os.path.splitext(id_)[0] for j in range(16): j1 = "{0:0=2d}".format(j) img_t = X_val[n*16+j] imgs_b = Y_val[n*16+j]*255 filename1 = '{}/{}_{}.png'.format(tis_p_vl,id_1,j1) cv2.imwrite(filename1,cv2.cvtColor(img_t, cv2.COLOR_BGR2RGB)) #cv2.cvtColor(img_t, cv2.COLOR_BGR2RGB) filename2 = '{}/{}_{}.png'.format(bin_p_vl,id_1,j1) cv2.imwrite(filename2, imgs_b) #------------------------#TRAIN#-------------------------------# for n, id_ in tqdm(enumerate(train_ids), total=len(train_ids)): id_1 = os.path.splitext(id_)[0] for j in range(16): j1 = "{0:0=2d}".format(j) img_t = X_train[n*16+j] imgs_b = Y_train[n*16+j]*255 filename1 = '{}/{}_{}.png'.format(tis_p_tr,id_1,j1) cv2.imwrite(filename1, cv2.cvtColor(img_t, cv2.COLOR_BGR2RGB)) #cv2.cvtColor(img_t, cv2.COLOR_BGR2RGB) filename2 = '{}/{}_{}.png'.format(bin_p_tr,id_1,j1) cv2.imwrite(filename2, imgs_b) def patch_join(out_im): num_im = len(out_im)//pat num_pat = int(pat**0.5) out_concat = np.zeros((Res_HEIGHT, Res_WIDTH, 1), dtype=np.uint8) # Y_concat = np.zeros((Res_HEIGHT, Res_WIDTH, 1), dtype=np.bool) out_full = np.zeros((num_im,Res_HEIGHT, Res_WIDTH, 1), dtype=np.uint8) # Y_full = np.zeros((num_im,Res_HEIGHT, Res_WIDTH, 1), dtype=np.bool) for k in range(num_im): sec1 = [] y_sec1 = [] for l in range(pat): sec = out_im[k*pat+l] sec1.append(sec) for i in range(int(num_pat)): for j in range(int(num_pat)): if i<num_pat-1: if j<num_pat-1: out_concat[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] = sec1[i*num_pat+j] elif j==num_pat-1: out_concat[i*IMG_HEIGHT:i*IMG_HEIGHT+IMG_HEIGHT, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] = sec1[i*num_pat+j] elif i==num_pat-1: if j<num_pat-1: out_concat[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH:j*IMG_WIDTH+IMG_WIDTH] = sec1[i*num_pat+j] elif j==num_pat-1: out_concat[i*IMG_HEIGHT-24:i*IMG_HEIGHT+IMG_HEIGHT-24, j*IMG_WIDTH-24:j*IMG_WIDTH+IMG_WIDTH-24] = sec1[i*num_pat+j] out_full[k] = out_concat return out_full,test_ids if __name__ == '__main__': stain_norm_patch()
python
from .models import ThingDescription, DirectoryNameToURL, TargetToChildName, TypeToChildrenNames, DynamicAttributes from flask_pymongo import PyMongo mongo = PyMongo() def clear_database() -> None: """Drop collections in the mongodb database in order to initialize it. """ ThingDescription.drop_collection() DirectoryNameToURL.drop_collection() TypeToChildrenNames.drop_collection() TargetToChildName.drop_collection() DynamicAttributes.drop_collection() def init_dir_to_url(level: str) -> None: """Initialize name-to-URL mappings for the current directory using contents specified by 'level' Args: level(str): it specifies the level of current directory """ DirectoryNameToURL.drop_collection() if level == "level1": DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level2a', url='http://localhost:5002', relationship='child').save() DirectoryNameToURL(directory_name='level2b', url='http://localhost:5003', relationship='child').save() elif level == 'level2a': DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level1', url=f'http://localhost:5001', relationship='parent').save() DirectoryNameToURL(directory_name='level3aa', url=f'http://localhost:5004', relationship='child').save() DirectoryNameToURL(directory_name='level3ab', url=f'http://localhost:5005', relationship='child').save() elif level == 'level2b': DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level1', url=f'http://localhost:5001', relationship='parent').save() elif level == 'level3aa': DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level2a', url=f'http://localhost:5002', relationship='parent').save() elif level == 'level3ab': DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level2a', url=f'http://localhost:5002', relationship='parent').save() DirectoryNameToURL(directory_name='level4aba', url=f'http://localhost:5006', relationship='child').save() DirectoryNameToURL(directory_name='level4abb', url=f'http://localhost:5007', relationship='child').save() elif level == 'level4aba': DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level3ab', url=f'http://localhost:5005', relationship='parent').save() elif level == 'level4abb': DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level3ab', url=f'http://localhost:5005', relationship='parent').save() DirectoryNameToURL(directory_name='level5abba', url=f'http://localhost:5008', relationship='child').save() DirectoryNameToURL(directory_name='level5abbb', url=f'http://localhost:5009', relationship='child').save() elif level == 'level5abba': DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level4abb', url=f'http://localhost:5007', relationship='parent').save() elif level == 'level5abbb': DirectoryNameToURL(directory_name='master', url=f'http://localhost:5001', relationship='master').save() DirectoryNameToURL(directory_name='level4abb', url=f'http://localhost:5007', relationship='parent').save() def init_target_to_child_name(level: str) -> None: """Initialize the target-to-child mappings for the current directory Args: level(str): it specifies the level of current directory """ if level == 'level1': TargetToChildName(target_name='level3aa', child_name='level2a').save() TargetToChildName(target_name='level3ab', child_name='level2a').save() TargetToChildName(target_name='level4aba', child_name='level2a').save() TargetToChildName(target_name='level4abb', child_name='level2a').save() TargetToChildName(target_name='level5abba', child_name='level2a').save() TargetToChildName(target_name='level5abbb', child_name='level2a').save() elif level == 'level2a': TargetToChildName(target_name='level4aba', child_name='level3ab').save() TargetToChildName(target_name='level4abb', child_name='level3ab').save() TargetToChildName(target_name='level5abba', child_name='level3ab').save() TargetToChildName(target_name='level5abbb', child_name='level3ab').save() elif level == 'level3ab': TargetToChildName(target_name='level5abba', child_name='level4abb').save() TargetToChildName(target_name='level5abbb', child_name='level4abb').save() else: pass
python
### channel configuration CHANNEL_NAME = 'ThreatWire' CHANNEL_PLAYLIST_ID = 'PLW5y1tjAOzI0Sx4UU2fncEwQ9BQLr5Vlu' ITEMS_TO_SCAN = 5 FG_YOUTUBE = 'https://www.youtube.com/channel/UC3s0BtrBJpwNDaflRSoiieQ' # channel link FG_AUTHOR = {'name':'Shannon Morse','email':'[email protected]'} ### data storage and history ITEMS_TO_KEEP = 25 HISTORY_JSON = 'history.json' PODCAST_FILE = 'podcast.rss' ### web hosting WEB_HOST_DIRECTORY = '/var/www/html/ytp' WEB_BASE_URL = 'http://10.0.1.25/ytp/' ### api stuff API_KEY = 'insert your api key here so you won’t get rate-limited' API_PLAYLIST_URL = 'https://www.googleapis.com/youtube/v3/playlistItems?key={}&part=snippet&contentDetails&status&maxResults={}&playlistId={}' ### other config items REFRESH_TIME = 7200 # in seconds, this is 2 hours FFMPEG_CMD = 'ffmpeg -i {} -b:a 192K -vn {}' TEMP_DIRECTORY = '/tmp/yt-podcast/'
python
import cv2 import numpy as np import core.image as im import core.hc_extender as hc_ext import matplotlib.pyplot as plt from drawnow import drawnow def trans(img, hcc): ''' trans(img, hcc): 2D to 1D Transformed by Hilbert Curve img <-- nxn matrix hcc <-- Hibert curve coordinate with order k k <-- 4^log2(n) or nxn, length of hcc ''' result = [] k = len(hcc) for i in np.arange(k): (x, y) = hcc[i] try: val_img = img[x][y] result.append(val_img) except IndexError: continue return result def _change_scale(value): global d_scale d_scale = value def _change_sigma(value): global d_sigma d_sigma = value def _change_lambda(value): global d_lambda d_lambda = value def _change_theta(value): global d_theta d_theta = value def _change_gamma(value): global d_gamma d_gamma = value def plot_feature(): plt.plot(vhc) # Initialization img_path = 'data/kaggle_3m/TCGA_CS_4941_19960909/TCGA_CS_4941_19960909_12.tif' imgs = im.getImage(img_path, display=False) d_scale = 9 d_sigma = 3 d_lambda = 8 d_gamma = 1 d_theta = 180 vhc = [] global_img = imgs[1] (w, h) = imgs[1].shape if __name__ == "__main__": # Setting GUI cv2.namedWindow('Original Image') cv2.imshow('Original Image', imgs[1]) # Window A cv2.namedWindow('A') cv2.createTrackbar('Scale', 'A', d_scale, 128, _change_scale) cv2.createTrackbar('Sigma', 'A', d_sigma, 20, _change_sigma) cv2.createTrackbar('Lambda', 'A', d_lambda, 100, _change_lambda) cv2.createTrackbar('Theta', 'A', d_theta, 360, _change_theta) cv2.createTrackbar('Gamma', 'A', d_gamma, 100, _change_gamma) # Pyramids Image pyr_imgs = im.multiPyrDown(global_img, debug=True) # Get Hilbert Curve Coordinate with Order k k = int(np.log2(global_img.shape[0])) hcc = hc_ext.get_hc_index(order=k) print('Hilbert Curve Order', k) print('Current Mod Img shape:', global_img.shape) while True: # Get Kernal gabor_k = cv2.getGaborKernel((d_scale, d_scale), d_sigma, d_theta, d_lambda, d_gamma, 0, ktype=cv2.CV_32F) # Filtering global_img = cv2.filter2D(pyr_imgs[3], -1, gabor_k) # VHC <-- Vector of Hilbert Curve vhc = trans(global_img, hcc) # Display an image and Plotting graph cv2.imshow('A', global_img) drawnow(plot_feature) # Key controller key = cv2.waitKey(1) & 0xff if key == 27: print("End Application") break
python
"""Base OAuthBackend with token and session validators.""" from typing import List, Optional from fastapi.security import OAuth2 from starlette.authentication import AuthCredentials, AuthenticationBackend, UnauthenticatedUser from starlette.requests import Request from fastapi_aad_auth._base.state import AuthenticationState from fastapi_aad_auth._base.validators import SessionValidator, TokenValidator, Validator from fastapi_aad_auth.mixins import LoggingMixin, NotAuthenticatedMixin from fastapi_aad_auth.utilities import deprecate class BaseOAuthBackend(NotAuthenticatedMixin, LoggingMixin, AuthenticationBackend): """Base OAuthBackend with token and session validators.""" def __init__(self, validators: List[Validator], enabled: bool = True): """Initialise the validators.""" super().__init__() self.enabled = enabled self.validators = validators[:] async def authenticate(self, request): """Authenticate a request. Required by starlette authentication middleware """ state = self.check(request, allow_session=True) if state is None: return AuthCredentials([]), UnauthenticatedUser() return state.credentials, state.authenticated_user def is_authenticated(self, request: Request): """Check if a request is authenticated.""" state = self.check(request, allow_session=True) return state is not None and state.is_authenticated() async def __call__(self, request: Request) -> Optional[AuthenticationState]: """Check/validate a request.""" return self.check(request) def check(self, request: Request, allow_session=True) -> Optional[AuthenticationState]: """Check/validate a request.""" state = None for validator in self.validators: if not allow_session and isinstance(validator, SessionValidator): self.logger.info('Skipping Session Validator as allow_session is False') continue state = validator.check(request) self.logger.debug(f'Authentication state {state} from validator {validator}') if state is not None and state.is_authenticated(): break self.logger.info(f'Identified state {state}') return state def _iter_validators(self): """Iterate over authentication validators.""" for validator in self.validators: yield validator def requires_auth(self, allow_session: bool = False): """Require authentication, use with fastapi Depends.""" # This is a bit horrible, but is needed for fastapi to get this into OpenAPI (or similar) - it needs to be an OAuth2 object # We create this here "dynamically" for each endpoint, as we allow customisation on whether a session is permissible if self.enabled: class OAuthValidator(OAuth2): """OAuthValidator for API Auth.""" def __init__(self_): """Initialise the validator.""" token_validators = [u for u in self.validators if isinstance(u, TokenValidator)] super().__init__(flows=token_validators[0].model.flows) async def __call__(self_, request: Request): """Validate a request.""" state = self.check(request, allow_session) if state is None or not state.is_authenticated(): raise self.not_authenticated return state return OAuthValidator() else: def noauth(request: Request): return AuthenticationState() return noauth @property # type: ignore @deprecate('0.2.0', replaced_by=f'{__name__}:BaseOAuthBackend.requires_auth') def api_auth_scheme(self): """Get the API Authentication Schema.""" return self.requires_auth()
python
""" Hello World """ from .agents import * from .app import * from .core import * from .renderers import * from .sims import * from .simulation import * from .styles import * from .sys import *
python
from asmpatch.batchbuilder import BatchBuilder from asmpatch.util import TemporyFolderBuilder import os os.makedirs("./build", exist_ok=True) import subprocess #TODO: cache, autofind, config file batch = BatchBuilder() batch.set_end_offset(int("805954bc", 16)) #TODO: auto find end offset via elf file. Also auto add the linker file gcc_path = subprocess.check_output(["nix-build", "<nixpkgs>", "-A", "pkgs.pkgsCross.ppc-embedded.buildPackages.gcc", "--no-out-link"], encoding="ascii").split("\n")[0] # something like /nix/store/ps6pvl36wzsdcibxkyxm8wiy5qxkx87p-powerpc-none-eabi-stage-final-gcc-debug-wrapper-9.3.0, contain bin/powerpc-none-eabi-* files batch.with_gcc_path(gcc_path) batch.with_linker_file("patches/spyro06_ntsc.ld") tmp_folder = TemporyFolderBuilder() tmp_folder.set_keep_folder(True) batch.with_tmp_builder(tmp_folder) #for name in [ "remove_optimization_for_freecam_ntsc", "change_rot_charge_speed", "include_cpp"]: for name in [ "rainbow_flame" ]: batch.with_patch("./patches/{}.asm".format(name), "./build/{}_diff.txt".format(name)) print("generating ...") batch.execute() print("done !")
python
import unittest from jpake.tests import test_jpake from jpake.tests import test_parameters loader = unittest.TestLoader() suite = unittest.TestSuite(( loader.loadTestsFromModule(test_jpake), loader.loadTestsFromModule(test_parameters), ))
python
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python.framework import graph_util from tensorflow.python.platform import gfile tf.logging.set_verbosity(tf.logging.ERROR) mnist = input_data.read_data_sets("./MNIST_data/", one_hot=True) learning_rate = 0.001 training_epochs = 20 batch_size = 100 # MODEL CONFiGURATI X = tf.placeholder(tf.float32, [None, 28, 28, 1], name='data') Y = tf.placeholder(tf.float32, [None, 10]) # tf.placeholder # shape [None, 28, 28, 1] None 은 크기가 정해지지 않음, input 크기에 따라 유동적으로 할당 conv1 = tf.layers.conv2d(X, 10, [3, 3], padding='same', activation=tf.nn.relu) # tf.layers.conv2d(X,10, [3,3], padding ='same', activation=tf.nn.relu) # X 이미지 입력으로 받아서 3,3 커널이 가로 세로 3칸씩 이동하면서 출력으로 10개의 체널을 relu activation을 걸치게 된다. pool1 = tf.layers.max_pooling2d(conv1, [2, 2], strides=2, padding='same') # conv1의 이미지를 받아서 [2,2] 사이지의 풀링 커널이 사로 세로 2칸씩 이동하면서 # padding=same 특정맵의 크기를 동일하게 하기 위해 주위에 0으로 패딩하는 방법 # 패딩 없이 순수한 입력 배열만 활용하여 맵을 만드는 경우를 vaild padding # 패딩을 함으로서 모서리의 중요한 정보를 놓치지 않기 위해서 보통을 SAME 패딩을 많이 사용한다 conv2 = tf.layers.conv2d(pool1, 20, [3, 3], padding='same', activation=tf.nn.relu) pool2 = tf.layers.max_pooling2d(conv2, [2, 2], strides=2, padding='same') fc1 = tf.contrib.layers.flatten(pool2) fc2 = tf.layers.dense(fc1, 200, activation=tf.nn.relu) logits = tf.layers.dense(fc2, 10, activation=None) output = tf.nn.softmax(logits, name='prob') cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=logits)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # # Training # sess = tf.Session() sess.run(tf.global_variables_initializer()) total_batch = int(mnist.train.num_examples / batch_size) print('Start learning!') for epoch in range(training_epochs): total_cost = 0 for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) batch_xs = batch_xs.reshape(-1, 28, 28, 1) _, cost_val = sess.run([optimizer, cost], feed_dict={X: batch_xs, Y: batch_ys}) total_cost += cost_val print('Epoch: {0}, Avg. Cost = {1:.4f}'.format(epoch + 1, total_cost/total_batch)) print('Learning finished!') # Test the results is_correct = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1)) acc = tf.reduce_mean(tf.cast(is_correct, tf.float32)) accuracy = sess.run(acc, feed_dict={ X: mnist.test.images.reshape(-1, 28, 28, 1), Y: mnist.test.labels}) print('Test Accuracy:', accuracy) # Freeze variables and save pb file output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['prob']) with gfile.FastGFile('./mnist_cnn.pb', 'wb') as f: f.write(output_graph_def.SerializeToString()) print('mnist_cnn.pb file is created successfully!!')
python
from pathlib import Path from mmvae_hub.utils.setup.flags_utils import BaseFlagsSetup from mmvae_hub.base.BaseFlags import parser as parser # DATASET NAME parser.add_argument('--exp_str_prefix', type=str, default='mnistsvhntext', help="prefix of the experiment directory.") # DATA DEPENDENT # to be set by experiments themselves parser.add_argument('--style_m1_dim', type=int, default=0, help="dimension of varying factor latent space") parser.add_argument('--style_m2_dim', type=int, default=0, help="dimension of varying factor latent space") parser.add_argument('--style_m3_dim', type=int, default=0, help="dimension of varying factor latent space") parser.add_argument('--len_sequence', type=int, default=8, help="length of sequence") parser.add_argument('--num_classes', type=int, default=10, help="number of classes on which the data set trained") parser.add_argument('--dim', type=int, default=64, help="number of classes on which the data set trained") parser.add_argument('--data_multiplications', type=int, default=20, help="number of pairs per sample") parser.add_argument('--num_hidden_layers', type=int, default=1, help="number of channels in images") parser.add_argument('--likelihood_m1', type=str, default='laplace', help="output distribution") parser.add_argument('--likelihood_m2', type=str, default='laplace', help="output distribution") parser.add_argument('--likelihood_m3', type=str, default='categorical', help="output distribution") # SAVE and LOAD # to bet set by experiments themselves parser.add_argument('--encoder_save_m1', type=str, default='encoderM1', help="model save for encoder") parser.add_argument('--encoder_save_m2', type=str, default='encoderM2', help="model save for encoder") parser.add_argument('--encoder_save_m3', type=str, default='encoderM3', help="model save for decoder") parser.add_argument('--decoder_save_m1', type=str, default='decoderM1', help="model save for decoder") parser.add_argument('--decoder_save_m2', type=str, default='decoderM2', help="model save for decoder") parser.add_argument('--decoder_save_m3', type=str, default='decoderM3', help="model save for decoder") parser.add_argument('--clf_save_m1', type=str, default='clf_m1', help="model save for clf") parser.add_argument('--clf_save_m2', type=str, default='clf_m2', help="model save for clf") parser.add_argument('--clf_save_m3', type=str, default='clf_m3', help="model save for clf") # LOSS TERM WEIGHTS parser.add_argument('--beta_m1_style', type=float, default=1.0, help="default weight divergence term style modality 1") parser.add_argument('--beta_m2_style', type=float, default=1.0, help="default weight divergence term style modality 2") parser.add_argument('--beta_m3_style', type=float, default=1.0, help="default weight divergence term style modality 2") parser.add_argument('--div_weight_m1_content', type=float, default=0.25, help="default weight divergence term content modality 1") parser.add_argument('--div_weight_m2_content', type=float, default=0.25, help="default weight divergence term content modality 2") parser.add_argument('--div_weight_m3_content', type=float, default=0.25, help="default weight divergence term content modality 2") parser.add_argument('--div_weight_uniform_content', type=float, default=0.25, help="default weight divergence term prior") class mnistsvhntextFlagsSetup(BaseFlagsSetup): def __init__(self, config_path: Path): super().__init__(config_path) self.parser = parser def flags_set_alpha_modalities(self, flags): flags.alpha_modalities = [flags.div_weight_uniform_content, flags.div_weight_m1_content, flags.div_weight_m2_content, flags.div_weight_m3_content] return flags
python
from .. import db, flask_bcrypt class Company(db.Model): """User Model for storing user related details""" __tablename__ = "companies" id = db.Column(db.Integer, primary_key=True, autoincrement=True) name = db.Column(db.String(255), unique=False, nullable=False) address = db.Column(db.String(255), nullable=False) city = db.Column(db.String(255), nullable=False) state = db.Column(db.String(255), nullable=False) zip = db.Column(db.String(255), nullable=False) registration_number = db.Column(db.String(255), nullable=False) registration_court = db.Column(db.String(255), nullable=False) vat_number = db.Column(db.String(255), nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) def __repr__(self): return "<Company '{}'>".format(self.name)
python
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import functools import logging import os import shutil import signal import tempfile import threading import time import psutil from helpers import (unittest, with_config, skipOnTravis, LuigiTestCase, temporary_unloaded_module) import luigi.notifications import luigi.task_register import luigi.worker import mock from luigi import ExternalTask, RemoteScheduler, Task, Event from luigi.mock import MockTarget, MockFileSystem from luigi.scheduler import Scheduler from luigi.worker import Worker from luigi.rpc import RPCError from luigi import six from luigi.cmdline import luigi_run luigi.notifications.DEBUG = True class DummyTask(Task): def __init__(self, *args, **kwargs): super(DummyTask, self).__init__(*args, **kwargs) self.has_run = False def complete(self): return self.has_run def run(self): logging.debug("%s - setting has_run", self) self.has_run = True class DynamicDummyTask(Task): p = luigi.Parameter() def output(self): return luigi.LocalTarget(self.p) def run(self): with self.output().open('w') as f: f.write('Done!') time.sleep(0.5) # so we can benchmark & see if parallelization works class DynamicDummyTaskWithNamespace(DynamicDummyTask): task_namespace = 'banana' class DynamicRequires(Task): p = luigi.Parameter() use_banana_task = luigi.BoolParameter(default=False) def output(self): return luigi.LocalTarget(os.path.join(self.p, 'parent')) def run(self): if self.use_banana_task: task_cls = DynamicDummyTaskWithNamespace else: task_cls = DynamicDummyTask dummy_targets = yield [task_cls(os.path.join(self.p, str(i))) for i in range(5)] dummy_targets += yield [task_cls(os.path.join(self.p, str(i))) for i in range(5, 7)] with self.output().open('w') as f: for i, d in enumerate(dummy_targets): for line in d.open('r'): print('%d: %s' % (i, line.strip()), file=f) class DynamicRequiresOtherModule(Task): p = luigi.Parameter() def output(self): return luigi.LocalTarget(os.path.join(self.p, 'baz')) def run(self): import other_module other_target_foo = yield other_module.OtherModuleTask(os.path.join(self.p, 'foo')) # NOQA other_target_bar = yield other_module.OtherModuleTask(os.path.join(self.p, 'bar')) # NOQA with self.output().open('w') as f: f.write('Done!') class DummyErrorTask(Task): retry_index = 0 def run(self): self.retry_index += 1 raise Exception("Retry index is %s for %s" % (self.retry_index, self.task_family)) class WorkerTest(LuigiTestCase): def run(self, result=None): self.sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) self.time = time.time with Worker(scheduler=self.sch, worker_id='X') as w, Worker(scheduler=self.sch, worker_id='Y') as w2: self.w = w self.w2 = w2 super(WorkerTest, self).run(result) if time.time != self.time: time.time = self.time def setTime(self, t): time.time = lambda: t def test_dep(self): class A(Task): def run(self): self.has_run = True def complete(self): return self.has_run a = A() class B(Task): def requires(self): return a def run(self): self.has_run = True def complete(self): return self.has_run b = B() a.has_run = False b.has_run = False self.assertTrue(self.w.add(b)) self.assertTrue(self.w.run()) self.assertTrue(a.has_run) self.assertTrue(b.has_run) def test_external_dep(self): class A(ExternalTask): def complete(self): return False a = A() class B(Task): def requires(self): return a def run(self): self.has_run = True def complete(self): return self.has_run b = B() a.has_run = False b.has_run = False self.assertTrue(self.w.add(b)) self.assertTrue(self.w.run()) self.assertFalse(a.has_run) self.assertFalse(b.has_run) def test_externalized_dep(self): class A(Task): has_run = False def run(self): self.has_run = True def complete(self): return self.has_run a = A() class B(A): def requires(self): return luigi.task.externalize(a) b = B() self.assertTrue(self.w.add(b)) self.assertTrue(self.w.run()) self.assertFalse(a.has_run) self.assertFalse(b.has_run) def test_legacy_externalized_dep(self): class A(Task): has_run = False def run(self): self.has_run = True def complete(self): return self.has_run a = A() a.run = NotImplemented class B(A): def requires(self): return a b = B() self.assertTrue(self.w.add(b)) self.assertTrue(self.w.run()) self.assertFalse(a.has_run) self.assertFalse(b.has_run) def test_type_error_in_tracking_run_deprecated(self): class A(Task): num_runs = 0 def complete(self): return False def run(self, tracking_url_callback=None): self.num_runs += 1 raise TypeError('bad type') a = A() self.assertTrue(self.w.add(a)) self.assertFalse(self.w.run()) # Should only run and fail once, not retry because of the type error self.assertEqual(1, a.num_runs) def test_tracking_url(self): tracking_url = 'http://test_url.com/' class A(Task): has_run = False def complete(self): return self.has_run def run(self): self.set_tracking_url(tracking_url) self.has_run = True a = A() self.assertTrue(self.w.add(a)) self.assertTrue(self.w.run()) tasks = self.sch.task_list('DONE', '') self.assertEqual(1, len(tasks)) self.assertEqual(tracking_url, tasks[a.task_id]['tracking_url']) def test_fail(self): class CustomException(BaseException): def __init__(self, msg): self.msg = msg class A(Task): def run(self): self.has_run = True raise CustomException('bad things') def complete(self): return self.has_run a = A() class B(Task): def requires(self): return a def run(self): self.has_run = True def complete(self): return self.has_run b = B() a.has_run = False b.has_run = False self.assertTrue(self.w.add(b)) self.assertFalse(self.w.run()) self.assertTrue(a.has_run) self.assertFalse(b.has_run) def test_unknown_dep(self): # see related test_remove_dep test (grep for it) class A(ExternalTask): def complete(self): return False class C(Task): def complete(self): return True def get_b(dep): class B(Task): def requires(self): return dep def run(self): self.has_run = True def complete(self): return False b = B() b.has_run = False return b b_a = get_b(A()) b_c = get_b(C()) self.assertTrue(self.w.add(b_a)) # So now another worker goes in and schedules C -> B # This should remove the dep A -> B but will screw up the first worker self.assertTrue(self.w2.add(b_c)) self.assertFalse(self.w.run()) # should not run anything - the worker should detect that A is broken self.assertFalse(b_a.has_run) # not sure what should happen?? # self.w2.run() # should run B since C is fulfilled # self.assertTrue(b_c.has_run) def test_unfulfilled_dep(self): class A(Task): def complete(self): return self.done def run(self): self.done = True def get_b(a): class B(A): def requires(self): return a b = B() b.done = False a.done = True return b a = A() b = get_b(a) self.assertTrue(self.w.add(b)) a.done = False self.w.run() self.assertTrue(a.complete()) self.assertTrue(b.complete()) def test_gets_missed_work(self): class A(Task): done = False def complete(self): return self.done def run(self): self.done = True a = A() self.assertTrue(self.w.add(a)) # simulate a missed get_work response self.assertEqual(a.task_id, self.sch.get_work(worker='X')['task_id']) self.assertTrue(self.w.run()) self.assertTrue(a.complete()) def test_avoid_infinite_reschedule(self): class A(Task): def complete(self): return False class B(Task): def complete(self): return False def requires(self): return A() self.assertTrue(self.w.add(B())) self.assertFalse(self.w.run()) def test_fails_registering_signal(self): with mock.patch('luigi.worker.signal', spec=['signal']): # mock will raise an attribute error getting signal.SIGUSR1 Worker() def test_allow_reschedule_with_many_missing_deps(self): class A(Task): """ Task that must run twice to succeed """ i = luigi.IntParameter() runs = 0 def complete(self): return self.runs >= 2 def run(self): self.runs += 1 class B(Task): done = False def requires(self): return map(A, range(20)) def complete(self): return self.done def run(self): self.done = True b = B() w = Worker(scheduler=self.sch, worker_id='X', max_reschedules=1) self.assertTrue(w.add(b)) self.assertFalse(w.run()) # For b to be done, we must have rescheduled its dependencies to run them twice self.assertTrue(b.complete()) self.assertTrue(all(a.complete() for a in b.deps())) def test_interleaved_workers(self): class A(DummyTask): pass a = A() class B(DummyTask): def requires(self): return a ExternalB = luigi.task.externalize(B) b = B() eb = ExternalB() self.assertEqual(str(eb), "B()") sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) with Worker(scheduler=sch, worker_id='X') as w, Worker(scheduler=sch, worker_id='Y') as w2: self.assertTrue(w.add(b)) self.assertTrue(w2.add(eb)) logging.debug("RUNNING BROKEN WORKER") self.assertTrue(w2.run()) self.assertFalse(a.complete()) self.assertFalse(b.complete()) logging.debug("RUNNING FUNCTIONAL WORKER") self.assertTrue(w.run()) self.assertTrue(a.complete()) self.assertTrue(b.complete()) def test_interleaved_workers2(self): # two tasks without dependencies, one external, one not class B(DummyTask): pass ExternalB = luigi.task.externalize(B) b = B() eb = ExternalB() self.assertEqual(str(eb), "B()") sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) with Worker(scheduler=sch, worker_id='X') as w, Worker(scheduler=sch, worker_id='Y') as w2: self.assertTrue(w2.add(eb)) self.assertTrue(w.add(b)) self.assertTrue(w2.run()) self.assertFalse(b.complete()) self.assertTrue(w.run()) self.assertTrue(b.complete()) def test_interleaved_workers3(self): class A(DummyTask): def run(self): logging.debug('running A') time.sleep(0.1) super(A, self).run() a = A() class B(DummyTask): def requires(self): return a def run(self): logging.debug('running B') super(B, self).run() b = B() sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) with Worker(scheduler=sch, worker_id='X', keep_alive=True, count_uniques=True) as w: with Worker(scheduler=sch, worker_id='Y', keep_alive=True, count_uniques=True, wait_interval=0.1, wait_jitter=0.05) as w2: self.assertTrue(w.add(a)) self.assertTrue(w2.add(b)) threading.Thread(target=w.run).start() self.assertTrue(w2.run()) self.assertTrue(a.complete()) self.assertTrue(b.complete()) def test_die_for_non_unique_pending(self): class A(DummyTask): def run(self): logging.debug('running A') time.sleep(0.1) super(A, self).run() a = A() class B(DummyTask): def requires(self): return a def run(self): logging.debug('running B') super(B, self).run() b = B() sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) with Worker(scheduler=sch, worker_id='X', keep_alive=True, count_uniques=True) as w: with Worker(scheduler=sch, worker_id='Y', keep_alive=True, count_uniques=True, wait_interval=0.1, wait_jitter=0.05) as w2: self.assertTrue(w.add(b)) self.assertTrue(w2.add(b)) self.assertEqual(w._get_work()[0], a.task_id) self.assertTrue(w2.run()) self.assertFalse(a.complete()) self.assertFalse(b.complete()) def test_complete_exception(self): "Tests that a task is still scheduled if its sister task crashes in the complete() method" class A(DummyTask): def complete(self): raise Exception("doh") a = A() class C(DummyTask): pass c = C() class B(DummyTask): def requires(self): return a, c b = B() sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) with Worker(scheduler=sch, worker_id="foo") as w: self.assertFalse(w.add(b)) self.assertTrue(w.run()) self.assertFalse(b.has_run) self.assertTrue(c.has_run) self.assertFalse(a.has_run) def test_requires_exception(self): class A(DummyTask): def requires(self): raise Exception("doh") a = A() class D(DummyTask): pass d = D() class C(DummyTask): def requires(self): return d c = C() class B(DummyTask): def requires(self): return c, a b = B() sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) with Worker(scheduler=sch, worker_id="foo") as w: self.assertFalse(w.add(b)) self.assertTrue(w.run()) self.assertFalse(b.has_run) self.assertTrue(c.has_run) self.assertTrue(d.has_run) self.assertFalse(a.has_run) def test_run_csv_batch_job(self): completed = set() class CsvBatchJob(luigi.Task): values = luigi.parameter.Parameter(batch_method=','.join) has_run = False def run(self): completed.update(self.values.split(',')) self.has_run = True def complete(self): return all(value in completed for value in self.values.split(',')) tasks = [CsvBatchJob(str(i)) for i in range(10)] for task in tasks: self.assertTrue(self.w.add(task)) self.assertTrue(self.w.run()) for task in tasks: self.assertTrue(task.complete()) self.assertFalse(task.has_run) def test_run_max_batch_job(self): completed = set() class MaxBatchJob(luigi.Task): value = luigi.IntParameter(batch_method=max) has_run = False def run(self): completed.add(self.value) self.has_run = True def complete(self): return any(self.value <= ran for ran in completed) tasks = [MaxBatchJob(i) for i in range(10)] for task in tasks: self.assertTrue(self.w.add(task)) self.assertTrue(self.w.run()) for task in tasks: self.assertTrue(task.complete()) # only task number 9 should run self.assertFalse(task.has_run and task.value < 9) def test_run_batch_job_unbatched(self): completed = set() class MaxNonBatchJob(luigi.Task): value = luigi.IntParameter(batch_method=max) has_run = False batchable = False def run(self): completed.add(self.value) self.has_run = True def complete(self): return self.value in completed tasks = [MaxNonBatchJob((i,)) for i in range(10)] for task in tasks: self.assertTrue(self.w.add(task)) self.assertTrue(self.w.run()) for task in tasks: self.assertTrue(task.complete()) self.assertTrue(task.has_run) def test_run_batch_job_limit_batch_size(self): completed = set() runs = [] class CsvLimitedBatchJob(luigi.Task): value = luigi.parameter.Parameter(batch_method=','.join) has_run = False max_batch_size = 4 def run(self): completed.update(self.value.split(',')) runs.append(self) def complete(self): return all(value in completed for value in self.value.split(',')) tasks = [CsvLimitedBatchJob(str(i)) for i in range(11)] for task in tasks: self.assertTrue(self.w.add(task)) self.assertTrue(self.w.run()) for task in tasks: self.assertTrue(task.complete()) self.assertEqual(3, len(runs)) def test_fail_max_batch_job(self): class MaxBatchFailJob(luigi.Task): value = luigi.IntParameter(batch_method=max) has_run = False def run(self): self.has_run = True assert False def complete(self): return False tasks = [MaxBatchFailJob(i) for i in range(10)] for task in tasks: self.assertTrue(self.w.add(task)) self.assertFalse(self.w.run()) for task in tasks: # only task number 9 should run self.assertFalse(task.has_run and task.value < 9) self.assertEqual({task.task_id for task in tasks}, set(self.sch.task_list('FAILED', ''))) def test_gracefully_handle_batch_method_failure(self): class BadBatchMethodTask(DummyTask): priority = 10 batch_int_param = luigi.IntParameter(batch_method=int.__add__) # should be sum bad_tasks = [BadBatchMethodTask(i) for i in range(5)] good_tasks = [DummyTask()] all_tasks = good_tasks + bad_tasks self.assertFalse(any(task.complete() for task in all_tasks)) worker = Worker(scheduler=Scheduler(retry_count=1), keep_alive=True) for task in all_tasks: self.assertTrue(worker.add(task)) self.assertFalse(worker.run()) self.assertFalse(any(task.complete() for task in bad_tasks)) # we only get to run the good task if the bad task failures were handled gracefully self.assertTrue(all(task.complete() for task in good_tasks)) def test_post_error_message_for_failed_batch_methods(self): class BadBatchMethodTask(DummyTask): batch_int_param = luigi.IntParameter(batch_method=int.__add__) # should be sum tasks = [BadBatchMethodTask(1), BadBatchMethodTask(2)] for task in tasks: self.assertTrue(self.w.add(task)) self.assertFalse(self.w.run()) failed_ids = set(self.sch.task_list('FAILED', '')) self.assertEqual({task.task_id for task in tasks}, failed_ids) self.assertTrue(all(self.sch.fetch_error(task_id)['error'] for task_id in failed_ids)) class WorkerKeepAliveTests(LuigiTestCase): def setUp(self): self.sch = Scheduler() super(WorkerKeepAliveTests, self).setUp() def _worker_keep_alive_test(self, first_should_live, second_should_live, task_status=None, **worker_args): worker_args.update({ 'scheduler': self.sch, 'worker_processes': 0, 'wait_interval': 0.01, 'wait_jitter': 0.0, }) w1 = Worker(worker_id='w1', **worker_args) w2 = Worker(worker_id='w2', **worker_args) with w1 as worker1, w2 as worker2: worker1.add(DummyTask()) t1 = threading.Thread(target=worker1.run) t1.start() worker2.add(DummyTask()) t2 = threading.Thread(target=worker2.run) t2.start() if task_status: self.sch.add_task(worker='DummyWorker', task_id=DummyTask().task_id, status=task_status) # allow workers to run their get work loops a few times time.sleep(0.1) try: self.assertEqual(first_should_live, t1.isAlive()) self.assertEqual(second_should_live, t2.isAlive()) finally: # mark the task done so the worker threads will die self.sch.add_task(worker='DummyWorker', task_id=DummyTask().task_id, status='DONE') t1.join() t2.join() def test_no_keep_alive(self): self._worker_keep_alive_test( first_should_live=False, second_should_live=False, ) def test_keep_alive(self): self._worker_keep_alive_test( first_should_live=True, second_should_live=True, keep_alive=True, ) def test_keep_alive_count_uniques(self): self._worker_keep_alive_test( first_should_live=False, second_should_live=False, keep_alive=True, count_uniques=True, ) def test_keep_alive_count_last_scheduled(self): self._worker_keep_alive_test( first_should_live=False, second_should_live=True, keep_alive=True, count_last_scheduled=True, ) def test_keep_alive_through_failure(self): self._worker_keep_alive_test( first_should_live=True, second_should_live=True, keep_alive=True, task_status='FAILED', ) def test_do_not_keep_alive_through_disable(self): self._worker_keep_alive_test( first_should_live=False, second_should_live=False, keep_alive=True, task_status='DISABLED', ) class WorkerInterruptedTest(unittest.TestCase): def setUp(self): self.sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) requiring_sigusr = unittest.skipUnless(hasattr(signal, 'SIGUSR1'), 'signal.SIGUSR1 not found on this system') def _test_stop_getting_new_work(self, worker): d = DummyTask() with worker: worker.add(d) # For assistant its ok that other tasks add it self.assertFalse(d.complete()) worker.handle_interrupt(signal.SIGUSR1, None) worker.run() self.assertFalse(d.complete()) @requiring_sigusr def test_stop_getting_new_work(self): self._test_stop_getting_new_work( Worker(scheduler=self.sch)) @requiring_sigusr def test_stop_getting_new_work_assistant(self): self._test_stop_getting_new_work( Worker(scheduler=self.sch, keep_alive=False, assistant=True)) @requiring_sigusr def test_stop_getting_new_work_assistant_keep_alive(self): self._test_stop_getting_new_work( Worker(scheduler=self.sch, keep_alive=True, assistant=True)) def test_existence_of_disabling_option(self): # any code equivalent of `os.kill(os.getpid(), signal.SIGUSR1)` # seem to give some sort of a "InvocationError" Worker(no_install_shutdown_handler=True) @with_config({"worker": {"no_install_shutdown_handler": "True"}}) def test_can_run_luigi_in_thread(self): class A(DummyTask): pass task = A() # Note that ``signal.signal(signal.SIGUSR1, fn)`` can only be called in the main thread. # So if we do not disable the shutdown handler, this would fail. t = threading.Thread(target=lambda: luigi.build([task], local_scheduler=True)) t.start() t.join() self.assertTrue(task.complete()) class WorkerDisabledTest(LuigiTestCase): def make_sch(self): return Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) def _test_stop_getting_new_work_build(self, sch, worker): """ I got motivated to create this test case when I saw that the execution_summary crashed after my first attemted solution. """ class KillWorkerTask(luigi.Task): did_actually_run = False def run(self): sch.disable_worker('my_worker_id') KillWorkerTask.did_actually_run = True class Factory(object): def create_local_scheduler(self, *args, **kwargs): return sch def create_worker(self, *args, **kwargs): return worker luigi.build([KillWorkerTask()], worker_scheduler_factory=Factory(), local_scheduler=True) self.assertTrue(KillWorkerTask.did_actually_run) def _test_stop_getting_new_work_manual(self, sch, worker): d = DummyTask() with worker: worker.add(d) # For assistant its ok that other tasks add it self.assertFalse(d.complete()) sch.disable_worker('my_worker_id') worker.run() # Note: Test could fail by hanging on this line self.assertFalse(d.complete()) def _test_stop_getting_new_work(self, **worker_kwargs): worker_kwargs['worker_id'] = 'my_worker_id' sch = self.make_sch() worker_kwargs['scheduler'] = sch self._test_stop_getting_new_work_manual(sch, Worker(**worker_kwargs)) sch = self.make_sch() worker_kwargs['scheduler'] = sch self._test_stop_getting_new_work_build(sch, Worker(**worker_kwargs)) def test_stop_getting_new_work_keep_alive(self): self._test_stop_getting_new_work(keep_alive=True, assistant=False) def test_stop_getting_new_work_assistant(self): self._test_stop_getting_new_work(keep_alive=False, assistant=True) def test_stop_getting_new_work_assistant_keep_alive(self): self._test_stop_getting_new_work(keep_alive=True, assistant=True) class DynamicDependenciesTest(unittest.TestCase): n_workers = 1 timeout = float('inf') def setUp(self): self.p = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.p) def test_dynamic_dependencies(self, use_banana_task=False): t0 = time.time() t = DynamicRequires(p=self.p, use_banana_task=use_banana_task) luigi.build([t], local_scheduler=True, workers=self.n_workers) self.assertTrue(t.complete()) # loop through output and verify with t.output().open('r') as f: for i in range(7): self.assertEqual(f.readline().strip(), '%d: Done!' % i) self.assertTrue(time.time() - t0 < self.timeout) def test_dynamic_dependencies_with_namespace(self): self.test_dynamic_dependencies(use_banana_task=True) def test_dynamic_dependencies_other_module(self): t = DynamicRequiresOtherModule(p=self.p) luigi.build([t], local_scheduler=True, workers=self.n_workers) self.assertTrue(t.complete()) class DynamicDependenciesWithMultipleWorkersTest(DynamicDependenciesTest): n_workers = 100 timeout = 3.0 # We run 7 tasks that take 0.5s each so it should take less than 3.5s class WorkerPingThreadTests(unittest.TestCase): def test_ping_retry(self): """ Worker ping fails once. Ping continues to try to connect to scheduler Kind of ugly since it uses actual timing with sleep to test the thread """ sch = Scheduler( retry_delay=100, remove_delay=1000, worker_disconnect_delay=10, ) self._total_pings = 0 # class var so it can be accessed from fail_ping def fail_ping(worker): # this will be called from within keep-alive thread... self._total_pings += 1 raise Exception("Some random exception") sch.ping = fail_ping with Worker( scheduler=sch, worker_id="foo", ping_interval=0.01 # very short between pings to make test fast ): # let the keep-alive thread run for a bit... time.sleep(0.1) # yes, this is ugly but it's exactly what we need to test self.assertTrue( self._total_pings > 1, msg="Didn't retry pings (%d pings performed)" % (self._total_pings,) ) def test_ping_thread_shutdown(self): with Worker(ping_interval=0.01) as w: self.assertTrue(w._keep_alive_thread.is_alive()) self.assertFalse(w._keep_alive_thread.is_alive()) def email_patch(test_func, email_config=None): EMAIL_CONFIG = {"core": {"error-email": "not-a-real-email-address-for-test-only"}, "email": {"force-send": "true"}} if email_config is not None: EMAIL_CONFIG.update(email_config) emails = [] def mock_send_email(sender, recipients, msg): emails.append(msg) @with_config(EMAIL_CONFIG) @functools.wraps(test_func) @mock.patch('smtplib.SMTP') def run_test(self, smtp): smtp().sendmail.side_effect = mock_send_email test_func(self, emails) return run_test def custom_email_patch(config): return functools.partial(email_patch, email_config=config) class WorkerEmailTest(LuigiTestCase): def run(self, result=None): super(WorkerEmailTest, self).setUp() sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) with Worker(scheduler=sch, worker_id="foo") as self.worker: super(WorkerEmailTest, self).run(result) @email_patch def test_connection_error(self, emails): sch = RemoteScheduler('http://tld.invalid:1337', connect_timeout=1) self.waits = 0 def dummy_wait(): self.waits += 1 sch._wait = dummy_wait class A(DummyTask): pass a = A() self.assertEqual(emails, []) with Worker(scheduler=sch) as worker: try: worker.add(a) except RPCError: self.assertEqual(self.waits, 2) # should attempt to add it 3 times self.assertNotEqual(emails, []) self.assertTrue(emails[0].find("Luigi: Framework error while scheduling %s" % (a,)) != -1) else: self.fail() @email_patch def test_complete_error(self, emails): class A(DummyTask): def complete(self): raise Exception("b0rk") a = A() self.assertEqual(emails, []) self.worker.add(a) self.assertTrue(emails[0].find("Luigi: %s failed scheduling" % (a,)) != -1) self.worker.run() self.assertTrue(emails[0].find("Luigi: %s failed scheduling" % (a,)) != -1) self.assertFalse(a.has_run) @with_config({'batch_email': {'email_interval': '0'}, 'worker': {'send_failure_email': 'False'}}) @email_patch def test_complete_error_email_batch(self, emails): class A(DummyTask): def complete(self): raise Exception("b0rk") scheduler = Scheduler(batch_emails=True) worker = Worker(scheduler) a = A() self.assertEqual(emails, []) worker.add(a) self.assertEqual(emails, []) worker.run() self.assertEqual(emails, []) self.assertFalse(a.has_run) scheduler.prune() self.assertTrue("1 scheduling failure" in emails[0]) @with_config({'batch_email': {'email_interval': '0'}, 'worker': {'send_failure_email': 'False'}}) @email_patch def test_complete_error_email_batch_to_owner(self, emails): class A(DummyTask): owner_email = '[email protected]' def complete(self): raise Exception("b0rk") scheduler = Scheduler(batch_emails=True) worker = Worker(scheduler) a = A() self.assertEqual(emails, []) worker.add(a) self.assertEqual(emails, []) worker.run() self.assertEqual(emails, []) self.assertFalse(a.has_run) scheduler.prune() self.assertTrue(any( "1 scheduling failure" in email and '[email protected]' in email for email in emails)) @email_patch def test_requires_error(self, emails): class A(DummyTask): def requires(self): raise Exception("b0rk") a = A() self.assertEqual(emails, []) self.worker.add(a) self.assertTrue(emails[0].find("Luigi: %s failed scheduling" % (a,)) != -1) self.worker.run() self.assertFalse(a.has_run) @with_config({'batch_email': {'email_interval': '0'}, 'worker': {'send_failure_email': 'False'}}) @email_patch def test_requires_error_email_batch(self, emails): class A(DummyTask): def requires(self): raise Exception("b0rk") scheduler = Scheduler(batch_emails=True) worker = Worker(scheduler) a = A() self.assertEqual(emails, []) worker.add(a) self.assertEqual(emails, []) worker.run() self.assertFalse(a.has_run) scheduler.prune() self.assertTrue("1 scheduling failure" in emails[0]) @email_patch def test_complete_return_value(self, emails): class A(DummyTask): def complete(self): pass # no return value should be an error a = A() self.assertEqual(emails, []) self.worker.add(a) self.assertTrue(emails[0].find("Luigi: %s failed scheduling" % (a,)) != -1) self.worker.run() self.assertTrue(emails[0].find("Luigi: %s failed scheduling" % (a,)) != -1) self.assertFalse(a.has_run) @with_config({'batch_email': {'email_interval': '0'}, 'worker': {'send_failure_email': 'False'}}) @email_patch def test_complete_return_value_email_batch(self, emails): class A(DummyTask): def complete(self): pass # no return value should be an error scheduler = Scheduler(batch_emails=True) worker = Worker(scheduler) a = A() self.assertEqual(emails, []) worker.add(a) self.assertEqual(emails, []) self.worker.run() self.assertEqual(emails, []) self.assertFalse(a.has_run) scheduler.prune() self.assertTrue("1 scheduling failure" in emails[0]) @email_patch def test_run_error(self, emails): class A(luigi.Task): def run(self): raise Exception("b0rk") a = A() luigi.build([a], workers=1, local_scheduler=True) self.assertEqual(1, len(emails)) self.assertTrue(emails[0].find("Luigi: %s FAILED" % (a,)) != -1) @with_config({'batch_email': {'email_interval': '0'}, 'worker': {'send_failure_email': 'False'}}) @email_patch def test_run_error_email_batch(self, emails): class A(luigi.Task): owner_email = ['[email protected]', '[email protected]'] def run(self): raise Exception("b0rk") scheduler = Scheduler(batch_emails=True) worker = Worker(scheduler) worker.add(A()) worker.run() scheduler.prune() self.assertEqual(3, len(emails)) self.assertTrue(any('[email protected]' in email for email in emails)) self.assertTrue(any('[email protected]' in email for email in emails)) @with_config({'batch_email': {'email_interval': '0'}, 'worker': {'send_failure_email': 'False'}}) @email_patch def test_run_error_batch_email_string(self, emails): class A(luigi.Task): owner_email = '[email protected]' def run(self): raise Exception("b0rk") scheduler = Scheduler(batch_emails=True) worker = Worker(scheduler) worker.add(A()) worker.run() scheduler.prune() self.assertEqual(2, len(emails)) self.assertTrue(any('[email protected]' in email for email in emails)) @with_config({'worker': {'send_failure_email': 'False'}}) @email_patch def test_run_error_no_email(self, emails): class A(luigi.Task): def run(self): raise Exception("b0rk") luigi.build([A()], workers=1, local_scheduler=True) self.assertFalse(emails) @email_patch def test_task_process_dies_with_email(self, emails): a = SendSignalTask(signal.SIGKILL) luigi.build([a], workers=2, local_scheduler=True) self.assertEqual(1, len(emails)) self.assertTrue(emails[0].find("Luigi: %s FAILED" % (a,)) != -1) self.assertTrue(emails[0].find("died unexpectedly with exit code -9") != -1) @with_config({'worker': {'send_failure_email': 'False'}}) @email_patch def test_task_process_dies_no_email(self, emails): luigi.build([SendSignalTask(signal.SIGKILL)], workers=2, local_scheduler=True) self.assertEqual([], emails) @email_patch def test_task_times_out(self, emails): class A(luigi.Task): worker_timeout = 0.0001 def run(self): time.sleep(5) a = A() luigi.build([a], workers=2, local_scheduler=True) self.assertEqual(1, len(emails)) self.assertTrue(emails[0].find("Luigi: %s FAILED" % (a,)) != -1) self.assertTrue(emails[0].find("timed out after 0.0001 seconds and was terminated.") != -1) @with_config({'worker': {'send_failure_email': 'False'}}) @email_patch def test_task_times_out_no_email(self, emails): class A(luigi.Task): worker_timeout = 0.0001 def run(self): time.sleep(5) luigi.build([A()], workers=2, local_scheduler=True) self.assertEqual([], emails) @with_config(dict(worker=dict(retry_external_tasks='true'))) @email_patch def test_external_task_retries(self, emails): """ Test that we do not send error emails on the failures of external tasks """ class A(luigi.ExternalTask): pass a = A() luigi.build([a], workers=2, local_scheduler=True) self.assertEqual(emails, []) @email_patch def test_no_error(self, emails): class A(DummyTask): pass a = A() self.assertEqual(emails, []) self.worker.add(a) self.assertEqual(emails, []) self.worker.run() self.assertEqual(emails, []) self.assertTrue(a.complete()) @custom_email_patch({"core": {"error-email": "not-a-real-email-address-for-test-only", 'email-type': 'none'}}) def test_disable_emails(self, emails): class A(luigi.Task): def complete(self): raise Exception("b0rk") self.worker.add(A()) self.assertEqual(emails, []) class RaiseSystemExit(luigi.Task): def run(self): raise SystemExit("System exit!!") class SendSignalTask(luigi.Task): signal = luigi.IntParameter() def run(self): os.kill(os.getpid(), self.signal) class HangTheWorkerTask(luigi.Task): worker_timeout = luigi.IntParameter(default=None) def run(self): while True: pass def complete(self): return False class MultipleWorkersTest(unittest.TestCase): @unittest.skip('Always skip. There are many intermittent failures') # This pass under python3 when run as `nosetests test/worker_test.py` # but not as `nosetests test`. Probably some side effect on previous tests @unittest.skipIf(six.PY3, 'This test fail on python3 when run with tox.') def test_multiple_workers(self): # Test using multiple workers # Also test generating classes dynamically since this may reflect issues with # various platform and how multiprocessing is implemented. If it's using os.fork # under the hood it should be fine, but dynamic classses can't be pickled, so # other implementations of multiprocessing (using spawn etc) may fail class MyDynamicTask(luigi.Task): x = luigi.Parameter() def run(self): time.sleep(0.1) t0 = time.time() luigi.build([MyDynamicTask(i) for i in range(100)], workers=100, local_scheduler=True) self.assertTrue(time.time() < t0 + 5.0) # should ideally take exactly 0.1s, but definitely less than 10.0 def test_zero_workers(self): d = DummyTask() luigi.build([d], workers=0, local_scheduler=True) self.assertFalse(d.complete()) def test_system_exit(self): # This would hang indefinitely before this fix: # https://github.com/spotify/luigi/pull/439 luigi.build([RaiseSystemExit()], workers=2, local_scheduler=True) def test_term_worker(self): luigi.build([SendSignalTask(signal.SIGTERM)], workers=2, local_scheduler=True) def test_kill_worker(self): luigi.build([SendSignalTask(signal.SIGKILL)], workers=2, local_scheduler=True) def test_purge_multiple_workers(self): w = Worker(worker_processes=2, wait_interval=0.01) t1 = SendSignalTask(signal.SIGTERM) t2 = SendSignalTask(signal.SIGKILL) w.add(t1) w.add(t2) w._run_task(t1.task_id) w._run_task(t2.task_id) time.sleep(1.0) w._handle_next_task() w._handle_next_task() w._handle_next_task() def test_stop_worker_kills_subprocesses(self): with Worker(worker_processes=2) as w: hung_task = HangTheWorkerTask() w.add(hung_task) w._run_task(hung_task.task_id) pids = [p.pid for p in w._running_tasks.values()] self.assertEqual(1, len(pids)) pid = pids[0] def is_running(): return pid in {p.pid for p in psutil.Process().children()} self.assertTrue(is_running()) self.assertFalse(is_running()) def test_time_out_hung_worker(self): luigi.build([HangTheWorkerTask(0.1)], workers=2, local_scheduler=True) def test_time_out_hung_single_worker(self): luigi.build([HangTheWorkerTask(0.1)], workers=1, local_scheduler=True) @skipOnTravis('https://travis-ci.org/spotify/luigi/jobs/72953986') @mock.patch('luigi.worker.time') def test_purge_hung_worker_default_timeout_time(self, mock_time): w = Worker(worker_processes=2, wait_interval=0.01, timeout=5) mock_time.time.return_value = 0 task = HangTheWorkerTask() w.add(task) w._run_task(task.task_id) mock_time.time.return_value = 5 w._handle_next_task() self.assertEqual(1, len(w._running_tasks)) mock_time.time.return_value = 6 w._handle_next_task() self.assertEqual(0, len(w._running_tasks)) @skipOnTravis('https://travis-ci.org/spotify/luigi/jobs/76645264') @mock.patch('luigi.worker.time') def test_purge_hung_worker_override_timeout_time(self, mock_time): w = Worker(worker_processes=2, wait_interval=0.01, timeout=5) mock_time.time.return_value = 0 task = HangTheWorkerTask(worker_timeout=10) w.add(task) w._run_task(task.task_id) mock_time.time.return_value = 10 w._handle_next_task() self.assertEqual(1, len(w._running_tasks)) mock_time.time.return_value = 11 w._handle_next_task() self.assertEqual(0, len(w._running_tasks)) class Dummy2Task(Task): p = luigi.Parameter() def output(self): return MockTarget(self.p) def run(self): f = self.output().open('w') f.write('test') f.close() class AssistantTest(unittest.TestCase): def run(self, result=None): self.sch = Scheduler(retry_delay=100, remove_delay=1000, worker_disconnect_delay=10) self.assistant = Worker(scheduler=self.sch, worker_id='Y', assistant=True) with Worker(scheduler=self.sch, worker_id='X') as w: self.w = w super(AssistantTest, self).run(result) def test_get_work(self): d = Dummy2Task('123') self.w.add(d) self.assertFalse(d.complete()) self.assistant.run() self.assertTrue(d.complete()) def test_bad_job_type(self): class Dummy3Task(Dummy2Task): task_family = 'UnknownTaskFamily' d = Dummy3Task('123') self.w.add(d) self.assertFalse(d.complete()) self.assertFalse(self.assistant.run()) self.assertFalse(d.complete()) self.assertEqual(list(self.sch.task_list('FAILED', '').keys()), [d.task_id]) def test_unimported_job_type(self): MODULE_CONTENTS = b''' import luigi class UnimportedTask(luigi.Task): def complete(self): return False ''' reg = luigi.task_register.Register._get_reg() class UnimportedTask(luigi.Task): task_module = None # Set it here, so it's generally settable luigi.task_register.Register._set_reg(reg) task = UnimportedTask() # verify that it can't run the task without the module info necessary to import it self.w.add(task) self.assertFalse(self.assistant.run()) self.assertEqual(list(self.sch.task_list('FAILED', '').keys()), [task.task_id]) # check that it can import with the right module with temporary_unloaded_module(MODULE_CONTENTS) as task.task_module: self.w.add(task) self.assertTrue(self.assistant.run()) self.assertEqual(list(self.sch.task_list('DONE', '').keys()), [task.task_id]) def test_unimported_job_sends_failure_message(self): class NotInAssistantTask(luigi.Task): task_family = 'Unknown' task_module = None task = NotInAssistantTask() self.w.add(task) self.assertFalse(self.assistant.run()) self.assertEqual(list(self.sch.task_list('FAILED', '').keys()), [task.task_id]) self.assertTrue(self.sch.fetch_error(task.task_id)['error']) class ForkBombTask(luigi.Task): depth = luigi.IntParameter() breadth = luigi.IntParameter() p = luigi.Parameter(default=(0, )) # ehm for some weird reason [0] becomes a tuple...? def output(self): return MockTarget('.'.join(map(str, self.p))) def run(self): with self.output().open('w') as f: f.write('Done!') def requires(self): if len(self.p) < self.depth: for i in range(self.breadth): yield ForkBombTask(self.depth, self.breadth, self.p + (i, )) class TaskLimitTest(unittest.TestCase): def tearDown(self): MockFileSystem().remove('') @with_config({'core': {'worker-task-limit': '6'}}) def test_task_limit_exceeded(self): w = Worker() t = ForkBombTask(3, 2) w.add(t) w.run() self.assertFalse(t.complete()) leaf_tasks = [ForkBombTask(3, 2, branch) for branch in [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)]] self.assertEqual(3, sum(t.complete() for t in leaf_tasks), "should have gracefully completed as much as possible even though the single last leaf didn't get scheduled") @with_config({'core': {'worker-task-limit': '7'}}) def test_task_limit_not_exceeded(self): w = Worker() t = ForkBombTask(3, 2) w.add(t) w.run() self.assertTrue(t.complete()) def test_no_task_limit(self): w = Worker() t = ForkBombTask(4, 2) w.add(t) w.run() self.assertTrue(t.complete()) class WorkerConfigurationTest(unittest.TestCase): def test_asserts_for_worker(self): """ Test that Worker() asserts that it's sanely configured """ Worker(wait_interval=1) # This shouldn't raise self.assertRaises(AssertionError, Worker, wait_interval=0) class WorkerWaitJitterTest(unittest.TestCase): @with_config({'worker': {'wait_jitter': '10.0'}}) @mock.patch("random.uniform") @mock.patch("time.sleep") def test_wait_jitter(self, mock_sleep, mock_random): """ verify configured jitter amount """ mock_random.return_value = 1.0 w = Worker() x = w._sleeper() six.next(x) mock_random.assert_called_with(0, 10.0) mock_sleep.assert_called_with(2.0) mock_random.return_value = 2.0 six.next(x) mock_random.assert_called_with(0, 10.0) mock_sleep.assert_called_with(3.0) @mock.patch("random.uniform") @mock.patch("time.sleep") def test_wait_jitter_default(self, mock_sleep, mock_random): """ verify default jitter is as expected """ mock_random.return_value = 1.0 w = Worker() x = w._sleeper() six.next(x) mock_random.assert_called_with(0, 5.0) mock_sleep.assert_called_with(2.0) mock_random.return_value = 3.3 six.next(x) mock_random.assert_called_with(0, 5.0) mock_sleep.assert_called_with(4.3) class KeyboardInterruptBehaviorTest(LuigiTestCase): def test_propagation_when_executing(self): """ Ensure that keyboard interrupts causes luigi to quit when you are executing tasks. TODO: Add a test that tests the multiprocessing (--worker >1) case """ class KeyboardInterruptTask(luigi.Task): def run(self): raise KeyboardInterrupt() cmd = 'KeyboardInterruptTask --local-scheduler --no-lock'.split(' ') self.assertRaises(KeyboardInterrupt, luigi_run, cmd) def test_propagation_when_scheduling(self): """ Test that KeyboardInterrupt causes luigi to quit while scheduling. """ class KeyboardInterruptTask(luigi.Task): def complete(self): raise KeyboardInterrupt() class ExternalKeyboardInterruptTask(luigi.ExternalTask): def complete(self): raise KeyboardInterrupt() self.assertRaises(KeyboardInterrupt, luigi_run, ['KeyboardInterruptTask', '--local-scheduler', '--no-lock']) self.assertRaises(KeyboardInterrupt, luigi_run, ['ExternalKeyboardInterruptTask', '--local-scheduler', '--no-lock']) class WorkerPurgeEventHandlerTest(unittest.TestCase): @mock.patch('luigi.worker.TaskProcess') def test_process_killed_handler(self, task_proc): result = [] @HangTheWorkerTask.event_handler(Event.PROCESS_FAILURE) def store_task(t, error_msg): self.assertTrue(error_msg) result.append(t) w = Worker() task = HangTheWorkerTask() task_process = mock.MagicMock(is_alive=lambda: False, exitcode=-14, task=task) task_proc.return_value = task_process w.add(task) w._run_task(task.task_id) w._handle_next_task() self.assertEqual(result, [task]) @mock.patch('luigi.worker.time') def test_timeout_handler(self, mock_time): result = [] @HangTheWorkerTask.event_handler(Event.TIMEOUT) def store_task(t, error_msg): self.assertTrue(error_msg) result.append(t) w = Worker(worker_processes=2, wait_interval=0.01, timeout=5) mock_time.time.return_value = 0 task = HangTheWorkerTask(worker_timeout=1) w.add(task) w._run_task(task.task_id) mock_time.time.return_value = 3 w._handle_next_task() self.assertEqual(result, [task]) class PerTaskRetryPolicyBehaviorTest(LuigiTestCase): def setUp(self): super(PerTaskRetryPolicyBehaviorTest, self).setUp() self.per_task_retry_count = 3 self.default_retry_count = 1 self.sch = Scheduler(retry_delay=0.1, retry_count=self.default_retry_count, prune_on_get_work=True) def test_with_all_disabled_with_single_worker(self): """ With this test, a case which has a task (TestWrapperTask), requires two another tasks (TestErrorTask1,TestErrorTask1) which both is failed, is tested. Task TestErrorTask1 has default retry_count which is 1, but Task TestErrorTask2 has retry_count at task level as 2. This test is running on single worker """ class TestErrorTask1(DummyErrorTask): pass e1 = TestErrorTask1() class TestErrorTask2(DummyErrorTask): retry_count = self.per_task_retry_count e2 = TestErrorTask2() class TestWrapperTask(luigi.WrapperTask): def requires(self): return [e2, e1] wt = TestWrapperTask() with Worker(scheduler=self.sch, worker_id='X', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w1: self.assertTrue(w1.add(wt)) self.assertFalse(w1.run()) self.assertEqual([wt.task_id], list(self.sch.task_list('PENDING', 'UPSTREAM_DISABLED').keys())) self.assertEqual(sorted([e1.task_id, e2.task_id]), sorted(self.sch.task_list('DISABLED', '').keys())) self.assertEqual(0, self.sch._state.get_task(wt.task_id).failures.num_failures()) self.assertEqual(self.per_task_retry_count, self.sch._state.get_task(e2.task_id).failures.num_failures()) self.assertEqual(self.default_retry_count, self.sch._state.get_task(e1.task_id).failures.num_failures()) def test_with_all_disabled_with_multiple_worker(self): """ With this test, a case which has a task (TestWrapperTask), requires two another tasks (TestErrorTask1,TestErrorTask1) which both is failed, is tested. Task TestErrorTask1 has default retry_count which is 1, but Task TestErrorTask2 has retry_count at task level as 2. This test is running on multiple worker """ class TestErrorTask1(DummyErrorTask): pass e1 = TestErrorTask1() class TestErrorTask2(DummyErrorTask): retry_count = self.per_task_retry_count e2 = TestErrorTask2() class TestWrapperTask(luigi.WrapperTask): def requires(self): return [e2, e1] wt = TestWrapperTask() with Worker(scheduler=self.sch, worker_id='X', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w1: with Worker(scheduler=self.sch, worker_id='Y', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w2: with Worker(scheduler=self.sch, worker_id='Z', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w3: self.assertTrue(w1.add(wt)) self.assertTrue(w2.add(e2)) self.assertTrue(w3.add(e1)) self.assertFalse(w3.run()) self.assertFalse(w2.run()) self.assertTrue(w1.run()) self.assertEqual([wt.task_id], list(self.sch.task_list('PENDING', 'UPSTREAM_DISABLED').keys())) self.assertEqual(sorted([e1.task_id, e2.task_id]), sorted(self.sch.task_list('DISABLED', '').keys())) self.assertEqual(0, self.sch._state.get_task(wt.task_id).failures.num_failures()) self.assertEqual(self.per_task_retry_count, self.sch._state.get_task(e2.task_id).failures.num_failures()) self.assertEqual(self.default_retry_count, self.sch._state.get_task(e1.task_id).failures.num_failures()) def test_with_includes_success_with_single_worker(self): """ With this test, a case which has a task (TestWrapperTask), requires one (TestErrorTask1) FAILED and one (TestSuccessTask1) SUCCESS, is tested. Task TestSuccessTask1 will be DONE successfully, but Task TestErrorTask1 will be failed and it has retry_count at task level as 2. This test is running on single worker """ class TestSuccessTask1(DummyTask): pass s1 = TestSuccessTask1() class TestErrorTask1(DummyErrorTask): retry_count = self.per_task_retry_count e1 = TestErrorTask1() class TestWrapperTask(luigi.WrapperTask): def requires(self): return [e1, s1] wt = TestWrapperTask() with Worker(scheduler=self.sch, worker_id='X', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w1: self.assertTrue(w1.add(wt)) self.assertFalse(w1.run()) self.assertEqual([wt.task_id], list(self.sch.task_list('PENDING', 'UPSTREAM_DISABLED').keys())) self.assertEqual([e1.task_id], list(self.sch.task_list('DISABLED', '').keys())) self.assertEqual([s1.task_id], list(self.sch.task_list('DONE', '').keys())) self.assertEqual(0, self.sch._state.get_task(wt.task_id).failures.num_failures()) self.assertEqual(self.per_task_retry_count, self.sch._state.get_task(e1.task_id).failures.num_failures()) self.assertEqual(0, self.sch._state.get_task(s1.task_id).failures.num_failures()) def test_with_includes_success_with_multiple_worker(self): """ With this test, a case which has a task (TestWrapperTask), requires one (TestErrorTask1) FAILED and one (TestSuccessTask1) SUCCESS, is tested. Task TestSuccessTask1 will be DONE successfully, but Task TestErrorTask1 will be failed and it has retry_count at task level as 2. This test is running on multiple worker """ class TestSuccessTask1(DummyTask): pass s1 = TestSuccessTask1() class TestErrorTask1(DummyErrorTask): retry_count = self.per_task_retry_count e1 = TestErrorTask1() class TestWrapperTask(luigi.WrapperTask): def requires(self): return [e1, s1] wt = TestWrapperTask() with Worker(scheduler=self.sch, worker_id='X', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w1: with Worker(scheduler=self.sch, worker_id='Y', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w2: with Worker(scheduler=self.sch, worker_id='Z', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w3: self.assertTrue(w1.add(wt)) self.assertTrue(w2.add(e1)) self.assertTrue(w3.add(s1)) self.assertTrue(w3.run()) self.assertFalse(w2.run()) self.assertTrue(w1.run()) self.assertEqual([wt.task_id], list(self.sch.task_list('PENDING', 'UPSTREAM_DISABLED').keys())) self.assertEqual([e1.task_id], list(self.sch.task_list('DISABLED', '').keys())) self.assertEqual([s1.task_id], list(self.sch.task_list('DONE', '').keys())) self.assertEqual(0, self.sch._state.get_task(wt.task_id).failures.num_failures()) self.assertEqual(self.per_task_retry_count, self.sch._state.get_task(e1.task_id).failures.num_failures()) self.assertEqual(0, self.sch._state.get_task(s1.task_id).failures.num_failures()) def test_with_dynamic_dependencies_with_single_worker(self): """ With this test, a case includes dependency tasks(TestErrorTask1,TestErrorTask2) which both are failed. Task TestErrorTask1 has default retry_count which is 1, but Task TestErrorTask2 has retry_count at task level as 2. This test is running on single worker """ class TestErrorTask1(DummyErrorTask): pass e1 = TestErrorTask1() class TestErrorTask2(DummyErrorTask): retry_count = self.per_task_retry_count e2 = TestErrorTask2() class TestSuccessTask1(DummyTask): pass s1 = TestSuccessTask1() class TestWrapperTask(DummyTask): def requires(self): return [s1] def run(self): super(TestWrapperTask, self).run() yield e2, e1 wt = TestWrapperTask() with Worker(scheduler=self.sch, worker_id='X', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w1: self.assertTrue(w1.add(wt)) self.assertFalse(w1.run()) self.assertEqual([wt.task_id], list(self.sch.task_list('PENDING', 'UPSTREAM_DISABLED').keys())) self.assertEqual(sorted([e1.task_id, e2.task_id]), sorted(self.sch.task_list('DISABLED', '').keys())) self.assertEqual(0, self.sch._state.get_task(wt.task_id).failures.num_failures()) self.assertEqual(0, self.sch._state.get_task(s1.task_id).failures.num_failures()) self.assertEqual(self.per_task_retry_count, self.sch._state.get_task(e2.task_id).failures.num_failures()) self.assertEqual(self.default_retry_count, self.sch._state.get_task(e1.task_id).failures.num_failures()) def test_with_dynamic_dependencies_with_multiple_workers(self): """ With this test, a case includes dependency tasks(TestErrorTask1,TestErrorTask2) which both are failed. Task TestErrorTask1 has default retry_count which is 1, but Task TestErrorTask2 has retry_count at task level as 2. This test is running on multiple worker """ class TestErrorTask1(DummyErrorTask): pass e1 = TestErrorTask1() class TestErrorTask2(DummyErrorTask): retry_count = self.per_task_retry_count e2 = TestErrorTask2() class TestSuccessTask1(DummyTask): pass s1 = TestSuccessTask1() class TestWrapperTask(DummyTask): def requires(self): return [s1] def run(self): super(TestWrapperTask, self).run() yield e2, e1 wt = TestWrapperTask() with Worker(scheduler=self.sch, worker_id='X', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w1: with Worker(scheduler=self.sch, worker_id='Y', keep_alive=True, wait_interval=0.1, wait_jitter=0.05) as w2: self.assertTrue(w1.add(wt)) self.assertTrue(w2.add(s1)) self.assertTrue(w2.run()) self.assertFalse(w1.run()) self.assertEqual([wt.task_id], list(self.sch.task_list('PENDING', 'UPSTREAM_DISABLED').keys())) self.assertEqual(sorted([e1.task_id, e2.task_id]), sorted(self.sch.task_list('DISABLED', '').keys())) self.assertEqual(0, self.sch._state.get_task(wt.task_id).failures.num_failures()) self.assertEqual(0, self.sch._state.get_task(s1.task_id).failures.num_failures()) self.assertEqual(self.per_task_retry_count, self.sch._state.get_task(e2.task_id).failures.num_failures()) self.assertEqual(self.default_retry_count, self.sch._state.get_task(e1.task_id).failures.num_failures())
python
import pytest pytestmark = [pytest.mark.django_db] def test_item(stripe): result = stripe.get_items() assert result == [ { 'price_data': { 'currency': 'usd', 'product_data': { 'name': 'Cutting and Sewing', }, 'unit_amount': 143600, }, 'quantity': 1, }, ] @pytest.mark.parametrize(('price', 'expected'), [ (70, 100), (140, 200), (95, 100), (105, 200), ]) def test_price(stripe, price, expected): stripe.order.setattr_and_save('price', price) result = stripe.get_items() assert result[0]['price_data']['unit_amount'] == expected
python
from .simple_spread.simple_spread import env, parallel_env, raw_env # noqa: F401
python
import csv import numpy as np from os.path import join from os.path import dirname def load_synthetic(data_file_name): """ This is almost completely stolen from sklearn! Loads data from data/data_file_name. Parameters ---------- data_file_name : String. Name of csv file to be loaded from module_path/data/data_file_name. For example 'wine_data.csv'. Returns ------- data : Numpy Array A 2D array with each row representing one sample and each column representing the features of a given sample. target : Numpy Array A 1D array holding target variables for all the samples in `data. For example target[0] is the target varible for data[0]. target_names : Numpy Array A 1D array containing the names of the classifications. For example target_names[0] is the name of the target[0] class. feature_names : Numpy Array A 1D array containing the names of the features. These are used in plotting functions later. """ module_path = dirname(__file__) with open(join(module_path, 'data', data_file_name)) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) feature_names = ['BM%i' % (x+1) for x in range(n_features)] feature_names = np.array(feature_names) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float64) target[i] = np.asarray(ir[-1], dtype=np.int) return data, target, feature_names, target_names
python
''' @package: pyAudioLex @author: Jim Schwoebel @module: ls_freq #ls = list item marker ''' from nltk.tokenize import word_tokenize from nltk.tag import pos_tag, map_tag from collections import Counter def ls_freq(importtext): text=word_tokenize(importtext) tokens=nltk.pos_tag(text) c=Counter(token for word, token in tokens) return c['LS']/len(text)
python
#!/usr/bin/python # Copyright 2017 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Looks for dynamic code loading patterns. Patterns to identify include * require(...) where ... is not a string literal. * eval * Function(...) where there is more than one argument or the sole argument is not a function. """ import json import os.path import py_common.npm import re import shutil import sys dynamic_load_pattern = re.compile( r'(?<![_$\w.])require\s*\(\s*[^\s)\"\']' # r'(?<![_$\w.])require\s*(?:\(\s*[^\s)\"\']|[^\(])' # To also match indirect uses of require, like aliasing it to a variable. ) def find_dynamic_load(node_modules, module_name): return py_common.npm.js_srcs_matching( node_modules, module_name, dynamic_load_pattern, module_filter=py_common.npm.ignore_tools_that_can_run_early(module_name)) if __name__ == '__main__': (node_modules, separate_modules, top100_txt) = sys.argv[1:] top100 = [x for x in file(top100_txt).read().split('\n') if x] uses = 0 total_count = 0 has_dynamic_load = {} for module_name in top100: js_srcs = find_dynamic_load(node_modules, module_name) has_dynamic_load[module_name] = js_srcs if len(js_srcs): uses += 1 total_count += 1 # for k, v in has_dynamic_load.iteritems(): # print "%s: %r" % (k, v) print ( """ ## Dynamic loads {#dynamic_load} Dynamic loading can complicate code bundling. %d of %d = %1.02f%% call `require(...)` without a literal string argument. """ % (uses, total_count, (100.0 * uses) / total_count))
python
#Genre Year #Comparison of movie genres to year. By Bradley Brian #imports import matplotlib.pyplot as plt import pandas as pd import numpy as np #data = pd.read_csv('movies_initial.csv') #Function def genreselect(): print('------Please Select a genre------') print("") print("[1] Action") print("[2] Adventure") print("[3] Animation") print("[4] Biography") print("[5] Comdey") print("[6] Crime") print("[7] Documentary") print("[8] Drama") print("[9] Family") print("[10] Fantasy") print("[11] Film Noir") print("[12] History") print("[13] Horror") print("[14] Musical") print("[15] Mystery") print("[16] Romance") print("[17] Science fiction") print("[18] Sport") print("[19] Thriller") print("[20] War") print("[21] Western") genreselect() option = int(input("Enter the number of your genre choice: ")) print("") if option == 1: print("Action") print('there are [5285] movies in this genre') print('The year with the most action movies is') #this is where code to calculate most popular year is going to be elif option == 2: print("Adventure") print('there are [] movies in this genre') print('The year with the most Adventure movies is') elif option == 3: print("Animation") print('there are [] movies in this genre') print('The year with the most Animation movies is') elif option == 4: print("Biography") print('there are [] movies in this genre') print('The year with the most Biography movies is') elif option == 5: print("Comdey") print('there are [] movies in this genre') print('The year with the most Comedy movies is') elif option == 6: print("Crime") print('there are [] movies in this genre') print('The year with the most Crime movies is') elif option == 7: print("Documentary") print('there are [] movies in this genre') print('The year with the most Documentary movies is') elif option == 8: print("Drama") print('there are [] movies in this genre') print('The year with the most Drama movies is') elif option == 9: print("Family") print('there are [] movies in this genre') print('The year with the most Family movies is') elif option == 10: print("Fantasy") print('there are [] movies in this genre') print('The year with the most Fantasy movies is') elif option == 11: print("Film Noir") print('there are [] movies in this genre') print('The year with the most Film Noir movies is') elif option == 12: print("History") print('there are [] movies in this genre') print('The year with the most History movies is') elif option == 13: print("Horror") print('there are [] movies in this genre') print('The year with the most Horror movies is') elif option == 14: print("Musical") print('there are [] movies in this genre') print('The year with the most Musical movies is') elif option == 15: print("Mystery") print('there are [] movies in this genre') print('The year with the most Mystery movies is') elif option == 16: print("Romance") print('there are [] movies in this genre') print('The year with the most Romance movies is') elif option == 17: print("Science fiction") print('there are [] movies in this genre') print('The year with the most Science Fiction movies is')
python
import logging from optparse import make_option from django.core.management.base import NoArgsCommand from django.db import connection from mailer.models import Message class Command(NoArgsCommand): help = "Attempt to resend any deferred mail." base_options = ( make_option('-c', '--cron', default=0, type='int', help='If 1 don\'t print messagges, but only errors.' ), ) option_list = NoArgsCommand.option_list + base_options def handle_noargs(self, **options): if options['cron'] == 0: logging.basicConfig(level=logging.DEBUG, format="%(message)s") else: logging.basicConfig(level=logging.ERROR, format="%(message)s") count = Message.objects.retry_deferred() # @@@ new_priority not yet supported logging.info("%s message(s) retried" % count) connection.close()
python
"""Import all hardware interfaces""" from .gpio_implementations import * from .hardware_interfaces import * from .hpwm_implementations import * from .i2c_implementations import * from .spi_implementations import *
python
class Solution(object): def canJump(self, nums): """ :type nums: List[int] :rtype: bool """ if len(nums) == 1: return True jump = 0 current_bound = next_bound = nums[0] i = 1 while True: jump += 1 if current_bound >= len(nums)-1: return True while i <= current_bound: next_bound = max(next_bound, i+nums[i]) i += 1 if next_bound <= current_bound: return False current_bound = next_bound
python
#!/usr/bin/env python3 import os import requests, shutil, socket from datetime import datetime, timedelta from time import sleep from pathlib import Path import localconfig from camera import Camera from common import fmt_bytes, get_data_from_pic_stem, get_score class Task: def is_due(self, dt0, dt1): """ Returns the importance with which the Task thinks that a picture should be taken in the intervall dt0 < t <= dt1. """ return 0 class TaskEvery5Minutes(Task): def is_due(self, dt0, dt1): ts0 = dt0.timestamp() ts1 = dt1.timestamp() if (ts0 // 300) < (ts1 // 300): return 4 return 0 class TaskEveryFullHour(Task): def is_due(self, dt0, dt1): ts0 = dt0.timestamp() ts1 = dt1.timestamp() if (ts0 // 3600) < (ts1 // 3600): return 6 return 0 def gather_pictures(clean_dir, now): pics = [] for pic_path in Path(clean_dir).iterdir(): pics.append( ( pic_path, pic_path.stat().st_size, get_score(*get_data_from_pic_stem(pic_path.stem), now), ) ) # Sort the pictures by score. pics.sort(key=lambda pic: -pic[2]) return pics class TaskCleanupDisk(Task): def __init__(self, clean_dir): self.clean_dir = clean_dir self.next_clean_dt = datetime(2000, 1, 1) def clean(self, now): print("Cleaning up disk space ...") GiB = pow(1024, 3) MIN_PICS_TOTAL = 1*GiB MAX_PICS_TOTAL = 20*GiB MIN_DISK_FREE = 2*GiB disk_total, disk_used, disk_free = shutil.disk_usage("/") # print(f"disk_total {fmt_bytes(disk_total):>10}") # print(f"disk_used {fmt_bytes(disk_used):>10}") # print(f"disk_free {fmt_bytes(disk_free):>10} ({fmt_bytes(MIN_DISK_FREE)})") btd_disk = max(MIN_DISK_FREE - disk_free, 0) print(f"free disk space: {fmt_bytes(disk_free)}, want at least: {fmt_bytes(MIN_DISK_FREE)} --> delete {fmt_bytes(btd_disk)}") pics = gather_pictures(self.clean_dir, now) pics_total_bytes = sum(pic[1] for pic in pics) btd_pics = max(pics_total_bytes - MAX_PICS_TOTAL, 0) print(f"{len(pics)} pictures of size: {fmt_bytes(pics_total_bytes)}, want at most: {fmt_bytes(MAX_PICS_TOTAL)} --> delete {fmt_bytes(btd_pics)}") pic_bytes_to_delete = max(btd_disk, btd_pics) print(f"--> deleting {fmt_bytes(pic_bytes_to_delete)} ...") while pics and pic_bytes_to_delete > 0 and pics_total_bytes > MIN_PICS_TOTAL: pic = pics.pop() print(f" deleting {pic[0]},{pic[1]:>8} bytes, score {pic[2]}") pic[0].unlink() # pic[0].unlink(missing_ok=True) # Python 3.8+ pic_bytes_to_delete -= pic[1] pics_total_bytes -= pic[1] print(f"{len(pics)} pictures of size: {fmt_bytes(pics_total_bytes)} left") if pic_bytes_to_delete > 0: print(f"{fmt_bytes(pic_bytes_to_delete)} not deleted, MIN_PICS_TOTAL is {fmt_bytes(MIN_PICS_TOTAL)}") def is_due(self, dt0, dt1): if dt0 < self.next_clean_dt <= dt1: print("Running TaskCleanupDisk!", dt0, dt1) self.clean(dt1) if self.next_clean_dt <= dt1: self.next_clean_dt = datetime(dt1.year, dt1.month, dt1.day, 3, 33, 33) if self.next_clean_dt <= dt1: self.next_clean_dt += timedelta(days=1) print("Next disk cleanup is scheduled for", self.next_clean_dt) return 0 def upload_picture(filename, upload_url): if not upload_url: return print(f"Uploading {filename} ...") with open("/sys/class/thermal/thermal_zone0/temp") as temp_file: # https://www.elektronik-kompendium.de/sites/raspberry-pi/1911241.htm # https://raspberrypi.stackexchange.com/questions/41784/temperature-differences-between-cpu-gpu cpu_temp = temp_file.readline().strip() with open(filename, 'rb') as pic_file: try: r = requests.post( upload_url, data={ 'camera': localconfig.CAMERA_NAME, 'password': localconfig.CAMERA_UPLOAD_PASSWORD, 'cpu_temp': cpu_temp, }, files={'pic_file': pic_file}, allow_redirects=False, timeout=10.0, ) print(f"Uploaded picture to {upload_url}") if r.status_code != 302: print(f"Unexpected response: Expected status_code 302, got status_code {r.status_code}.") print(r) print(r.text[:2000]) except requests.exceptions.Timeout as e: print(f"Requests raised a timeout exception: {e}") except requests.exceptions.RequestException as e: print(f"Requests raised an exception: {e}") PICTURES_DIR = '/var/HallCam/pictures/' def run_camera(): if not os.access(PICTURES_DIR, os.W_OK): print(f"Cannot access {PICTURES_DIR}.") else: print(f"Access to {PICTURES_DIR} is good.") print(f"localconfig.UPLOAD_URL = {localconfig.UPLOAD_URL}") print("") camera = Camera() camera.pi_cam.start_preview() sleep(2) tasks = [ TaskEvery5Minutes(), TaskEveryFullHour(), # TaskExposureMonitor(), TaskCleanupDisk(PICTURES_DIR), ] print("Entering main loop, press CTRL+C to exit.") try: prev_dt = datetime.now() while True: curr_dt = datetime.now() importance = 0 for task in tasks: importance = max(importance, task.is_due(prev_dt, curr_dt)) if importance > 0: filename = camera.capture_picture(curr_dt, importance, PICTURES_DIR) upload_picture(filename, localconfig.UPLOAD_URL) prev_dt = curr_dt sleep(1) except KeyboardInterrupt: print("\nExiting ...") camera.pi_cam.stop_preview() if __name__ == "__main__": lock_socket = socket.socket(socket.AF_UNIX, socket.SOCK_DGRAM) try: # The null byte (\0) means the socket is created in the abstract # namespace instead of being created on the file system itself. # https://stackoverflow.com/questions/788411/check-to-see-if-python-script-is-running lock_socket.bind('\0' + 'HallCam') # We got the lock. run_camera() except socket.error: print("HallCam is already running.")
python
"""Support for P2000 sensors.""" import datetime import logging import feedparser import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( ATTR_ATTRIBUTION, ATTR_LATITUDE, ATTR_LONGITUDE, CONF_ICON, CONF_LATITUDE, CONF_LONGITUDE, CONF_NAME, CONF_RADIUS, CONF_SCAN_INTERVAL, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.dispatcher import async_dispatcher_connect, dispatcher_send from homeassistant.helpers.event import async_track_time_interval from homeassistant.helpers.restore_state import RestoreEntity import homeassistant.util as util from homeassistant.util.location import distance _LOGGER = logging.getLogger(__name__) BASE_URL = "http://p2000.brandweer-berkel-enschot.nl/homeassistant/rss.asp" DEFAULT_INTERVAL = datetime.timedelta(seconds=10) DATA_UPDATED = "p2000_data_updated" CONF_REGIOS = "regios" CONF_DISCIPLINES = "disciplines" CONF_CAPCODES = "capcodes" CONF_ATTRIBUTION = "P2000 Livemonitor 2021 HomeAssistant" CONF_NOLOCATION = "nolocation" CONF_CONTAINS = "contains" DEFAULT_NAME = "P2000" DEFAULT_ICON = "mdi:ambulance" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_REGIOS): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_DISCIPLINES): cv.string, vol.Optional(CONF_SCAN_INTERVAL, default=DEFAULT_INTERVAL): vol.All( cv.time_period, cv.positive_timedelta ), vol.Optional(CONF_RADIUS, 0): vol.Coerce(float), vol.Optional(CONF_CAPCODES): cv.string, vol.Optional(CONF_LATITUDE): cv.latitude, vol.Optional(CONF_LONGITUDE): cv.longitude, vol.Optional(CONF_NOLOCATION, default=False): cv.boolean, vol.Optional(CONF_CONTAINS): cv.string, vol.Optional(CONF_ICON, default=DEFAULT_ICON): cv.icon, } ) async def async_setup_platform(hass, config, async_add_devices, discovery_info=None): """Set up the P2000 sensor.""" data = P2000Data(hass, config) async_track_time_interval(hass, data.async_update, config[CONF_SCAN_INTERVAL]) async_add_devices( [P2000Sensor(hass, data, config.get(CONF_NAME), config.get(CONF_ICON))], True ) class P2000Data: """Handle P2000 object and limit updates.""" def __init__(self, hass, config): """Initialize the data object.""" self._hass = hass self._lat = util.convert(config.get(CONF_LATITUDE, hass.config.latitude), float) self._lon = util.convert( config.get(CONF_LONGITUDE, hass.config.longitude), float ) self._regios = config.get(CONF_REGIOS) self._url = BASE_URL self._nolocation = config.get(CONF_NOLOCATION) self._radius = config.get(CONF_RADIUS) self._capcodes = config.get(CONF_CAPCODES) self._contains = config.get(CONF_CONTAINS) self._disciplines = config.get(CONF_DISCIPLINES) self._capcodelist = None self._regiolist = None self._disciplinelist = None self._feed = None self._restart = True self._event_time = None self._data = None if self._capcodes: self._capcodelist = self._capcodes.split(",") if self._regios: self._regiolist = self._regios.split(",") if self._disciplines: self._disciplinelist = self._disciplines.split(",") @property def latest_data(self): """Return the data object.""" return self._data @staticmethod def _convert_time(time): try: return datetime.datetime.strptime( time.split(",")[1][:-6], " %d %b %Y %H:%M:%S" ) except IndexError: return None async def async_update(self, dummy): """Update data.""" self._feed = await self._hass.async_add_executor_job( feedparser.parse, self._url ) if not self._feed: _LOGGER.debug("Failed to get feed data from %s", self._url) return if self._feed.bozo: _LOGGER.debug("Error parsing feed data from %s", self._url) return _LOGGER.debug("Feed url: %s data: %s", self._url, self._feed) if self._restart: self._restart = False self._event_time = self._convert_time(self._feed.entries[0]["published"]) _LOGGER.debug("Start fresh after a restart") return try: for entry in reversed(self._feed.entries): event_msg = None event_capcode = None event_time = self._convert_time(entry.published) if event_time < self._event_time: continue self._event_time = event_time # Fill data from feed event_msg = entry.message event_regioname = entry.regname event_regio = entry.regcode.lstrip("0") event_discipline = entry.dienst event_capcode = entry.code _LOGGER.debug( "New P2000 event found: %s, at %s", event_msg, entry.published ) # Check regio if "regcode" in entry: if self._regiolist: _LOGGER.debug("Filtering on Regio(s) %s", self._regiolist) regiofound = False for regio in self._regiolist: _LOGGER.debug( "Searching for regio %s in %s", regio, event_regio, ) if event_regio == regio: _LOGGER.debug("Regio matched") regiofound = True break _LOGGER.debug("Regio mismatch, discarding") continue if not regiofound: continue # Check discipline if "dienst" in entry: if self._disciplines: if self._disciplinelist: _LOGGER.debug( "Filtering on Disciplines(s) %s", self._disciplinelist ) disciplinefound = False for discipline in self._disciplinelist: _LOGGER.debug( "Searching for discipline %s in %s", discipline, event_discipline, ) if event_discipline == discipline: _LOGGER.debug("Discipline matched") disciplinefound = True break _LOGGER.debug("Discipline mismatch, discarding") continue if not disciplinefound: continue # Check radius or nolocation if "lat" in entry and entry.lat: event_lat = float(entry.lat) event_lon = float(entry.lon) event_dist = distance(self._lat, self._lon, event_lat, event_lon) event_dist = int(round(event_dist)) if self._radius: _LOGGER.debug( "Filtering on Radius %s, calculated distance %d m ", self._radius, event_dist, ) if event_dist > self._radius: event_msg = "" _LOGGER.debug("Radius filter mismatch, discarding") continue _LOGGER.debug("Radius filter matched") else: event_lat = 0.0 event_lon = 0.0 event_dist = 0 if not self._nolocation: _LOGGER.debug("No location found, discarding") continue # Check capcodes if defined if "code" in entry: if self._capcodelist: _LOGGER.debug("Filtering on Capcode(s) %s", self._capcodelist) capfound = False for capcode in self._capcodelist: _LOGGER.debug( "Searching for capcode %s in %s", capcode.strip(), event_capcode, ) if event_capcode == capcode.strip(): _LOGGER.debug("Capcode filter matched") capfound = True break _LOGGER.debug("Capcode filter mismatch, discarding") continue if not capfound: continue if self._contains: _LOGGER.debug("Filtering on Contains string %s", self._contains) if event_msg.find(self._contains) != -1: _LOGGER.debug("Contains string filter matched") else: _LOGGER.debug("Contains string filter mismatch, discarding") continue if event_msg: event = {} event["msgtext"] = event_msg event["latitude"] = event_lat event["longitude"] = event_lon event["distance"] = event_dist event["msgtime"] = event_time event["capcode"] = event_capcode event["regio"] = event_regio event["regioname"] = event_regioname event["discipline"] = event_discipline _LOGGER.debug("Event: %s", event) self._data = event dispatcher_send(self._hass, DATA_UPDATED + CONF_NAME) except ValueError as err: _LOGGER.error("Error parsing feed data %s", err) self._data = None class P2000Sensor(RestoreEntity): """Representation of a P2000 Sensor.""" def __init__(self, hass, data, name, icon): """Initialize a P2000 sensor.""" self._hass = hass self._data = data self._name = name self._icon = icon self._state = None self.attrs = {} @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """Return the icon to use in the frontend.""" data = self._data.latest_data if data: if data["discipline"] == "Ambulancediensten": return "mdi:ambulance" elif data["discipline"] == "Brandweerdiensten": return "mdi:fire-truck" elif data["discipline"] == "Politiediensten": return "mdi:car-emergency" elif data["discipline"] == "Gereserveerd": return "mdi:car-emergency" elif data["discipline"] == "Lifeliner": return "mdi:helicopter" return self._icon @property def state(self): """Return the state of the device.""" return self._state @property def should_poll(self): """Return the polling requirement for this sensor.""" return False async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() state = await self.async_get_last_state() if not state: return self._state = state.state self.attrs = state.attributes async_dispatcher_connect( self._hass, DATA_UPDATED + CONF_NAME, self._schedule_immediate_update ) @callback def _schedule_immediate_update(self): self.async_schedule_update_ha_state(True) @property def device_state_attributes(self): """Return the state attributes.""" attrs = {} data = self._data.latest_data if data: attrs[ATTR_LONGITUDE] = data["longitude"] attrs[ATTR_LATITUDE] = data["latitude"] attrs["distance"] = data["distance"] attrs["capcode"] = data["capcode"] attrs["regio"] = data["regio"] attrs["regio name"] = data["regioname"] attrs["discipline"] = data["discipline"] attrs["time"] = data["msgtime"] attrs[ATTR_ATTRIBUTION] = CONF_ATTRIBUTION self.attrs = attrs return self.attrs def update(self): """Update current values.""" data = self._data.latest_data if data: self._state = data["msgtext"] _LOGGER.debug("State updated to %s", self._state)
python
# used for testing """ get the coordinates of cards and marks used to get the range for function mark_crd() check whether the calculation is correct change some parameters in "card.py" "anti.py" if necessary Check line 40 and 41, annotate line 37 if you would like test the image from your phone, if you only want to test local images, annotate line 36 and set the directory of your image """ from init import * def cards(sh): global quick, arts, buster threshold = 0.95 quick = get_crd(sh, 'res/quick.png', threshold) arts = get_crd(sh, 'res/arts.png', threshold) buster = get_crd(sh, 'res/buster.png', threshold) all_cards = quick + arts + buster all_cards.sort() print("cards: ", all_cards) print("quick:", quick) print("arts: ", arts) print("buster: ", buster) def marks(sh,): restraint = get_restraint(sh) resistance = get_resistance(sh) print("restraint: ", restraint) print("resistance: ", resistance) def test(): # sh = screenshot() sh = 'test/t1.jpeg' print('-------------') cards(sh) # show coordinates of cards print('-------------') marks(sh) # show coordinates of marks print('-------------') print("result: ", init_main(sh)) # show the result of calculation print('-------------') test()
python
from torchctr.datasets.criteo import get_criteo # step 1: download dataset get_criteo('datasets') # step 2: read data
python
''' | Filename : util_lstm_seqlabel.py | Description : Utility functions for the lstm_seqlabel.py file. | Author : Pushpendre Rastogi | Created : Mon Oct 26 20:01:22 2015 (-0400) | Last-Updated: Wed Dec 16 03:49:16 2015 (-0500) | By: Pushpendre Rastogi | Update #: 44 ''' import collections import contextlib import numpy import random import rasengan import re import sys import theano import time def set_seed(seed): ''' Set the seed in both numpy and random module ''' numpy.random.seed(seed) random.seed(seed) def is_invalid(arr): return any([f(arr).any() for f in [numpy.isinf, numpy.isnan, numpy.isneginf]]) def is_there_a_dominating_row(mat): di = None for i in range(mat.shape[0]): if all(all(mat[i] > mat[j]) for j in range(mat.shape[0]) if i != j): di = i return di def print_domination(arc_scores): print('Dominating Row: ', is_there_a_dominating_row(arc_scores.squeeze())) return def convert_id_to_word(corpus, idx2label): return [[idx2label[word] for word in sentence] for sentence in corpus] def conv_x(x, window_size, vocsize): x = list(x) x = [vocsize] + x + [vocsize + 1] cwords = contextwin(x, window_size) words = numpy.ndarray((len(x), window_size)).astype('int32') for i, win in enumerate(cwords): words[i] = win return words[1:-1] def conv_y(y): return y def pprint_per_line(d, l): ''' Pretty print the entries in a dictionary/list based on the indices / keys contained in the list. Params ------ d : A dict or a list. l : A list of keys or indexes ''' for k in l: print (k, d[k]) return def shuffle(lol): ''' shuffle inplace each list in the same order by ensuring that we use the same state for every run of shuffle. lol :: list of list as input ''' state = random.getstate() for l in lol: random.setstate(state) random.shuffle(l) def contextwin(l, win): ''' win :: int corresponding to the size of the window given a list of indexes composing a sentence l :: array containing the word indexes it will return a list of list of indexes corresponding to context windows surrounding each word in the sentence ''' assert (win % 2) == 1 assert win >= 1 l = list(l) lpadded = win // 2 * [-1] + l + win // 2 * [-1] out = [lpadded[i:(i + win)] for i in range(len(l))] assert len(out) == len(l) return out def np_floatX(data): return numpy.asarray(data, dtype=theano.config.floatX) def get_shuffling_index_sorted_by_length(X, seed=None, shuffle=True): ''' together. Shuffle them by default but allow for not shuffling as well. Params ------ X : X is a list of sequences. seed : (default 10) Returns ------- Return a list of tuples where each tuple contains (length:l, list of indices:lst) such that if the sequence X was sorted corresponding to lst then all the length l elements from original X would come together. ''' dd = collections.defaultdict(list) for i, x in enumerate(X): dd[len(x)].append(i) if shuffle: for k in dd: with rasengan.reseed_ctm(seed): random.shuffle(dd[k]) shuffled_idx = [(k, dd[k]) for k in sorted(dd.keys())] return shuffled_idx def print_progress(percentage_complete, tic, epoch_id=None, carriage_return=True): ''' Params ------ epoch_id : The current Epoch percentage_complete : tic : Returns ------- ''' eol = '\r' if carriage_return else '\n' print ('[Testing] >> %2.2f%%' % (percentage_complete) if epoch_id is None else '[learning] epoch %i >> %2.2f%%' % (epoch_id, percentage_complete)), print('completed in %.2f (sec) <<%s' % (time.time() - tic, eol),) sys.stdout.flush() return def duplicate_middle_word(words): d = words.ndim assert d == 3 return numpy.concatenate( (words, words), axis=d-2) def duplicate_label(labels): d = labels.ndim assert d == 2 return numpy.concatenate( (labels, labels), axis=d-1) def deduplicate_label(labels): d = labels.ndim assert d == 2 and labels.shape[d-1] == 2 return labels[:, :1] def remove_int_at_end(s): try: return re.match('(.*)_\d+', s).group(1) except AttributeError: return s @contextlib.contextmanager def config_overide(msg, args): assert ' ' not in msg args.folder = args.folder + '_' + msg rasengan.warn('NOTE: I set args.folder to ' + args.folder) yield pass
python
"""Implementation of Eiger Meta Writer This module is a subclass of the odin_data MetaWriter and handles Eiger specific meta messages, writing them to disk. Matt Taylor, Diamond Light Source """ import numpy as np import time import re import ast from odin_data.meta_writer.meta_writer import MetaWriter import _version as versioneer MAJOR_VER_REGEX = r"^([0-9]+)[\\.-].*|$" MINOR_VER_REGEX = r"^[0-9]+[\\.-]([0-9]+).*|$" PATCH_VER_REGEX = r"^[0-9]+[\\.-][0-9]+[\\.-]([0-9]+).|$" class EigerMetaWriter(MetaWriter): """Eiger Meta Writer class. Eiger Detector Meta Writer writes Eiger meta data to disk """ def __init__(self, logger, directory, acquisitionID): """Initalise the EigerMetaWriter object. :param logger: Logger to use :param directory: Directory to create the meta file in :param acquisitionID: Acquisition ID of this acquisition """ super(EigerMetaWriter, self).__init__(logger, directory, acquisitionID) self.add_dataset_definition("start_time", (0,), maxshape=(None,), dtype='int64', fillvalue=-1) self.add_dataset_definition("stop_time", (0,), maxshape=(None,), dtype='int64', fillvalue=-1) self.add_dataset_definition("real_time", (0,), maxshape=(None,), dtype='int64', fillvalue=-1) self.add_dataset_definition("frame", (0,), maxshape=(None,), dtype='int64', fillvalue=-1) self.add_dataset_definition("size", (0,), maxshape=(None,), dtype='int64', fillvalue=-1) self.add_dataset_definition("hash", (0,), maxshape=(None,), dtype='S32', fillvalue=None) self.add_dataset_definition("encoding", (0,), maxshape=(None,), dtype='S10', fillvalue=None) self.add_dataset_definition("datatype", (0,), maxshape=(None,), dtype='S6', fillvalue=None) self.add_dataset_definition("frame_series", (0,), maxshape=(None,), dtype='int64', fillvalue=-1) self.add_dataset_definition("frame_written", (0,), maxshape=(None,), dtype='int64', fillvalue=-1) self.add_dataset_definition("offset_written", (0,), maxshape=(None,), dtype='int64', fillvalue=-1) self._num_frame_offsets_written = 0 self._current_frame_count = 0 self._need_to_write_data = False self._arrays_created = False self._close_after_write = False self._frame_offset_dict = {} self._frame_data_dict = {} self._series_created = False self._config_created = False self._flatfield_created = False self._pixel_mask_created = False self._countrate_created = False self._global_appendix_created = False self.start_new_acquisition() @staticmethod def get_version(): version = versioneer.get_versions()["version"] major_version = re.findall(MAJOR_VER_REGEX, version)[0] minor_version = re.findall(MINOR_VER_REGEX, version)[0] patch_version = re.findall(PATCH_VER_REGEX, version)[0] short_version = major_version + "." + minor_version + "." + patch_version version_dict = {} version_dict["full"] = version version_dict["major"] = major_version version_dict["minor"] = minor_version version_dict["patch"] = patch_version version_dict["short"] = short_version return version_dict def start_new_acquisition(self): """Performs actions needed when the acquisition is started.""" self._frame_offset_dict.clear() self._frame_data_dict.clear() self._series_created = False self._config_created = False self._flatfield_created = False self._pixel_mask_created = False self._countrate_created = False self._global_appendix_created = False return def handle_global_header_none(self, message): """Handle global header message with details flag set to None. :param message: The message received """ self._logger.debug('Handling global header none for acqID ' + self._acquisition_id) self._logger.debug(message) if self._series_created: self._logger.debug('series already created') return if not self.file_created: self.create_file() npa = np.array(message['series']) self.create_dataset_with_data("series", data=npa) self._series_created = True return def handle_global_header_config(self, header, config): """Handle global header config part message containing config data. :param header: The header received :param config: The config data """ self._logger.debug('Handling global header cfg for acqID ' + self._acquisition_id) self._logger.debug(header) self._logger.debug(config) if not self.file_created: self.create_file() if self._config_created: self._logger.debug('config already created') else: nps = np.str(config) config_data = ast.literal_eval(np.str(config).decode("utf-8")) self.create_dataset_with_data("config", data=nps) for k in sorted(config_data): self.create_dataset_with_data("_dectris/%s" %k, config_data[k]) self._config_created = True if self._series_created: self._logger.debug('series already created') else: npa = np.array(header['series']) self.create_dataset_with_data("series", data=npa) self._series_created = True return def handle_flatfield_header(self, header, flatfield): """Handle global header flatfield part message containing flatfield data. :param header: The header received :param flatfield: The flatfield data """ self._logger.debug('Handling flatfield header for acqID ' + self._acquisition_id) self._logger.debug(header) if self._flatfield_created: self._logger.debug('flatfield already created') return if not self.file_created: self.create_file() self._flatfield_created = True npa = np.frombuffer(flatfield, dtype=np.float32) shape = header['shape'] self.create_dataset_with_data("flatfield", data=npa, shape=(shape[1], shape[0])) return def handle_mask_header(self, header, mask): """Handle global header pixel mask part message containing pixel mask data. :param header: The header received :param mask: The pixel mask data """ self._logger.debug('Handling mask header for acqID ' + self._acquisition_id) self._logger.debug(header) if self._pixel_mask_created: self._logger.debug('pixel mask already created') return if not self.file_created: self.create_file() self._pixel_mask_created = True npa = np.frombuffer(mask, dtype=np.uint32) shape = header['shape'] self.create_dataset_with_data("mask", data=npa, shape=(shape[1], shape[0])) return def handle_countrate_header(self, header, countrate): """Handle global header count rate part message containing count rate data. :param header: The header received :param countrate: The count rate data """ self._logger.debug('Handling countrate header for acqID ' + self._acquisition_id) self._logger.debug(header) if self._countrate_created: self._logger.debug('countrate already created') return if not self.file_created: self.create_file() self._countrate_created = True npa = np.frombuffer(countrate, dtype=np.float32) shape = header['shape'] self.create_dataset_with_data("countrate", data=npa, shape=(shape[1], shape[0])) return def handle_global_header_appendix(self, appendix): """Handle global header appendix part message. :param appendix: The appendix data """ self._logger.debug('Handling global header appendix for acqID ' + self._acquisition_id) if self._global_appendix_created: self._logger.debug('global appendix already created') return if not self.file_created: self.create_file() self._global_appendix_created = True nps = np.str(appendix) self.create_dataset_with_data("globalAppendix", data=nps) return def handle_data(self, header): """Handle meta data message. :param header: The header """ frame_id = header['frame'] # Check if we know the offset to write to yet, if so write the frame, if not store the data until we do know. if self._frame_offset_dict.has_key(frame_id) == True: self.write_frame_data(self._frame_offset_dict[frame_id], header) del self._frame_offset_dict[frame_id] if self._close_after_write: self.close_file() else: self._frame_data_dict[frame_id] = header return def handle_image_appendix(self, header, appendix): """Handle meta data message appendix message part. :param header: The header :param appendix: The appendix data """ self._logger.debug('Handling image appendix for acqID ' + self._acquisition_id) self._logger.debug(header) self._logger.debug(appendix) # Do nothing as can't write variable length dataset in swmr return def handle_end(self, message): """Handle end of series message. :param message: The message """ self._logger.debug('Handling end for acqID ' + self._acquisition_id) self._logger.debug(message) # Do nothing with end message return def handle_frame_writer_start_acquisition(self, userHeader): """Handle frame writer plugin start acquisition message. :param userHeader: The header """ self._logger.debug('Handling frame writer start acquisition for acqID ' + self._acquisition_id) self._logger.debug(userHeader) self.number_processes_running = self.number_processes_running + 1 if not self.file_created: self.create_file() if self._num_frames_to_write == -1: self._num_frames_to_write = userHeader['totalFrames'] self.create_arrays() return def handle_frame_writer_create_file(self, userHeader, fileName): """Handle frame writer plugin create file message. :param userHeader: The header :param fileName: The file name """ self._logger.debug('Handling frame writer create file for acqID ' + self._acquisition_id) self._logger.debug(userHeader) self._logger.debug(fileName) return def handle_frame_writer_write_frame(self, message): """Handle frame writer plugin write frame message. :param message: The message """ frame_number = message['frame'] offset_value = message['offset'] if not self._arrays_created: self._logger.error('Arrays not created, cannot handle frame writer data') return offset_to_write_to = offset_value if self._num_frame_offsets_written + 1 > self._num_frames_to_write: self._data_set_arrays["frame_written"] = np.resize(self._data_set_arrays["frame_written"], (self._num_frame_offsets_written + 1,)) self._data_set_arrays["offset_written"] = np.resize(self._data_set_arrays["offset_written"], (self._num_frame_offsets_written + 1,)) self._data_set_arrays["frame_written"][self._num_frame_offsets_written] = frame_number self._data_set_arrays["offset_written"][self._num_frame_offsets_written] = offset_to_write_to self._num_frame_offsets_written = self._num_frame_offsets_written + 1 # Check if we have the data and/or appendix for this frame yet. If so, write it in the offset given if self._frame_data_dict.has_key(frame_number): self.write_frame_data(offset_to_write_to, self._frame_data_dict[frame_number]) del self._frame_data_dict[frame_number] else: self._frame_offset_dict[frame_number] = offset_to_write_to return def create_arrays(self): """Create the data set arrays for all of the Eiger meta datasets.""" self._data_set_arrays["start_time"] = np.negative(np.ones((self._num_frames_to_write,), dtype=np.int64)) self._data_set_arrays["stop_time"] = np.negative(np.ones((self._num_frames_to_write,), dtype=np.int64)) self._data_set_arrays["real_time"] = np.negative(np.ones((self._num_frames_to_write,), dtype=np.int64)) self._data_set_arrays["frame"] = np.negative(np.ones((self._num_frames_to_write,), dtype=np.int64)) self._data_set_arrays["size"] = np.negative(np.ones((self._num_frames_to_write,), dtype=np.int64)) self._data_set_arrays["hash"] = np.empty(self._num_frames_to_write, dtype='S32') self._data_set_arrays["encoding"] = np.empty(self._num_frames_to_write, dtype='S10') self._data_set_arrays["datatype"] = np.empty(self._num_frames_to_write, dtype='S6') self._data_set_arrays["frame_series"] = np.negative(np.ones((self._num_frames_to_write,), dtype=np.int64)) self._data_set_arrays["frame_written"] = np.negative(np.ones((self._num_frames_to_write,), dtype=np.int64)) self._data_set_arrays["offset_written"] = np.negative(np.ones((self._num_frames_to_write,), dtype=np.int64)) self._hdf5_datasets["start_time"].resize(self._num_frames_to_write, axis=0) self._hdf5_datasets["stop_time"].resize(self._num_frames_to_write, axis=0) self._hdf5_datasets["real_time"].resize(self._num_frames_to_write, axis=0) self._hdf5_datasets["frame"].resize(self._num_frames_to_write, axis=0) self._hdf5_datasets["size"].resize(self._num_frames_to_write, axis=0) self._hdf5_datasets["hash"].resize(self._num_frames_to_write, axis=0) self._hdf5_datasets["encoding"].resize(self._num_frames_to_write, axis=0) self._hdf5_datasets["datatype"].resize(self._num_frames_to_write, axis=0) self._hdf5_datasets["frame_series"].resize(self._num_frames_to_write, axis=0) self._hdf5_file.swmr_mode = True self._arrays_created = True def handle_frame_writer_close_file(self): """Handle frame writer plugin close file message.""" self._logger.debug('Handling frame writer close file for acqID ' + self._acquisition_id) # Do nothing return def close_file(self): """Close the file.""" if len(self._frame_offset_dict) > 0: # Writers have finished but we haven't got all associated meta. Wait till it comes before closing self._logger.info('Unable to close file as Frame Offset Dict Length = ' + str(len(self._frame_offset_dict))) self._close_after_write = True return self.write_datasets() if self._hdf5_file is not None: self._logger.info('Closing file ' + self.full_file_name) self._hdf5_file.close() self._logger.info('Meta frames written: ' + str(self._current_frame_count) + ' of ' + str(self._num_frames_to_write)) self._hdf5_file = None self.finished = True def handle_frame_writer_stop_acquisition(self, userheader): """Handle frame writer plugin stop acquisition message. :param userheader: The user header """ self._logger.debug('Handling frame writer stop acquisition for acqID ' + self._acquisition_id) self._logger.debug(userheader) if self.number_processes_running > 0: self.number_processes_running = self.number_processes_running - 1 if self.number_processes_running == 0: self._logger.info('Last processor ended for acqID ' + str(self._acquisition_id)) if self._current_frame_count >= self._num_frames_to_write: self.close_file() else: self._logger.info( 'Not closing file as not all frames written (' + str(self.write_count) + ' of ' + str( self._num_frames_to_write) + ')') else: self._logger.info('Processor ended, but not the last for acqID ' + str(self._acquisition_id)) return def write_frame_data(self, offset, header): """Write the frame data to the arrays and flush if necessary. :param offset: The offset to write to in the arrays :param header: The data header """ if not self._arrays_created: self._logger.error('Arrays not created, cannot write frame data') return if offset + 1 > self._current_frame_count: self._current_frame_count = offset + 1 self._data_set_arrays["start_time"][offset] = header['start_time'] self._data_set_arrays["stop_time"][offset] = header['stop_time'] self._data_set_arrays["real_time"][offset] = header['real_time'] self._data_set_arrays["frame"][offset] = header['frame'] self._data_set_arrays["size"][offset] = header['size'] self._data_set_arrays["hash"][offset] = header['hash'] self._data_set_arrays["encoding"][offset] = header['encoding'] self._data_set_arrays["datatype"][offset] = header['type'] self._data_set_arrays["frame_series"][offset] = header['series'] self.write_count = self.write_count + 1 self._need_to_write_data = True flush = False if self.flush_timeout is not None: if (time.time() - self._last_flushed) >= self.flush_timeout: flush = True elif (self.write_count % self.flush_frequency) == 0: flush = True if flush: self.write_datasets() # Reset timeout count to 0 self.write_timeout_count = 0 return def write_datasets(self): """Write the datasets to the hdf5 file.""" if not self._arrays_created: self._logger.warn('Arrays not created, cannot write datasets from frame data') return if self._need_to_write_data: self._logger.info('Writing data to datasets at write count ' + str(self.write_count) + ' for acqID ' + str(self._acquisition_id)) self._hdf5_datasets["start_time"][0:self._num_frames_to_write] = self._data_set_arrays["start_time"] self._hdf5_datasets["stop_time"][0:self._num_frames_to_write] = self._data_set_arrays["stop_time"] self._hdf5_datasets["real_time"][0:self._num_frames_to_write] = self._data_set_arrays["real_time"] self._hdf5_datasets["frame"][0:self._num_frames_to_write] = self._data_set_arrays["frame"] self._hdf5_datasets["size"][0:self._num_frames_to_write] = self._data_set_arrays["size"] self._hdf5_datasets["hash"][0:self._num_frames_to_write] = self._data_set_arrays["hash"] self._hdf5_datasets["encoding"][0:self._num_frames_to_write] = self._data_set_arrays["encoding"] self._hdf5_datasets["datatype"][0:self._num_frames_to_write] = self._data_set_arrays["datatype"] self._hdf5_datasets["frame_series"][0:self._num_frames_to_write] = self._data_set_arrays["frame_series"] self._hdf5_datasets["frame_written"].resize(self._num_frame_offsets_written, axis=0) self._hdf5_datasets["frame_written"][0:self._num_frame_offsets_written] = self._data_set_arrays["frame_written"][0:self._num_frame_offsets_written] self._hdf5_datasets["offset_written"].resize(self._num_frame_offsets_written, axis=0) self._hdf5_datasets["offset_written"][0:self._num_frame_offsets_written] = self._data_set_arrays["offset_written"][0:self._num_frame_offsets_written] self._hdf5_datasets["start_time"].flush() self._hdf5_datasets["stop_time"].flush() self._hdf5_datasets["real_time"].flush() self._hdf5_datasets["frame"].flush() self._hdf5_datasets["size"].flush() self._hdf5_datasets["hash"].flush() self._hdf5_datasets["encoding"].flush() self._hdf5_datasets["datatype"].flush() self._hdf5_datasets["frame_series"].flush() self._hdf5_datasets["frame_written"].flush() self._hdf5_datasets["offset_written"].flush() self._last_flushed = time.time() self._need_to_write_data = False def stop(self): """Stop this acquisition.""" self._frame_offset_dict.clear() self.close_file() def process_message(self, message, userheader, receiver): """Process a meta message. :param message: The message :param userheader: The user header :param receiver: The ZeroMQ socket the data was received on """ self._logger.debug('Eiger Meta Writer Handling message') if message['parameter'] == "eiger-globalnone": receiver.recv_json() self.handle_global_header_none(message) elif message['parameter'] == "eiger-globalconfig": config = receiver.recv_json() self.handle_global_header_config(userheader, config) elif message['parameter'] == "eiger-globalflatfield": flatfield = receiver.recv() self.handle_flatfield_header(userheader, flatfield) elif message['parameter'] == "eiger-globalmask": mask = receiver.recv() self.handle_mask_header(userheader, mask) elif message['parameter'] == "eiger-globalcountrate": countrate = receiver.recv() self.handle_countrate_header(userheader, countrate) elif message['parameter'] == "eiger-headerappendix": appendix = receiver.recv() self.handle_global_header_appendix(appendix) elif message['parameter'] == "eiger-imagedata": imageMetaData = receiver.recv_json() self.handle_data(imageMetaData) elif message['parameter'] == "eiger-imageappendix": appendix = receiver.recv() self.handle_image_appendix(userheader, appendix) elif message['parameter'] == "eiger-end": receiver.recv() self.handle_end(message) elif message['parameter'] == "createfile": fileName = receiver.recv() self.handle_frame_writer_create_file(userheader, fileName) elif message['parameter'] == "closefile": receiver.recv() self.handle_frame_writer_close_file() elif message['parameter'] == "startacquisition": receiver.recv() self.handle_frame_writer_start_acquisition(userheader) elif message['parameter'] == "stopacquisition": receiver.recv() self.handle_frame_writer_stop_acquisition(userheader) elif message['parameter'] == "writeframe": value = receiver.recv_json() self.handle_frame_writer_write_frame(value) else: self._logger.error('unknown parameter: ' + str(message)) value = receiver.recv() self._logger.error('value: ' + str(value)) return
python
import os def join_muspath(name: str): return os.path.join("assets", "audio", "music", name) menu1 = join_muspath("menu1.ogg") menu2 = join_muspath("menu2.ogg") piano1 = join_muspath("piano1.ogg") MENU = [menu1, menu2, piano1]
python
from unittest import TestCase from . import db_conn, es_conn, APP_DIR, DATABASE_URL from .queries import CREATE_TEST_TABLE, DROP_TEST_TABLE from .writer import Writer from .scanner import Scanner import os import subprocess import time from importlib import import_module from click.testing import CliRunner from .command import * class ESWrapTest(TestCase): conn = db_conn(DATABASE_URL) es = es_conn() def setUp(self): with self.conn.cursor() as c: c.execute(CREATE_TEST_TABLE) def tearDown(self): with self.conn.cursor() as c: c.execute(DROP_TEST_TABLE) filename = "foo_table_es_mapping.py" files = os.listdir('{}/{}'.format(os.getcwd(), APP_DIR)) if filename in files: cmd = "rm {}/{}/{}".format(os.getcwd(), APP_DIR, filename) subprocess.run([cmd], shell=True, check=True) # Add method for clearing indices. if self.es.indices.exists(index=['test_index']): self.es.indices.delete(index=['test_index']) def test_writer(self): w = Writer(DATABASE_URL) w.write_mapping('foo_table', 'foo_document') files = os.listdir('{}/{}'.format(os.getcwd(), APP_DIR)) self.assertIn('foo_table_es_mapping.py', files) module = import_module('{}.foo_table_es_mapping'.format(APP_DIR)) self.assertTrue(hasattr(module, 'foo_table_mapping')) mapping = getattr(module, 'foo_table_mapping') expected = { 'mappings': { 'foo_document': { 'properties': { 'foo': {'type': 'string'}, 'id': {'type': 'integer'}, 'bar': {'type': 'string'} } } } } self.assertEqual(mapping, expected) def test_scanner(self): s = Scanner(DATABASE_URL) props = s.build_props('foo_table') self.assertEqual(props['id'], dict(type='integer')) self.assertEqual(props['foo'], dict(type='string')) self.assertEqual(props['bar'], dict(type='string')) def test_create_index(self): w = Writer(DATABASE_URL) w.write_mapping('foo_table', 'foo_document') module = import_module('{}.foo_table_es_mapping'.format(APP_DIR)) mapping = getattr(module, 'foo_table_mapping') self.es.indices.create(index='test_index', body=mapping) time.sleep(2) self.assertTrue(self.es.indices.exists(index=['test_index'])) actual_mapping = self.es.indices.get_mapping( index=['test_index'], doc_type=['foo_document']) exp_mapping = { 'mappings': { 'foo_document': { 'properties': { 'foo': {'type': 'string'}, 'id': {'type': 'integer'}, 'bar': {'type': 'string'} } } } } self.assertEqual(actual_mapping['test_index'], exp_mapping) def test_click_app(self): runner = CliRunner() result = runner.invoke(cli, [ '--database-url={}'.format(DATABASE_URL), '--file-path={}/{}'.format(os.getcwd(), APP_DIR), '--table-name=foo_table', '--document-type=foo_document']) self.assertEqual(result.output, 'Writing map.\n') self.assertEqual(result.exit_code, 0) def test_click_badparam(self): runner = CliRunner() result = runner.invoke(cli, []) self.assertTrue('The --database-url cannot be blank' in result.output)
python
""" ******************************************************************************** pyconmech ******************************************************************************** .. currentmodule:: pyconmech This library provides python wrappers for efficient evaluation of construction mechanics. .. toctree:: :maxdepth: 3 pyconmech.frame_analysis pyconmech.database """ from __future__ import print_function import os import sys import decimal from .frame_analysis import StiffnessChecker from .__version__ import __author__, __author_email__, __copyright__, __description__, __license__, __title__, __url__, __version__ __all__ = [ '__author__', '__author_email__', '__copyright__', '__description__', '__license__', '__title__', '__url__', '__version__', 'raise_if_windows', 'raise_if_not_windows', 'raise_if_ironpython', 'raise_if_not_ironpython', ] def is_windows(): """Check if the operating system is Windows. Returns ------- bool True if the OS is Windows. False otherwise """ return os.name == 'nt' WINDOWS = is_windows() def is_ironpython(): """Check if the Python implementation is IronPython. Returns ------- bool True if the implementation is IronPython. False otherwise """ return 'ironpython' in sys.version.lower() IPY = is_ironpython() def raise_if_not_windows(): if not WINDOWS: raise def raise_if_windows(): if WINDOWS: raise def raise_if_not_ironpython(): if not IPY: raise def raise_if_ironpython(): if IPY: raise
python
from src.utils.general import pd_utils from datetime import date import logging import pandas as pd pd.set_option('display.width', None) class LCReviewer: """ LC Reviewer help review LC """ def __init__(self): self.df = pd_utils.pd_read_csv('../../data/files/lc_record.csv') self.review_df = pd_utils.pd_read_csv('../../data/files/lc_review.csv') today_datestr = date.today().strftime("%Y-%m-%d") if self.review_df.iloc[-1]['datestr'] != today_datestr: new_row = {'row_num': self.review_df.iloc[-1]['row_num'], 'datestr': date.today().strftime("%Y-%m-%d")} self.review_df = self.review_df.append(new_row, ignore_index=True) self.cur_row = self.review_df.iloc[-1]['row_num'] self.today_num = 0 self.save_df() def save_df(self): pd_utils.pd_write_csv(self.review_df, '../../data/files/lc_review.csv') def next(self): self.cur_row = self.review_df.iloc[-1]['row_num'] if self.cur_row >= len(self.df): print("Good job! All LC review done.") return self.save() row = self.df.iloc[self.cur_row] print("\nNext Question:\nNum:\t{}\nURL:\t{}\nDate:\t{}\nToday:\t{}\n".format( row['lc_num'], row['lc_url'], row['date'], self.today_num)) def save(self): self.cur_row += 1 self.review_df.iloc[-1, self.review_df.columns.get_loc('row_num')] = self.cur_row self.today_num = self.cur_row - self.review_df.iloc[-2]['row_num'] self.save_df() if __name__ == "__main__": lc_reviewer = LCReviewer() print("Start review") while True: lc_reviewer.next() receive = input("input: ") if receive == "exit": break
python
from localground.apps.site.api import serializers from localground.apps.site import models from localground.apps.site.api.views.abstract_views import \ MediaList, MediaInstance class MapImageList(MediaList): ext_whitelist = ['jpg', 'jpeg', 'gif', 'png'] serializer_class = serializers.MapImageSerializerCreate model = models.MapImage class MapImageInstance(MediaInstance): serializer_class = serializers.MapImageSerializerUpdate model = models.MapImage
python
import pytest from rasa.shared.nlu.training_data import util from rasa.nlu.config import RasaNLUModelConfig import rasa.shared.nlu.training_data.loading from rasa.nlu.train import Trainer, Interpreter from rasa.utils.tensorflow.constants import ( EPOCHS, MASKED_LM, NUM_TRANSFORMER_LAYERS, TRANSFORMER_SIZE, ) from rasa.nlu.selectors.response_selector import ResponseSelector @pytest.mark.parametrize( "pipeline", [ [ {"name": "WhitespaceTokenizer"}, {"name": "CountVectorsFeaturizer"}, {"name": "ResponseSelector", EPOCHS: 1}, ], [ {"name": "WhitespaceTokenizer"}, {"name": "CountVectorsFeaturizer"}, { "name": "ResponseSelector", EPOCHS: 1, MASKED_LM: True, TRANSFORMER_SIZE: 256, NUM_TRANSFORMER_LAYERS: 1, }, ], ], ) def test_train_selector(pipeline, component_builder, tmpdir): # use data that include some responses training_data = rasa.shared.nlu.training_data.loading.load_data( "data/examples/rasa/demo-rasa.md" ) training_data_responses = rasa.shared.nlu.training_data.loading.load_data( "data/examples/rasa/demo-rasa-responses.md" ) training_data = training_data.merge(training_data_responses) nlu_config = RasaNLUModelConfig({"language": "en", "pipeline": pipeline}) trainer = Trainer(nlu_config) trainer.train(training_data) persisted_path = trainer.persist(tmpdir) assert trainer.pipeline loaded = Interpreter.load(persisted_path, component_builder) parsed = loaded.parse("hello") assert loaded.pipeline assert parsed is not None assert (parsed.get("response_selector").get("all_retrieval_intents")) == [ "chitchat" ] assert ( parsed.get("response_selector") .get("default") .get("response") .get("intent_response_key") ) is not None assert ( parsed.get("response_selector") .get("default") .get("response") .get("template_name") ) is not None assert ( parsed.get("response_selector") .get("default") .get("response") .get("response_templates") ) is not None ranking = parsed.get("response_selector").get("default").get("ranking") assert ranking is not None for rank in ranking: assert rank.get("confidence") is not None assert rank.get("intent_response_key") is not None @pytest.mark.parametrize( "use_text_as_label, label_values", [ [False, ["chitchat/ask_name", "chitchat/ask_weather"]], [True, ["I am Mr. Bot", "It's sunny where I live"]], ], ) def test_ground_truth_for_training(use_text_as_label, label_values): # use data that include some responses training_data = rasa.shared.nlu.training_data.loading.load_data( "data/examples/rasa/demo-rasa.md" ) training_data_responses = rasa.shared.nlu.training_data.loading.load_data( "data/examples/rasa/demo-rasa-responses.md" ) training_data = training_data.merge(training_data_responses) response_selector = ResponseSelector( component_config={"use_text_as_label": use_text_as_label} ) response_selector.preprocess_train_data(training_data) assert response_selector.responses == training_data.responses assert ( sorted(list(response_selector.index_label_id_mapping.values())) == label_values ) @pytest.mark.parametrize( "predicted_label, train_on_text, resolved_intent_response_key", [ ["chitchat/ask_name", False, "chitchat/ask_name"], ["It's sunny where I live", True, "chitchat/ask_weather"], ], ) def test_resolve_intent_response_key_from_label( predicted_label, train_on_text, resolved_intent_response_key ): # use data that include some responses training_data = rasa.shared.nlu.training_data.loading.load_data( "data/examples/rasa/demo-rasa.md" ) training_data_responses = rasa.shared.nlu.training_data.loading.load_data( "data/examples/rasa/demo-rasa-responses.md" ) training_data = training_data.merge(training_data_responses) response_selector = ResponseSelector( component_config={"use_text_as_label": train_on_text} ) response_selector.preprocess_train_data(training_data) label_intent_response_key = response_selector._resolve_intent_response_key( {"id": hash(predicted_label), "name": predicted_label} ) assert resolved_intent_response_key == label_intent_response_key assert ( response_selector.responses[ util.intent_response_key_to_template_key(label_intent_response_key) ] == training_data.responses[ util.intent_response_key_to_template_key(resolved_intent_response_key) ] )
python
"""Define _TSP Models Time Series Predictions (TSPs) are attempt to predict what will happen based on what has happened before. While there are a plethora of ways to do this, the teaspoon module foucsses on using the last few observations to predict the next and mechanisms to combine several of these predictions. """ import multiprocessing import pandas as pd import numpy as np def ts_to_labels(_ts, _n, col=None): """Convert a time series iterable into a set of features and labels ready for training. Args: _ts (array-like): time series to be used for training. _n (int): number of step features for each label. col (any): column identifier for dataframe time series, in case only a subsection of it will be used for training. """ _ts = _ts if isinstance(_ts, pd.DataFrame) \ else pd.DataFrame(_ts, columns=["x"]) _x, _y = list(), list() _ts.rolling(_n+1).apply(append_window, args=(_x, _y, _n), kwargs={"col": col}) return np.array(_x), np.array(_y) def append_window(_w, _x, _y, _n, col=None): """Helper function to append the features and labels from a time series rolling window into a feature and label array. Args: _w (pd.DataFrame or pd.Series): time series data window element of the .rolling(_n+1) method. _x (list): feature list to append features to. _y (list): feature list to append features to. _n (int): number of step features for each label. col (any): column identifier for dataframe time series, in case only a subsection of it will be used for training. """ _x.append(np.array(_w.iloc[:_n])) _y.append(np.array(_w.iloc[_n]) if col is None else np.array(_w.iloc[_n][col])) return 1 class SimpleModelWrapper: """Wrapper object used to "translate" a model's core functionaliy into one that can be used in _TSP instances. This wrapper by default simply calls an alternative function as specifed upon initialization, with assumed positional arguments. This class can be inheritted to incorporate more complex mechanics of whichever model is being used. Attributes: _model (any): model with fit and predict capabilities. _fit_attr (str): model attribute used for fitting. _predict_attr (str): model attribute used for predicting values. """ def __init__(self, model, fit_attr="fit", predict_attr="predict"): """Initialize object instance. Args: model (any): model with fit and predict capabilities. fit_attr (str), default "fit": model attribute used for fitting. predict_attr (str), default "predict": model attribute used for predicting values. Raise: TypeError: if fit_attr or predict_attr are not strings. """ self._model = model if not isinstance(fit_attr, str): raise TypeError(f"fit_attr parameter must be {str}, \ not {type(fit_attr)}") self._fit_attr = fit_attr if not isinstance(predict_attr, str): raise TypeError(f"predict_attr parameter must be {str}, \ not {type(predict_attr)}") self._predict_attr = predict_attr def fit(self, features, labels, *args, **kwargs): """Fit model(s) Args: features (array or matrix like): features used for fitting labels (array or matrix like): labels used for fitting *args, **kwargs: arguments used for fitting """ return self._model.__getattribute__(self._fit_attr)( features, labels, *args, **kwargs ) def predict(self, features, *args, **kwargs): """Predict value(s) Args: features (array or matrix like): features used for fitting *args, **kwargs: arguments used for fitting """ return self._model.__getattribute__(self._predict_attr)( features, *args, **kwargs ) class _TSP: """Abstract Time Series Prediction class. Attributes: _model (any with "fit" and "predict" parameter): model that takes in past steps and predicts future ones. """ def fit(self, _ts, *args, **kwargs): """Fit model from data. Args: _ts (array-like): time series data used to fit the model. """ raise NotImplementedError() def predict(self, _ts, *args, start=None, horizon=1, **kwargs): """Predict future steps from past ones. Args: _ts (array-like): time series to get past steps from. start (any), Optional, None by default: first step to predict from. horizon (int), 1 by default: how many steps ahead to predict. """ raise NotImplementedError() @property def model(self): """Define model fetching mechanism to ensure model must be set to be accessed Raises: AttributeError: if model is not set. """ if self._model is None: raise AttributeError("model attribute is not set") return self._model @model.setter def model(self, new_model): """Define model setting mechanism to ensure model can be fit and used for prediction. Raises: AttributeError: if model does not have a "fit" or "predict" parameter. """ if not hasattr(new_model, "fit"): raise AttributeError("specified model must have a 'fit' \ attribute") if not hasattr(new_model, "predict"): raise AttributeError("specified model must have a 'predict' \ attribute") self._model = new_model class UTSP(_TSP): """Univarate Time Series Prediction model. This is used to predict the next step given a one-dimentional array. Attributes: _n (int): how many past steps considered for predicting the next. """ def __init__(self, model, n): """Initialize model parameters. Args: n (int): how many past steps considered for predicting the next. model (any): fittable model that takes in {n} one-dimentional inputs and returns a single value for the predicted next step. """ self.model = model self._n = n def fit(self, _ts, *args, shuffle=True, **kwargs): if (len(_ts.shape) == 1 and _ts.shape[1] != 1) \ or (len(_ts.shape) >= 2): raise ValueError(f"input time series must be a 1D array, not \ {len(_ts.shape)}D") _x, _y = ts_to_labels(_ts, self._n) _x = _x.reshape(-1, 1) if len(_x.shape) == 1 else _x _y = _y.reshape(-1, 1) if shuffle: concat = np.concatenate((_x, _y), axis=1) np.random.shuffle(concat) _x, _y = np.split(concat, [self._n], axis=1) self.model.fit(_x, _y, *args, **kwargs) def predict(self, _ts, *args, start=None, horizon=1, **kwargs): if (len(_ts.shape) == 1 and _ts.shape[1] != 1) \ or (len(_ts.shape) >= 2): raise ValueError(f"input time series must be a 1D array, not \ {len(_ts.shape)}D") if len(_ts) < self._n: ValueError(f"input musut have at least {self._n} items.") ret_x, ret_pred = [], [] curr_x, curr_pred = np.empty(0), None if start is None: curr_x = _ts[:-self._n] else: if len(_ts[start:]) < self._n: ValueError(f"specify a start with more than {self._n} items \ ahead of it.") curr_x = _ts[start:start+self._n] curr_x = np.array(curr_x) for _ in range(horizon): curr_pred = self.model.predict(np.array(curr_x.reshape(1, -1)), *args, **kwargs) ret_x.append(curr_x) ret_pred.append(curr_pred) curr_x[:self._n-1], curr_x[self._n-1] = curr_x[1:], curr_pred return np.array(ret_x), np.array(ret_pred) class MTSP(_TSP): """Multivariate Time Series Prediction models. These models are highly flexible ways of predicting future values based on a 2D aray of last steps over multiple features. While this feature is commonly used to look a single step ahead, users can specify more granularly how each step variable on a step ahead should be predicted. Attributes: _n (int): number of steps before used to predict a step ahead. _col (str): column this model tried to predict. _submodels (dict): dictionary of submodels used to predict a column's value based on previous steps. These must be either USTP models for single columns or MTSP for multiple columns. This dictionary should have a tuple (multiple columns) or string (single column) as keys and _TSP instances as values. _min_cols (list): all columns specified by the initialization. n_jobs (int): number of jobs to run for fiting and predicting. """ def __init__(self, model, n, col, submodels=None, n_jobs=1): """ Args: n (int): number of steps before used to predict a step ahead. col (str): column this model tried to predict. submodels (dict): dictionary of submodels used to predict any dataframe varible in a custom way. These must be either USTP models for single columns or MTSP for multiple columns. This dictionary should have a tuple (multiple columns) or string (single column) as keys and _TSP instances as values. This variable will be filled upon fitting to account for unspecified columns. n_jobs (int): number of jobs to run for fiting and predicting. """ self.model = model min_cols = set() self._col = col min_cols.add(self._col) self._n = n if isinstance(submodels, dict): raise TypeError(f"mutlistep_models parameter must be of type \ {dict} not {type(submodels)}") for col_name, tsp in submodels.items(): if isinstance(col_name, tuple): if not isinstance(tsp, MTSP): raise TypeError(f"multistep model for column {col_name} \ must be of type {MTSP} not {type(tsp)} if \ predicting based on single variable") col1, col2 = col min_cols.add(col1) if isinstance(col2, (tuple, list)): min_cols.update(col2) else: min_cols.add(col2) else: if not isinstance(tsp, UTSP): raise TypeError(f"multistep model for column {col_name} \ must be of type {UTSP} not {type(tsp)} if \ predicting based on multiple variables") min_cols.add(col) self._min_cols = list(min_cols) self.n_jobs = n_jobs def fit(self, _ts, *args, **kwargs): if not isinstance(_ts, pd.DataFrame): raise TypeError(f"argument _ts must be of type {pd.DataFrame} \ not {type(_ts)}") if not all([col_name in _ts.columns for col_name in self._min_cols]): raise ValueError(f"time series should have the following columns \ specified upon model initialization: {self._min_cols}") _x, _y = ts_to_labels(_ts, self._n) self.model.fit(_x, _y.reshape(-1, 1), *args, **kwargs) with multiprocessing.Pool(processes=self.n_jobs) as pool: results = [pool.apply_async(tsp.fit, (_ts[col_name],)) for col_name, tsp in self._submodels] for res in results: res.get() def predict(self, _ts, *args, start=None, horizon=1, **kwargs): if not isinstance(_ts, pd.DataFrame): raise TypeError(f"argument _ts must be of type {pd.DataFrame} \ not {type(_ts)}") if len(_ts) < self._n: ValueError(f"input musut have at least {self._n} items.") if not all([col_name in _ts.columns for col_name in self._min_cols]): raise ValueError(f"time series should have the following columns \ specified upon model initialization: {self._min_cols}") ret_x, ret_pred = [], [] curr_x, curr_pred = np.empty(0), None if start is None: start = len(_ts) - self._n if len(_ts.iloc[start:]) < self._n: ValueError(f"specify a start with more than {self._n} items \ ahead of it.") # we will append to the time series, so we create a copy now. # copy will only have the necessary number of steps behind to # save memory. _ts = _ts.copy().iloc[start: -max([sm._n for sm in self._submodels.values()] + [self._n])] curr_x = _ts.iloc[start:start+self._n].values col_names_idx = {col: i for i, col in enumerate(_ts.columns)} pred_cols = col_names_idx[self._col] if isinstance(self._col, str) \ else [col_names_idx[c] for c in self._col] for _ in range(horizon): curr_pred = self.model.predict(curr_x.reshape(1, -1), *args, **kwargs) ret_x.append(curr_x) ret_pred.append(curr_pred) new_step = curr_x[-1] new_step[pred_cols] = curr_pred for col_name, tsp in self._submodels: # TODO: parallelize if isinstance(col_name, tuple): col_name, col_sl = col_name else: col_sl = col_name new_step[col_names_idx[col_name]] = tsp.predict(_ts[col_sl]) curr_x[:self._n-1], curr_x[-1] = curr_x[1:], new_step _ts[len(_ts)] = new_step return np.array(ret_x), np.array(ret_pred) @property def n_jobs(self): """Get n_jobs attribute""" @n_jobs.setter def n_jobs(self, _n): """Set n_jobs attribute ensuring it new value is an integer""" if not isinstance(_n, int): raise TypeError(f"attribute n_jobs must be of type {int} \ not {type(_n)}") self._n_jobs = _n
python
class AccessDeniedError(Exception): pass
python
#!/usr/bin/env python3 import numpy as np import json, logging import pylab as plt from frbpa.utils import get_phase, get_params logging_format = '%(asctime)s - %(funcName)s -%(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=logging_format) def make_obs_phase_plot(data_json, period, ref_mjd=None, nbins=40, save=False, show=False): """ Generates burst phase and observation phase distribution plot for a given period. :param data_json: json file with data :param period: period to use for phase calculation :param ref_mjd: reference MJD to use :param nbins: number of bins in the phase histogram :param save: to save the plot :param show: to show the plot """ with open(data_json, 'r') as f: data = json.load(f) assert 'obs_duration' in data.keys() assert 'bursts' in data.keys() assert 'obs_startmjds' in data.keys() burst_dict = data['bursts'] obs_duration_dict = data['obs_duration'] obs_startmjds_dict = data['obs_startmjds'] assert len(obs_duration_dict.keys()) == len(obs_startmjds_dict.keys()) assert len(obs_duration_dict.keys()) < 20 assert len(burst_dict.keys()) < 10 new_obs_startmjds_dict = {} new_obs_duration_dict = {} for k in obs_startmjds_dict.keys(): start_times = obs_startmjds_dict[k] durations = obs_duration_dict[k] new_start_times = [] new_durations = [] for i, t in enumerate(start_times): new_start_times.append(t) new_durations.append(durations[i]//2) new_start_times.append(t + (durations[i]//2)/(60*60*24)) new_durations.append(durations[i]//2) new_obs_startmjds_dict[k] = new_start_times new_obs_duration_dict[k] = new_durations obs_duration_dict = new_obs_duration_dict obs_startmjds_dict = new_obs_startmjds_dict bursts = [] for k in burst_dict.keys(): bursts = bursts + burst_dict[k] obs_duration = [] for k in obs_duration_dict.keys(): obs_duration = obs_duration + obs_duration_dict[k] obs_startmjds = [] for k in obs_startmjds_dict.keys(): obs_startmjds = obs_startmjds + obs_startmjds_dict[k] assert len(obs_startmjds) == len(obs_duration) bursts = np.array(bursts) obs_duration = np.array(obs_duration) obs_startmjds = np.array(obs_startmjds) obs_start_phases = get_phase(obs_startmjds, period, ref_mjd=ref_mjd) hist, bin_edges_obs = np.histogram(obs_start_phases, bins=nbins) obs_start_phases_dict = {} duration_per_phase_dict = {} for k in obs_startmjds_dict.keys(): obs_start_phases_dict[k] = get_phase(np.array(obs_startmjds_dict[k]), period) durations = np.array(obs_duration_dict[k]) start_phases = obs_start_phases_dict[k] d_hist = [] for i in range(len(bin_edges_obs)): if i>0: d_hist.append(durations[(start_phases < bin_edges_obs[i]) & (start_phases > bin_edges_obs[i-1])].sum()) duration_per_phase_dict[k] = np.array(d_hist)/(60*60) obs_duration = np.array(obs_duration) duration_hist = [] for i in range(len(bin_edges_obs)): if i>0: duration_hist.append(obs_duration[(obs_start_phases < bin_edges_obs[i]) & (obs_start_phases > bin_edges_obs[i-1])].sum()) duration_hist = np.array(duration_hist)/(60*60) bin_mids = (bin_edges_obs[:-1] + bin_edges_obs[1:])/2 phase_lst = [] for k in burst_dict.keys(): phase_lst.append(list(get_phase(np.array(burst_dict[k]), period))) cm = plt.cm.get_cmap('tab20').colors burst_hist_colors = [] obs_hist_colors = [] e = 0 o = 1 for k in obs_duration_dict.keys(): if k in burst_dict.keys(): color = cm[e] e += 2 burst_hist_colors.append(color) else: color = cm[o] o += 2 obs_hist_colors.append(color) fig, ax = plt.subplots(2, 1, sharex=True) ax1 = ax[0] ax1_right = ax1.twinx() ax1.hist(phase_lst, bins=bin_edges_obs, stacked=True, density=False, label=burst_dict.keys(), edgecolor='black', linewidth=0.5, color=burst_hist_colors) ax1.set_xlabel('Phase') ax1.set_ylabel('No. of Bursts') ax1_right.scatter(bin_mids, duration_hist, label='Obs duration', c='k', alpha=0.5) ax1_right.set_ylabel('Observation Duration (hrs)') ax1.legend() ax1_right.legend(loc=2) ax2 = ax[1] cum_ds = np.zeros(nbins) for i, k in enumerate(duration_per_phase_dict): d = duration_per_phase_dict[k] ax2.bar(bin_edges_obs[:-1], d, width=bin_edges_obs[1]-bin_edges_obs[0], align='edge', bottom=cum_ds, alpha=1, label=k, edgecolor='black', linewidth=0.2, color=obs_hist_colors[i]) cum_ds += d ax2.set_xlabel('Phase') ax2.set_ylabel('Observation Duration (hrs)') ax2.legend() plt.tight_layout() if save: plt.savefig('burst_obs_phase_hist.png', bbox_inches='tight') plt.savefig('burst_obs_phase_hist.pdf', bbox_inches='tight') if show: plt.show() def make_phase_plot(data_json, period, ref_mjd=None, nbins=40, cmap=None, title=None, save=False, show=False): """ Generates burst phase distribution plot at a given period. :param data_json: json file with data :param period: period to use for phase calculation :param ref_mjd: reference MJD to use :param nbins: number of bins in the phase histogram :param cmap: matplotlib colormap to use :param title: title of the plot :param save: to save the plot :param show: to show the plot """ with open(data_json, 'r') as f: data = json.load(f) burst_dict = data['bursts'] all_bursts = [] for k in burst_dict.keys(): all_bursts += burst_dict[k] if not ref_mjd: ref_mjd = np.min(all_bursts) l = [] for k in burst_dict: l.append(get_phase(np.array(burst_dict[k]), period, ref_mjd=ref_mjd)) refphases = np.linspace(0,1,1000) _, bin_edges = np.histogram(refphases, bins=nbins) names = burst_dict.keys() num_colors = len(names) plt.figure(figsize=(10,8)) if not cmap: if num_colors < 20: cmap = 'tab20' colors = plt.get_cmap(cmap).colors[:num_colors] else: cmap = 'jet' cm = plt.get_cmap(cmap) colors = [cm(1.*i/num_colors) for i in range(num_colors)] params = get_params() plt.rcParams.update(params) _ = plt.hist(l, bins=bin_edges, stacked=True, density=False, label=names, edgecolor='black', linewidth=0.5, color=colors) plt.xlabel('Phase') plt.ylabel('No. of Bursts') if not title: title = f'Burst phases of {len(all_bursts)} bursts at a period of {period} days' plt.title(title) plt.legend() if save: plt.savefig('burst_phase_histogram.png', bbox_inches='tight') if show: plt.show()
python
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer from RecoMuon.TrackingTools.MuonServiceProxy_cff import MuonServiceProxy from DQMOffline.Muon.gemEfficiencyAnalyzerCosmicsDefault_cfi import gemEfficiencyAnalyzerCosmicsDefault as _gemEfficiencyAnalyzerCosmicsDefault gemEfficiencyAnalyzerCosmics = _gemEfficiencyAnalyzerCosmicsDefault.clone( ServiceParameters = MuonServiceProxy.ServiceParameters.clone(), muonTag = cms.InputTag('muons'), name = cms.untracked.string('Cosmic 2-Leg STA Muon'), folder = cms.untracked.string('GEM/Efficiency/type1'), ) gemEfficiencyAnalyzerCosmicsOneLeg = _gemEfficiencyAnalyzerCosmicsDefault.clone( ServiceParameters = MuonServiceProxy.ServiceParameters.clone(), muonTag = cms.InputTag('muons1Leg'), name = cms.untracked.string('Cosmic 1-Leg STA Muon'), folder = cms.untracked.string('GEM/Efficiency/type2'), ) from Configuration.Eras.Modifier_phase2_GEM_cff import phase2_GEM phase2_GEM.toModify(gemEfficiencyAnalyzerCosmics, etaNbins=cms.untracked.int32(15), etaUp=cms.untracked.double(3.0)) phase2_GEM.toModify(gemEfficiencyAnalyzerCosmicsOneLeg, etaNbins=cms.untracked.int32(15), etaUp=cms.untracked.double(3.0))
python
# -*- coding: utf-8 -*- """ This module implements various utilities for WSGI applications. Most of them are used by the request and response wrappers but especially for middleware development it makes sense to use them without the wrappers. """ import re import os import sys import pkgutil from ._compat import unichr, text_type, string_types, reraise, PY2, to_unicode, to_native, BytesIO try: import simplejson as json except: import json import functools if PY2: from urlparse import urljoin, SplitResult as UrlSplitResult from urllib import urlencode, quote as urlquote, unquote as urlunquote else: from urllib.parse import urljoin, SplitResult as UrlSplitResult from urllib.parse import urlencode, quote as urlquote, unquote as urlunquote urlunquote = functools.partial(urlunquote, encoding='latin1') def urldecode(qs): r = [] for pair in qs.replace(';', '&').split('&'): if not pair: continue nv = pair.split('=', 1) if len(nv) != 2: nv.append('') key = urlunquote(nv[0].replace('+', ' ')) value = urlunquote(nv[1].replace('+', ' ')) r.append((key, value)) return r class ConfigDict(dict): def __contains__(self, k): try: return dict.__contains__(self, k) or hasattr(self, k) except: return False # only called if k not found in normal places def __getattr__(self, k): try: # Throws exception if not in prototype chain return object.__getattribute__(self, k) except AttributeError: try: return self[k] except KeyError: raise AttributeError(k) def __setattr__(self, k, v): try: # Throws exception if not in prototype chain object.__getattribute__(self, k) except AttributeError: try: self[k] = v except: raise AttributeError(k) else: object.__setattr__(self, k, v) def __delattr__(self, k): try: # Throws exception if not in prototype chain object.__getattribute__(self, k) except AttributeError: try: del self[k] except KeyError: raise AttributeError(k) else: object.__delattr__(self, k) class cached_property(object): """ A property that is only computed once per instance and then replaces itself with an ordinary attribute. Deleting the attribute resets the property. """ def __init__(self, func): self.__doc__ = getattr(func, '__doc__') self.func = func def __get__(self, obj, cls=None): if obj is None: return self if self.func.__name__ not in obj.__dict__: obj.__dict__[self.func.__name__] = self.func(obj) value = obj.__dict__[self.func.__name__] return value
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes as OperandDef from ..datasource import tensor as astensor from .core import TensorFFTMixin, validate_fft, TensorHermitianFFT class TensorIHFFT(TensorHermitianFFT, TensorFFTMixin): _op_type_ = OperandDef.IHFFT def __init__(self, n=None, axis=-1, norm=None, **kw): super().__init__(_n=n, _axis=axis, _norm=norm, **kw) @classmethod def _get_shape(cls, op, shape): new_shape = list(shape) shape = op.n if op.n is not None else shape[op.axis] if shape % 2 == 0: shape = (shape // 2) + 1 else: shape = (shape + 1) // 2 new_shape[op.axis] = shape return tuple(new_shape) def ihfft(a, n=None, axis=-1, norm=None): """ Compute the inverse FFT of a signal that has Hermitian symmetry. Parameters ---------- a : array_like Input tensor. n : int, optional Length of the inverse FFT, the number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex Tensor The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is ``n//2 + 1``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error, * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error. Examples -------- >>> import mars.tensor as mt >>> spectrum = mt.array([ 15, -4, 0, -1, 0, -4]) >>> mt.fft.ifft(spectrum).execute() array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> mt.fft.ihfft(spectrum).execute() array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ a = astensor(a) validate_fft(a, axis=axis, norm=norm) op = TensorIHFFT(n=n, axis=axis, norm=norm, dtype=np.dtype(np.complex_)) return op(a)
python
import pandas as pd from bokeh.models import ColumnDataSource from bokeh.models import TableColumn, DataTable from .base import TableView from ..models import concurrent_requests class OverviewTable(TableView): def __init__(self, df, df_downloads): super().__init__(df) self.df_downloads = df_downloads def data(self): # requests total = self.df.uuid.count() failed = self.df.loc[self.df["status"] == 5].uuid.count() # requests per day counts = self.df.groupby(pd.Grouper(key="time_start", freq="1D")).uuid.count() # duration duration = self.df["time_end"] - self.df["time_start"] duration = duration.dt.seconds duration = duration[lambda x: x > 0] # concurrency cdf = concurrent_requests(self.df) running = cdf.groupby(pd.Grouper(key="time", freq="1D")).running.max() # downloads downloads = self.df_downloads.groupby( pd.Grouper(key="datetime", freq="1D") ).request_type.count() # data transfer tdf = self.df_downloads.groupby(pd.Grouper(key="datetime", freq="1D")).sum() tdf["size"] = tdf["size"].apply(lambda x: x / 1024**3) transfer = tdf["size"] data_ = dict( property=[ "Total Requests", "Failed Requests", "Requests per day (min/max/median)", "Duration (min/max/median)", "Concurrency per day (min/max/median)", "Downloads per day (min/max/median)", "Data transfer per day (min/max/median)", "Total data transfer", "Data transfer per request", ], value=[ total, failed, f"{counts.min()} / {counts.max()} / {counts.median()}", f"{duration.min()} / {duration.max()} / {duration.median()}", f"{running.min()} / {running.max()} / {running.median()}", f"{downloads.min()} / {downloads.max()} / {downloads.median()}", f"{transfer.min():.2f} GB / {transfer.max():.2f} GB / {transfer.median():.2f} GB", f"{transfer.sum():.2f} GB", f"{transfer.sum() / (total - failed):.2f} GB", ], ) return data_ def table(self): columns = [ TableColumn(field="property", title="Property"), TableColumn(field="value", title="Value"), ] table = DataTable(source=ColumnDataSource(self.data()), columns=columns) return table
python
import os import json from flask import Flask from flask_bootstrap import Bootstrap from oidc_rp.client import Client client_config = {} with open('../client.json', 'r') as f: client_config = json.loads(f.read()) client = Client(client_config) app = Flask(__name__) # SECRET_KEY ## Insert your secret key # To generate a secret key in a python shell: ## >>> import os ## >>> os.urandom(24) app.secret_key = '\x8c:\x03\xbd\xb6\xa4\r\xa0\xf1+o\x08\xa3OU\x92u\xf4(k\x12\xf9?\xad' bootstrap = Bootstrap(app) from oidc_rp import webserver
python
#!/usr/bin/python #------------------------------------------------------------------------------- #License GPL v3.0 #Author: Alexandre Manhaes Savio <[email protected]> #Grupo de Inteligencia Computational <www.ehu.es/ccwintco> #Universidad del Pais Vasco UPV/EHU #Use this at your own risk! #2012-07-26 #------------------------------------------------------------------------------- from IPython.core.debugger import Tracer; debug_here = Tracer() import os, sys, argparse import numpy as np import nibabel as nib import scipy.io as sio import aizkolari_utils as au import aizkolari_export as ae def set_parser(): parser = argparse.ArgumentParser(description='Saves a file with feature sets extracted from NIFTI files. The format of this file can be selected to be used in different software packages, including Numpy binary format, Weka, Octave/Matlab and SVMPerf.') parser.add_argument('-s', '--subjsf', dest='subjs', required=True, help='list file with the subjects for the analysis. Each line: <class_label>,<subject_file>') parser.add_argument('-o', '--outdir', dest='outdir', required=True, help='''name of the output directory where the results will be saved. \n In this directory the following files will be created: - included_subjects: list of full path to the subjects included in the feature set. - excluded_subjects: list of full path to the subjects excluded from the feature set. if any. - included_subjlabels: list of class labels of each subject in included_subjects. - excluded_subjlabels: list of class labels of each subject in excluded_subjects, if any. - features.*: file containing a NxM matrix with the features extracted from subjects (N: subj number, M: feat number). ''') parser.add_argument('-m', '--mask', dest='mask', required=True, help='Mask file to extract feature voxels, any voxel with values > 0 will be included in the extraction.') parser.add_argument('-d', '--datadir', dest='datadir', required=False, help='folder path where the subjects are, if the absolute path is not included in the subjects list file.', default='') parser.add_argument('-p', '--prefix', dest='prefix', default='', required=False, help='Prefix for the output filenames.') parser.add_argument('-e', '--exclude', dest='exclude', default='', required=False, help='subject list mask, i.e., text file where each line has 0 or 1 indicating with 1 which subject should be excluded in the measure. To help calculating measures for cross-validation folds.') parser.add_argument('-t', '--type', dest='type', default='numpybin', choices=['numpybin','octave','arff', 'svmperf'], required=False, help='type of the output file. Alloweds: numpybin (Numpy binary file), octave (Octave/Matlab binary file using Scipy.io.savemat), arff (Weka text file), svmperfdat (.dat for SVMPerf).') parser.add_argument('-n', '--name', dest='dataname', default='aizkolari_extracted', required=False, help='Name of the dataset. It is used for internal usage in SVMPerf and Weka.') parser.add_argument('-k', '--scale', dest='scale', default=False, action='store_true', required=False, help='This option will enable Range scaling of the non-excluded data and save a .range file with the max and min of the scaled dataset to scale other dataset with the same transformation.') parser.add_argument('--scale_min', dest='scale_min', default=-1, type=int, required=False, help='Minimum value for the new scale range.') parser.add_argument('--scale_max', dest='scale_max', default= 1, type=int, required=False, help='Maximum value for the new scale range.') parser.add_argument('-r', '--thrP', dest='thresholdP', default='', required=False, help='use following percentage (0-100) of ROBUST RANGE to threshold mask image (zero anything below the number). One or quoted list of floats separated by blank space.') parser.add_argument('-b', '--thr', dest='lthreshold', default='', required=False, help='use following number to threshold mask image (zero anything below the number).') parser.add_argument('-u', '--uthr', dest='uthreshold', default='', required=False, help='use following number to upper-threshold mask image (zero anything above the number).') parser.add_argument('-a', '--abs', dest='absolute', action='store_true', required=False, help='use absolute value of mask before thresholding.') parser.add_argument('-l', '--leave', dest='leave', default=-1, required=False, type=int, help='index from subject list (counting from 0) indicating one subject to be left out of the training set. For leave-one-out measures.') parser.add_argument('-v', '--verbosity', dest='verbosity', required=False, type=int, default=2, help='Verbosity level: Integer where 0 for Errors, 1 for Progression reports, 2 for Debug reports') return parser #------------------------------------------------------------------------------- def get_out_extension (otype): if otype == 'numpybin': ext = au.numpyio_ext() elif otype == 'octave': ext = au.octaveio_ext() elif otype == 'svmperf': ext = au.svmperfio_ext() elif otype == 'arff': ext = au.wekaio_ext() else: err = 'get_out_extension: Extension type not supported: ' + otype raise Exception(err) return ext #------------------------------------------------------------------------------- def get_filepath (outdir, filename, otype): filename = outdir + os.path.sep + filename try: filename += get_out_extension(otype) except Exception, err: au.log.error (str(err)) sys.exit(-1) return filename #------------------------------------------------------------------------------- def rescale (data, range_min, range_max, data_min=np.NaN, data_max=np.NaN): if np.isnan(data_min): dmin = float(data.min()) else: dmin = float(data_min) if np.isnan(data_max): dmax = float(data.max()) else: dmax = float(data_max) try: factor = float(((range_max-range_min)/(dmax-dmin)) + ((range_min*dmax-range_max*dmin)/(dmax-dmin))) d = data*factor except Exception, err: au.log.error (str(err)) sys.exit(-1) return d, dmin, dmax #------------------------------------------------------------------------------- def write_scalingrange_file (fname, dmin, dmax, scale_min, scale_max): f = open (fname, 'w') f.write('#data_min, data_max, range_min, range_max') f.write('\n') f.write(str(dmin) + ',' + str(dmax) + ',' + str(scale_min) + ',' + str(scale_max)) f.close() #------------------------------------------------------------------------------- def save_data (outdir, prefix, dataname, otype, excluding, leave, feats, labels, exclfeats, exclulabels, dmin, dmax, scale, scale_min, scale_max, lthr, uthr, thrp, absolute): #setting output file name ofname = au.feats_str() if leave > -1: ofname += '.' + au.excluded_str() + str(leave) if absolute: ofname += '.' + au.abs_str() if lthr: ofname += '.lthr_' + str(lthr) if uthr: ofname += '.uthr_' + str(uthr) if thrp: ofname += '.thrP_' + str(thrp) if scale: ofname += '.' + au.scaled_str() if excluding: excl_ofname = au.excluded_str() + '_' + ofname exclfilename = get_filepath (outdir, excl_ofname , otype) if prefix: ofname = prefix + '_' + ofname excl_ofname = prefix + '_' + excl_ofname filename = get_filepath (outdir, ofname, otype) #writing in a text file the scaling values of this training set if scale: write_scalingrange_file (outdir + os.path.sep + ofname + '.scaling_range', dmin, dmax, scale_min, scale_max) #saving binary file depending on output type if otype == 'numpybin': np.save (filename, feats) if excluding: np.save (exclfilename, exclfeats) elif otype == 'octave': sio.savemat (filename, {au.feats_str(): feats, au.labels_str(): labels}) if excluding: exclulabels[exclulabels == 0] = -1 sio.savemat (exclfilename, {au.feats_str(): exclfeats, au.labels_str(): exclulabels}) elif otype == 'svmperf': labels[labels == 0] = -1 ae.write_svmperf_dat(filename, dataname, feats, labels) if excluding: exclulabels[exclulabels == 0] = -1 ae.write_svmperf_dat(exclfilename, dataname, exclfeats, exclulabels) elif otype == 'arff': featnames = np.arange(nfeats) + 1 ae.write_arff (filename, dataname, featnames, feats, labels) if excluding: ae.write_arff (exclfilename, dataname, featnames, exclfeats, exclulabels) else: err = 'Output method not recognised!' au.log.error(err) sys.exit(-1) return [filename, exclfilename] #------------------------------------------------------------------------------- def extract_features (subjs, exclusubjs, mask, maskf, scale, scale_min, scale_max): #population features nsubjs = len(subjs) s = nib.load(subjs[0]) subjsiz = np.prod (s.shape) stype = s.get_data_dtype() #loading subject data data = np.empty([nsubjs, subjsiz], dtype=stype) #number of voxels > 0 in mask mask = mask.flatten() nfeats = np.sum(mask > 0) #reading each subject and saving the features in a vector feats = np.empty([nsubjs, nfeats], dtype=stype) #extracting features from non-excluded subjects c = 0 for s in subjs: au.log.debug("Reading " + s) #check geometries au.check_has_same_geometry (s, maskf) #load subject subj = nib.load(s).get_data().flatten() #mask data and save it feats[c,:] = subj[mask > 0] c += 1 #scaling if asked dmin = scale_min dmax = scale_max if scale: au.log.info("Scaling data.") [feats, dmin, dmax] = rescale(feats, scale_min, scale_max) #extracting features from excluded subjects exclfeats = [] if exclusubjs: au.log.info("Processing excluded subjects.") nexcl = len(exclusubjs) exclfeats = np.empty([nexcl, nfeats], dtype=stype) c = 0 for s in exclusubjs: au.log.debug("Reading " + s) #check geometries au.check_has_same_geometry (s, maskf) #load subject subj = nib.load(s).get_data().flatten() #mask data and save it exclfeats[c,:] = subj[mask > 0] c += 1 if scale: [exclfeats, emin, emax] = rescale(exclfeats, scale_min, scale_max, dmin, dmax) return [feats, exclfeats, dmin, dmax] #------------------------------------------------------------------------------- ## START EXTRACT FEATSET #------------------------------------------------------------------------------- def main(): #parsing arguments parser = set_parser() try: args = parser.parse_args () except argparse.ArgumentError, exc: au.log.error (exc.message + '\n' + exc.argument) parser.error(str(msg)) return -1 subjsf = args.subjs.strip () outdir = args.outdir.strip () datadir = args.datadir.strip () excluf = args.exclude.strip () otype = args.type.strip () dataname = args.dataname.strip() maskf = args.mask.strip() prefix = args.prefix.strip() leave = args.leave scale = args.scale scale_min = args.scale_min scale_max = args.scale_max thrps = args.thresholdP.strip().split() lthr = args.lthreshold.strip() uthr = args.uthreshold.strip() absolute = args.absolute au.setup_logger(args.verbosity) #checking number of files processed if not os.path.exists(maskf): err = 'Mask file not found: ' + maskf au.log.error(err) sys.exit(-1) #number of subjects subjsnum = au.file_len(subjsf) #reading subjects list subjlabels = np.zeros(subjsnum, dtype=int) subjslist = {} subjfile = open(subjsf, 'r') c = 0 for s in subjfile: line = s.strip().split(',') subjlabels[c] = int(line[0]) subjfname = line[1].strip() if not os.path.isabs(subjfname) and datadir: subjslist[c] = datadir + os.path.sep + subjfname else: subjslist[c] = subjfname c += 1 subjfile.close() #excluding if excluf or leave > -1 subjmask = [] excluding = False if excluf: excluding = True subjmask = np.loadtxt(excluf, dtype=int) else: subjmask = np.zeros(subjsnum, dtype=int) if leave > -1: excluding = True subjmask[leave] = 1 subjs = [ subjslist[elem] for elem in subjslist if subjmask[elem] == 0] labels = subjlabels[subjmask == 0] exclusubjs = [ subjslist[elem] for elem in subjslist if subjmask[elem] == 1] exclulabels = subjlabels[subjmask == 1] if not excluding: exclusubjs = [] #mask process au.log.info('Processing ' + maskf) #loading mask and masking it with globalmask mask = nib.load(maskf).get_data() #thresholding if absolute: mask = np.abs(mask) if lthr: mask[mask < lthr] = 0 if uthr: mask[mask > uthr] = 0 if thrps: for t in thrps: au.log.info ("Thresholding " + maskf + " with robust range below " + str(t) + " percent.") thrm = au.threshold_robust_range (mask, t) au.log.info ("Extracting features.") [feats, exclfeats, dmin, dmax] = extract_features (subjs, exclusubjs, thrm, maskf, scale, scale_min, scale_max) au.log.info ("Saving data files.") [filename, exclfilename] = save_data (outdir, prefix, dataname, otype, excluding, leave, feats, labels, exclfeats, exclulabels, dmin, dmax, scale, scale_min, scale_max, lthr, uthr, t, absolute) else: au.log.info ("Extracting features.") [feats, exclfeats, dmin, dmax] = extract_features (subjs, exclusubjs, mask, maskf, scale, scale_min, scale_max) au.log.info ("Saving data files.") [filename, exclfilename] = save_data (outdir, prefix, dataname, otype, excluding, leave, feats, labels, exclfeats, exclulabels, dmin, dmax, scale, scale_min, scale_max, lthr, uthr, thrps, absolute) au.log.info ("Saved " + filename) if excluding: au.log.info ("Saved " + exclfilename) #saving description files np.savetxt(filename + '.' + au.subjectfiles_str(), subjs, fmt='%s') np.savetxt(filename + '.' + au.labels_str(), labels, fmt='%i') if excluding: np.savetxt(exclfilename + '.' + au.subjectfiles_str(), exclusubjs, fmt='%s') np.savetxt(exclfilename + '.' + au.labels_str(), exclulabels, fmt='%i') return 1 #------------------------------------------------------------------------------- ## END EXTRACT FEATSET #------------------------------------------------------------------------------- if __name__ == "__main__": sys.exit(main())
python
import unittest from mock import Mock, patch import repstruct.dataset as dataset import repstruct.configuration as configuration class TestDataSet(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def __assertProperties(self, instance): t = type(instance) property_names = [item for item in dir(t) if isinstance(getattr(t, item), property)] new_value = 'new_value' for property_name in property_names: setattr(instance, property_name, new_value) self.assertEqual(new_value, getattr(instance, property_name)) def testDataSet(self): tag = 'test_tag' data = dataset.DataSet(tag) self.assertEqual(tag, data.tag) self.assertTrue(type(data.collection) is dataset.CollectionDataSet) self.assertTrue(type(data.feature) is dataset.FeatureDataSet) self.assertTrue(type(data.descriptor) is dataset.DescriptorDataSet) self.assertTrue(type(data.pca) is dataset.PcaDataSet) self.assertTrue(type(data.analysis) is dataset.AnalysisDataSet) self.assertTrue(type(data.plot) is dataset.PlotDataSet) self.__assertProperties(data) @patch('os.makedirs') @patch('os.path.exists') def testDataSetBase(self, exists_mock, makedirs_mock): path = 'path' folder = 'folder' config = 'config' folder_path = path + '/' + folder exists_mock.return_value = False data = dataset.DataSetBase(path, folder, config) self.assertEqual(folder_path, data.path) self.assertEqual(config, data.config) self.__assertProperties(data) exists_mock.assert_called_with(folder_path) makedirs_mock.assert_called_with(folder_path) @patch('os.makedirs') @patch('os.path.exists') def testDataSetBaseNoPath(self, exists_mock, makedirs_mock): path = None folder = None config = None exists_mock.return_value = False data = dataset.DataSetBase(path, folder, config) self.assertEqual(None, data.path) self.assertEqual(None, data.config) self.assertEqual(0, exists_mock.call_count) self.assertEqual(0, makedirs_mock.call_count) @patch('numpy.savez') @patch('os.path.join') def testDataSetBaseSave(self, join_mock, save_mock): file_name = 'fn' argument = 'arg' join_mock.return_value = file_name + '.npz' data = dataset.DataSetBase(None, None, None) data._save(file_name, arg=argument) save_mock.assert_called_with(join_mock.return_value, arg=argument) @patch('numpy.load') @patch('os.path.join') def testDataSetBaseLoad(self, join_mock, load_mock): file_name = 'fn' join_mock.return_value = file_name + '.npz' data = dataset.DataSetBase(None, None, None) data._load(file_name) load_mock.assert_called_with(join_mock.return_value) @patch('os.path.isfile') @patch('os.listdir') @patch('os.path.join') def testCollectionDataSetImages(self, join_mock, listdir_mock, isfile_mock): data = dataset.CollectionDataSet(None, None) ims = ['im1.jpg, im2.jpg', 'no_im.txt'] listdir_mock.return_value = ims join_mock.return_value = '' isfile_mock.return_value = True result = data.images() self.assertSequenceEqual(ims[:1], list(result)) def testFeatureDataSetSave(self): data = dataset.FeatureDataSet(None, None) data._save = Mock() im = 'im' locations = 'locations' descriptors = 'descriptors' data.save(im, locations, descriptors) data._save.assert_called_with(im + '.sift', locations=locations, descriptors=descriptors) def testFeatureDataSetLoad(self): data = dataset.FeatureDataSet(None, None) result = {'locations': 1, 'descriptors': 0} data._load = Mock(return_value=result) im = 'im' data.load(im) data._load.assert_called_with(im + '.sift') def testDescriptorDataSetSave(self): data = dataset.DescriptorDataSet(None) data._save = Mock() im = 'im' descriptors = 'descriptors' desc_colors = 'desc_colors' rand_colors = 'rand_colors' data.save(im, descriptors, desc_colors, rand_colors) data._save.assert_called_with(im + '.descriptors', descriptors=descriptors, descriptor_colors=desc_colors, random_colors=rand_colors) def testDescriptorDataSetLoad(self): data = dataset.DescriptorDataSet(None) im = 'im' result = {'descriptors': 0, 'descriptor_colors': 1, 'random_colors': 2} data._load = Mock(return_value=result) data.load(im) data._load.assert_called_with(im + '.descriptors') def testPcaDataSetSave(self): data = dataset.PcaDataSet(None, None) data._save = Mock() images = 'images' pc_projections = 'pc_projections' principal_components = 'principal_components' data.save(images, pc_projections, principal_components) data._save.assert_called_with('principal_components', images=images, pc_projections=pc_projections, principal_components=principal_components) def testPcaDataSetLoad(self): data = dataset.PcaDataSet(None, None) result = {'images': 0, 'pc_projections': 0, 'principal_components': 0} data._load = Mock(return_value=result) data.load() data._load.assert_called_with('principal_components') def testAnalysisDataSetSaveClosest(self): data = dataset.AnalysisDataSet(None, None) data._save = Mock() closest_group = 'closest_group' representative = 'representative' data.save_closest(closest_group, representative) data._save.assert_called_with('closest', closest_group=closest_group, representative=representative) def testAnalysisDataSetLoadClosest(self): data = dataset.AnalysisDataSet(None, None) result = {'closest_group': 0, 'representative': 1} data._load = Mock(return_value=result) data.load_closest() data._load.assert_called_with('closest') def testAnalysisDataSetSaveStructures(self): data = dataset.AnalysisDataSet(None, None) data._save = Mock() centroids = 'centroids' structures = 'structures' data.save_structures(centroids, structures) data._save.assert_called_with('structures', centroids=centroids, structures=structures) def testAnalysisDataSetLoadStrucutures(self): data = dataset.AnalysisDataSet(None, None) result = {'centroids': 0, 'structures': 1} data._load = Mock(return_value=result) data.load_structures() data._load.assert_called_with('structures') def testAnalysisDataSetSaveScoredStructures(self): data = dataset.AnalysisDataSet(None, None) data._save = Mock() scored_structures = 'scored_structures' data.save_scored_structures(scored_structures) data._save.assert_called_with('scored_structures', scored_structures=scored_structures) def testAnalysisDataSetLoadScoredStrucutures(self): data = dataset.AnalysisDataSet(None, None) result = {'scored_structures': 0} data._load = Mock(return_value=result) data.load_scored_structures() data._load.assert_called_with('scored_structures') def testCollectionDataSetConfigType(self): data = dataset.CollectionDataSet(None, None) self.assertTrue(type(data.config) is configuration.CollectionConfiguration) def testFeatureDataSetConfigType(self): data = dataset.FeatureDataSet(None, None) self.assertTrue(type(data.config) is configuration.FeatureConfiguration) def testDescriptorDataSetConfigType(self): data = dataset.DescriptorDataSet(None) self.assertTrue(type(data.config) is dict) def testPcaDataSetConfigType(self): data = dataset.PcaDataSet(None, None) self.assertTrue(type(data.config) is configuration.PcaConfiguration) def testAnalysisDataSetConfigType(self): data = dataset.AnalysisDataSet(None, None) self.assertTrue(type(data.config) is configuration.AnalysisConfiguration) def testPlotDataSetConfigType(self): data = dataset.PlotDataSet(None, None) self.assertTrue(type(data.config) is configuration.PlotConfiguration) if __name__ == '__main__': unittest.main()
python
# -*- coding: utf-8 -*- from django.db import models, migrations import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('heroes', '0001_initial'), ('actions', '0001_initial'), ] operations = [ migrations.AddField( model_name='metaactionmember', name='hero', field=models.ForeignKey(related_name='+', on_delete=django.db.models.deletion.PROTECT, to='heroes.Hero'), preserve_default=True, ), ]
python
""" *Demon* The managers of the brain with a policy and foresight. They have the power to interpret fractums. """ from fractum import Fractum from abc import ABCMeta from dataclasses import dataclass @dataclass class Demon( Fractum, metaclass=ABCMeta, ): depth: int age: float gamma: float shall_amplify: bool # abstract type AbstractPlayer end ###### ###### AlphaZero player ###### # function guess_mcts_arena_params(env::Env) # p = env.params # return isnothing(p.arena) ? p.self_play.mcts : p.arena.mcts # end # function guess_use_gpu(env::Env) # p = env.params # return isnothing(p.arena) ? p.self_play.sim.use_gpu : p.arena.sim.use_gpu # end
python
# -*- coding: utf-8; -*- # # Copyright (c) 2014 Georgi Valkov. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. Neither the name of author nor the names of its contributors # may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GEORGI # VALKOV BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH # DAMAGE. __author__ = 'Georgi Valkov' __version__ = '0.1.1' __license__ = 'Revised BSD License' """ HelpFormatter classes for optparse: CompactHelpFormatter: A less verbose and neater looking optparse help formatter. CompactColorHelpFormatter: A less verbose and neater looking optparse help formatter that can colorize options and headings. Usage: from optparse import OptionParser from optparse_mooi import * fmt = CompactHelpFormatter( metavar_format=' <{}>', metavar_column=None, option_separator=', ', align_long_opts=False, help_string_formatter=None, preformatted_description=True, preformatted_epilog=True ) fmt = CompactColorHelpFormatter( heading_color='white-bold', usage_color='white-bold', shopt_color=None, lopt_color=None, description_color=None, epilog_color=None, metavar_color=None, help_color=None, option_colormap=None ) parser = OptionParser(formatter=fmt) """ import os, re from optparse import IndentedHelpFormatter from functools import partial class CompactHelpFormatter(IndentedHelpFormatter): """A less verbose and neater looking optparse help formatter.""" def __init__(self, metavar_format=' <{}>', metavar_column=None, option_separator=', ', align_long_opts=False, help_string_formatter=None, preformatted_description=True, preformatted_epilog=True, *args, **kw): """ :arg metavar_format: Evaluated as `metavar_format.format(metavar)` if string. If callable, evaluated as `metavar_format(metavar)`. :arg metavar_column: Column to which all metavars should be aligned. :arg option_separator: String between short and long option. E.g: ', ' -> '-f, --format'. :arg align_long_opts: Align all long options on the current indent level to the same column. For example: align_long_opts=False align_long_opts=True -------------------------- -------------------------- -h, --help show this ... -h, --help show this ... --fast avoid slow ... --fast avoid slow ... :arg help_string_format: Function to call to call on help string after expansion. Called as `help_string_format(help, option)`. :arg preformatted_description: If True, description will be displayed as-is, instead of text-wrapping it first. :arg preformatted_description: If True, epilog will be displayed as-is, instead of text-wrapping it first. :arg width: Maximum help message width. Defaults to 78 unless $COLUMNS is set. """ if not callable(metavar_format): func = partial(format_option_metavar, fmt=metavar_format) else: func = metavar_format self.metavar_format = func self.metavar_column = metavar_column self.align_long_opts = align_long_opts self.option_separator = option_separator self.help_string_formatter = help_string_formatter if 'width' not in kw: try: kw['width'] = int(os.environ['COLUMNS']) - 2 except (KeyError, ValueError): kw['width'] = 78 kw['max_help_position'] = kw.get('max_help_position', kw['width']) kw['indent_increment'] = kw.get('indent_increment', 1) kw['short_first'] = kw.get('short_first', 1) # leave full control of description and epilog to us self.preformatted_description = preformatted_description self.preformatted_epilog = preformatted_epilog IndentedHelpFormatter.__init__(self, *args, **kw) def format_option_strings(self, option): opts = format_option_strings( option, self.metavar_format, self.option_separator, self.align_long_opts, ) if not option.takes_value(): return ''.join(opts) if not self.metavar_column: return ''.join(opts) # align metavar to self.metavar_column lpre = sum(len(i) for i in opts[:-1]) lpre += self.current_indent * self.indent_increment opts.insert(-1, ' '*(self.metavar_column - lpre)) return ''.join(opts) def expand_default(self, option): help = IndentedHelpFormatter.expand_default(self, option) if callable(self.help_string_formatter): return self.help_string_formatter(help, option) return help def format_usage(self, usage, raw=False): # If there is no description, ensure that there is only one # newline between the usage string and the first heading. msg = usage if raw else 'Usage: %s' % usage if self.parser.description: msg += '\n' return msg def format_heading(self, heading): if heading == 'Options': return '\n' return heading + ':\n' def format_description(self, description): if self.preformatted_description: return description if description else '' else: return IndentedHelpFormatter.format_description(self, description) def format_epilog(self, epilog): if self.preformatted_epilog: return epilog if epilog else '' else: return IndentedHelpFormatter.format_epilog(self, epilog) def format_option_strings(option, metavar_format, separator, align_long_opts=False): opts = [] if option._short_opts: opts.append(option._short_opts[0]) if option._long_opts: opts.append(option._long_opts[0]) if len(opts) > 1: opts.insert(1, separator) if not option._short_opts and align_long_opts: opts.insert(0, ' %*s' % (len(separator), '')) if option.takes_value(): opts.append(metavar_format(option)) return opts def format_option_metavar(option, fmt): metavar = option.metavar or option.dest.lower() return fmt.format(metavar) def get_optimal_max_help_position(formatter, parser): from itertools import chain max_width = 0 options = [parser.option_list] if hasattr(parser, 'option_groups'): options.extend(i.option_list for i in parser.option_groups) for option in chain(*options): formatted = len(formatter.format_option_strings(option)) max_width = formatted if formatted > max_width else max_width return max_width class CompactColorHelpFormatter(CompactHelpFormatter): """ A less verbose and neater looking optparse help formatter that can colorize options and headings. Works only on ANSI capable terminals. """ def __init__(self, heading_color='white-bold', usage_color='white-bold', shopt_color=None, lopt_color=None, description_color=None, epilog_color=None, metavar_color=None, help_color=None, option_colormap=None, *args, **kw): """ Accepts all arguments that `CompactHelpFormatter` accepts in addition to: :arg heading_color: Color to use for headings (such as group names). :arg usage_color: Color to use for the usage line. :arg shopt_color: COlor to use for all short options. :arg lopt_color: Color to use for all long options. :arg epilog_color: Color to use for the epilog section. :arg description_color: Color to use for the description secrion. :arg metavar_color: Color to use for all metavars. :arg help_color: Color to use for all help messages. :arg option_colormap: A mapping of option flags to colors. For example: option_colormap = { # -h, -v, -h in white, their long opt in green, # metavar in red and help message in bold red. ('-h', '-v', '-j'): ('white', 'green', 'red', 'red-bold'), # --quiet's help message in blue '--quiet': (None, None, None, 'blue'), } Keys are short or long opts, or a list of short or long opts. Values specify the color to be applied to the short opt, long opt, metavar and help message (in that order). Available colors: black, red, green, yellow, blue, purple, cyan, white Available modifiers: bold, underline Example color specifiers: red-bold, red-bold-underline, red-underline """ # regex for stripping ansi escape codes from strings self.re_ansi = re.compile('\033\[([14];)?\d\d?m') colors = { 'black': '30', 'red': '31', 'green': '32', 'yellow': '33', 'blue': '34', 'purple': '35', 'cyan': '36', 'white': '37', } # color spec to partial(ansiwrap, ...) # 'white-bold' -> #(ansiwrap(37, %, True)) # 'red' -> #(ansiwrap(31, %)) # None -> #(str(%)) # 'red-bold-underline' -> #(ansiwrap(31, %, True, True)) def _ansiwrap(color): if not color: return str spec = color.split('-') color = colors[spec[0]] bold, uline = 'bold' in spec, 'underline' in spec return partial(ansiwrap, color, bold=bold, underline=uline) self.heading_color = _ansiwrap(heading_color) self.shopt_color = _ansiwrap(shopt_color) self.lopt_color = _ansiwrap(lopt_color) self.usage_color = _ansiwrap(usage_color) self.help_color = _ansiwrap(help_color) self.metavar_color = _ansiwrap(metavar_color) self.epilog_color = _ansiwrap(epilog_color) self.description_color = _ansiwrap(description_color) self.colormap = {} # flatten all keys and ensure that values is a four element list option_colormap = option_colormap if option_colormap else {} for opts, val in option_colormap.items(): f = [_ansiwrap(i) if i else None for i in val] f = f + [None] * (4 - len(f)) if not isseq(opts): self.colormap[opts] = f else: for opt in opts: self.colormap[opt] = f CompactHelpFormatter.__init__(self, *args, **kw) def format_option(self, option): result = CompactHelpFormatter.format_option(self, option) shopt, lopt, meta, help = find_color(option, self.colormap) if option._short_opts and (shopt or self.shopt_color): re_short = rx_short(option._short_opts) shopt = shopt or self.shopt_color result = re_short.sub(shopt(r'\1'), result, 0) if option._long_opts and (lopt or self.lopt_color): re_long = rx_long(option._long_opts) lopt = lopt or self.lopt_color result = re_long.sub(lopt(r'\1'), result, 0) if option.takes_value() and (meta or self.metavar_color): var = self.metavar_format(option) meta = meta or self.metavar_color result = result.replace(var, meta(var), 1) if option.help and (help or self.help_color): l1 = '( %s.*$)(\s*^.*)*' % re.escape(option.help[:4]) re_help = re.compile(l1, re.MULTILINE) help = help or self.help_color result = re_help.sub(help('\g<0>'), result) return result def format_heading(self, heading): if heading == 'Options': return '\n' heading = self.heading_color(heading) heading = CompactHelpFormatter.format_heading(self, heading) return heading def format_usage(self, usage): usage = self.usage_color('Usage: %s' % usage) usage = CompactHelpFormatter.format_usage(self, usage, True) return usage def format_description(self, description): description = self.description_color(description if description else '') return CompactHelpFormatter.format_description(self, description) def format_epilog(self, epilog): epilog = self.epilog_color(epilog if epilog else '') return CompactHelpFormatter.format_epilog(self, epilog) # --- utility functions --------------------------------------------- def find_color(option, cmap): g1 = (i for i in option._short_opts if i in cmap) g2 = (i for i in option._long_opts if i in cmap) res = next(g1, None) or next(g2, None) return cmap.get(res, [None]*4) def rx_short(it): rx = ''.join(i[1] for i in it) if rx: rx = '( -[%s])' % rx return re.compile(rx) def rx_long(it): rx = '|'.join(i[2:] for i in it) if rx: rx = '(--%s)' % rx return re.compile(rx) def ansiwrap(code, text, bold=True, underline=False): code = "4;%s" % code if underline else code code = "1;%s" % code if bold else code return "\033[%sm%s\033[0m" % (code, text) def isseq(it): return isinstance(it, (list, tuple, set)) __all__ = ( CompactHelpFormatter, CompactColorHelpFormatter, )
python
""" Módulo que contêm as views de usuário """ from django.shortcuts import render from django.http import HttpResponseRedirect from django.contrib.auth.decorators import login_required from django.contrib.auth import update_session_auth_hash from django.contrib.auth.forms import PasswordChangeForm from core.funcoes import arruma_url_page from core.models import * from core.forms import * @login_required(login_url="/admin") def change_pw_form(request): """ Pagina para trocar senha do user """ success = request.GET.get('success', False) if request.method == 'POST': form_pw = PasswordChangeForm(request.user, request.POST) if form_pw.is_valid(): user = form_pw.save() update_session_auth_hash(request, user) url = str(request.path_info) + str('?success=True') return HttpResponseRedirect(url) else: form_pw = PasswordChangeForm(request.user) # Checa se existe algum erro para ativar no template form_errors = False for field in form_pw: if field.errors: form_errors = True context = { "form_pw": form_pw, "success": success, "form_errors": form_errors } return render(request, "usuario/forms/AlterarSenha.html", context) @login_required(login_url="/admin") def update_user_form(request): """ Página para atualizar as infos de login do usuário """ success = request.GET.get('success', False) if request.method == 'POST': form_user_info = UpdateInfoForm(request.POST, instance=request.user) if form_user_info.is_valid(): user = form_user_info.save() update_session_auth_hash(request, user) url = str(request.path_info) + str('?success=True') return HttpResponseRedirect(url) else: form_user_info = UpdateInfoForm(instance=request.user) # Checa se existe algum erro para ativar no template form_errors = False for field in form_user_info: if field.errors: form_errors = True context = { "form_user_info": form_user_info, "form_errors": form_errors, "success": success } return render(request, "usuario/forms/AlterarInfo.html", context) @login_required(login_url="/admin") def user_main(request): """ Página do usuário """ usuario = request.user context = { "user_usuario": usuario.get_username(), "user_name": usuario.get_full_name(), "user_email": usuario.email } return render(request, "usuario/user_main.html", context)
python
#!/usr/bin/env python #-*- coding: utf-8 -*- from terminals import MTerminal from sys import argv """Summary of module 'launcher' here. This is a entry of entire laserjet program class Launcher launches 'Batch' task or 'Play' task depends on options. - Batch options (e.g.:'-exec', '-sync', '-fetch', '-inspect') which accomplish tasks on every remote nodes. - Play options (e.g.: '-deploy') which conditionally execute actions following a playbook. """ __version__ = "0.1" __author__ = "yyg" __all__ = [] # Exceptions class NoneOptionException(Exception): """Exception raised by Launcher._get_option().""" pass class WrongOptionException(Exception): """Exception raise by Launcher._get_option()""" pass class Launcher(object): def __init__(self): self.laserjet_terminal = MTerminal() def _get_option(self): pass
python
# -*- test-case-name: admin.test.test_packaging -*- # Copyright ClusterHQ Inc. See LICENSE file for details. """ Helper utilities for Flocker packaging. """ import platform import sys import os from subprocess import check_output, check_call, CalledProcessError, call from tempfile import mkdtemp from textwrap import dedent, fill from eliot import Logger, start_action, to_file from twisted.python.constants import ValueConstant, Values from twisted.python.filepath import FilePath from twisted.python import usage, log from characteristic import attributes, Attribute import virtualenv from flocker.common.version import make_rpm_version class PackageTypes(Values): """ Constants representing supported target packaging formats. """ RPM = ValueConstant('rpm') DEB = ValueConstant('deb') # Associate package formats with platform operating systems. PACKAGE_TYPE_MAP = { PackageTypes.RPM: ('centos',), PackageTypes.DEB: ('ubuntu',), } PACKAGE_NAME_FORMAT = { PackageTypes.RPM: '{}-{}-{}.{}.rpm', PackageTypes.DEB: '{}_{}-{}_{}.deb', } ARCH = { 'all': { PackageTypes.RPM: 'noarch', PackageTypes.DEB: 'all', }, 'native': { # HACK PackageTypes.RPM: 'x86_64', PackageTypes.DEB: 'amd64', }, } # Path from the root of the source tree to the directory holding possible build # targets. A build target is a directory containing a Dockerfile. BUILD_TARGETS_SEGMENTS = [b"admin", b"build_targets"] PACKAGE_ARCHITECTURE = { 'clusterhq-flocker-cli': 'all', 'clusterhq-flocker-node': 'all', 'clusterhq-flocker-docker-plugin': 'all', 'clusterhq-python-flocker': 'native', } def package_filename(package_type, package, architecture, rpm_version): package_name_format = PACKAGE_NAME_FORMAT[package_type] return package_name_format.format( package, rpm_version.version, rpm_version.release, ARCH[architecture][package_type]) @attributes(['name', 'version']) class Distribution(object): """ A linux distribution. :ivar bytes name: The name of the distribution. :ivar bytes version: The version of the distribution. """ @classmethod def _get_current_distribution(klass): """ :return: A ``Distribution`` representing the current platform. """ name, version, _ = ( platform.linux_distribution(full_distribution_name=False)) return klass(name=name.lower(), version=version) def package_type(self): distribution_name = self.name.lower() for package_type, distribution_names in PACKAGE_TYPE_MAP.items(): if distribution_name.lower() in distribution_names: return package_type else: raise ValueError("Unknown distribution.", distribution_name) def native_package_architecture(self): """ :return: The ``bytes`` representing the native package architecture for this distribution. """ return ARCH['native'][self.package_type()] DISTRIBUTION_NAME_MAP = { 'centos-7': Distribution(name="centos", version="7"), 'ubuntu-14.04': Distribution(name="ubuntu", version="14.04"), 'ubuntu-16.04': Distribution(name="ubuntu", version="16.04"), } CURRENT_DISTRIBUTION = Distribution._get_current_distribution() def _native_package_type(): """ :return: The ``bytes`` name of the native package format for this platform. """ distribution_name = CURRENT_DISTRIBUTION.name.lower() for package_type, distribution_names in PACKAGE_TYPE_MAP.items(): if distribution_name.lower() in distribution_names: return package_type else: raise ValueError("Unknown distribution.", distribution_name) @attributes(['steps']) class BuildSequence(object): """ Run the supplied ``steps`` consecutively. :ivar tuple steps: A sequence of steps. """ logger = Logger() _system = u"packaging:buildsequence:run" def run(self): for step in self.steps: with start_action(self.logger, self._system, step=repr(step)): step.run() def run_command(args, added_env=None, cwd=None): """ Run a subprocess and return its output. The command line and its environment are logged for debugging purposes. :param dict env: Addtional environment variables to pass. :return: The output of the command. """ log.msg( format="Running %(args)r with environment %(env)r " "and working directory %(cwd)s", args=args, env=added_env, cwd=cwd) if added_env: env = os.environ.copy() env.update(env) else: env = None try: return check_output(args=args, env=env, cwd=cwd,) except CalledProcessError as e: print e.output @attributes([ Attribute('package'), Attribute('compare', default_value=None), Attribute('version', default_value=None)]) class Dependency(object): """ A package dependency. :ivar bytes package: The name of the dependency package. :ivar bytes compare: The operator to use when comparing required and available versions of the dependency package. :ivar bytes version: The version of the dependency package. """ def __init__(self): """ :raises ValueError: If ``compare`` and ``version`` values are not compatible. """ if (self.compare is None) != (self.version is None): raise ValueError( "Must specify both or neither compare and version.") def format(self, package_type): """ :return: A ``bytes`` representation of the desired version comparison which can be parsed by the package management tools associated with ``package_type``. :raises: ``ValueError`` if supplied with an unrecognised ``package_type``. """ if package_type == PackageTypes.DEB: if self.version: return "%s (%s %s)" % ( self.package, self.compare, self.version) else: return self.package elif package_type == PackageTypes.RPM: if self.version: return "%s %s %s" % (self.package, self.compare, self.version) else: return self.package else: raise ValueError("Unknown package type.") # We generate four packages. ``clusterhq-python-flocker`` contains the # entire code base. ``clusterhq-flocker-cli``, # ``clusterhq-flocker-docker-plugin`` and ``clusterhq-flocker-node`` are # meta packages which symlink only the relevant scripts and load only the # dependencies required to satisfy those scripts. This map represents the # dependencies for each of those packages and accounts for differing # dependency package names and versions on various platforms. DEPENDENCIES = { 'python': { 'centos': ( Dependency(package='python'), ), 'ubuntu': ( Dependency(package='python2.7'), ), }, 'node': { 'centos': ( Dependency(package='/usr/sbin/iptables'), Dependency(package='openssh-clients'), Dependency(package='lshw'), ), 'ubuntu': ( Dependency(package='iptables'), Dependency(package='openssh-client'), Dependency(package='lshw'), ), }, # For now the plan is to tell users to install Docker themselves, # since packaging is still in flux, with different packages from # vendor and OS: 'docker-plugin': { 'centos': (), 'ubuntu': (), }, 'cli': { 'centos': ( Dependency(package='openssh-clients'), ), 'ubuntu': ( Dependency(package='openssh-client'), ), }, } def make_dependencies(package_name, package_version, distribution): """ Add the supplied version of ``python-flocker`` to the base dependency lists defined in ``DEPENDENCIES``. :param bytes package_name: The name of the flocker package to generate dependencies for. :param bytes package_version: The flocker version. :param Distribution distribution: The distribution for which to generate dependencies. :return: A list of ``Dependency`` instances. """ dependencies = DEPENDENCIES[package_name][distribution.name] if package_name in ('node', 'cli', 'docker-plugin'): dependencies += ( Dependency( package='clusterhq-python-flocker', compare='=', version=package_version),) return dependencies def create_virtualenv(root): """ Create a virtualenv in ``root``. :param FilePath root: The directory in which to install a virtualenv. :returns: A ``VirtualEnv`` instance. """ # We call ``virtualenv`` as a subprocess rather than as a library, so that # we can turn off Python byte code compilation. run_command( ['virtualenv', '--python=/usr/bin/python2.7', '--quiet', root.path], added_env=dict(PYTHONDONTWRITEBYTECODE='1') ) # XXX: Virtualenv doesn't link to pyc files when copying its bootstrap # modules. See https://github.com/pypa/virtualenv/issues/659 for module_name in virtualenv.REQUIRED_MODULES: py_base = root.descendant( ['lib', 'python2.7', module_name]) py = py_base.siblingExtension('.py') if py.exists() and py.islink(): pyc = py_base.siblingExtension('.pyc') py_target = py.realpath() pyc_target = FilePath( py_target.splitext()[0]).siblingExtension('.pyc') if pyc.exists(): pyc.remove() if pyc_target.exists(): pyc_target.linkTo(pyc) return VirtualEnv(root=root) @attributes(['virtualenv']) class InstallVirtualEnv(object): """ Install a virtualenv in the supplied ``target_path``. :ivar FilePath target_path: The path to a directory in which to create the virtualenv. """ _create_virtualenv = staticmethod(create_virtualenv) def run(self): self._create_virtualenv(root=self.virtualenv.root) @attributes(['name', 'version']) class PythonPackage(object): """ A model representing a single pip installable Python package. :ivar bytes name: The name of the package. :ivar bytes version: The version of the package. """ @attributes(['root']) class VirtualEnv(object): """ A model representing a virtualenv directory. """ def install(self, package_uri): """ Install package and its dependencies into this virtualenv. """ # We can't just call pip directly, because in the virtualenvs created # in tests, the shebang line becomes too long and triggers an # error. See http://www.in-ulm.de/~mascheck/various/shebang/#errors python_path = self.root.child('bin').child('python').path run_command( [python_path, '-m', 'pip', '--quiet', 'install', package_uri], ) @attributes(['virtualenv', 'package_uri']) class InstallApplication(object): """ Install the supplied ``package_uri`` using the supplied ``virtualenv``. :ivar VirtualEnv virtualenv: The virtual environment in which to install ``package``. :ivar bytes package_uri: A pip compatible URI. """ def run(self): self.virtualenv.install(self.package_uri) @attributes(['links']) class CreateLinks(object): """ Create symlinks to the files in ``links``. """ def run(self): """ If link is a directory, the target filename will be used as the link name within that directory. """ for target, link in self.links: if link.isdir(): name = link.child(target.basename()) else: name = link target.linkTo(name) @attributes(['virtualenv', 'package_name']) class GetPackageVersion(object): """ Record the version of ``package_name`` installed in ``virtualenv_path`` by examining ``<package_name>.__version__``. :ivar VirtualEnv virtualenv: The ``virtualenv`` containing the package. :ivar bytes package_name: The name of the package whose version will be recorded. :ivar version: The version string of the supplied package. Default is ``None`` until the step has been run. or if the supplied :raises: If ``package_name`` is not found. """ version = None def run(self): python_path = self.virtualenv.root.child('bin').child('python').path output = check_output( [python_path, '-c', '; '.join([ 'from sys import stdout', 'stdout.write(__import__(%r).__version__)' % self.package_name ])]) self.version = output @attributes([ 'package_type', 'destination_path', 'source_paths', 'name', 'prefix', 'epoch', 'rpm_version', 'license', 'url', 'vendor', 'maintainer', 'architecture', 'description', 'dependencies', 'category', Attribute('directories', default_factory=list), Attribute('after_install', default_value=None), ]) class BuildPackage(object): """ Use ``fpm`` to build an RPM file from the supplied ``source_path``. :ivar package_type: A package type constant from ``PackageTypes``. :ivar FilePath destination_path: The path in which to save the resulting RPM package file. :ivar dict source_paths: A dictionary mapping paths in the filesystem to the path in the package. :ivar bytes name: The name of the package. :ivar FilePath prefix: The path beneath which the packaged files will be installed. :ivar bytes epoch: An integer string tag used to help RPM determine version number ordering. :ivar rpm_version rpm_version: An object representing an RPM style version containing a release and a version attribute. :ivar bytes license: The name of the license under which this package is released. :ivar bytes url: The URL of the source of this package. :ivar unicode vendor: The name of the package vendor. :ivar bytes maintainer: The email address of the package maintainer. :ivar bytes architecture: The OS architecture for which this package is targeted. Default ``None`` means architecture independent. :ivar unicode description: A description of the package. :ivar unicode category: The category of the package. :ivar list dependencies: The list of dependencies of the package. :ivar list directories: List of directories the package should own. """ def run(self): architecture = self.architecture command = [ 'fpm', '--force', '-s', 'dir', '-t', self.package_type.value, '--package', self.destination_path.path, '--name', self.name, '--prefix', self.prefix.path, '--version', self.rpm_version.version, '--iteration', self.rpm_version.release, '--license', self.license, '--url', self.url, '--vendor', self.vendor, '--maintainer', self.maintainer, '--architecture', architecture, '--description', self.description, '--category', self.category, ] if not (self.package_type is PackageTypes.DEB and self.epoch == '0'): # Leave epoch unset for deb's with epoch 0 command.extend(['--epoch', self.epoch]) for requirement in self.dependencies: command.extend( ['--depends', requirement.format(self.package_type)]) for directory in self.directories: command.extend( ['--directories', directory.path]) if self.after_install is not None: command.extend( ['--after-install', self.after_install.path]) for source_path, package_path in self.source_paths.items(): # Think of /= as a separate operator. It causes fpm to copy the # content of the directory rather than the directory its self. command.append( "%s/=%s" % (source_path.path, package_path.path)) run_command(command) @attributes(['package_version_step']) class DelayedRpmVersion(object): """ Pretend to be an ``rpm_version`` instance providing a ``version`` and ``release`` attribute. The values of these attributes will be calculated from the Python version string read from a previous ``GetPackageVersion`` build step. :ivar GetPackageVersion package_version_step: An instance of ``GetPackageVersion`` whose ``run`` method will have been called and from which the version string will be read. """ _rpm_version = None @property def rpm_version(self): """ :return: An ``rpm_version`` and cache it. """ if self._rpm_version is None: self._rpm_version = make_rpm_version( self.package_version_step.version ) return self._rpm_version @property def version(self): """ :return: The ``version`` string. """ return self.rpm_version.version @property def release(self): """ :return: The ``release`` string. """ return self.rpm_version.release def __str__(self): return self.rpm_version.version + '-' + self.rpm_version.release IGNORED_WARNINGS = { PackageTypes.RPM: ( # Ignore the summary line rpmlint prints. # We always check a single package, so we can hardcode the numbers. '1 packages and 0 specfiles checked;', # This isn't an distribution package so we deliberately install in /opt 'dir-or-file-in-opt', # We don't care enough to fix this 'python-bytecode-inconsistent-mtime', # /opt/flocker/lib/python2.7/no-global-site-packages.txt will be empty. 'zero-length', # cli/node packages have symlink to base package 'dangling-symlink', # Should be fixed 'no-documentation', 'no-manual-page-for-binary', # changelogs are elsewhere 'no-changelogname-tag', # virtualenv's interpreter is correct. 'wrong-script-interpreter', # rpmlint on CentOS 7 doesn't see python in the virtualenv. 'no-binary', # These are in our dependencies. 'incorrect-fsf-address', 'pem-certificate', 'non-executable-script', 'devel-file-in-non-devel-package', 'unstripped-binary-or-object', # Firewall and systemd configuration live in /usr/lib 'only-non-binary-in-usr-lib', # We don't allow configuring ufw firewall applications. 'non-conffile-in-etc /etc/ufw/applications.d/flocker-control', # Upstart control files are not installed as conffiles. 'non-conffile-in-etc /etc/init/flocker-dataset-agent.conf', 'non-conffile-in-etc /etc/init/flocker-container-agent.conf', 'non-conffile-in-etc /etc/init/flocker-control.conf', 'non-conffile-in-etc /etc/init/flocker-docker-plugin.conf', # rsyslog files are not installed as conffiles. 'non-conffile-in-etc /etc/rsyslog.d/flocker.conf', # Cryptography hazmat bindings 'package-installs-python-pycache-dir opt/flocker/lib/python2.7/site-packages/cryptography/hazmat/bindings/__pycache__/', # noqa # /opt/flocker/lib/python2.7/site-packages/sphinx/locale/.tx 'hidden-file-or-dir', # /opt/flocker/lib/python2.7/site-packages/pbr/tests/testpackage/doc/source/conf.py 'script-without-shebang', # E.g. # /opt/flocker/lib/python2.7/site-packages/sphinx/locale/bn/LC_MESSAGES/sphinx.mo 'file-not-in-%lang', # Twisted 16.6 includes an executable C source file. # https://twistedmatrix.com/trac/ticket/8921 'spurious-executable-perm /opt/flocker/lib/python2.7/site-packages/twisted/internet/iocpreactor/iocpsupport/iocpsupport.c', # noqa ), # See https://www.debian.org/doc/manuals/developers-reference/tools.html#lintian # noqa PackageTypes.DEB: ( # This isn't an distribution package so we deliberately install in /opt 'dir-or-file-in-opt', # This isn't a distribution package, so the precise details of the # distro portion of the version don't need to be followed. 'debian-revision-not-well-formed', # virtualenv's interpreter is correct. 'wrong-path-for-interpreter', # Virtualenv creates symlinks for local/{bin,include,lib}. Ignore them. 'symlink-should-be-relative', # We depend on python2.7 which depends on libc 'missing-dependency-on-libc', # We are installing in a virtualenv, so we can't easily use debian's # bytecompiling infrastructure. It doesn't provide any benefit, either. 'package-installs-python-bytecode', # https://github.com/jordansissel/fpm/issues/833 ('file-missing-in-md5sums ' 'usr/share/doc/'), # lintian expects python dep for .../python shebang lines. # We are in a virtualenv that points at python2.7 explictly and has # that dependency. 'python-script-but-no-python-dep', # Should be fixed 'binary-without-manpage', 'no-copyright-file', # These are in our dependencies. 'script-not-executable', 'embedded-javascript-library', 'extra-license-file', 'unstripped-binary-or-object', # Werkzeug installs various images with executable permissions. # https://github.com/mitsuhiko/werkzeug/issues/629 # Fixed upstream, but not released. 'executable-not-elf-or-script', # libffi installs shared libraries with executable bit setContent # '14:59:26 E: clusterhq-python-flocker: shlib-with-executable-bit # opt/flocker/lib/python2.7/site-packages/.libs_cffi_backend/libffi-72499c49.so.6.0.4 'shlib-with-executable-bit', # Our omnibus packages are never going to be used by upstream so # there's no bug to close. # https://lintian.debian.org/tags/new-package-should-close-itp-bug.html 'new-package-should-close-itp-bug', # We don't allow configuring ufw firewall applications. ('file-in-etc-not-marked-as-conffile ' 'etc/ufw/applications.d/flocker-control'), # Upstart control files are not installed as conffiles. 'file-in-etc-not-marked-as-conffile etc/init/flocker-dataset-agent.conf', # noqa 'file-in-etc-not-marked-as-conffile etc/init/flocker-container-agent.conf', # noqa 'file-in-etc-not-marked-as-conffile etc/init/flocker-control.conf', 'file-in-etc-not-marked-as-conffile etc/init/flocker-docker-plugin.conf', # noqa # rsyslog files are not installed as conffiles. 'file-in-etc-not-marked-as-conffile etc/rsyslog.d/flocker.conf', # Cryptography hazmat bindings 'package-installs-python-pycache-dir opt/flocker/lib/python2.7/site-packages/cryptography/hazmat/bindings/__pycache__/', # noqa # files included by netaddr - we put the whole python we need in the # flocker package, and lint complains. See: # https://lintian.debian.org/tags/package-installs-ieee-data.html "package-installs-ieee-data opt/flocker/lib/python2.7/site-packages/" "netaddr/eui/iab.idx", "package-installs-ieee-data opt/flocker/lib/python2.7/site-packages/" "netaddr/eui/iab.txt", "package-installs-ieee-data opt/flocker/lib/python2.7/site-packages/" "netaddr/eui/oui.idx", "package-installs-ieee-data opt/flocker/lib/python2.7/site-packages/" "netaddr/eui/oui.txt", "package-contains-timestamped-gzip", "systemd-service-file-outside-lib", # The binaries in ManyLinux wheel files are not compiled using Debian # compile flags especially those related to hardening: # https://wiki.debian.org/Hardening # These are important security precautions which we should enforce in # our packages. # Remove this once binary wheel files have been hardened upstream or # alternatively consider compiling from source rather than installing # wheels from PyPI: # https://github.com/pypa/manylinux/issues/59 "hardening-no-relro", # Ubuntu Wily lintian complains about missing changelog. # https://lintian.debian.org/tags/debian-changelog-file-missing-or-wrong-name.html "debian-changelog-file-missing-or-wrong-name", # The alabaster package contains some Google AdSense bugs. # https://lintian.debian.org/tags/privacy-breach-google-adsense.html "privacy-breach-google-adsense", # Only occurs when building locally "non-standard-dir-perm", "non-standard-file-perm", # Sphinx 1.5.1 contains various untracked files. # https://github.com/sphinx-doc/sphinx/issues/3256 "macos-ds-store-file-in-package opt/flocker/lib/python2.7/site-packages/sphinx/locale/.DS_Store", # noqa ), } @attributes([ 'package_type', 'destination_path', 'epoch', 'rpm_version', 'package', 'architecture', ]) class LintPackage(object): """ Run package linting tool against a package and fail if there are any errors or warnings that aren't whitelisted. """ output = sys.stdout @staticmethod def check_lint_output(warnings, ignored_warnings): """ Filter the output of a linting tool against a list of ignored warnings. :param list warnings: List of warnings produced. :param list ignored_warnings: List of warnings to ignore. A warning is ignored it it has a substring matching something in this list. """ unacceptable = [] for warning in warnings: # Ignore certain warning lines for ignored in ignored_warnings: if ignored in warning: break else: unacceptable.append(warning) return unacceptable def run(self): filename = package_filename( package_type=self.package_type, package=self.package, rpm_version=self.rpm_version, architecture=self.architecture) output_file = self.destination_path.child(filename) try: check_output([ { PackageTypes.RPM: 'rpmlint', PackageTypes.DEB: 'lintian', }[self.package_type], output_file.path, ]) except CalledProcessError as e: results = self.check_lint_output( warnings=e.output.splitlines(), ignored_warnings=IGNORED_WARNINGS[self.package_type], ) if results: self.output.write("Package errors (%s):\n" % (self.package)) self.output.write('\n'.join(results) + "\n") raise SystemExit(1) class PACKAGE(Values): """ Constants for ClusterHQ specific metadata that we add to all three packages. """ EPOCH = ValueConstant(b'0') LICENSE = ValueConstant(b'ASL 2.0') URL = ValueConstant(b'https://clusterhq.com') VENDOR = ValueConstant(b'ClusterHQ') MAINTAINER = ValueConstant(b'ClusterHQ <[email protected]>') class PACKAGE_PYTHON(PACKAGE): DESCRIPTION = ValueConstant( 'Flocker: a container data volume manager for your ' + 'Dockerized applications\n' + fill('This is the base package of scripts and libraries.', 79) ) class PACKAGE_CLI(PACKAGE): DESCRIPTION = ValueConstant( 'Flocker: a container data volume manager for your' + ' Dockerized applications\n' + fill('This meta-package contains links to the Flocker client ' 'utilities, and has only the dependencies required to run ' 'those tools', 79) ) class PACKAGE_NODE(PACKAGE): DESCRIPTION = ValueConstant( 'Flocker: a container data volume manager for your' + ' Dockerized applications\n' + fill('This meta-package contains links to the Flocker node ' 'utilities, and has only the dependencies required to run ' 'those tools', 79) ) class PACKAGE_DOCKER_PLUGIN(PACKAGE): DESCRIPTION = ValueConstant( 'Flocker volume plugin for Docker\n' + fill('This meta-package contains links to the Flocker Docker plugin', 79) ) def omnibus_package_builder( distribution, destination_path, package_uri, package_files, target_dir=None): """ Build a sequence of build steps which when run will generate a package in ``destination_path``, containing the package installed from ``package_uri`` and all its dependencies. The steps are: * Create a virtualenv with ``--system-site-packages`` which allows certain python libraries to be supplied by the operating system. * Install Flocker and all its dependencies in the virtualenv. * Find the version of the installed Flocker package, as reported by ``pip``. * Build an RPM from the virtualenv directory using ``fpm``. :param package_type: A package type constant from ``PackageTypes``. :param FilePath destination_path: The path to a directory in which to save the resulting RPM file. :param Package package: A ``Package`` instance with a ``pip install`` compatible package URI. :param FilePath package_files: Directory containg system-level files to be installed with packages. :param FilePath target_dir: An optional path in which to create the virtualenv from which the package will be generated. Default is a temporary directory created using ``mkdtemp``. :return: A ``BuildSequence`` instance containing all the required build steps. """ if target_dir is None: target_dir = FilePath(mkdtemp()) flocker_shared_path = target_dir.child('flocker-shared') flocker_shared_path.makedirs() flocker_cli_path = target_dir.child('flocker-cli') flocker_cli_path.makedirs() flocker_node_path = target_dir.child('flocker-node') flocker_node_path.makedirs() flocker_docker_plugin_path = target_dir.child('flocker-docker-plugin') flocker_docker_plugin_path.makedirs() empty_path = target_dir.child('empty') empty_path.makedirs() # Flocker is installed in /opt. # See http://fedoraproject.org/wiki/Packaging:Guidelines#Limited_usage_of_.2Fopt.2C_.2Fetc.2Fopt.2C_and_.2Fvar.2Fopt # noqa virtualenv_dir = FilePath('/opt/flocker') virtualenv = VirtualEnv(root=virtualenv_dir) get_package_version_step = GetPackageVersion( virtualenv=virtualenv, package_name='flocker') rpm_version = DelayedRpmVersion( package_version_step=get_package_version_step) category = { PackageTypes.RPM: 'Applications/System', PackageTypes.DEB: 'admin', }[distribution.package_type()] return BuildSequence( steps=( InstallVirtualEnv(virtualenv=virtualenv), InstallApplication( virtualenv=virtualenv, package_uri='-r/flocker/requirements/flocker.txt' ), InstallApplication(virtualenv=virtualenv, package_uri=package_uri), # get_package_version_step must be run before steps that reference # rpm_version get_package_version_step, CreateLinks( links=[ (FilePath('/opt/flocker/bin/eliot-prettyprint'), flocker_shared_path), (FilePath('/opt/flocker/bin/eliot-tree'), flocker_shared_path), ], ), BuildPackage( package_type=distribution.package_type(), destination_path=destination_path, source_paths={virtualenv_dir: virtualenv_dir, flocker_shared_path: FilePath("/usr/bin")}, name='clusterhq-python-flocker', prefix=FilePath('/'), epoch=PACKAGE.EPOCH.value, rpm_version=rpm_version, license=PACKAGE.LICENSE.value, url=PACKAGE.URL.value, vendor=PACKAGE.VENDOR.value, maintainer=PACKAGE.MAINTAINER.value, architecture=PACKAGE_ARCHITECTURE['clusterhq-python-flocker'], description=PACKAGE_PYTHON.DESCRIPTION.value, category=category, dependencies=make_dependencies( 'python', rpm_version, distribution), directories=[virtualenv_dir], ), LintPackage( package_type=distribution.package_type(), destination_path=destination_path, epoch=PACKAGE.EPOCH.value, rpm_version=rpm_version, package='clusterhq-python-flocker', architecture=PACKAGE_ARCHITECTURE['clusterhq-python-flocker'], ), # flocker-cli steps # First, link command-line tools that should be available. If you # change this you may also want to change entry_points in setup.py. CreateLinks( links=[ (FilePath('/opt/flocker/bin/flocker'), flocker_cli_path), (FilePath('/opt/flocker/bin/flocker-ca'), flocker_cli_path), ] ), BuildPackage( package_type=distribution.package_type(), destination_path=destination_path, source_paths={flocker_cli_path: FilePath("/usr/bin")}, name='clusterhq-flocker-cli', prefix=FilePath('/'), epoch=PACKAGE.EPOCH.value, rpm_version=rpm_version, license=PACKAGE.LICENSE.value, url=PACKAGE.URL.value, vendor=PACKAGE.VENDOR.value, maintainer=PACKAGE.MAINTAINER.value, architecture=PACKAGE_ARCHITECTURE['clusterhq-flocker-cli'], description=PACKAGE_CLI.DESCRIPTION.value, category=category, dependencies=make_dependencies( 'cli', rpm_version, distribution), ), LintPackage( package_type=distribution.package_type(), destination_path=destination_path, epoch=PACKAGE.EPOCH.value, rpm_version=rpm_version, package='clusterhq-flocker-cli', architecture=PACKAGE_ARCHITECTURE['clusterhq-flocker-cli'], ), # flocker-node steps # First, link command-line tools that should be available. If you # change this you may also want to change entry_points in setup.py. CreateLinks( links=[ (FilePath('/opt/flocker/bin/flocker-volume'), flocker_node_path), (FilePath('/opt/flocker/bin/flocker-control'), flocker_node_path), (FilePath('/opt/flocker/bin/flocker-container-agent'), flocker_node_path), (FilePath('/opt/flocker/bin/flocker-dataset-agent'), flocker_node_path), (FilePath('/opt/flocker/bin/flocker-diagnostics'), flocker_node_path), (FilePath('/opt/flocker/bin/flocker-benchmark'), flocker_node_path), (FilePath('/opt/flocker/bin/flocker-node-era'), flocker_node_path), ] ), BuildPackage( package_type=distribution.package_type(), destination_path=destination_path, source_paths={ flocker_node_path: FilePath("/usr/sbin"), # CentOS firewall configuration package_files.child('firewalld-services'): FilePath("/usr/lib/firewalld/services/"), # Ubuntu firewall configuration package_files.child('ufw-applications.d'): FilePath("/etc/ufw/applications.d/"), # SystemD configuration package_files.child('systemd'): FilePath('/usr/lib/systemd/system'), # Upstart configuration package_files.child('upstart'): FilePath('/etc/init'), # rsyslog configuration package_files.child(b'rsyslog'): FilePath(b'/etc/rsyslog.d'), # Flocker Control State dir empty_path: FilePath('/var/lib/flocker/'), }, name='clusterhq-flocker-node', prefix=FilePath('/'), epoch=PACKAGE.EPOCH.value, rpm_version=rpm_version, license=PACKAGE.LICENSE.value, url=PACKAGE.URL.value, vendor=PACKAGE.VENDOR.value, maintainer=PACKAGE.MAINTAINER.value, architecture=PACKAGE_ARCHITECTURE['clusterhq-flocker-node'], description=PACKAGE_NODE.DESCRIPTION.value, category=category, dependencies=make_dependencies( 'node', rpm_version, distribution), after_install=package_files.child('after-install.sh'), directories=[FilePath('/var/lib/flocker/')], ), LintPackage( package_type=distribution.package_type(), destination_path=destination_path, epoch=PACKAGE.EPOCH.value, rpm_version=rpm_version, package='clusterhq-flocker-node', architecture=PACKAGE_ARCHITECTURE['clusterhq-flocker-node'], ), # flocker-docker-plugin steps # First, link command-line tools that should be available. If you # change this you may also want to change entry_points in setup.py. CreateLinks( links=[ (FilePath('/opt/flocker/bin/flocker-docker-plugin'), flocker_docker_plugin_path), ] ), BuildPackage( package_type=distribution.package_type(), destination_path=destination_path, source_paths={ flocker_docker_plugin_path: FilePath("/usr/sbin"), # SystemD configuration package_files.child('docker-plugin').child('systemd'): FilePath('/usr/lib/systemd/system'), # Upstart configuration package_files.child('docker-plugin').child('upstart'): FilePath('/etc/init'), }, name='clusterhq-flocker-docker-plugin', prefix=FilePath('/'), epoch=PACKAGE.EPOCH.value, rpm_version=rpm_version, license=PACKAGE.LICENSE.value, url=PACKAGE.URL.value, vendor=PACKAGE.VENDOR.value, maintainer=PACKAGE.MAINTAINER.value, architecture=PACKAGE_ARCHITECTURE[ 'clusterhq-flocker-docker-plugin'], description=PACKAGE_DOCKER_PLUGIN.DESCRIPTION.value, category=category, dependencies=make_dependencies( 'docker-plugin', rpm_version, distribution), ), LintPackage( package_type=distribution.package_type(), destination_path=destination_path, epoch=PACKAGE.EPOCH.value, rpm_version=rpm_version, package='clusterhq-flocker-docker-plugin', architecture=PACKAGE_ARCHITECTURE[ 'clusterhq-flocker-docker-plugin'], ), ) ) @attributes(['tag', 'build_directory']) class DockerBuild(object): """ Build a docker image and tag it. :ivar bytes tag: The tag name which will be assigned to the generated docker image. :ivar FilePath build_directory: The directory containing the ``Dockerfile`` to build. """ def run(self): check_call( ['docker', 'build', '--pull', '--tag', self.tag, self.build_directory.path]) @attributes(['tag', 'volumes', 'command']) class DockerRun(object): """ Run a docker image with the supplied volumes and command line arguments. :ivar bytes tag: The tag name of the image to run. :ivar dict volumes: A dict mapping ``FilePath`` container path to ``FilePath`` host path for each docker volume. :ivar list command: The command line arguments which will be supplied to the docker image entry point. """ def run(self): volume_options = [] for container, host in self.volumes.iteritems(): volume_options.extend( ['--volume', '%s:%s' % (host.path, container.path)]) result = call( ['docker', 'run', '--rm'] + volume_options + [self.tag] + self.command) if result: raise SystemExit(result) def available_distributions(flocker_source_path): """ Determine the distributions for which packages can be built. :param FilePath flocker_source_path: The top-level directory of a Flocker source checkout. Distributions will be inferred from the build targets available in this checkout. :return: A ``set`` of ``bytes`` giving distribution names which can be used with ``build_in_docker`` (and therefore with the ``--distribution`` command line option of ``build-package``). """ return set( path.basename() for path in flocker_source_path.descendant(BUILD_TARGETS_SEGMENTS).children() if path.isdir() and path.child(b"Dockerfile").exists() ) def build_in_docker(destination_path, distribution, top_level, package_uri): """ Build a flocker package for a given ``distribution`` inside a clean docker container of that ``distribution``. :param FilePath destination_path: The directory to which the generated packages will be copied. :param bytes distribution: The distribution name for which to build a package. :param FilePath top_level: The Flocker source code directory. :param bytes package_uri: The ``pip`` style python package URI to install. """ if destination_path.exists() and not destination_path.isdir(): raise ValueError("go away") volumes = { FilePath('/output'): destination_path, FilePath('/flocker'): top_level, } # Special case to allow building the currently checked out Flocker code. if package_uri == top_level.path: package_uri = '/flocker' tag = "clusterhq/build-%s" % (distribution,) build_targets_directory = top_level.descendant(BUILD_TARGETS_SEGMENTS) build_directory = build_targets_directory.child(distribution) # The <src> path must be inside the context of the build; you cannot COPY # ../something /something, because the first step of a docker build is to # send the context directory (and subdirectories) to the docker daemon. # To work around this, we copy a shared requirements file into the build # directory. requirements_directory = top_level.child('requirements') requirements_directory.copyTo( build_directory.child('requirements') ) return BuildSequence( steps=[ DockerBuild( tag=tag, build_directory=build_directory ), DockerRun( tag=tag, volumes=volumes, command=[package_uri] ), ]) class DockerBuildOptions(usage.Options): """ Command line options for the ``build-package-entrypoint`` tool. """ synopsis = 'build-package-entrypoint [options] <package-uri>' optParameters = [ ['destination-path', 'd', '.', 'The path to a directory in which to create package files and ' 'artifacts.'], ] longdesc = dedent("""\ Arguments: <package-uri>: The Python package url or path to install using ``pip``. """) def parseArgs(self, package_uri): """ The Python package to install. """ self['package-uri'] = package_uri def postOptions(self): """ Coerce paths to ``FilePath``. """ self['destination-path'] = FilePath(self['destination-path']) class DockerBuildScript(object): """ Check supplied command line arguments, print command line argument errors to ``stderr`` otherwise build the RPM package. :ivar build_command: The function responsible for building the package. Allows the command to be overridden in tests. """ build_command = staticmethod(omnibus_package_builder) def __init__(self, sys_module=None): """ :param sys_module: A ``sys`` like object whose ``argv``, ``stdout`` and ``stderr`` will be used in the script. Can be overridden in tests to make assertions about the script argument parsing and output printing. Default is ``sys``. """ if sys_module is None: sys_module = sys self.sys_module = sys_module def main(self, top_level=None, base_path=None): """ Check command line arguments and run the build steps. :param FilePath top_level: The top-level of the flocker repository. :param base_path: ignored. """ to_file(self.sys_module.stderr) options = DockerBuildOptions() try: options.parseOptions(self.sys_module.argv[1:]) except usage.UsageError as e: self.sys_module.stderr.write("%s\n" % (options,)) self.sys_module.stderr.write("%s\n" % (e,)) raise SystemExit(1) # Currently we add system control files for both EL and Debian-based # systems. We should probably be more specific. See FLOC-1736. self.build_command( distribution=CURRENT_DISTRIBUTION, destination_path=options['destination-path'], package_uri=options['package-uri'], package_files=top_level.descendant(['admin', 'package-files']), ).run() docker_main = DockerBuildScript().main class BuildOptions(usage.Options): """ Command line options for the ``build-package`` tool. """ synopsis = 'build-package [options] <package-uri>' optParameters = [ ['destination-path', 'd', '.', 'The path to a directory in which to create package files and ' 'artifacts.'], ['distribution', None, None, # {} is formatted in __init__ 'The target distribution. One of {}'], ] longdesc = dedent("""\ Arguments: <package-uri>: The Python package url or path to install using ``pip``. """) def __init__(self, distributions): """ :param distributions: An iterable of the names of distributions which are acceptable as values for the ``--distribution`` parameter. """ usage.Options.__init__(self) self.docs["distribution"] = self.docs["distribution"].format( ', '.join(sorted(distributions)) ) def parseArgs(self, package_uri): """ The Python package to install. """ self['package-uri'] = package_uri def postOptions(self): """ Coerce paths to ``FilePath`` and select a suitable ``native`` ``package-type``. """ self['destination-path'] = FilePath(self['destination-path']) if self['distribution'] is None: raise usage.UsageError('Must specify --distribution.') class BuildScript(object): """ Check supplied command line arguments, print command line argument errors to ``stderr`` otherwise build the RPM package. :ivar build_command: The function responsible for building the package. Allows the command to be overridden in tests. """ build_command = staticmethod(build_in_docker) def __init__(self, sys_module=None): """ :param sys_module: A ``sys`` like object whose ``argv``, ``stdout`` and ``stderr`` will be used in the script. Can be overridden in tests to make assertions about the script argument parsing and output printing. Default is ``sys``. """ if sys_module is None: sys_module = sys self.sys_module = sys_module def main(self, top_level=None, base_path=None): """ Check command line arguments and run the build steps. :param top_level: The path to the root of the checked out flocker directory. :param base_path: ignored. """ to_file(self.sys_module.stderr) distributions = available_distributions(top_level) options = BuildOptions(distributions) try: options.parseOptions(self.sys_module.argv[1:]) except usage.UsageError as e: self.sys_module.stderr.write("%s\n" % (options,)) self.sys_module.stderr.write("%s\n" % (e,)) raise SystemExit(1) self.build_command( destination_path=options['destination-path'], package_uri=options['package-uri'], top_level=top_level, distribution=options['distribution'], ).run() main = BuildScript().main
python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class UsageStatistics(Model): """Statistics related to pool usage information. :param start_time: The start time of the time range covered by the statistics. :type start_time: datetime :param last_update_time: The time at which the statistics were last updated. All statistics are limited to the range between startTime and lastUpdateTime. :type last_update_time: datetime :param dedicated_core_time: The aggregated wall-clock time of the dedicated compute node cores being part of the pool. :type dedicated_core_time: timedelta """ _validation = { 'start_time': {'required': True}, 'last_update_time': {'required': True}, 'dedicated_core_time': {'required': True}, } _attribute_map = { 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'last_update_time': {'key': 'lastUpdateTime', 'type': 'iso-8601'}, 'dedicated_core_time': {'key': 'dedicatedCoreTime', 'type': 'duration'}, } def __init__(self, start_time, last_update_time, dedicated_core_time): self.start_time = start_time self.last_update_time = last_update_time self.dedicated_core_time = dedicated_core_time
python
#!/usr/bin/env python import getopt, getpass, os, subprocess, sys import github def _shell(cmd): print '$ {}'.format(cmd) subprocess.check_output(cmd, shell = True) print def main(args): username = None password = None fetchGists = False # Parse options opts, _ = getopt.getopt(args, 'gau:', ['gists', 'auth', 'user=']) for opt, arg in opts: if opt in ('-a', '--auth'): username = raw_input('Username? ') password = getpass.getpass('Password? ') elif opt in ('-u', '--user'): if ':' in arg: username, password = arg.split(':') else: username = arg elif opt in ('-g', '--gists'): fetchGists = True # Exit if no username set if not username: print 'Please provide a username with -u or ask for a username prompt with -a.' sys.exit(0) # Authenticate if password set if not password: API = github.GitHub() if fetchGists: repos = API.users(username).gists() else: repos = API.users(username).repos() # Anonymous if no password set else: API = github.GitHub(username = username, password = password) if fetchGists: repos = API.gists() else: repos = API.user().repos() # Iterate repos and clone repos = repos.get() for repo in repos: if fetchGists: url = repo.git_pull_url path = repo.id else: url = repo.ssh_url path = repo.name # Don't clone if it already exists in this directory if not os.path.exists(path): _shell('git clone {}'.format(url)) else: print '{} exists, aborting clone'.format(path) if __name__ == '__main__': main(sys.argv[1:])
python
"""CreateAnimalTable Migration.""" from masoniteorm.migrations import Migration class CreateAnimalTable(Migration): def up(self): """ Run the migrations. """ with self.schema.create("animals") as table: table.increments("id") table.string("name") table.string("scientific_name") table.string("url") table.string("class") table.string("lifespan") table.string("origin") table.string("fun_fact") table.timestamps() def down(self): """ Revert the migrations. """ self.schema.drop("animals")
python
from typing import Dict, Any, Union import requests import logging from requests.exceptions import HTTPError, ConnectionError from zulip_bots.custom_exceptions import ConfigValidationError GIPHY_TRANSLATE_API = 'http://api.giphy.com/v1/gifs/translate' GIPHY_RANDOM_API = 'http://api.giphy.com/v1/gifs/random' class GiphyHandler: """ This plugin posts a GIF in response to the keywords provided by the user. Images are provided by Giphy, through the public API. The bot looks for messages starting with @mention of the bot and responds with a message with the GIF based on provided keywords. It also responds to private messages. """ def usage(self) -> str: return ''' This plugin allows users to post GIFs provided by Giphy. Users should preface keywords with the Giphy-bot @mention. The bot responds also to private messages. ''' @staticmethod def validate_config(config_info: Dict[str, str]) -> None: query = {'s': 'Hello', 'api_key': config_info['key']} try: data = requests.get(GIPHY_TRANSLATE_API, params=query) data.raise_for_status() except ConnectionError as e: raise ConfigValidationError(str(e)) except HTTPError as e: error_message = str(e) if data.status_code == 403: error_message += ('This is likely due to an invalid key.\n' 'Follow the instructions in doc.md for setting an API key.') raise ConfigValidationError(error_message) def initialize(self, bot_handler: Any) -> None: self.config_info = bot_handler.get_config_info('giphy') def handle_message(self, message: Dict[str, str], bot_handler: Any) -> None: bot_response = get_bot_giphy_response( message, bot_handler, self.config_info ) bot_handler.send_reply(message, bot_response) class GiphyNoResultException(Exception): pass def get_url_gif_giphy(keyword: str, api_key: str) -> Union[int, str]: # Return a URL for a Giphy GIF based on keywords given. # In case of error, e.g. failure to fetch a GIF URL, it will # return a number. query = {'api_key': api_key} if len(keyword) > 0: query['s'] = keyword url = GIPHY_TRANSLATE_API else: url = GIPHY_RANDOM_API try: data = requests.get(url, params=query) except requests.exceptions.ConnectionError: # Usually triggered by bad connection. logging.exception('Bad connection') raise data.raise_for_status() try: gif_url = data.json()['data']['images']['original']['url'] except (TypeError, KeyError): # Usually triggered by no result in Giphy. raise GiphyNoResultException() return gif_url def get_bot_giphy_response(message: Dict[str, str], bot_handler: Any, config_info: Dict[str, str]) -> str: # Each exception has a specific reply should "gif_url" return a number. # The bot will post the appropriate message for the error. keyword = message['content'] try: gif_url = get_url_gif_giphy(keyword, config_info['key']) except requests.exceptions.ConnectionError: return ('Uh oh, sorry :slightly_frowning_face:, I ' 'cannot process your request right now. But, ' 'let\'s try again later! :grin:') except GiphyNoResultException: return ('Sorry, I don\'t have a GIF for "%s"! ' ':astonished:' % (keyword)) return ('[Click to enlarge](%s)' '[](/static/images/interactive-bot/giphy/powered-by-giphy.png)' % (gif_url)) handler_class = GiphyHandler
python
import os import tbs.logger.log as logger import tbs.helper.filedescriptor as fd def checkRoot(message): """ Check if the user is root otherwise error out """ if os.geteuid() != 0: logger.log(message, logger.LOG_ERROR) raise Exception("You need root privileges to do this operation.") def inCorrectDirectory(subpath="toslive"): """ try to check if the current directory is the directory containing the build files """ # check if the current repo is correct result = fd.CMD(["git", "remote", "-v"]).execute() if not result.exitcode == 0: logger.log("Something went wrong when scanning the current directory for build files") raise Exception(result.stderr) if not "ODEX-TOS/tos-live" in result.stdout: logger.log("Current directory does not contain build files, downloading files") return False result = fd.CMD(["git", "rev-parse", "--show-toplevel"]).execute() if not result.exitcode == 0: logger.log("Could not move to the correct location in the repo") raise Exception(result.stderr) os.chdir(result.stdout+"/"+subpath) return True
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ acq400.py interface to one acq400 appliance instance - enumerates all site services, available as uut.sX.knob - simple property interface allows natural "script-like" usage - eg:: uut1.s0.set_arm = 1 - equivalent to running this on a logged in shell session on the UUT:: set.site1 set_arm=1 - monitors transient status on uut, provides blocking events - read_channels() - reads all data from channel data service. Created on Sun Jan 8 12:36:38 2017 @author: pgm """ import threading import re import os import errno import signal import sys from . import netclient import numpy as np import socket import timeit import time class AcqPorts: """server port constants""" TSTAT = 2235 STREAM = 4210 SITE0 = 4220 SEGSW = 4250 SEGSR = 4251 DPGSTL = 4521 GPGSTL= 4541 GPGDUMP = 4543 WRPG = 4606 BOLO8_CAL = 45072 DATA0 = 53000 MULTI_EVENT_TMP = 53555 MULTI_EVENT_DISK = 53556 LIVETOP = 53998 ONESHOT = 53999 AWG_ONCE = 54201 AWG_AUTOREARM = 54202 MGTDRAM = 53990 MGTDRAM_PULL_DATA = 53991 class AcqSites: # site service at AcqPorts.SITE0+ AcqSites.SITEi SITE0 = 0 SITE1 = 1 SITE2 = 2 SITE3 = 3 SITE4 = 4 SITE5 = 5 SITE6 = 6 SITE_CA = 13 SITE_CB = 12 SITE_DSP = 14 class SF: """state constants""" STATE = 0 PRE = 1 POST = 2 ELAPSED = 3 DEMUX = 5 class STATE: """transient states""" IDLE = 0 ARM = 1 RUNPRE = 2 RUNPOST = 3 POPROCESS = 4 CLEANUP = 5 @staticmethod def str(st): if st==STATE.IDLE: return "IDLE" if st==STATE.ARM: return "ARM" if st==STATE.RUNPRE: return "RUNPRE" if st==STATE.RUNPOST: return "RUNPOST" if st==STATE.POPROCESS: return "POPROCESS" if st==STATE.CLEANUP: return "CLEANUP" return "UNDEF" class Signals: EXT_TRG_DX = 'd0' INT_TRG_DX = 'd1' MB_CLK_DX = 'd1' class StreamClient(netclient.Netclient): """handles live streaming data""" def __init__(self, addr): print("worktodo") class RawClient(netclient.Netclient): """ handles raw data from any service port """ def __init__(self, addr, port): netclient.Netclient.__init__(self, addr, port) def read(self, nelems, data_size=2, ncols=1, maxbuf=0x400000): """read ndata from channel data server, return as np array. Args: nelems number of data elements, each data_size*ncols nelems <=0 :: read until the end data_size : 2|4 short or int ncols : optional, to create a 2D array """ _dtype = np.dtype('i4' if data_size == 4 else 'i2') # hmm, what if unsigned? if nelems <= 0: nelems = 0x80000000 #2GB approximates infinity. what is infinity in python? bytestogo = nelems * data_size * ncols total_buf = "" while bytestogo > 0: new_buf = self.sock.recv(bytestogo) if not new_buf: break # end of file bytestogo = bytestogo - len(new_buf) total_buf += new_buf # still dubious of append :-) return np.frombuffer(total_buf, _dtype) def get_blocks(self, nelems, data_size=2, ncols=1): block = np.array([1]) while len(block) > 0: block = self.read(nelems, data_size=data_size, ncols=ncols) if len(block) > 0: yield block class MgtDramPullClient(RawClient): def __init__(self, addr): RawClient.__init__(self, addr, AcqPorts.MGTDRAM_PULL_DATA) class ChannelClient(netclient.Netclient): """handles post shot data for one channel. Args: addr (str) : ip address or dns name ch (int) : channel number 1..N """ def __init__(self, addr, ch): netclient.Netclient.__init__(self, addr, AcqPorts.DATA0+ch) # on Linux, recv returns on ~mtu # on Windows, it may buffer up, and it's very slow unless we use a larger buffer def read(self, ndata, data_size=2, maxbuf=0x400000): """read ndata from channel data server, return as np array. Args: ndata (int): number of elements data_size : 2|4 short or int maxbuf=4096 : max bytes to read per packet Returns: np: data array * TODO buffer += this is probably horribly inefficient probably better:: retbuf = np.array(dtype, ndata) retbuf[cursor]. """ _dtype = np.dtype('i4' if data_size == 4 else 'i2') total_buffer = buffer = self.sock.recv(maxbuf) if int(ndata) == 0 or int(ndata) == -1: while True: buffer = self.sock.recv(maxbuf) if not buffer: return np.frombuffer(total_buffer, dtype=_dtype, count=-1) total_buffer += buffer while len(buffer) < ndata*data_size: buffer += self.sock.recv(maxbuf) return np.frombuffer(buffer, dtype=_dtype, count=ndata) class ExitCommand(Exception): pass def signal_handler(signal, frame): raise ExitCommand() class Statusmonitor: """ monitors the status channel Efficient event-driven monitoring in a separate thread """ st_re = re.compile(r"([0-9]) ([0-9]+) ([0-9]+) ([0-9]+) ([0-9])+" ) def __repr__(self): return repr(self.logclient) def st_monitor(self): while self.quit_requested == False: st = self.logclient.poll() match = self.st_re.search(st) # status is a match. need to look at group(0). It's NOT a LIST! if match: statuss = match.groups() status1 = [int(x) for x in statuss] if self.trace > 1: print("%s <%s" % (repr(self), status1)) if self.status != None: # print("Status check %s %s" % (self.status0[0], status[0])) if self.status[SF.STATE] != 0 and status1[SF.STATE] == 0: if self.trace: print("%s STOPPED!" % (self.uut)) self.stopped.set() self.armed.clear() # print("status[0] is %d" % (status[0])) if status1[SF.STATE] == 1: if self.trace: print("%s ARMED!" % (self.uut)) self.armed.set() self.stopped.clear() if self.status[SF.STATE] == 0 and status1[SF.STATE] > 1: if self.trace: print("ERROR: %s skipped ARM %d -> %d" % (self.uut, self.status[0], status1[0])) self.quit_requested = True os.kill(self.main_pid, signal.SIGINT) sys.exit(1) self.status = status1 elif self.trace > 1: print("%s <%s>" % (repr(self), st)) def get_state(self): return self.status[SF.STATE] def wait_event(self, ev, descr): # print("wait_%s 02 %d" % (descr, ev.is_set())) while ev.wait(0.1) == False: if self.quit_requested: print("QUIT REQUEST call exit %s" % (descr)) sys.exit(1) # print("wait_%s 88 %d" % (descr, ev.is_set())) ev.clear() # print("wait_%s 99 %d" % (descr, ev.is_set())) def wait_armed(self): """ blocks until uut is ARMED """ self.wait_event(self.armed, "armed") def wait_stopped(self): """ blocks until uut is STOPPED """ self.wait_event(self.stopped, "stopped") trace = int(os.getenv("STATUSMONITOR_TRACE", "0")) def __init__(self, _uut, _status): self.quit_requested = False self.trace = Statusmonitor.trace self.uut = _uut self.main_pid = os.getpid() self.status = _status self.stopped = threading.Event() self.armed = threading.Event() self.logclient = netclient.Logclient(_uut, AcqPorts.TSTAT) self.st_thread = threading.Thread(target=self.st_monitor) self.st_thread.setDaemon(True) self.st_thread.start() class NullFilter: def __call__ (self, st): print(st) null_filter = NullFilter() class ProcessMonitor: st_re = re.compile(r"^END" ) def st_monitor(self): while self.quit_requested == False: st = self.logclient.poll() self.output_filter(st) match = self.st_re.search(st) if match: self.quit_requested = True def __init__(self, _uut, _filter): self.quit_requested = False self.output_filter = _filter self.logclient = netclient.Logclient(_uut, AcqPorts.MGTDRAM) self.logclient.termex = re.compile("(\n)") self.st_thread = threading.Thread(target=self.st_monitor) self.st_thread.setDaemon(True) self.st_thread.start() class Acq400: """ host-side proxy for Acq400 uut. discovers and maintains all site servers maintains a monitor thread on the monitor port handles multiple channel post shot upload Args: _uut (str) : ip-address or dns name monitor=True (bool) : set false to stub monitor, useful for tracing on a second connection to an active system. """ def init_site_client(self, site): svc = netclient.Siteclient(self.uut, AcqPorts.SITE0+site) self.svc["s%d" % site] = svc self.modules[site] = svc if self.awg_site == 0 and svc.module_name.startswith("ao"): self.awg_site = site self.mod_count += 1 @classmethod def create_uuts(cls, uut_names): """ create_uuts(): factory .. create them in parallel *** Experimental Do Not Use *** """ uuts = [] uut_threads = {} for uname in uut_names: uut_threads[uname] = \ threading.Thread(\ target=lambda u, l: l.append(cls(u)), \ args=(uname, uuts)) for uname in uut_names: uut_threads[uname].start() for t in uut_threads: uut_threads[t].join(10.0) return uuts def __init__(self, _uut, monitor=True): self.NL = re.compile(r"(\n)") self.uut = _uut self.trace = 0 self.save_data = None self.svc = {} self.modules = {} self.mod_count = 0 # channel index from 1,.. self.cal_eslo = [0, ] self.cal_eoff = [0, ] self.mb_clk_min = 4000000 s0 = self.svc["s0"] = netclient.Siteclient(self.uut, AcqPorts.SITE0) sl = s0.SITELIST.split(",") sl.pop(0) self.awg_site = 0 site_enumerators = {} for sm in sl: site_enumerators[sm] = \ threading.Thread(target=self.init_site_client,\ args=(int(sm.split("=").pop(0)),)\ ) for sm in sl: site_enumerators[sm].start() for sm in sl: # print("join {}".format(site_enumerators[sm])) site_enumerators[sm].join(10.0) # init _status so that values are valid even if this Acq400 doesn't run a shot .. _status = [int(x) for x in s0.state.split(" ")] if monitor: self.statmon = Statusmonitor(self.uut, _status) def __getattr__(self, name): if self.svc.get(name) != None: return self.svc.get(name) else: msg = "'{0}' object has no attribute '{1}'" raise AttributeError(msg.format(type(self).__name__, name)) def state(self): return self.statmon.status[SF.STATE] def post_samples(self): return self.statmon.status[SF.POST] def pre_samples(self): return self.statmon.status[SF.PRE] def elapsed_samples(self): return self.statmon.status[SF.ELAPSED] def demux_status(self): return self.statmon.status[SF.DEMUX] def samples(self): return self.pre_samples() + self.post_samples() def get_aggregator_sites(self): return self.s0.aggregator.split(' ')[1].split('=')[1].split(',') def fetch_all_calibration(self): print("Fetching calibration data") for m in (self.modules[int(c)] for c in self.get_aggregator_sites()): self.cal_eslo.extend(m.AI_CAL_ESLO.split(' ')[3:]) self.cal_eoff.extend(m.AI_CAL_EOFF.split(' ')[3:]) def scale_raw(self, raw, volts=False): for (sx, m) in list(self.modules.items()): if m.MODEL.startswith("ACQ43"): rshift = 8 elif m.data32 == '1': # volts calibration is normalised to 24b if m.adc_18b == '1': rshift = 14 - (8 if volts else 0) else: rshift = 16 - (8 if volts else 0) else: rshift = 0 break return np.right_shift(raw, rshift) def chan2volts(self, chan, raw): """ chan2volts(self, chan, raw) returns calibrated volts for channel Args: chan: 1..nchan raw: raw bits to convert. """ if len(self.cal_eslo) == 1: self.fetch_all_calibration() eslo = float(self.cal_eslo[chan]) eoff = float(self.cal_eoff[chan]) return np.add(np.multiply(raw, eslo), eoff) def read_chan(self, chan, nsam = 0): if chan != 0 and nsam == 0: nsam = self.pre_samples()+self.post_samples() cc = ChannelClient(self.uut, chan) ccraw = cc.read(nsam, data_size=(4 if self.s0.data32 == '1' else 2)) if self.save_data: try: os.makedirs(self.save_data) except OSError as exception: if exception.errno != errno.EEXIST: raise with open("%s/%s_CH%02d" % (self.save_data, self.uut, chan), 'wb') as fid: ccraw.tofile(fid, '') return ccraw def nchan(self): return int(self.s0.NCHAN) def read_channels(self, channels=(), nsam=0): """read all channels post shot data. Returns: chx (list) of np arrays. """ if channels == (): channels = list(range(1, self.nchan()+1)) elif type(channels) == int: channels = (channels,) # print("channels {}".format(channels)) chx = [] for ch in channels: if self.trace: print("%s CH%02d start.." % (self.uut, ch)) start = timeit.default_timer() chx.append(self.read_chan(ch, nsam)) if self.trace: tt = timeit.default_timer() - start print("%s CH%02d complete.. %.3f s %.2f MB/s" % (self.uut, ch, tt, len(chx[-1])*2/1000000/tt)) return chx # DEPRECATED def load_segments(self, segs): with netclient.Netclient(self.uut, AcqPorts.SEGSW) as nc: for seg in segs: nc.sock.send((seg+"\n").encode()) # DEPRECATED def show_segments(self): with netclient.Netclient(self.uut, AcqPorts.SEGSR) as nc: while True: buf = nc.sock.recv(1024) if buf: print(buf) else: break def clear_counters(self): for s in self.svc: self.svc[s].sr('*RESET=1') def set_sync_routing_master(self, clk_dx="d1", trg_dx="d0"): self.s0.SIG_SYNC_OUT_CLK = "CLK" self.s0.SIG_SYNC_OUT_CLK_DX = clk_dx self.s0.SIG_SYNC_OUT_TRG = "TRG" self.s0.SIG_SYNC_OUT_TRG_DX = trg_dx def set_sync_routing_slave(self): self.set_sync_routing_master() self.s0.SIG_SRC_CLK_1 = "HDMI" self.s0.SIG_SRC_TRG_0 = "HDMI" def set_sync_routing(self, role): # deprecated # set sync mode on HDMI daisychain # valid roles: master or slave if role == "master": self.set_sync_routing_master() elif role == "slave": self.set_sync_routing_slave() else: raise ValueError("undefined role {}".format(role)) def set_mb_clk(self, hz=4000000, src="zclk", fin=1000000): hz = int(hz) if src == "zclk": self.s0.SIG_ZCLK_SRC = "INT33M" self.s0.SYS_CLK_FPMUX = "ZCLK" self.s0.SIG_CLK_MB_FIN = 33333000 elif src == "xclk": self.s0.SYS_CLK_FPMUX = "XCLK" self.s0.SIG_CLK_MB_FIN = 32768000 else: self.s0.SYS_CLK_FPMUX = "FPCLK" self.s0.SIG_CLK_MB_FIN = fin if hz >= self.mb_clk_min: self.s0.SIG_CLK_MB_SET = hz self.s1.CLKDIV = '1' else: for clkdiv in range(1,2000): if hz*clkdiv >= self.mb_clk_min: self.s0.SIG_CLK_MB_SET = hz*clkdiv self.s1.CLKDIV = clkdiv return raise ValueError("frequency out of range {}".format(hz)) def load_stl(self, stl, port, trace = False, wait_eof = False): termex = re.compile("\n") with netclient.Netclient(self.uut, port) as nc: lines = stl.split("\n") for ll in lines: if trace: print("> {}".format(ll)) if len(ll) < 2: if trace: print("skip blank") continue if ll.startswith('#'): if trace: print("skip comment") continue nc.sock.send((ll+"\n").encode()) rx = nc.sock.recv(4096) if trace: print("< {}".format(rx)) nc.sock.send("EOF\n".encode()) nc.sock.shutdown(socket.SHUT_WR) wait_end = True while wait_end: rx = nc.sock.recv(4096) if trace: print("< {}".format(rx)) if (str(rx).find("EOF")) != -1: break wait_end = wait_eof def load_gpg(self, stl, trace = False): self.load_stl(stl, AcqPorts.GPGSTL, trace, True) def load_dpg(self, stl, trace = False): self.load_stl(stl, AcqPorts.DPGSTL, trace) def load_wrpg(self, stl, trace = False): self.load_stl(stl, AcqPorts.WRPG, trace, True) class AwgBusyError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def load_awg(self, data, autorearm=False): if self.awg_site > 0: if self.modules[self.awg_site].task_active == '1': raise self.AwgBusyError("awg busy") port = AcqPorts.AWG_AUTOREARM if autorearm else AcqPorts.AWG_ONCE with netclient.Netclient(self.uut, port) as nc: nc.sock.send(data) nc.sock.shutdown(socket.SHUT_WR) while True: rx = nc.sock.recv(128) if not rx or rx.startswith(b"DONE"): break nc.sock.close() def run_service(self, port, eof="EOF", prompt='>'): txt = "" with netclient.Netclient(self.uut, port) as nc: while True: rx = nc.receive_message(self.NL, 256) txt += rx txt += "\n" print("{}{}".format(prompt, rx)) if rx.startswith(eof): break nc.sock.shutdown(socket.SHUT_RDWR) nc.sock.close() return txt def run_oneshot(self): with netclient.Netclient(self.uut, AcqPorts.ONESHOT) as nc: while True: rx = nc.receive_message(self.NL, 256) print("{}> {}".format(self.s0.HN, rx)) if rx.startswith("SHOT_COMPLETE"): break nc.sock.shutdown(socket.SHUT_RDWR) nc.sock.close() def run_livetop(self): with netclient.Netclient(self.uut, AcqPorts.LIVETOP) as nc: print(nc.receive_message(self.NL, 256)) nc.sock.shutdown(socket.SHUT_RDWR) nc.sock.close() def disable_trigger(self): #master.s0.SIG_SRC_TRG_0 = 'NONE' #master.s0.SIG_SRC_TRG_1 = 'NONE' self.s0.SIG_SRC_TRG_0 = 'HOSTB' self.s0.SIG_SRC_TRG_1 = 'HOSTA' def enable_trigger(self, trg_0='EXT', trg_1='STRIG'): if trg_0 is not None: self.s0.SIG_SRC_TRG_0 = trg_0 if trg_1 is not None: self.s0.SIG_SRC_TRG_1 = trg_1 def configure_post(self, role, trigger=[1,1,1], post=100000): """ Configure UUT for a regular transient capture. Default: internal soft trigger starts the capture. "Role" is a mandatory argument. For master systems, role should be the string "master", if the system is a slave then role should be the string "slave" Default post samples: 100k. """ print(trigger) self.s0.transient = "PRE=0 POST={} SOFT_TRIGGER={}".format(post, trigger[1]) self.s1.TRG = 1 if role == "slave" or trigger[1] == 0: self.s1.TRG_DX = 0 else: self.s1.TRG_DX = 1 self.s1.TRG_SENSE = trigger[2] self.s1.EVENT0 = 0 self.s1.EVENT0_DX = 0 self.s1.EVENT0_SENSE = 0 self.s1.RGM = 0 self.s1.RGM_DX = 0 self.s1.RGM_SENSE = 0 self.s1.RGM = 0 # Make sure RGM mode is turned off. self.s0.SIG_EVENT_SRC_0 = 0 return None def configure_pre_post(self, role, trigger=[1,1,1], event=[1,1,1], pre=50000, post=100000): """ Configure UUT for pre/post mode. Default: soft trigger starts the data flow and trigger the event on a hard external trigger. "Role" is a mandatory argument. For master systems, role should be the string "master", if the system is a slave then role should be the string "slave" Default pre trigger samples: 50k. Default post trigger samples: 100k. """ if pre > post: print("PRE samples cannot be greater than POST samples. Config not set.") return None trg = 1 if trigger[1] == 1 else 0 self.s0.transient = "PRE={} POST={} SOFT_TRIGGER={}".format(pre, post, trg) self.s1.TRG = trigger[0] if role == "slave" or trigger[1] == 0: self.s1.TRG_DX = 0 else: self.s1.TRG_DX = 1 self.s1.TRG_SENSE = trigger[2] self.s1.EVENT0 = event[0] self.s1.EVENT0_DX = event[1] self.s1.EVENT0_SENSE = event[2] self.s1.RGM = 0 self.s1.RGM_DX = 0 self.s1.RGM_SENSE = 0 self.s1.RGM = 0 # Make sure RGM mode is turned off. self.s0.SIG_EVENT_SRC_0 = 0 return None def configure_rtm(self, role, trigger=[1,1,1], event=[1,1,1], post=50000, rtm_translen=5000, gpg=0): """ Configure UUT for rtm mode. Default: external trigger starts the capture and takes 5000 samples, each subsequent trigger gives us another 5000 samples. "Role" is a mandatory argument. For master systems, role should be the string "master", if the system is a slave then role should be the string "slave" Default rtm_translen: 5k samples. Default post: 50k samples GPG can be used in RTM mode as the Event. If you are using the GPG then this function can put the GPG output onto the event bus (to use as an Event for RTM). """ self.s0.transient = "PRE=0 POST={}".format(post) self.s1.rtm_translen = rtm_translen self.s1.TRG = 1 if role == "slave" or trigger[1] == 0: self.s1.TRG_DX = 0 else: self.s1.TRG_DX = 1 self.s1.TRG_SENSE = trigger[2] self.s1.EVENT0 = event[0] self.s1.EVENT0_DX = event[1] self.s1.EVENT0_SENSE = event[2] self.s1.RGM = 3 self.s1.RGM_DX = 0 self.s1.RGM_SENSE = 1 self.s0.SIG_EVENT_SRC_0 = 1 if gpg == 1 else 0 return None def configure_transient(self, pre=0, post=100000, sig_DX='d0', auto_soft_trigger=0, demux=1, edge='rising'): """ Configure uut for transient capture. sig_DX is the signal line responsible for TRIGGER or EVENT depending on mode; function makes appropriate selection. Function is aware of sync_role and sets sig_DX accordingly """ sync_role = self.s0.sync_role if sync_role == 'role not set' and sync_role == 'slave': sig_DX = 'd0' sigdef = "1,{},{}".format(sig_DX[1], 1 if edge == 'rising' else 0) if pre > 0: self.s1.event0 = sigdef self.s1.trg = '1,1,1' else: self.s1.event0 = '0,0,0' self.s1.trg = sigdef self.s0.transient = "PRE={} POST={} SOFT_TRIGGER={} DEMUX={}".\ format(pre, post, auto_soft_trigger, demux) def configure_rgm(self, role, trigger=[1,0,1], event=[1,1,1], post="100000", gpg=0): """ Configure UUT for RGM mode. Default: external trigger starts the capture and the system takes samples every clock whenever the trigger is high. "Role" is a mandatory argument. For master systems, role should be the string "master", if the system is a slave then role should be the string "slave" Default post: 100k samples. GPG can be used in RGM mode as the Event. If you are using the GPG then this function can put the GPG output onto the event bus (to use as an Event for RGM). """ self.s0.transient = "PRE=0 POST={}".format(post) self.s1.TRG = 1 if role == "slave" or trigger[1] == 0: self.s1.TRG_DX = 0 else: self.s1.TRG_DX = 1 self.s1.TRG_SENSE = trigger[2] self.s1.EVENT0 = 0#event[0] self.s1.EVENT0_DX = 0#event[1] self.s1.EVENT0_SENSE = 0 self.s1.RGM = 2 self.s1.RGM_DX = 0 self.s1.RGM_SENSE = 1 self.s0.SIG_EVENT_SRC_0 = 1 if gpg == 1 else 0 return None def get_demux_state(self): """ Returns the current state of demux. Beware: if demux is set after the shot then this function will return the new state. There is no way to determine what the state was during the previous shot. """ transient = self.s0.transient demux_state = transient.split("DEMUX=",1)[1][0] return int(demux_state) def pull_plot(self, channels=(), demux=-1): """ Pulls data from 53000 or 5300X depending on the status of demux. This function takes a tuple of integers and will return the corresponding data from each 5300X port (if demux is on) and will return the corresponding data filtered from 53000 if demux is off. The user can also override the detected demux state if they want to: 1 is demux on and 0 is demux off. Default is -1 and means autodetect. This function returns an array of the specified channels and plots the data. """ data = [] if demux == -1: demux = self.get_demux_state() if demux == 1: data = self.read_channels(channels) elif demux == 0: mux_data = self.read_muxed_data() print("mux data = ", mux_data) nchan = self.nchan() if channels == (): channels = list(range(1,nchan+1)) for ch in channels: print("Channel - ", ch) data.append(mux_data[ch-1::nchan]) import matplotlib.pyplot as plt for channel in data: plt.plot(channel) plt.grid(True) plt.show() return data def read_muxed_data(self): """ A function that returns data from port 53000. Only use if demux is turned off. If demux is turned on then this function will not return the expected muxed data. To check if demux is enabled use the get_demux_state() function. """ data = self.read_channels((0), -1) return data[0] def pull_data(self): """ A function to pull data based on whatever demux is set to. Should be entirely automated. The function will check what channels are AI channels and pull the data from those channels. """ demux_state = self.get_demux_state() channels = list(range(1, self.get_ai_channels()+1)) nchan = channels[-1] if demux_state == 1: data = self.read_channels(channels, -1) elif demux_state == 0: data = [] mux_data = self.read_muxed_data() for ch in channels: data.append(mux_data[ch-1::nchan]) return data def get_ai_channels(self): """ Returns all of the AI channels. This is a more robust way to get the total number of AI channels, as sometimes nchan can be set to include the scratch pad. """ ai_channels = 0 site_types = self.get_site_types() for ai_site in site_types["AISITES"]: ai_site = "s{}".format(ai_site) ai_channels += int(getattr(getattr(self, ai_site), "NCHAN")) return ai_channels def get_site_types(self): """ Returns a dictionary with keys AISITES, AOSITES, and DIOSITES with the corresponding values as lists of the channels which are AI, AO, and DIO. """ AISITES = [] AOSITES = [] DIOSITES = [] for site in [1,2,3,4,5,6]: try: module_name = eval('self.s{}.module_name'.format(site)) if module_name.startswith('acq'): AISITES.append(site) elif module_name.startswith('ao'): AOSITES.append(site) elif module_name.startswith('dio'): DIOSITES.append(site) except Exception: continue site_types = { "AISITES": AISITES, "AOSITES": AOSITES, "DIOSITES": DIOSITES } return site_types def get_es_indices(self, file_path="default", nchan="default", human_readable=0, return_hex_string=0): """ Returns the location of event samples. get_es_indices will pull data from a system by default (it will also read in a raw datafile) and reads through the data in order to find the location of the event samples. The system will also return the raw event sample data straight from the system. If human_readable is set to 1 then the function will return the hex interpretations of the event sample data. The indices will remain unchanged. If return_hex_string is set to 1 (provided human_readable has ALSO been set) then the function will return one single string containing all of the event samples. Data returned by the function looks like: [ [Event sample indices], [Event sample data] ] """ # a function that return the location of event samples. # returns: # [ [event sample indices], [ [event sample 1], ...[event sample N] ] ] indices = [] event_samples = [] nchan = self.nchan() if nchan == "default" else nchan if file_path == "default": data = self.read_muxed_data() data = np.array(data) if data.dtype == np.int16: # convert shorts back to raw bytes and then to longs. data = np.frombuffer(data.tobytes(), dtype=np.uint32) else: data = np.fromfile(file_path, dtype=np.uint32) if int(self.s0.data32) == 0: nchan = nchan / 2 # "effective" nchan has halved if data is shorts. nchan = int(nchan) for index, sample in enumerate(data[0::nchan]): # if sample == np.int32(0xaa55f154): # aa55 if sample == np.uint32(0xaa55f154): # aa55 indices.append(index) event_samples.append(data[index*nchan:index*nchan + nchan]) if human_readable == 1: # Change decimal to hex. ii = 0 while ii < len(event_samples): if type(event_samples[ii]) == np.ndarray: event_samples[ii] = event_samples[ii].tolist() for indice, channel in enumerate(event_samples[ii]): event_samples[ii][indice] = '0x{0:08X}'.format(channel) ll = int(len(event_samples[ii])/int(len(self.get_aggregator_sites()))) # print(event_samples[ii]) event_samples[ii] = [event_samples[ii][i:i + ll] for i in range(0, len(event_samples[ii]), ll)] ii += 1 if return_hex_string == 1: # Make a single string containing the hex values. es_string = "" for num, sample in enumerate(event_samples): for i in range(len(sample[0])): for x in event_samples[num]: es_string = es_string + str(x[i]) + " " es_string = es_string + "\n" es_string = es_string + "\n" event_samples = es_string return [indices, event_samples] def stream(self, sink): nc = netclient.Netclient(self.uut, AcqPorts.STREAM) finished = False while not sink(nc.sock.recv(4096*32*2)): continue class Acq2106(Acq400): """ Acq2106 specialization of Acq400 Defines features specific to ACQ2106 """ def __init__(self, _uut, monitor=True, has_dsp=False): print("acq400_hapi.Acq2106 %s" % (_uut)) Acq400.__init__(self, _uut, monitor) self.mb_clk_min = 100000 if has_dsp: sn_map = (('cA', AcqSites.SITE_CA), ('cB', AcqSites.SITE_CB), ('s14', AcqSites.SITE_DSP)) else: sn_map = (('cA', AcqSites.SITE_CA), ('cB', AcqSites.SITE_CB)) for ( service_name, site ) in sn_map: try: self.svc[service_name] = netclient.Siteclient(self.uut, AcqPorts.SITE0+site) except socket.error: print("uut {} site {} not populated".format(_uut, site)) self.mod_count += 1 def set_mb_clk(self, hz=4000000, src="zclk", fin=1000000): print("set_mb_clk {} {} {}".format(hz, src, fin)) Acq400.set_mb_clk(self, hz, src, fin) try: self.s0.SYS_CLK_DIST_CLK_SRC = 'Si5326' except AttributeError: print("SYS_CLK_DIST_CLK_SRC, deprecated") self.s0.SYS_CLK_OE_CLK1_ZYNQ = '1' def set_sync_routing_slave(self): Acq400.set_sync_routing_slave(self) self.s0.SYS_CLK_OE_CLK1_ZYNQ = '1' def set_master_trg(self, trg, edge = "rising", enabled=True): if trg == "fp": self.s0.SIG_SRC_TRG_0 = "EXT" if enabled else "HOSTB" elif trg == "int": self.s0.SIG_SRC_TRG_1 = "STRIG" class Acq2106_Mgtdram8(Acq2106): MGT_BLOCK_BYTES = 0x400000 MGT_BLOCK_MULTIPLE = 16 def __init__(self, uut, monitor=True): print("acq400_hapi.Acq2106_MgtDram8 %s" % (uut)) Acq2106.__init__(self, uut, monitor, has_dsp=True) def run_mgt(self, _filter = null_filter): pm = ProcessMonitor(self.uut, _filter) while pm.quit_requested != True: time.sleep(1) def create_mgtdram_pull_client(self): return MgtDramPullClient(self.uut) def run_unit_test(): SERVER_ADDRESS = '10.12.132.22' if len(sys.argv) > 1: SERVER_ADDRESS = sys.argv[1] print("create Acq400 %s" %(SERVER_ADDRESS)) uut = Acq400(SERVER_ADDRESS) print("MODEL %s" %(uut.s0.MODEL)) print("SITELIST %s" %(uut.s0.SITELIST)) print("MODEL %s" %(uut.s1.MODEL)) print("Module count %d" % (uut.mod_count)) print("POST SAMPLES %d" % uut.post_samples()) for sx in sorted(uut.svc): print("SITE:%s MODEL:%s" % (sx, uut.svc[sx].sr("MODEL"))) if __name__ == '__main__': run_unit_test()
python
import click import utils @click.command() @click.option('--test', '-t', default=None) def cli(test): if test is not None: data = test else: data = utils.load('day-5.txt') if __name__ == '__main__': cli()
python
# chat/routing.py from django.conf.urls import url from . import consumers websocket_urlpatterns = [ url(r'^ws/performance$', consumers.PerformanceConsumer), url(r'^ws/collect$', consumers.CollectionConsumer), ]
python
from django.core.files.base import ContentFile from django.core.files.storage import default_storage from django.core.files.uploadedfile import SimpleUploadedFile from s3file.middleware import S3FileMiddleware class TestS3FileMiddleware: def test_get_files_from_storage(self): content = b'test_get_files_from_storage' default_storage.save('test_get_files_from_storage', ContentFile(content)) files = S3FileMiddleware.get_files_from_storage(['test_get_files_from_storage']) file = next(files) assert file.read() == content def test_process_request(self, rf): uploaded_file = SimpleUploadedFile('uploaded_file.txt', b'uploaded') request = rf.post('/', data={'file': uploaded_file}) S3FileMiddleware(lambda x: None)(request) assert request.FILES.getlist('file') assert request.FILES.get('file').read() == b'uploaded' default_storage.save('s3_file.txt', ContentFile(b's3file')) request = rf.post('/', data={'file': 's3_file.txt', 's3file': 'file'}) S3FileMiddleware(lambda x: None)(request) assert request.FILES.getlist('file') assert request.FILES.get('file').read() == b's3file'
python
from __future__ import annotations import uuid from enum import Enum, auto from io import StringIO from threading import Lock from typing import Dict, List, Optional, Sequence, Union import networkx as nx NODE_TYPES = {} class DuplicateKeyError(Exception): pass def register_node(node_subclass): """Decorator to register a node subclass""" NODE_TYPES[node_subclass.__name__] = node_subclass return node_subclass def _render_graph(stream, node: Node, indent: str = "", last=True, first=True): """Draw a textual representation of the node graph""" if first: first_i = "" second_i = "" elif last: first_i = "╰─" second_i = " " else: first_i = "├─" second_i = "│ " stream.write(indent + first_i + str(node) + "\n") indent = indent + second_i for i, child in enumerate(list(node.children)): _render_graph( stream, child, indent=indent, last=(i + 1) == len(node.children), first=False, ) class NodeState(Enum): def _generate_next_value_(name, start, count, last_values): # pylint: disable=E0213 return name UNCONFIRMED = auto() # Client-side: We expect this but haven't gotten confirmation CREATED = auto() # Node exists but not confirmed running RUNNING = auto() # Node is currently in progress FAILED = auto() # Node ran but failed for some reason SUCCESS = auto() # Node ran successfully @register_node class Node: """ Generic object representing a single processing step. Node can have several parents. Args: parents: Either a parent node, or a list of parent nodes node_id: The tree-ID node, if known. If this is duplicate in the context of the tree, an exception will be thrown node_uuid: The UUID for this node. Will be generated if unspecified tree: The DUI tree object this will belong to """ def __init__( self, parents: Union[Sequence[Node], Node] = None, *, node_id: str = None, node_uuid: str = None, ): self.tree: Optional[DUITree] = None # Handle non-list parents if parents is not None: if isinstance(parents, Sequence): self.parents = list(parents) else: self.parents = [parents] else: self.parents = [] self.id = str(node_id) if node_id is not None else None self.uuid = node_uuid or uuid.uuid4().hex self._children: List[Node] = [] self.state = NodeState.CREATED @property def children(self): return tuple(self._children) def to_dict(self): """Convert this node to a plain literal representation""" out = { "type": type(self).__name__, "id": self.id, "uuid": self.uuid, "state": self.state.value, } if self.parents: out["parents"] = [p.id for p in self.parents] return out @classmethod def from_dict(cls, tree: DUITree, data: Dict): """Recreate a node from it's dict literal description""" # Not perfect, as race condition, but checks dev environment # Problem is: This might be a superclass in which case subclass # might want to alter, after creation. At the moment we don't # anticipate loading from dict that often though. assert tree._lock.locked() node_id = data["id"] node_uuid = data["uuid"] # DAG, so we can assume that parents are made before children parents = [tree.nodes[parent_id] for parent_id in data.get("parents", [])] # The constructor recreates all the links node = cls(parents=parents, node_id=node_id, node_uuid=node_uuid) node.state = NodeState(data["STATE"]) tree.attach(node) return node def __str__(self): return f"Node {self.id}" class DUITree: """Object coordinating the DUI DAG node graph""" def __init__(self): self._next_id = 1 self.nodes = {} self._lock = Lock() self._roots = [] def attach(self, node: Node) -> Node: """Attach a Node to this tree. If it has an .id, it will be used, if it doesn't already exist, otherwise it will have one assigned. Returns the node. """ # Validate first before changing anything if node.id in self.nodes: raise DuplicateKeyError(f"Node id {node.id} already exists in tree") if any(x.uuid == node.uuid for x in self.nodes.values()): raise DuplicateKeyError(f"Duplicate UUID: {node.uuid}") for parent in node.parents: if parent.id not in self.nodes: raise KeyError(f"Parent with ID {parent.id} not a member of tree") if self.nodes[parent.id] is not parent: raise ValueError( f"Parent with ID {parent.id} is different to existing object" ) if node in parent.children: raise RuntimeError( "Node already exists in parent children list... bad tree" ) with self._lock: # Check that the UUID doesn't already exist # Generate or use the node ID if node.id is None: node.id = str(self._next_id) self._next_id += 1 node.tree = self self.nodes[node.id] = node # Wire up the parent links for parent in node.parents: parent._children.append(node) # Track roots if not node.parents: self._roots.append(node) return node def to_dict(self): return [node.to_dict() for node_id, node in self.nodes.items()] @classmethod def from_dict(self, data): all_nodes = {} # Determine construction order graph = nx.DiGraph() for node_data in data: node_id = node_data["id"] all_nodes[node_id] = node_data graph.add_node(node_id) for parent in node_data.get("parents", []): graph.add_edge(node_id, parent) assert nx.is_directed_acyclic_graph(graph), "Node graph non-DAG" node_order = list(reversed(list(nx.topological_sort(graph)))) # Now sorted, safe to create tree = DUITree() for node_id in node_order: node_type = all_nodes[node_id].get("type", "Node") assert node_type in NODE_TYPES tree.nodes[node_id] = NODE_TYPES[node_type].from_dict( tree, all_nodes[node_id] ) def render_graph(self): """Generate an Unicode graph showing the tree structure""" # Find the root nodes dest = StringIO() class FakeRoot: def __str__(self): return "" root = FakeRoot() root.children = [x for x in self.nodes.values() if not x.parents] # for root in roots: _render_graph(dest, root) return dest.getvalue()
python
from . import CommonViewsTestCase from .base import BaseAuthInfoViewsTestCase # Create your tests here. class AuthInfoViewsTestCase(CommonViewsTestCase): registered_user = { 'username': 'username_000', 'password': 'password_000', } base_action_test_case = BaseAuthInfoViewsTestCase # ====================================================================== @classmethod def setUpTestData(cls): super().setUpTestData() def setUp(self): self.create_user(user=self.registered_user) super().setUp() def tearDown(self): super().tearDown() # ====================================================================== # success # ====================================================================== # ----- GET ----- def test_get_authenticated_success(self): success_fail = 'success' data_expected = { 'is_authenticated': True } action = self.base_action_test_case(user=self.registered_user) client, client_login = action.client_login(client=None, user=self.registered_user) client, response = action.get(client=client) action.data_expected['get'][success_fail] = data_expected action.base_test_get(response=response, success_fail=success_fail, assert_message='views') def test_get_not_authenticated_success(self): success_fail = 'success' data_expected = { 'is_authenticated': False } action = self.base_action_test_case(user=None) client = None client, response = action.get(client=client) action.data_expected['get'][success_fail] = data_expected action.base_test_get(response=response, success_fail=success_fail, assert_message='views') # ====================================================================== # fail # ====================================================================== # ----- GET ----- # ----- POST ----- def test_post_fail(self): method = 'post' self.base_test_405_fail(method=method) # ----- PUT ----- def test_put_fail(self): method = 'put' self.base_test_405_fail(method=method) # ----- DELETE ----- def test_delete_fail(self): method = 'delete' self.base_test_405_fail(method=method) # ======================================================================
python
from scrapy.exceptions import IgnoreRequest class TranslationResult(IgnoreRequest): """A translation response was received""" def __init__(self, response, *args, **kwargs): self.response = response super(TranslationResult, self).__init__(*args, **kwargs) class TranslationError(Exception): def __init__(self): pass def error(self): return "Translation Error" def warn(self): return self.error() def details(self): return self.error() class TranslationErrorGeneral(TranslationError): def __init__(self, message): self.message = message super(TranslationErrorGeneral, self).__init__() def warn(self): return self.message class TranslationErrorDueToInvalidResponseCode(TranslationError): def __init__(self, response): self.response = response super(TranslationErrorDueToInvalidResponseCode, self).__init__() def warn(self): return "translation failed due to response code = %d"%self.response.status def details(self): return "translation failed due to response code = %d, request url = '%s'"%( self.response.status, self.response.request.url )
python
import zutils class zbrick: def __init__(self): self.c = ' ' self.fcolor = zutils.CL_FG self.bcolor = zutils.CL_BG self.attr = 0 def str(self): return str(c) def copy_from(self, other): self.c = other.c self.fcolor = other.fcolor self.bcolor = other.bcolor self.attr = other.attr def equals(self, other): return self.c == other.c and self.fcolor == other.fcolor and self.bcolor == other.bcolor and self.attr == other.attr def __eq__(self, other): return self.equals(other) class zwall: def __init__(self, width, height): self._width = width self._height = height self._wall = [[0]*width for i in range(height)] self._offset = [0,0] self.clear() def get_wall(self): return self._wall def get_width(self): return self._width def get_height(self): return self._height def write_text(self, x, y, text, fg = -1, bg = -1, attr = 0): x += self._offset[0] y += self._offset[1] if fg == -1: fg = zutils.CL_FG if bg == -1: bg = zutils.CL_BG if(y < 0 or y >= self._height): return for _x in range( min(len(text), self._width - x) ): self._wall[y][x+_x].c = text[_x] self._wall[y][x+_x].fcolor = fg self._wall[y][x+_x].bcolor = bg self._wall[y][x+_x].attr = attr def scroll_up(self): old = self._wall.pop(0) for x in range(self._width): old[x] = zbrick() self._wall += (old) def clear(self): for y in range(self._height): for x in range(self._width): self._wall[y][x] = zbrick() def copy_from(self, otherwall): for y in range(self._height): for x in range(self._width): self._wall[y][x].copy_from(otherwall._wall[y][x]) def __str__(self): res = "" for y in range(self._height): for x in range(self._width): res += self._wall[y][x].c res += "\n" return res
python
# -*- coding: utf-8 -*- import base64 import os import tempfile from unittest import TestCase from test_apps import htauth_app HTPASSWD = 'test_user:$apr1$/W2gsTdJ$J5A3/jiOC/hph1Gcb.0yN/' class HTAuthAppTestCase(TestCase): def setUp(self): _, self.htpasswd_path = tempfile.mkstemp() f = open(self.htpasswd_path, 'w') f.write(HTPASSWD) f.close() self.actual_app = htauth_app.create_app( HTAUTH_HTPASSWD_PATH=self.htpasswd_path, HTAUTH_REALM='Test Realm' ) self.app = self.actual_app.test_client() def tearDown(self): os.unlink(self.htpasswd_path) def test_no_auth(self): rsp = self.app.get('/') assert rsp.status_code == 200 assert rsp.data == 'Hello, World!' def test_auth_not_ok(self): rsp = self.app.get('/secret') assert rsp.status_code == 401 assert rsp.data == 'Unauthorized' assert rsp.headers['WWW-Authenticate'] == 'Basic realm="Test Realm"' headers = { 'Authorization': 'Basic %s' % base64.b64encode('spam:eggs') } rsp = self.app.get('/secret', headers=headers) assert rsp.status_code == 401 assert rsp.data == 'Unauthorized' headers = { 'Authorization': 'Digest meh' } try: rsp = self.app.get('/secret', headers=headers) except RuntimeError: pass def test_auth_ok(self): headers = { 'Authorization': 'Basic %s' % base64.b64encode('test_user:test_password') } rsp = self.app.get('/secret', headers=headers) assert rsp.status_code == 200 assert rsp.data == 'Hello, test_user!'
python
import os from django.conf.urls import url from django.utils._os import upath here = os.path.dirname(upath(__file__)) urlpatterns = [ url(r'^custom_templates/(?P<path>.*)$', 'django.views.static.serve', { 'document_root': os.path.join(here, 'custom_templates')}), ]
python
import gym import numpy as np import cv2 from collections import deque class Environment(object): def __init__(self, env_name, resized_width, resized_height, agent_history_length, replay_size, alpha, action_repeat=4): self._env = gym.make(env_name) self._width = resized_width self._height = resized_height self._history_length = agent_history_length self._replay_size = replay_size self._state_buffer = deque(maxlen=replay_size) self._default_priority = 0 self._alpha = alpha self._action_repeat = action_repeat @property def action_size(self): return self._env.action_space.n def new_game(self): frame = self._process_frame(self._env.reset()) self._frames = [frame] * self._history_length def step(self, action): reward = 0 for _ in range(self._action_repeat): frame, reward_action, terminal, info = self._env.step(action) reward += np.clip(reward_action, -1, 1) if terminal: break frame = self._process_frame(frame) prev_frames = self._frames frames = prev_frames[1:] + [frame] self._frames = frames if self._replay_size > 0: self._state_buffer.append({ 'frames': frames, 'prev_frames': prev_frames, 'action': action, 'reward': reward, 'terminal': terminal, 'priority': self._default_priority}) return list(frames), reward, terminal, info def render(self): self._env.render() def _process_frame(self, frame): return cv2.resize(cv2.cvtColor( frame, cv2.COLOR_RGB2GRAY) / 255., (self._width, self._height)) def _get_sample_probability(self): priority = np.zeros(len(self._state_buffer)) i = 0 for state in self._state_buffer: priority[i] = state['priority'] if self._default_priority < priority[i]: self._default_priority = priority[i] i += 1 probability = np.power(priority + 1e-7, self._alpha) return probability / np.sum(probability) def sample(self, batch_size): if self._replay_size < 0: raise Exception('replay_size = 0!') buffer_size = len(self._state_buffer) if buffer_size < batch_size: return [], [], [], [], [], [] else: prev_frames_batch = [] current_frames_batch = [] action_batch = [] reward_batch = [] terminal_batch = [] if self._alpha == 0: state_batch = np.random.choice( self._state_buffer, batch_size) else: state_batch = np.random.choice( self._state_buffer, batch_size, p=self._get_sample_probability()) for state in state_batch: prev_frames_batch.append(state['prev_frames']) current_frames_batch.append(state['frames']) action_batch.append(state['action']) reward_batch.append(state['reward']) terminal_batch.append(state['terminal']) return prev_frames_batch, action_batch, reward_batch,\ current_frames_batch, terminal_batch, state_batch def get_frames(self): return list(self._frames)
python
from collections import defaultdict from copy import deepcopy from geopy.geocoders import Nominatim import Util import twitter import json import time import string import stop_words geolocator = Nominatim() STOP_WORDS = stop_words.get_stop_words('english') api = twitter.Api(consumer_key='b170h2arKC4VoITriN5jIjFRN', consumer_secret='z2npapLunYynvp9E783KsTiTMUR4CE6jgGIFqXOdzmXNkYI7g9', access_token_key='3842613073-L7vq82QRYRGCbO1kzN9bYfjfbbV7kOpWWLYnBGG', access_token_secret='FU6AJWG4iDHfzQWhjKB1r3SIwoyzTcgFe0LjyNfq8r6aR') global cached_query_results = {} global cached_user_results = {} def search_tweets(query, max_searches=5, override_cache=False): """Searches for tweets that match query. Args: query: The search query string. Can be a phrase or hashtag. See https://dev.twitter.com/rest/reference/get/search/tweets max_searches: The maximum number of API searches that will be executed for the given query. Default value is 5 searches. 100 tweets can be obtained per API search, so by default a maximum of 500 tweets will be returned. override_cache: Whether to execute a search even if there is already a cached result for the query. Defaults to False. Returns: A list of tweet objects matching the query with most recent tweets first. Raises: UserWarning: If override_cache is set to False and result for input query has already been cached. """ if query in cached_query_results and override_cache is not False: raise UserWarning('input query {0} is already in ' 'cached_query_results'.format(query)) remaining_timeout = api.GetSleepTime('/search/tweets') if remaining_timeout != 0: print ('searchTweets() must wait {0} seconds in order to not exceed ' 'the Twitter API rate limit.'.format(remaining_timeout + 1)) time.sleep(remaining_timeout + 1) result = [] search_result = api.GetSearch(term=query, count=100) # could also add lang='en' result.extend(search_result) oldest_tweet_id = min([t.GetId() for t in search_result]) num_searches = 1 while len(search_result) == 100 and num_searches < max_searches: search_result = _search_tweets_aux(query, oldest_tweet_id) oldest_tweet_id = min([t.GetId() for t in search_result]) result.extend(search_result) num_searches += 1 global cached_query_results cached_query_results[query] = result return result def _search_tweets_aux(query, max_tweet_id): """Auxiliary helper function for search_tweets.""" remaining_timeout = api.GetSleepTime('/search/tweets') if remaining_timeout != 0: print ('searchTweets() must wait {0} seconds in order to not exceed ' 'the Twitter API rate limit.'.format(remaining_timeout + 1)) time.sleep(remaining_timeout + 1) search_result = api.GetSearch(term=query, count=100, max_id=max_tweet_id - 1) return search_result def get_coordinate_list(tweets): """Gets list of (longitude, latitude) tuples for tweets in list. Args: tweets: List of tweet objects to extract geo coordinates from. Will ignore tweets in list for which geo coordinates cannot be extracted. Returns: List of (longitude, latitude) tuples for tweets in list. """ coord_list = [] for tweet in tweets: coords = get_coordinates(tweet) if coords: coord_list.append(coords) return coord_list def get_coordinates(tweet): """Gets longitude and latitude of tweet. Args: tweet: The tweet object to extract geo coordinates from. Returns: Tuple of (longitude, latitude) for the input tweet. Returns False if unable to extract geo coordinates for tweet. """ # try to get tweet geo coordinates directly if available coordinates = tweet.GetCoordinates() if coordinates: return coordinates # otherwise parase geo coordinates form user location if available location = tweet.user.location if location: coordinates = geolocator.geocode(location) if coordinates: return coordinates.longitude, coordinates.latitude # not able to extract geo coordinates, so return False return False def no_duplicate_tweets(tweets): """Returns True iff tweets in input list are all unique.""" ids = set() for tweet in tweets: tweet_id = tweet.GetId() if tweet_id in ids: return False ids.add(tweet_id) return True def tweets_to_text_strings(tweets): """Converts list of tweets to list of tweet text strings.""" return [tweet.GetText() for tweet in tweets] def tweets_to_word_counter(tweets, normalize=False, lowercase=True): """Converts list of tweets to dict of word counts. Args: tweets: List of tweet objects to process. normalize: Whether to return frequencies instead of counts. Default value is False (return counts). lowercase: Whether to convert all words to lowercase. Default value if True. Returns: util.Counter object containing counts of words in the tweets. Words are keys, counts are values. If normalize is set to True, then function will return word frequencies as values. """ word_counter = util.Counter() for tweet in tweets: word_counter += string_to_nonstopword_counter(tweet.GetText()) if normalize: word_counter.normalize() return word_counter def string_to_nonstopword_list(text): """Returns list of non-stopwords in string. Args: text: The string to process. Returns: List of non-stopwords in text string. Punctuation, whitespace, and hyperlinks are removed. Hashtag and @USERNAME punctionation is not removed. """ # split strings into words and remove whitespace: words = text.split() # remove non-hashtag and non-username punctionation: chars_to_remove = list(deepcopy(string.punctuation)) chars_to_remove.remove('#') chars_to_remove.remove('@') chars_to_remove = ''.join(chars_to_remove) words = [word.strip(chars_to_remove) for word in words] # remove empty strings: words = [word for word in words if word] # remove stopwords: words = filter(lambda w: w.lower() not in STOP_WORDS, words) # remove hyperlinks: words = filter(lambda w: not (len(w) > 7 and w[0:9] == 'https://'), words) # remove non ascii characters: to_return = [] for word in words: valid = True for char in word: if char not in string.printable: valid = False break if valid: to_return.append(word) return to_return def string_to_nonstopword_counter(text, lowercase=True): """Converts string to util.Counter of non-stopwords in text string. Args: text: The string to process. lowercase: Whether the convert the words in the string to lowercase. Returns: util.Counter object containing counts of non-stopwords in string. Punctuation, whitespace, and hyperlinks are removed. Hashtag and @USERNAME punctionation is not removed. """ words = string_to_nonstopword_list(text) word_counter = util.Counter() for word in words: if lowercase: word = word.lower() word_counter[word] += 1 return word_counter def get_user_tweets(username, max_searches=5, override_cache=False): """Searches for tweets that match query. Args: username: The username of the Twitter account that tweets will be downloaded for. max_searches: The maximum number of API searches that will be executed for the given user. Default value is 5 searches. 200 tweets can be obtained per API search, so by default a maximum of 1000 tweets will be returned. override_cache: Whether to execute a search even if there is already a cached result for the specifed Twitter user. Defaults to False. Returns: A list of tweet objects corresponding to the specified users's public tweets, with their most recent tweets first. """ if username in cached_user_results and override_cache is not False: raise UserWarning('input username {0} is already in ' 'cached_user_results'.format(query)) remaining_timeout = api.GetSleepTime('/search/tweets') # might need to change this if remaining_timeout != 0: print ('searchTweets() must wait {0} seconds in order to not exceed ' 'the Twitter API rate limit.'.format(remaining_timeout + 1)) time.sleep(remaining_timeout + 1) result = [] search_result = api.GetUserTimeline(screen_name=username, count=200) # could also add lang='en' result.extend(search_result) oldest_tweet_id = min([t.GetId() for t in search_result]) num_searches = 1 while len(search_result) == 200 and num_searches < max_searches: search_result = _get_user_tweets_aux(username, oldest_tweet_id) if not search_result: break oldest_tweet_id = min([t.GetId() for t in search_result]) result.extend(search_result) num_searches += 1 global cached_user_results cached_user_results[username] = result return result def _get_user_tweets_aux(username, max_tweet_id): """Auxiliary helper function for search_tweets.""" remaining_timeout = api.GetSleepTime('/search/tweets') if remaining_timeout != 0: print ('searchTweets() must wait {0} seconds in order to not exceed ' 'the Twitter API rate limit.'.format(remaining_timeout + 1)) time.sleep(remaining_timeout + 1) search_result = api.GetUserTimeline(screen_name=username, count=200, max_id=max_tweet_id - 1) return search_result def split_words_hashtags_usermentions(word_counter): """Splits all words into words, hashtags, and usermentions counters.""" pure_word_counter = util.Counter() hashtag_counter = util.Counter() usermentions_counter = util.Counter() for word in word_counter: if word[0] == '#': hashtag_counter[word] = word_counter[word] elif word[0] == '@': usermentions_counter[word] = word_counter[word] else: pure_word_counter[word] = word_counter[word] return pure_word_counter, hashtag_counter, usermentions_counter
python
import pytest from pji.utils import duplicates @pytest.mark.unittest class TestUtilsCollection: def test_duplicates(self): assert duplicates([1, 2, 3]) == set() assert duplicates({1, 2, 3}) == set() assert duplicates((1, 2, 3)) == set() assert duplicates([1, 2, 3, 2, 3]) == {2, 3} assert duplicates((1, 2, 3, 2, 3)) == {2, 3}
python
# Copyright 2016 Andy Chu. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 """ cmd_parse.py - Parse high level shell commands. """ from __future__ import print_function from _devbuild.gen import grammar_nt from _devbuild.gen.id_kind_asdl import Id, Id_t, Kind from _devbuild.gen.types_asdl import lex_mode_e from _devbuild.gen.syntax_asdl import ( condition, condition_t, command, command_t, command__Simple, command__DoGroup, command__ForExpr, command__ForEach, command__WhileUntil, command__Case, command__If, command__ShFunction, command__Subshell, command__DBracket, command__DParen, command__CommandList, command__Proc, BraceGroup, case_arm, sh_lhs_expr, sh_lhs_expr_t, redir, redir_param, redir_param__HereDoc, redir_loc, redir_loc_t, word, word_e, word_t, compound_word, Token, word_part_e, word_part_t, assign_pair, env_pair, assign_op_e, source, parse_result, parse_result_t, speck, name_type, proc_sig_e, proc_sig__Closed, ) from _devbuild.gen import syntax_asdl # token, etc. from asdl import runtime from core import alloc from core import error from core import ui from core.pyerror import log, p_die from frontend import consts from frontend import match from frontend import reader from osh import braces from osh import bool_parse from osh import word_ from typing import Optional, List, Dict, Any, Tuple, cast, TYPE_CHECKING if TYPE_CHECKING: from core.alloc import Arena from frontend.lexer import Lexer from frontend.parse_lib import ParseContext, AliasesInFlight from frontend.reader import _Reader from osh.word_parse import WordParser def _KeywordSpid(w): # type: (word_t) -> int """ TODO: Can be we optimize this? Assume that 'while', 'case', etc. are a specific type of compound_word. I tested turning LeftMostSpanForWord in a no-op and couldn't observe the difference on a ~500 ms parse of testdata/osh-runtime/abuild. So maybe this doesn't make sense. """ return word_.LeftMostSpanForWord(w) def _KeywordToken(UP_w): # type: (word_t) -> Token """Given a word that IS A keyword, return the single token at the start. In C++, this casts without checking, so BE CAREFUL to call it in the right context. """ assert UP_w.tag_() == word_e.Compound, UP_w w = cast(compound_word, UP_w) part = w.parts[0] assert part.tag_() == word_part_e.Literal, part return cast(Token, part) def _ReadHereLines(line_reader, # type: _Reader h, # type: redir delimiter, # type: str ): # type: (...) -> Tuple[List[Tuple[int, str, int]], Tuple[int, str, int]] # NOTE: We read all lines at once, instead of parsing line-by-line, # because of cases like this: # cat <<EOF # 1 $(echo 2 # echo 3) 4 # EOF here_lines = [] # type: List[Tuple[int, str, int]] last_line = None # type: Tuple[int, str, int] strip_leading_tabs = (h.op.id == Id.Redir_DLessDash) while True: line_id, line, unused_offset = line_reader.GetLine() if line is None: # EOF # An unterminated here doc is just a warning in bash. We make it # fatal because we want to be strict, and because it causes problems # reporting other errors. # Attribute it to the << in <<EOF for now. p_die("Couldn't find terminator for here doc that starts here", token=h.op) assert len(line) != 0 # None should be the empty line # If op is <<-, strip off ALL leading tabs -- not spaces, and not just # the first tab. start_offset = 0 if strip_leading_tabs: n = len(line) i = 0 # used after loop exit while i < n: if line[i] != '\t': break i += 1 start_offset = i if line[start_offset:].rstrip() == delimiter: last_line = (line_id, line, start_offset) break here_lines.append((line_id, line, start_offset)) return here_lines, last_line def _MakeLiteralHereLines(here_lines, # type: List[Tuple[int, str, int]] arena, # type: Arena ): # type: (...) -> List[word_part_t] # less precise because List is invariant type """Create a line_span and a token for each line.""" tokens = [] # type: List[Token] for line_id, line, start_offset in here_lines: span_id = arena.AddLineSpan(line_id, start_offset, len(line)) t = Token(Id.Lit_Chars, span_id, line[start_offset:]) tokens.append(t) parts = [cast(word_part_t, t) for t in tokens] return parts def _ParseHereDocBody(parse_ctx, r, line_reader, arena): # type: (ParseContext, redir, _Reader, Arena) -> None """Fill in attributes of a pending here doc node.""" h = cast(redir_param__HereDoc, r.arg) # "If any character in word is quoted, the delimiter shall be formed by # performing quote removal on word, and the here-document lines shall not # be expanded. Otherwise, the delimiter shall be the word itself." # NOTE: \EOF counts, or even E\OF ok, delimiter, delim_quoted = word_.StaticEval(h.here_begin) if not ok: p_die('Invalid here doc delimiter', word=h.here_begin) here_lines, last_line = _ReadHereLines(line_reader, r, delimiter) if delim_quoted: # << 'EOF' # Literal for each line. h.stdin_parts = _MakeLiteralHereLines(here_lines, arena) else: line_reader = reader.VirtualLineReader(here_lines, arena) w_parser = parse_ctx.MakeWordParserForHereDoc(line_reader) w_parser.ReadHereDocBody(h.stdin_parts) # fills this in end_line_id, end_line, end_pos = last_line # Create a span with the end terminator. Maintains the invariant that # the spans "add up". h.here_end_span_id = arena.AddLineSpan(end_line_id, end_pos, len(end_line)) def _MakeAssignPair(parse_ctx, preparsed, arena): # type: (ParseContext, PreParsedItem, Arena) -> assign_pair """Create an assign_pair from a 4-tuples from DetectShAssignment.""" left_token, close_token, part_offset, w = preparsed if left_token.id == Id.Lit_VarLike: # s=1 if left_token.val[-2] == '+': var_name = left_token.val[:-2] op = assign_op_e.PlusEqual else: var_name = left_token.val[:-1] op = assign_op_e.Equal tmp = sh_lhs_expr.Name(var_name) tmp.spids.append(left_token.span_id) lhs = cast(sh_lhs_expr_t, tmp) elif left_token.id == Id.Lit_ArrayLhsOpen and parse_ctx.one_pass_parse: var_name = left_token.val[:-1] if close_token.val[-2] == '+': op = assign_op_e.PlusEqual else: op = assign_op_e.Equal left_spid = left_token.span_id + 1 right_spid = close_token.span_id left_span = parse_ctx.arena.GetLineSpan(left_spid) right_span = parse_ctx.arena.GetLineSpan(right_spid) assert left_span.line_id == right_span.line_id, \ '%s and %s not on same line' % (left_span, right_span) line = parse_ctx.arena.GetLine(left_span.line_id) index_str = line[left_span.col : right_span.col] lhs = sh_lhs_expr.UnparsedIndex(var_name, index_str) elif left_token.id == Id.Lit_ArrayLhsOpen: # a[x++]=1 var_name = left_token.val[:-1] if close_token.val[-2] == '+': op = assign_op_e.PlusEqual else: op = assign_op_e.Equal spid1 = left_token.span_id spid2 = close_token.span_id span1 = arena.GetLineSpan(spid1) span2 = arena.GetLineSpan(spid2) if span1.line_id == span2.line_id: line = arena.GetLine(span1.line_id) # extract what's between brackets code_str = line[span1.col + span1.length : span2.col] else: raise NotImplementedError('%d != %d' % (span1.line_id, span2.line_id)) a_parser = parse_ctx.MakeArithParser(code_str) # a[i+1]= is a place src = source.Reparsed('array place', left_token.span_id, close_token.span_id) with alloc.ctx_Location(arena, src): index_node = a_parser.Parse() # may raise error.Parse tmp3 = sh_lhs_expr.IndexedName(var_name, index_node) tmp3.spids.append(left_token.span_id) lhs = cast(sh_lhs_expr_t, tmp3) else: raise AssertionError() # TODO: Should we also create a rhs_expr.ArrayLiteral here? n = len(w.parts) if part_offset == n: rhs = word.Empty() # type: word_t else: # tmp2 is for intersection of C++/MyPy type systems tmp2 = compound_word(w.parts[part_offset:]) word_.TildeDetectAssign(tmp2) rhs = tmp2 pair = syntax_asdl.assign_pair(lhs, op, rhs, [left_token.span_id]) return pair def _AppendMoreEnv(preparsed_list, more_env): # type: (PreParsedList, List[env_pair]) -> None """Helper to modify a SimpleCommand node. Args: preparsed: a list of 4-tuples from DetectShAssignment more_env: a list to append env_pairs to """ for left_token, _, part_offset, w in preparsed_list: if left_token.id != Id.Lit_VarLike: # can't be a[x]=1 p_die("Environment binding shouldn't look like an array assignment", token=left_token) if left_token.val[-2] == '+': p_die('Expected = in environment binding, got +=', token=left_token) var_name = left_token.val[:-1] n = len(w.parts) if part_offset == n: val = word.Empty() # type: word_t else: val = compound_word(w.parts[part_offset:]) pair = syntax_asdl.env_pair(var_name, val, [left_token.span_id]) more_env.append(pair) if TYPE_CHECKING: PreParsedItem = Tuple[Token, Optional[Token], int, compound_word] PreParsedList = List[PreParsedItem] def _SplitSimpleCommandPrefix(words): # type: (List[compound_word]) -> Tuple[PreParsedList, List[compound_word]] """Second pass of SimpleCommand parsing: look for assignment words.""" preparsed_list = [] # type: PreParsedList suffix_words = [] # type: List[compound_word] done_prefix = False for w in words: if done_prefix: suffix_words.append(w) continue left_token, close_token, part_offset = word_.DetectShAssignment(w) if left_token: preparsed_list.append((left_token, close_token, part_offset, w)) else: done_prefix = True suffix_words.append(w) return preparsed_list, suffix_words def _MakeSimpleCommand(preparsed_list, suffix_words, redirects, block): # type: (PreParsedList, List[compound_word], List[redir], Optional[BraceGroup]) -> command__Simple """Create an command.Simple node.""" # FOO=(1 2 3) ls is not allowed. for _, _, _, w in preparsed_list: if word_.HasArrayPart(w): p_die("Environment bindings can't contain array literals", word=w) # NOTE: It would be possible to add this check back. But it already happens # at runtime in EvalWordSequence2. # echo FOO=(1 2 3) is not allowed (but we should NOT fail on echo FOO[x]=1). if 0: for w in suffix_words: if word_.HasArrayPart(w): p_die("Commands can't contain array literals", word=w) # NOTE: We only do brace DETECTION here, not brace EXPANSION. Therefore we # can't implement bash's behavior of having say {~bob,~jane}/src work, # because we only have a BracedTree. # This is documented in spec/brace-expansion. # NOTE: Technically we could do expansion outside of 'oshc translate', but it # doesn't seem worth it. words2 = braces.BraceDetectAll(suffix_words) words3 = word_.TildeDetectAll(words2) more_env = [] # type: List[env_pair] _AppendMoreEnv(preparsed_list, more_env) # do_fork by default node = command.Simple(words3, redirects, more_env, block, True) return node class VarChecker(object): """Statically check for proc and variable usage errors.""" def __init__(self): # type: () -> None """ Args: oil_proc: Whether to disallow nested proc/function declarations """ # self.tokens for location info: 'proc' or another token self.tokens = [] # type: List[Token] self.names = [] # type: List[Dict[str, Id_t]] def Push(self, blame_tok): # type: (Token) -> None """ Bash allows this, but it's confusing because it's the same as two functions at the top level. f() { g() { echo 'top level function defined in another one' } } Oil disallows nested procs. """ if len(self.tokens) != 0: if self.tokens[0].id == Id.KW_Proc or blame_tok.id == Id.KW_Proc: p_die("procs and shell functions can't be nested", token=blame_tok) self.tokens.append(blame_tok) entry = {} # type: Dict[str, Id_t] self.names.append(entry) def Pop(self): # type: () -> None self.names.pop() self.tokens.pop() def Check(self, keyword_id, name_tok): # type: (Id_t, Token) -> None """Check for errors in declaration and mutation errors. var x, const x: x already declared setvar x: x is not declared x is constant setglobal x: No errors are possible; we would need all these many conditions to statically know the names: - no 'source' - shopt -u copy_env. - AND use lib has to be static setref x: Should only mutate out params Also should p(:out) declare 'out' as well as '__out'? Then you can't have local variables with the same name. """ # Don't check the global level! Semantics are different here! if len(self.names) == 0: return top = self.names[-1] name = name_tok.val if keyword_id in (Id.KW_Const, Id.KW_Var): if name in top: p_die('%r was already declared', name, token=name_tok) else: top[name] = keyword_id if keyword_id == Id.KW_SetVar: if name not in top: p_die("%r hasn't been declared", name, token=name_tok) if name in top and top[name] == Id.KW_Const: p_die("Can't modify constant %r", name, token=name_tok) # TODO: setref should only mutate out params. class ctx_VarChecker(object): def __init__(self, var_checker, blame_tok): # type: (VarChecker, Token) -> None var_checker.Push(blame_tok) self.var_checker = var_checker def __enter__(self): # type: () -> None pass def __exit__(self, type, value, traceback): # type: (Any, Any, Any) -> None self.var_checker.Pop() SECONDARY_KEYWORDS = [ Id.KW_Do, Id.KW_Done, Id.KW_Then, Id.KW_Fi, Id.KW_Elif, Id.KW_Else, Id.KW_Esac ] class CommandParser(object): """ Args: word_parse: to get a stream of words lexer: for lookahead in function def, PushHint of () line_reader: for here doc """ def __init__(self, parse_ctx, w_parser, lexer, line_reader): # type: (ParseContext, WordParser, Lexer, _Reader) -> None self.parse_ctx = parse_ctx self.aliases = parse_ctx.aliases # aliases to expand at parse time self.w_parser = w_parser # type: WordParser # for normal parsing self.lexer = lexer # for pushing hints, lookahead to ( self.line_reader = line_reader # for here docs self.arena = parse_ctx.arena # for adding here doc and alias spans self.eof_id = Id.Eof_Real self.aliases_in_flight = [] # type: AliasesInFlight # A hacky boolean to remove 'if cd / {' ambiguity. self.allow_block = True self.parse_opts = parse_ctx.parse_opts # Note: VarChecker is instantiated with each CommandParser, which means # that two 'proc foo' -- inside a command sub and outside -- don't # conflict, because they use different CommandParser instances. I think # this OK but you can imagine different behaviors. self.var_checker = VarChecker() self.Reset() # These two Init_() functions simulate "keywords args" in C++. def Init_EofId(self, eof_id): # type: (Id_t) -> None self.eof_id = eof_id def Init_AliasesInFlight(self, aliases_in_flight): # type: (AliasesInFlight) -> None self.aliases_in_flight = aliases_in_flight def Reset(self): # type: () -> None """Reset our own internal state. Called by the interactive loop. """ # Cursor state set by _Peek() self.next_lex_mode = lex_mode_e.ShCommand self.cur_word = None # type: word_t # current word self.c_kind = Kind.Undefined self.c_id = Id.Undefined_Tok self.pending_here_docs = [] # type: List[redir] # should have HereLiteral arg def ResetInputObjects(self): # type: () -> None """Reset the internal state of our inputs. Called by the interactive loop. """ self.w_parser.Reset() self.lexer.ResetInputObjects() self.line_reader.Reset() def _Next(self): # type: () -> None """Called when we don't need to look at the current token anymore. A subsequent call to _Peek() will read the next token and store its Id and Kind. """ self.next_lex_mode = lex_mode_e.ShCommand def _Peek(self): # type: () -> None """Helper method. Returns True for success and False on error. Error examples: bad command sub word, or unterminated quoted string, etc. """ if self.next_lex_mode != lex_mode_e.Undefined: w = self.w_parser.ReadWord(self.next_lex_mode) # Here docs only happen in command mode, so other kinds of newlines don't # count. if w.tag_() == word_e.Token: tok = cast(Token, w) if tok.id == Id.Op_Newline: for h in self.pending_here_docs: _ParseHereDocBody(self.parse_ctx, h, self.line_reader, self.arena) del self.pending_here_docs[:] # No .clear() until Python 3.3. self.cur_word = w self.c_kind = word_.CommandKind(self.cur_word) self.c_id = word_.CommandId(self.cur_word) self.next_lex_mode = lex_mode_e.Undefined def _Eat(self, c_id): # type: (Id_t) -> None actual_id = word_.CommandId(self.cur_word) msg = 'Expected word type %s, got %s' % ( ui.PrettyId(c_id), ui.PrettyId(actual_id) ) self._Eat2(c_id, msg) def _Eat2(self, c_id, msg): # type: (Id_t, str) -> None """Consume a word of a type. If it doesn't match, return False. Args: c_id: the Id we expected msg: improved error message """ self._Peek() # TODO: Printing something like KW_Do is not friendly. We can map # backwards using the _KEYWORDS list in frontend/lexer_def.py. if self.c_id != c_id: p_die(msg, word=self.cur_word) self._Next() def _NewlineOk(self): # type: () -> None """Check for optional newline and consume it.""" self._Peek() if self.c_id == Id.Op_Newline: self._Next() self._Peek() def _AtSecondaryKeyword(self): # type: () -> bool if self.c_id in SECONDARY_KEYWORDS: return True return False def ParseRedirect(self): # type: () -> redir self._Peek() assert self.c_kind == Kind.Redir, self.cur_word op_tok = cast(Token, self.cur_word) # for MyPy op_val = op_tok.val if op_val[0] == '{': pos = op_val.find('}') assert pos != -1 # lexer ensures thsi loc = redir_loc.VarName(op_val[1:pos]) # type: redir_loc_t elif op_val[0].isdigit(): pos = 1 if op_val[1].isdigit(): pos = 2 loc = redir_loc.Fd(int(op_val[:pos])) else: loc = redir_loc.Fd(consts.RedirDefaultFd(op_tok.id)) self._Next() self._Peek() # Here doc if op_tok.id in (Id.Redir_DLess, Id.Redir_DLessDash): arg = redir_param.HereDoc() arg.here_begin = self.cur_word r = redir(op_tok, loc, arg) self.pending_here_docs.append(r) # will be filled on next newline. self._Next() return r # Other redirect if self.c_kind != Kind.Word: p_die('Invalid token after redirect operator', word=self.cur_word) arg_word = self.cur_word tilde = word_.TildeDetect(arg_word) if tilde: arg_word = tilde self._Next() # We should never get Empty, Token, etc. assert arg_word.tag_() == word_e.Compound, arg_word return redir(op_tok, loc, cast(compound_word, arg_word)) def _ParseRedirectList(self): # type: () -> List[redir] """Try parsing any redirects at the cursor. This is used for blocks only, not commands. Return None on error. """ redirects = [] # type: List[redir] while True: self._Peek() # This prediction needs to ONLY accept redirect operators. Should we # make them a separate TokeNkind? if self.c_kind != Kind.Redir: break node = self.ParseRedirect() redirects.append(node) self._Next() return redirects def _ScanSimpleCommand(self): # type: () -> Tuple[List[redir], List[compound_word], Optional[BraceGroup]] """First pass: Split into redirects and words.""" redirects = [] # type: List[redir] words = [] # type: List[compound_word] block = None # type: Optional[BraceGroup] while True: self._Peek() if self.c_kind == Kind.Redir: node = self.ParseRedirect() redirects.append(node) elif self.c_kind == Kind.Word: if self.parse_opts.parse_brace(): # Treat { and } more like operators if self.c_id == Id.Lit_LBrace: if self.allow_block: # Disabled for if/while condition, etc. block = self.ParseBraceGroup() if 0: print('--') block.PrettyPrint() print('\n--') break elif self.c_id == Id.Lit_RBrace: # Another thing: { echo hi } # We're DONE!!! break w = cast(compound_word, self.cur_word) # Kind.Word ensures this words.append(w) elif self.parse_opts.parse_amp() and self.c_id == Id.Op_Amp: # TODO: # myprog &2 > &1 should be parsed p_die('TODO: Parse Redirect', word=self.cur_word) else: break self._Next() return redirects, words, block def _MaybeExpandAliases(self, words): # type: (List[compound_word]) -> Optional[command_t] """Try to expand aliases. Args: words: A list of Compound Returns: A new LST node, or None. Our implementation of alias has two design choices: - Where to insert it in parsing. We do it at the end of ParseSimpleCommand. - What grammar rule to parse the expanded alias buffer with. In our case it's ParseCommand(). This doesn't quite match what other shells do, but I can't figure out a better places. Most test cases pass, except for ones like: alias LBRACE='{' LBRACE echo one; echo two; } alias MULTILINE='echo 1 echo 2 echo 3' MULTILINE NOTE: dash handles aliases in a totally diferrent way. It has a global variable checkkwd in parser.c. It assigns it all over the grammar, like this: checkkwd = CHKNL | CHKKWD | CHKALIAS; The readtoken() function checks (checkkwd & CHKALIAS) and then calls lookupalias(). This seems to provide a consistent behavior among shells, but it's less modular and testable. Bash also uses a global 'parser_state & PST_ALEXPNEXT'. Returns: A command node if any aliases were expanded, or None otherwise. """ # Start a new list if there aren't any. This will be passed recursively # through CommandParser instances. aliases_in_flight = ( self.aliases_in_flight if len(self.aliases_in_flight) else [] ) # for error message first_word_str = None # type: Optional[str] argv0_spid = word_.LeftMostSpanForWord(words[0]) expanded = [] # type: List[str] i = 0 n = len(words) while i < n: w = words[i] ok, word_str, quoted = word_.StaticEval(w) if not ok or quoted: break alias_exp = self.aliases.get(word_str) if alias_exp is None: break # Prevent infinite loops. This is subtle: we want to prevent infinite # expansion of alias echo='echo x'. But we don't want to prevent # expansion of the second word in 'echo echo', so we add 'i' to # "aliases_in_flight". if (word_str, i) in aliases_in_flight: break if i == 0: first_word_str = word_str # for error message #log('%r -> %r', word_str, alias_exp) aliases_in_flight.append((word_str, i)) expanded.append(alias_exp) i += 1 if not alias_exp.endswith(' '): # alias e='echo [ ' is the same expansion as # alias e='echo [' # The trailing space indicates whether we should continue to expand # aliases; it's not part of it. expanded.append(' ') break # No more expansions if len(expanded) == 0: # No expansions; caller does parsing. return None # We got some expansion. Now copy the rest of the words. # We need each NON-REDIRECT word separately! For example: # $ echo one >out two # dash/mksh/zsh go beyond the first redirect! while i < n: w = words[i] spid1 = word_.LeftMostSpanForWord(w) spid2 = word_.RightMostSpanForWord(w) span1 = self.arena.GetLineSpan(spid1) span2 = self.arena.GetLineSpan(spid2) if 0: log('spid1 = %d, spid2 = %d', spid1, spid2) n1 = self.arena.GetLineNumber(span1.line_id) n2 = self.arena.GetLineNumber(span2.line_id) log('span1 %s line %d %r', span1, n1, self.arena.GetLine(span1.line_id)) log('span2 %s line %d %r', span2, n2, self.arena.GetLine(span2.line_id)) if span1.line_id == span2.line_id: line = self.arena.GetLine(span1.line_id) piece = line[span1.col : span2.col + span2.length] expanded.append(piece) else: # NOTE: The xrange(left_spid, right_spid) algorithm won't work for # commands like this: # # myalias foo`echo hi`bar # # That is why we only support words over 1 or 2 lines. raise NotImplementedError( 'line IDs %d != %d' % (span1.line_id, span2.line_id)) expanded.append(' ') # Put space back between words. i += 1 code_str = ''.join(expanded) # NOTE: self.arena isn't correct here. Breaks line invariant. line_reader = reader.StringLineReader(code_str, self.arena) cp = self.parse_ctx.MakeOshParser(line_reader) cp.Init_AliasesInFlight(aliases_in_flight) # break circular dep from frontend import parse_lib # The interaction between COMPLETION and ALIASES requires special care. # See docstring of BeginAliasExpansion() in parse_lib.py. src = source.Alias(first_word_str, argv0_spid) with alloc.ctx_Location(self.arena, src): with parse_lib.ctx_Alias(self.parse_ctx.trail): try: # _ParseCommandTerm() handles multiline commands, compound commands, etc. # as opposed to ParseLogicalLine() node = cp._ParseCommandTerm() except error.Parse as e: # Failure to parse alias expansion is a fatal error # We don't need more handling here/ raise if 0: log('AFTER expansion:') node.PrettyPrint() return node def ParseSimpleCommand(self): # type: () -> command_t """ Fixed transcription of the POSIX grammar (TODO: port to grammar/Shell.g) io_file : '<' filename | LESSAND filename ... io_here : DLESS here_end | DLESSDASH here_end redirect : IO_NUMBER (io_redirect | io_here) prefix_part : ASSIGNMENT_WORD | redirect cmd_part : WORD | redirect assign_kw : Declare | Export | Local | Readonly # Without any words it is parsed as a command, not an assigment assign_listing : assign_kw # Now we have something to do (might be changing assignment flags too) # NOTE: any prefixes should be a warning, but they are allowed in shell. assignment : prefix_part* assign_kw (WORD | ASSIGNMENT_WORD)+ # an external command, a function call, or a builtin -- a "word_command" word_command : prefix_part* cmd_part+ simple_command : assign_listing | assignment | proc_command Simple imperative algorithm: 1) Read a list of words and redirects. Append them to separate lists. 2) Look for the first non-assignment word. If it's declare, etc., then keep parsing words AND assign words. Otherwise, just parse words. 3) If there are no non-assignment words, then it's a global assignment. { redirects, global assignments } OR { redirects, prefix_bindings, words } OR { redirects, ERROR_prefix_bindings, keyword, assignments, words } THEN CHECK that prefix bindings don't have any array literal parts! global assignment and keyword assignments can have the of course. well actually EXPORT shouldn't have them either -- WARNING 3 cases we want to warn: prefix_bindings for assignment, and array literal in prefix bindings, or export A command can be an assignment word, word, or redirect on its own. ls >out.txt >out.txt FOO=bar # this touches the file, and hten Or any sequence: ls foo bar <in.txt ls foo bar >out.txt <in.txt ls >out.txt foo bar Or add one or more environment bindings: VAR=val env >out.txt VAR=val env here_end vs filename is a matter of whether we test that it's quoted. e.g. <<EOF vs <<'EOF'. """ redirects, words, block = self._ScanSimpleCommand() block_spid = block.spids[0] if block else runtime.NO_SPID if len(words) == 0: # e.g. >out.txt # redirect without words if block: p_die("Unexpected block", span_id=block_spid) simple = command.Simple() # no words, more_env, or block, simple.redirects = redirects return simple # Disallow =a because it's confusing part0 = words[0].parts[0] if part0.tag_() == word_part_e.Literal: tok = cast(Token, part0) if tok.id == Id.Lit_Equals: p_die("=word isn't allowed when shopt 'parse_equals' is on.\n" "Hint: add a space after = to pretty print an expression", token=tok) preparsed_list, suffix_words = _SplitSimpleCommandPrefix(words) if self.parse_opts.parse_equals() and len(preparsed_list): left_token, _, _, _ = preparsed_list[0] p_die("name=val isn't allowed when shopt 'parse_equals' is on.\n" "Hint: add 'env' before it, or spaces around =", token=left_token) # Set a reference to words and redirects for completion. We want to # inspect this state after a failed parse. self.parse_ctx.trail.SetLatestWords(suffix_words, redirects) if len(suffix_words) == 0: if block: p_die("Unexpected block", span_id=block_spid) # ShAssignment: No suffix words like ONE=1 a[x]=1 TWO=2 pairs = [] # type: List[assign_pair] for preparsed in preparsed_list: pairs.append(_MakeAssignPair(self.parse_ctx, preparsed, self.arena)) assign = command.ShAssignment(pairs, redirects) left_spid = word_.LeftMostSpanForWord(words[0]) assign.spids.append(left_spid) # no keyword spid to skip past return assign kind, kw_token = word_.KeywordToken(suffix_words[0]) if kind == Kind.ControlFlow: if block: p_die("Unexpected block", span_id=block_spid) if not self.parse_opts.parse_ignored() and len(redirects): p_die("Control flow shouldn't have redirects", token=kw_token) if len(preparsed_list): # FOO=bar local spam=eggs not allowed # TODO: Change location as above left_token, _, _, _ = preparsed_list[0] p_die("Control flow shouldn't have environment bindings", token=left_token) # Attach the token for errors. (ShAssignment may not need it.) if len(suffix_words) == 1: arg_word = None # type: Optional[word_t] elif len(suffix_words) == 2: arg_word = suffix_words[1] else: p_die('Unexpected argument to %r', kw_token.val, word=suffix_words[2]) return command.ControlFlow(kw_token, arg_word) # Only expand aliases if we didn't get a block. if not block and self.parse_opts.expand_aliases(): # If any expansions were detected, then parse again. expanded_node = self._MaybeExpandAliases(suffix_words) if expanded_node: # Attach env bindings and redirects to the expanded node. more_env = [] # type: List[env_pair] _AppendMoreEnv(preparsed_list, more_env) exp = command.ExpandedAlias(expanded_node, redirects, more_env) return exp # TODO check that we don't have env1=x x[1]=y env2=z here. # FOO=bar printenv.py FOO node = _MakeSimpleCommand(preparsed_list, suffix_words, redirects, block) return node def ParseBraceGroup(self): # type: () -> BraceGroup """ Original: brace_group : LBrace command_list RBrace ; Oil: brace_group : LBrace (Op_Newline IgnoredComment?)? command_list RBrace ; The doc comment can only occur if there's a newline. """ left_spid = _KeywordSpid(self.cur_word) self._Eat(Id.Lit_LBrace) doc_token = None # type: Token self._Peek() if self.c_id == Id.Op_Newline: self._Next() with word_.ctx_EmitDocToken(self.w_parser): self._Peek() if self.c_id == Id.Ignored_Comment: doc_token = cast(Token, self.cur_word) self._Next() c_list = self._ParseCommandList() #right_spid = word_.LeftMostSpanForWord(self.cur_word) self._Eat(Id.Lit_RBrace) node = BraceGroup(doc_token, c_list.children, None) # no redirects yet node.spids.append(left_spid) return node def ParseDoGroup(self): # type: () -> command__DoGroup """ Used by ForEach, ForExpr, While, Until. Should this be a Do node? do_group : Do command_list Done ; /* Apply rule 6 */ """ self._Eat(Id.KW_Do) do_spid = _KeywordSpid(self.cur_word) # Must come AFTER _Eat c_list = self._ParseCommandList() # could be any thing self._Eat(Id.KW_Done) done_spid = _KeywordSpid(self.cur_word) # after _Eat node = command.DoGroup(c_list.children) node.spids.append(do_spid) node.spids.append(done_spid) return node def ParseForWords(self): # type: () -> Tuple[List[compound_word], int] """ for_words : WORD* for_sep ; for_sep : ';' newline_ok | NEWLINES ; """ words = [] # type: List[compound_word] # The span_id of any semi-colon, so we can remove it. semi_spid = runtime.NO_SPID while True: self._Peek() if self.c_id == Id.Op_Semi: tok = cast(Token, self.cur_word) semi_spid = tok.span_id self._Next() self._NewlineOk() break elif self.c_id == Id.Op_Newline: self._Next() break elif self.parse_opts.parse_brace() and self.c_id == Id.Lit_LBrace: break if self.cur_word.tag_() != word_e.Compound: # TODO: Can we also show a pointer to the 'for' keyword? p_die('Invalid word in for loop', word=self.cur_word) w2 = cast(compound_word, self.cur_word) words.append(w2) self._Next() return words, semi_spid def _ParseForExprLoop(self): # type: () -> command__ForExpr """ for (( init; cond; update )) for_sep? do_group """ node = self.w_parser.ReadForExpression() self._Next() self._Peek() if self.c_id == Id.Op_Semi: self._Next() self._NewlineOk() elif self.c_id == Id.Op_Newline: self._Next() elif self.c_id == Id.KW_Do: # missing semicolon/newline allowed pass elif self.c_id == Id.Lit_LBrace: # does NOT require parse_brace pass else: p_die('Invalid word after for expression', word=self.cur_word) if self.c_id == Id.Lit_LBrace: node.body = self.ParseBraceGroup() else: node.body = self.ParseDoGroup() return node def _ParseForEachLoop(self, for_spid): # type: (int) -> command__ForEach node = command.ForEach() node.do_arg_iter = False node.spids.append(for_spid) # for $LINENO and error fallback ok, iter_name, quoted = word_.StaticEval(self.cur_word) if not ok or quoted: p_die("Loop variable name should be a constant", word=self.cur_word) if not match.IsValidVarName(iter_name): p_die("Invalid loop variable name", word=self.cur_word) node.iter_name = iter_name self._Next() # skip past name self._NewlineOk() in_spid = runtime.NO_SPID semi_spid = runtime.NO_SPID self._Peek() if self.c_id == Id.KW_In: self._Next() # skip in # TODO: Do _Peek() here? in_spid = word_.LeftMostSpanForWord(self.cur_word) + 1 iter_words, semi_spid = self.ParseForWords() words2 = braces.BraceDetectAll(iter_words) words3 = word_.TildeDetectAll(words2) node.iter_words = words3 elif self.c_id == Id.Op_Semi: # for x; do node.do_arg_iter = True # implicit for loop self._Next() elif self.c_id == Id.KW_Do: node.do_arg_iter = True # implicit for loop # do not advance else: # for foo BAD p_die('Unexpected word after for loop variable', word=self.cur_word) self._Peek() if self.c_id == Id.Lit_LBrace: # parse_opts.parse_brace() must be on node.body = self.ParseBraceGroup() else: node.body = self.ParseDoGroup() node.spids.append(in_spid) node.spids.append(semi_spid) return node def ParseFor(self): # type: () -> command_t """ for_clause : For for_name newline_ok (in for_words? for_sep)? do_group ; | For '((' ... TODO """ for_spid = _KeywordSpid(self.cur_word) self._Eat(Id.KW_For) if self.w_parser.LookAhead() == Id.Op_LParen: # for (x in y) { } # NOTE: parse_paren NOT required since it would have been a syntax error. lvalue, iterable, _ = ( self.parse_ctx.ParseOilForExpr(self.lexer, grammar_nt.oil_for) ) self._Peek() if self.c_id == Id.Lit_LBrace: body = self.ParseBraceGroup() # type: command_t else: body = self.ParseDoGroup() return command.OilForIn(lvalue, iterable, body) else: self._Peek() if self.c_id == Id.Op_DLeftParen: # for (( i = 0; i < 10; i++) n1 = self._ParseForExprLoop() n1.redirects = self._ParseRedirectList() return n1 else: # for x in a b; do echo hi; done n2 = self._ParseForEachLoop(for_spid) n2.redirects = self._ParseRedirectList() return n2 def ParseWhileUntil(self, keyword): # type: (Token) -> command__WhileUntil """ while_clause : While command_list do_group ; until_clause : Until command_list do_group ; """ self._Next() # skip keyword if self.parse_opts.parse_paren() and self.w_parser.LookAhead() == Id.Op_LParen: enode, _ = self.parse_ctx.ParseOilExpr(self.lexer, grammar_nt.oil_expr) # NOTE: OilCondition could have spids of ( and ) ? cond = condition.Oil(enode) # type: condition_t else: self.allow_block = False commands = self._ParseCommandList() self.allow_block = True cond = condition.Shell(commands.children) # NOTE: The LSTs will be different for Oil and OSH, but the execution # should be unchanged. To be sure we should desugar. self._Peek() if self.parse_opts.parse_brace() and self.c_id == Id.Lit_LBrace: # while test -f foo { body_node = self.ParseBraceGroup() # type: command_t else: body_node = self.ParseDoGroup() node = command.WhileUntil(keyword, cond, body_node, None) # no redirects yet node.spids.append(keyword.span_id) # e.g. for errexit message return node def ParseCaseItem(self): # type: () -> case_arm """ case_item: '('? pattern ('|' pattern)* ')' newline_ok command_term? trailer? ; """ self.lexer.PushHint(Id.Op_RParen, Id.Right_CasePat) left_spid = word_.LeftMostSpanForWord(self.cur_word) if self.c_id == Id.Op_LParen: self._Next() pat_words = [] # type: List[word_t] while True: self._Peek() pat_words.append(self.cur_word) self._Next() self._Peek() if self.c_id == Id.Op_Pipe: self._Next() else: break rparen_spid = word_.LeftMostSpanForWord(self.cur_word) self._Eat(Id.Right_CasePat) self._NewlineOk() if self.c_id not in (Id.Op_DSemi, Id.KW_Esac): c_list = self._ParseCommandTerm() action_children = c_list.children else: action_children = [] dsemi_spid = runtime.NO_SPID last_spid = runtime.NO_SPID self._Peek() if self.c_id == Id.KW_Esac: last_spid = word_.LeftMostSpanForWord(self.cur_word) elif self.c_id == Id.Op_DSemi: dsemi_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() else: # Happens on EOF p_die('Expected ;; or esac', word=self.cur_word) self._NewlineOk() spids = [left_spid, rparen_spid, dsemi_spid, last_spid] arm = syntax_asdl.case_arm(pat_words, action_children, spids) return arm def ParseCaseList(self, arms): # type: (List[case_arm]) -> None """ case_list: case_item (DSEMI newline_ok case_item)* DSEMI? newline_ok; """ self._Peek() while True: # case item begins with a command word or ( if self.c_id == Id.KW_Esac: break if self.parse_opts.parse_brace() and self.c_id == Id.Lit_RBrace: break if self.c_kind != Kind.Word and self.c_id != Id.Op_LParen: break arm = self.ParseCaseItem() arms.append(arm) self._Peek() # Now look for DSEMI or ESAC def ParseCase(self): # type: () -> command__Case """ case_clause : Case WORD newline_ok in newline_ok case_list? Esac ; """ case_node = command.Case() case_spid = _KeywordSpid(self.cur_word) self._Next() # skip case self._Peek() case_node.to_match = self.cur_word self._Next() self._NewlineOk() in_spid = word_.LeftMostSpanForWord(self.cur_word) self._Peek() if self.parse_opts.parse_brace() and self.c_id == Id.Lit_LBrace: self._Next() else: self._Eat(Id.KW_In) self._NewlineOk() if self.c_id != Id.KW_Esac: # empty case list self.ParseCaseList(case_node.arms) # TODO: should it return a list of nodes, and extend? self._Peek() esac_spid = word_.LeftMostSpanForWord(self.cur_word) self._Peek() if self.parse_opts.parse_brace() and self.c_id == Id.Lit_RBrace: self._Next() else: self._Eat(Id.KW_Esac) self._Next() case_node.spids.append(case_spid) case_node.spids.append(in_spid) case_node.spids.append(esac_spid) return case_node def _ParseOilElifElse(self, if_node): # type: (command__If) -> None """ if test -f foo { echo foo } elif test -f bar; test -f spam { ^ we parsed up to here echo bar } else { echo none } """ arms = if_node.arms while self.c_id == Id.KW_Elif: elif_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() # skip elif if (self.parse_opts.parse_paren() and self.w_parser.LookAhead() == Id.Op_LParen): enode, _ = self.parse_ctx.ParseOilExpr(self.lexer, grammar_nt.oil_expr) # NOTE: OilCondition could have spids of ( and ) ? cond = condition.Oil(enode) # type: condition_t else: self.allow_block = False commands= self._ParseCommandList() self.allow_block = True cond = condition.Shell(commands.children) body = self.ParseBraceGroup() self._Peek() arm = syntax_asdl.if_arm(cond, body.children, [elif_spid]) arms.append(arm) self._Peek() if self.c_id == Id.KW_Else: else_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() body = self.ParseBraceGroup() if_node.else_action = body.children else: else_spid = runtime.NO_SPID if_node.spids.append(else_spid) def _ParseOilIf(self, if_spid, cond): # type: (int, condition_t) -> command__If """ if test -f foo { # ^ we parsed up to here echo foo } elif test -f bar; test -f spam { echo bar } else { echo none } NOTE: If you do something like if test -n foo{, the parser keeps going, and the error is confusing because it doesn't point to the right place. I think we might need strict_brace so that foo{ is disallowed. It has to be foo\{ or foo{a,b}. Or just turn that on with parse_brace? After you form ANY CompoundWord, make sure it's balanced for Lit_LBrace and Lit_RBrace? Maybe this is pre-parsing step in teh WordParser? """ if_node = command.If() body1 = self.ParseBraceGroup() # Every arm has 1 spid, unlike shell-style # TODO: We could get the spids from the brace group. arm = syntax_asdl.if_arm(cond, body1.children, [if_spid]) if_node.arms.append(arm) self._Peek() if self.c_id in (Id.KW_Elif, Id.KW_Else): self._ParseOilElifElse(if_node) else: if_node.spids.append(runtime.NO_SPID) # no else spid # the whole if node has the 'else' spid, unlike shell-style there's no 'fi' # spid because that's in the BraceGroup. return if_node def _ParseElifElse(self, if_node): # type: (command__If) -> None """ else_part: (Elif command_list Then command_list)* Else command_list ; """ arms = if_node.arms self._Peek() while self.c_id == Id.KW_Elif: elif_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() # skip elif commands = self._ParseCommandList() cond = condition.Shell(commands.children) then_spid = word_.LeftMostSpanForWord(self.cur_word) self._Eat(Id.KW_Then) body = self._ParseCommandList() arm = syntax_asdl.if_arm(cond, body.children, [elif_spid, then_spid]) arms.append(arm) if self.c_id == Id.KW_Else: else_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() body = self._ParseCommandList() if_node.else_action = body.children else: else_spid = runtime.NO_SPID if_node.spids.append(else_spid) def ParseIf(self): # type: () -> command__If """ if_clause : If command_list Then command_list else_part? Fi ; """ if_spid = _KeywordSpid(self.cur_word) if_node = command.If() self._Next() # skip if # Remove ambiguity with if cd / { if self.parse_opts.parse_paren() and self.w_parser.LookAhead() == Id.Op_LParen: enode, _ = self.parse_ctx.ParseOilExpr(self.lexer, grammar_nt.oil_expr) # NOTE: OilCondition could have spids of ( and ) ? cond = condition.Oil(enode) # type: condition_t else: self.allow_block = False commands = self._ParseCommandList() self.allow_block = True cond = condition.Shell(commands.children) self._Peek() if self.parse_opts.parse_brace() and self.c_id == Id.Lit_LBrace: # if foo { return self._ParseOilIf(if_spid, cond) then_spid = word_.LeftMostSpanForWord(self.cur_word) self._Eat(Id.KW_Then) body = self._ParseCommandList() arm = syntax_asdl.if_arm(cond, body.children, [if_spid, then_spid]) if_node.arms.append(arm) if self.c_id in (Id.KW_Elif, Id.KW_Else): self._ParseElifElse(if_node) else: if_node.spids.append(runtime.NO_SPID) # no else spid fi_spid = word_.LeftMostSpanForWord(self.cur_word) self._Eat(Id.KW_Fi) if_node.spids.append(fi_spid) return if_node def ParseTime(self): # type: () -> command_t """ time [-p] pipeline According to bash help. """ time_spid = _KeywordSpid(self.cur_word) self._Next() # skip time pipeline = self.ParsePipeline() node = command.TimeBlock(pipeline) node.spids.append(time_spid) return node def ParseCompoundCommand(self): # type: () -> command_t """ Refactoring: we put io_redirect* here instead of in function_body and command. compound_command : brace_group io_redirect* | subshell io_redirect* | for_clause io_redirect* | while_clause io_redirect* | until_clause io_redirect* | if_clause io_redirect* | case_clause io_redirect* # bash extensions | time_clause | [[ BoolExpr ]] | (( ArithExpr )) # Oil extensions | const ... | var ... | setglobal ... | setref ... | setvar ... ; """ if self.c_id == Id.Lit_LBrace: n1 = self.ParseBraceGroup() n1.redirects = self._ParseRedirectList() return n1 if self.c_id == Id.Op_LParen: n2 = self.ParseSubshell() n2.redirects = self._ParseRedirectList() return n2 if self.c_id == Id.KW_For: # Note: Redirects parsed in this call. POSIX for and bash for (( have # redirects, but Oil for doesn't. return self.ParseFor() if self.c_id in (Id.KW_While, Id.KW_Until): keyword = _KeywordToken(self.cur_word) n3 = self.ParseWhileUntil(keyword) n3.redirects = self._ParseRedirectList() return n3 if self.c_id == Id.KW_If: n4 = self.ParseIf() n4.redirects = self._ParseRedirectList() return n4 if self.c_id == Id.KW_Case: n5 = self.ParseCase() n5.redirects = self._ParseRedirectList() return n5 if self.c_id == Id.KW_DLeftBracket: n6 = self.ParseDBracket() n6.redirects = self._ParseRedirectList() return n6 if self.c_id == Id.Op_DLeftParen: n7 = self.ParseDParen() n7.redirects = self._ParseRedirectList() return n7 # bash extensions: no redirects if self.c_id == Id.KW_Time: return self.ParseTime() # Oil extensions if self.c_id in (Id.KW_Var, Id.KW_Const): keyword_id = self.c_id kw_token = word_.LiteralToken(self.cur_word) self._Next() n8 = self.w_parser.ParseVarDecl(kw_token) for lhs in n8.lhs: self.var_checker.Check(keyword_id, lhs.name) return n8 if self.c_id in (Id.KW_SetVar, Id.KW_SetRef, Id.KW_SetGlobal): kw_token = word_.LiteralToken(self.cur_word) self._Next() n9 = self.w_parser.ParsePlaceMutation(kw_token, self.var_checker) return n9 # Happens in function body, e.g. myfunc() oops p_die('Unexpected word while parsing compound command', word=self.cur_word) assert False # for MyPy def ParseFunctionDef(self): # type: () -> command__ShFunction """ function_header : fname '(' ')' function_def : function_header newline_ok function_body ; Precondition: Looking at the function name. NOTE: There is an ambiguity with: function foo ( echo hi ) and function foo () ( echo hi ) Bash only accepts the latter, though it doesn't really follow a grammar. """ left_spid = word_.LeftMostSpanForWord(self.cur_word) word0 = cast(compound_word, self.cur_word) # caller ensures validity name = word_.ShFunctionName(word0) if len(name) == 0: # example: foo$x is invalid p_die('Invalid function name', word=word0) part0 = word0.parts[0] # If we got a non-empty string from ShFunctionName, this should be true. assert part0.tag_() == word_part_e.Literal blame_tok = cast(Token, part0) # for ctx_VarChecker self._Next() # move past function name # Must be true because of lookahead self._Peek() assert self.c_id == Id.Op_LParen, self.cur_word self.lexer.PushHint(Id.Op_RParen, Id.Right_ShFunction) self._Next() self._Peek() if self.c_id == Id.Right_ShFunction: # 'f ()' implies a function definition, since invoking it with no args # would just be 'f' self._Next() after_name_spid = word_.LeftMostSpanForWord(self.cur_word) + 1 self._NewlineOk() func = command.ShFunction() func.name = name with ctx_VarChecker(self.var_checker, blame_tok): func.body = self.ParseCompoundCommand() # matches ParseKshFunctionDef below func.spids.append(left_spid) func.spids.append(left_spid) # name_spid is same as left_spid in this case func.spids.append(after_name_spid) return func else: p_die('Expected ) in function definition', word=self.cur_word) return None def ParseKshFunctionDef(self): # type: () -> command__ShFunction """ ksh_function_def : 'function' fname ( '(' ')' )? newline_ok function_body """ keyword_tok = _KeywordToken(self.cur_word) left_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() # skip past 'function' self._Peek() cur_word = cast(compound_word, self.cur_word) # caller ensures validity name = word_.ShFunctionName(cur_word) if len(name) == 0: # example: foo$x is invalid p_die('Invalid KSH-style function name', word=cur_word) name_spid = word_.LeftMostSpanForWord(self.cur_word) after_name_spid = name_spid + 1 self._Next() # skip past 'function name self._Peek() if self.c_id == Id.Op_LParen: self.lexer.PushHint(Id.Op_RParen, Id.Right_ShFunction) self._Next() self._Eat(Id.Right_ShFunction) # Change it: after ) after_name_spid = word_.LeftMostSpanForWord(self.cur_word) + 1 self._NewlineOk() func = command.ShFunction() func.name = name with ctx_VarChecker(self.var_checker, keyword_tok): func.body = self.ParseCompoundCommand() # matches ParseFunctionDef above func.spids.append(left_spid) func.spids.append(name_spid) func.spids.append(after_name_spid) return func def ParseOilProc(self): # type: () -> command__Proc node = command.Proc() keyword_tok = _KeywordToken(self.cur_word) with ctx_VarChecker(self.var_checker, keyword_tok): self.w_parser.ParseProc(node) if node.sig.tag_() == proc_sig_e.Closed: # Register params sig = cast(proc_sig__Closed, node.sig) for param in sig.params: # Treat params as variables. self.var_checker.Check(Id.KW_Var, param.name) # We COULD register __out here but it would require a different API. #if param.prefix and param.prefix.id == Id.Arith_Colon: # self.var_checker.Check(Id.KW_Var, '__' + param.name) self._Next() node.body = self.ParseBraceGroup() # No redirects for Oil procs (only at call site) return node def ParseCoproc(self): # type: () -> command_t """ TODO: command__Coproc? """ raise NotImplementedError() def ParseSubshell(self): # type: () -> command__Subshell left_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() # skip past ( # Ensure that something $( (cd / && pwd) ) works. If ) is already on the # translation stack, we want to delay it. self.lexer.PushHint(Id.Op_RParen, Id.Right_Subshell) c_list = self._ParseCommandList() if len(c_list.children) == 1: child = c_list.children[0] else: child = c_list node = command.Subshell(child, None) # no redirects yet right_spid = word_.LeftMostSpanForWord(self.cur_word) self._Eat(Id.Right_Subshell) node.spids.append(left_spid) node.spids.append(right_spid) return node def ParseDBracket(self): # type: () -> command__DBracket """ Pass the underlying word parser off to the boolean expression parser. """ left_spid = word_.LeftMostSpanForWord(self.cur_word) # TODO: Test interactive. Without closing ]], you should get > prompt # (PS2) self._Next() # skip [[ b_parser = bool_parse.BoolParser(self.w_parser) bnode = b_parser.Parse() # May raise self._Peek() right_spid = word_.LeftMostSpanForWord(self.cur_word) node = command.DBracket(bnode, None) # no redirects yet node.spids.append(left_spid) node.spids.append(right_spid) return node def ParseDParen(self): # type: () -> command__DParen left_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() # skip (( anode = self.w_parser.ReadDParen() assert anode is not None self._Peek() right_spid = word_.LeftMostSpanForWord(self.cur_word) node = command.DParen(anode, None) # no redirects yet node.spids.append(left_spid) node.spids.append(right_spid) return node def ParseCommand(self): # type: () -> command_t """ command : simple_command | compound_command # Oil edit: io_redirect* folded in | function_def | ksh_function_def ; """ self._Peek() if self._AtSecondaryKeyword(): p_die('Unexpected word when parsing command', word=self.cur_word) if self.c_id == Id.KW_Function: return self.ParseKshFunctionDef() if self.c_id == Id.KW_Proc: return self.ParseOilProc() # Top-level keywords to hide: func, data, enum, class/mod. Not sure about # 'use'. if self.parse_opts.parse_tea(): if self.c_id == Id.KW_Func: out0 = command.Func() self.parse_ctx.ParseFunc(self.lexer, out0) self._Next() return out0 if self.c_id == Id.KW_Data: out1 = command.Data() self.parse_ctx.ParseDataType(self.lexer, out1) self._Next() return out1 if self.c_id == Id.KW_Enum: out2 = command.Enum() self.parse_ctx.ParseEnum(self.lexer, out2) self._Next() return out2 if self.c_id == Id.KW_Class: out3 = command.Class() self.parse_ctx.ParseClass(self.lexer, out3) self._Next() return out3 if self.c_id == Id.KW_Import: # Needs last_token because it ends with an optional thing? out4 = command.Import() self.w_parser.ParseImport(out4) self._Next() return out4 if self.c_id in ( Id.KW_DLeftBracket, Id.Op_DLeftParen, Id.Op_LParen, Id.Lit_LBrace, Id.KW_For, Id.KW_While, Id.KW_Until, Id.KW_If, Id.KW_Case, Id.KW_Time, Id.KW_Var, Id.KW_Const, Id.KW_SetVar, Id.KW_SetGlobal, Id.KW_SetRef): return self.ParseCompoundCommand() if self.c_id in (Id.Lit_Underscore, Id.Lit_Equals): keyword = _KeywordToken(self.cur_word) self._Next() enode = self.w_parser.ParseCommandExpr() return command.Expr(speck(keyword.id, keyword.span_id), enode) # Sytnax error for '}' starting a line, which all shells disallow. if self.c_id == Id.Lit_RBrace: p_die('Unexpected right brace', word=self.cur_word) if self.c_kind == Kind.Redir: # Leading redirect return self.ParseSimpleCommand() if self.c_kind == Kind.Word: cur_word = cast(compound_word, self.cur_word) # ensured by Kind.Word # NOTE: At the top level, only Token and Compound are possible. # Can this be modelled better in the type system, removing asserts? # # TODO: This can be a proc INVOCATION! (Doesn't even need parse_paren) # Problem: We have to distinguish f( ) { echo ; } and myproc (x, y) # That requires 2 tokens of lookahead, which we don't have # # Or maybe we don't just have ParseSimpleCommand -- we will have # ParseOilCommand or something if (self.w_parser.LookAhead() == Id.Op_LParen and not word_.IsVarLike(cur_word)): return self.ParseFunctionDef() # f() { echo; } # function # Parse x = 1+2*3 when parse_equals is set. parts = cur_word.parts if self.parse_opts.parse_equals() and len(parts) == 1: part0 = parts[0] if part0.tag_() == word_part_e.Literal: tok = cast(Token, part0) # NOTE: tok.id should be Lit_Chars, but that check is redundant if (match.IsValidVarName(tok.val) and self.w_parser.LookAhead() == Id.Lit_Equals): self.var_checker.Check(Id.KW_Const, tok) enode = self.w_parser.ParseBareDecl() self._Next() # Somehow this is necessary # TODO: Use BareDecl here. Well, do that when we treat it as const # or lazy. return command.VarDecl(None, [name_type(tok, None)], enode) # echo foo # f=(a b c) # array # array[1+2]+=1 return self.ParseSimpleCommand() if self.c_kind == Kind.Eof: p_die("Unexpected EOF while parsing command", word=self.cur_word) # NOTE: This only happens in batch mode in the second turn of the loop! # e.g. ) p_die("Invalid word while parsing command", word=self.cur_word) assert False # for MyPy def ParsePipeline(self): # type: () -> command_t """ pipeline : Bang? command ( '|' newline_ok command )* ; """ negated = False # For blaming failures pipeline_spid = runtime.NO_SPID self._Peek() if self.c_id == Id.KW_Bang: pipeline_spid = word_.LeftMostSpanForWord(self.cur_word) negated = True self._Next() child = self.ParseCommand() assert child is not None children = [child] self._Peek() if self.c_id not in (Id.Op_Pipe, Id.Op_PipeAmp): if negated: no_stderrs = [] # type: List[int] node = command.Pipeline(children, negated, no_stderrs) node.spids.append(pipeline_spid) return node else: return child pipe_index = 0 stderr_indices = [] # type: List[int] if self.c_id == Id.Op_PipeAmp: stderr_indices.append(pipe_index) pipe_index += 1 while True: # Set it to the first | if it isn't already set. if pipeline_spid == runtime.NO_SPID: pipeline_spid = word_.LeftMostSpanForWord(self.cur_word) self._Next() # skip past Id.Op_Pipe or Id.Op_PipeAmp self._NewlineOk() child = self.ParseCommand() children.append(child) self._Peek() if self.c_id not in (Id.Op_Pipe, Id.Op_PipeAmp): break if self.c_id == Id.Op_PipeAmp: stderr_indices.append(pipe_index) pipe_index += 1 node = command.Pipeline(children, negated, stderr_indices) node.spids.append(pipeline_spid) return node def ParseAndOr(self): # type: () -> command_t self._Peek() if self.c_id == Id.Word_Compound: first_word_tok = word_.LiteralToken(self.cur_word) if first_word_tok is not None and first_word_tok.id == Id.Lit_TDot: # We got '...', so parse in multiline mode self._Next() with word_.ctx_Multiline(self.w_parser): return self._ParseAndOr() # Parse in normal mode, not multiline return self._ParseAndOr() def _ParseAndOr(self): # type: () -> command_t """ and_or : and_or ( AND_IF | OR_IF ) newline_ok pipeline | pipeline Note that it is left recursive and left associative. We parse it iteratively with a token of lookahead. """ child = self.ParsePipeline() assert child is not None self._Peek() if self.c_id not in (Id.Op_DPipe, Id.Op_DAmp): return child ops = [] # type: List[int] op_spids = [] # type: List[int] children = [child] while True: ops.append(self.c_id) op_spids.append(word_.LeftMostSpanForWord(self.cur_word)) self._Next() # skip past || && self._NewlineOk() child = self.ParsePipeline() children.append(child) self._Peek() if self.c_id not in (Id.Op_DPipe, Id.Op_DAmp): break node = command.AndOr(ops, children) node.spids = op_spids return node # NOTE: _ParseCommandLine and _ParseCommandTerm are similar, but different. # At the top level, we execute after every line, e.g. to # - process alias (a form of dynamic parsing) # - process 'exit', because invalid syntax might appear after it # On the other hand, for a while loop body, we parse the whole thing at once, # and then execute it. We don't want to parse it over and over again! # COMPARE # command_line : and_or (sync_op and_or)* trailer? ; # TOP LEVEL # command_term : and_or (trailer and_or)* ; # CHILDREN def _ParseCommandLine(self): # type: () -> command_t """ command_line : and_or (sync_op and_or)* trailer? ; trailer : sync_op newline_ok | NEWLINES; sync_op : '&' | ';'; NOTE: This rule causes LL(k > 1) behavior. We would have to peek to see if there is another command word after the sync op. But it's easier to express imperatively. Do the following in a loop: 1. ParseAndOr 2. Peek. a. If there's a newline, then return. (We're only parsing a single line.) b. If there's a sync_op, process it. Then look for a newline and return. Otherwise, parse another AndOr. """ # This END_LIST is slightly different than END_LIST in _ParseCommandTerm. # I don't think we should add anything else here; otherwise it will be # ignored at the end of ParseInteractiveLine(), e.g. leading to bug #301. END_LIST = [Id.Op_Newline, Id.Eof_Real] children = [] # type: List[command_t] done = False while not done: child = self.ParseAndOr() self._Peek() if self.c_id in (Id.Op_Semi, Id.Op_Amp): tok = cast(Token, self.cur_word) # for MyPy child = command.Sentence(child, tok) self._Next() self._Peek() if self.c_id in END_LIST: done = True elif self.c_id in END_LIST: done = True else: # e.g. echo a(b) p_die('Unexpected word while parsing command line', word=self.cur_word) children.append(child) # Simplify the AST. if len(children) > 1: return command.CommandList(children) else: return children[0] def _ParseCommandTerm(self): # type: () -> command__CommandList """" command_term : and_or (trailer and_or)* ; trailer : sync_op newline_ok | NEWLINES; sync_op : '&' | ';'; This is handled in imperative style, like _ParseCommandLine. Called by _ParseCommandList for all blocks, and also for ParseCaseItem, which is slightly different. (HOW? Is it the DSEMI?) Returns: syntax_asdl.command """ # Token types that will end the command term. END_LIST = [self.eof_id, Id.Right_Subshell, Id.Lit_RBrace, Id.Op_DSemi] # NOTE: This is similar to _ParseCommandLine. # # - Why aren't we doing END_LIST in _ParseCommandLine? # - Because you will never be inside $() at the top level. # - We also know it will end in a newline. It can't end in "fi"! # - example: if true; then { echo hi; } fi children = [] # type: List[command_t] done = False while not done: self._Peek() # Most keywords are valid "first words". But do/done/then do not BEGIN # commands, so they are not valid. if self._AtSecondaryKeyword(): break child = self.ParseAndOr() self._Peek() if self.c_id == Id.Op_Newline: self._Next() self._Peek() if self.c_id in END_LIST: done = True elif self.c_id in (Id.Op_Semi, Id.Op_Amp): tok = cast(Token, self.cur_word) # for MyPy child = command.Sentence(child, tok) self._Next() self._Peek() if self.c_id == Id.Op_Newline: self._Next() # skip over newline # Test if we should keep going. There might be another command after # the semi and newline. self._Peek() if self.c_id in END_LIST: # \n EOF done = True elif self.c_id in END_LIST: # ; EOF done = True elif self.c_id in END_LIST: # EOF done = True # For if test -f foo; test -f bar { elif self.parse_opts.parse_brace() and self.c_id == Id.Lit_LBrace: done = True else: #p_die("OOPS", word=self.cur_word) pass # e.g. "} done", "fi fi", ") fi", etc. is OK children.append(child) self._Peek() return command.CommandList(children) def _ParseCommandList(self): # type: () -> command__CommandList """ command_list : newline_ok command_term trailer? ; This one is called by all the compound commands. It's basically a command block. NOTE: Rather than translating the CFG directly, the code follows a style more like this: more like this: (and_or trailer)+. It makes capture easier. """ self._NewlineOk() node = self._ParseCommandTerm() return node def ParseLogicalLine(self): # type: () -> command_t """Parse a single line for main_loop. A wrapper around _ParseCommandLine(). Similar but not identical to _ParseCommandList() and ParseCommandSub(). Raises: ParseError """ self._NewlineOk() self._Peek() if self.c_id == Id.Eof_Real: return None # main loop checks for here docs node = self._ParseCommandLine() return node def ParseInteractiveLine(self): # type: () -> parse_result_t """Parse a single line for Interactive main_loop. Different from ParseLogicalLine because newlines are handled differently. Raises: ParseError """ self._Peek() if self.c_id == Id.Op_Newline: return parse_result.EmptyLine() if self.c_id == Id.Eof_Real: return parse_result.Eof() node = self._ParseCommandLine() return parse_result.Node(node) def ParseCommandSub(self): # type: () -> command_t """Parse $(echo hi) and `echo hi` for word_parse.py. They can have multiple lines, like this: echo $( echo one echo two ) """ self._NewlineOk() if self.c_kind == Kind.Eof: # e.g. $() return command.NoOp() c_list = self._ParseCommandTerm() if len(c_list.children) == 1: return c_list.children[0] else: return c_list def CheckForPendingHereDocs(self): # type: () -> None # NOTE: This happens when there is no newline at the end of a file, like # osh -c 'cat <<EOF' if len(self.pending_here_docs): node = self.pending_here_docs[0] # Just show the first one? h = cast(redir_param__HereDoc, node.arg) p_die('Unterminated here doc began here', word=h.here_begin)
python
#import pandas as pd import plotly.express as px import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import covid countries = covid.getCountries() df = covid.getNewData() #print(df) external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div([ html.H1("International COVID-19 Dashboard", style={'text-align': 'center'}), dcc.Dropdown( id='select-country', options=[ {'label': c, 'value': c} for c in countries ], #multi=True, placeholder="Select a country", style={'width': "30%"} ), html.Div(id='dd-output-container', children=[]), html.Br(), dcc.Graph(id='world_map', figure={}) ]) @app.callback( [Output(component_id='dd-output-container', component_property='children'), Output(component_id='world_map', component_property='figure')], [Input(component_id='select-country', component_property='value')] ) def update_output_div(input_value): container = "The map shows information for: {}".format(input_value) df.reset_index(drop=True) # Plotly Express fig = px.choropleth( data_frame=df, labels={'cases.new':'New', 'cases.active':'Active', 'deaths.total':'Deaths', 'cases.total':'Cases','tests.total':'Tests'}, locations='country', locationmode='country names', title="Covid Map", color='cases.active', range_color=[10,100000], hover_data=['cases.new', 'cases.active', 'deaths.total', 'cases.total', 'tests.total'], hover_name='country', custom_data=['continent'], color_continuous_scale=px.colors.sequential.YlOrRd, height=960, projection='natural earth', template='plotly' ) return container, fig if __name__ == '__main__': app.run_server(debug=True)
python
from django.contrib.auth.models import User from django.contrib.contenttypes.generic import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import models from django.utils import timezone class Comment(models.Model): author = models.ForeignKey(User, null=True, related_name="comments") name = models.CharField(max_length=100) email = models.CharField(max_length=255, blank=True) website = models.CharField(max_length=255, blank=True) content_type = models.ForeignKey(ContentType) object_id = models.IntegerField() content_object = GenericForeignKey() comment = models.TextField() submit_date = models.DateTimeField(default=timezone.now) ip_address = models.IPAddressField(null=True) public = models.BooleanField(default=True) def __unicode__(self): return u"<{}: {} submit_date={}>".format(self.__class__.__name__, self.pk, self.submit_date)
python
from setuptools import setup, find_packages classifiers = [ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Topic :: Software Development :: Build Tools", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", ] setup( name="koronavirus", packages=find_packages(), version="0.0.2", license="MIT", description="Koronavirüs (Covid-19) verilerine erişmenizi sağlayan bir Python modülü.", long_description=open("README.md").read(), long_description_content_type="text/markdown", author="Dorukyum", author_email="[email protected]", url="https://github.com/Dorukyum/koronavirus", keywords="API, Türkçe, Covid, Korona, Corona", install_requires=["requests", "aiohttp"], classifiers=classifiers, )
python
import datetime import json from django.core.urlresolvers import resolve from django.test import TestCase from rest_framework.serializers import ValidationError from rest_framework.test import APITestCase from .models import Appointment from .serializers import DATE_ERROR_MESSAGE, TIME_ERROR_MESSAGE from .views import main_view class AppointmentModelTestCase(TestCase): """docstring""" appt_dict = { 'date': datetime.date.today().isoformat(), 'time_start': "13:30", 'non_recurring': "Anon", 'reason': "I broke a leg" } def test_appointment_saved_with_time_end(self): existing = Appointment.objects.create(**self.appt_dict) self.assertEqual(existing.time_end, datetime.time(13, 59)) class MainViewTestCase(TestCase): """Smoke tests""" def test_index_resolve_correct_view(self): view = resolve('/') self.assertEqual(view.func, main_view) def test_index_renders_correct_html(self): resp = self.client.get('/') self.assertIn(b'Dr. Dre\'s', resp.content) class AppointmentAPITestCase(APITestCase): """docstring for AppointmentAPITestCase""" endpoint = '/api/v1/appointment/' appt_dict = { 'date': datetime.date.today().isoformat(), 'time_start': "13:30", 'non_recurring': "Anon", 'reason': "I broke a leg" } def test_anonymous_user_can_create_appointment(self): resp = self.client.post(self.endpoint, self.appt_dict) self.assertEqual(resp.status_code, 201) appt = Appointment.objects.first() self.assertEqual(appt.reason, self.appt_dict['reason']) self.assertEqual(appt.non_recurring, self.appt_dict['non_recurring']) self.assertIsNone(appt.visitor) def test_appointments_cant_be_in_past(self): appt_dict = dict(self.appt_dict) yesterday = datetime.date.today() - datetime.timedelta(days=1) appt_dict['date'] = yesterday.isoformat() resp = self.client.post(self.endpoint, appt_dict) self.assertJSONEqual(resp.content.decode('utf-8'), {"date":[DATE_ERROR_MESSAGE]}) self.assertFalse(Appointment.objects.exists()) def test_appointments_cant_be_in_wrong_hours(self): appt_dict = dict(self.appt_dict) appt_dict['time_start'] = "07:00" resp = self.client.post(self.endpoint, appt_dict) self.assertJSONEqual(resp.content.decode('utf-8'), {"time_start":[TIME_ERROR_MESSAGE]}) self.assertFalse(Appointment.objects.exists()) def test_appointments_cant_be_in_same_hours(self): Appointment.objects.create(**self.appt_dict) resp = self.client.post(self.endpoint, self.appt_dict) self.assertEqual(Appointment.objects.count(), 1) self.assertContains(resp, 'non_field_errors', status_code=400) def test_appointments_cant_be_closer_than_30_mins(self): self.appt_dict['time_end'] = '15:30' Appointment.objects.create(**self.appt_dict) before = dict(self.appt_dict) before['time_start'] = "13:20" after = dict(self.appt_dict) after['time_start'] = "13:59" another_after = dict(self.appt_dict) another_after['time_start'] = "15:29" resp = self.client.post(self.endpoint, before) resp = self.client.post(self.endpoint, after) resp = self.client.post(self.endpoint, another_after) self.assertEqual(Appointment.objects.count(), 1) def test_user_cant_edit_appointment(self): existing = Appointment.objects.create(**self.appt_dict) edit = {'reason': "Malicious edit"} resp = self.client.patch(self.endpoint + str(existing.id), edit) self.assertEqual(Appointment.objects.first().reason, existing.reason) # what's wrong with status? # self.assertEqual(resp.status_code, 405) def test_user_cant_delete_appointment(self): existing = Appointment.objects.create(**self.appt_dict) before = Appointment.objects.count() resp = self.client.delete(self.endpoint + str(existing.id)) after = Appointment.objects.count() self.assertTrue(Appointment.objects.exists()) self.assertEqual(before, after) # what's wrong with status? # self.assertEqual(resp.status_code, 405)
python
# labvirus.py # BOJ 14502 # Book p.341 n, m = map(int, input().split()) data = [] tmp = [[0] * m for _ in range(n)] for _ in range(n): data.append(list(map(int, input().split()))) dx = (-1, 0, 1, 0) dy = (0, 1, 0, -1) res = 0 def dfs_virus(x, y): for i in range(4): nx = x + dx[i] ny = y + dy[i] if 0 <= nx < n and 0 <= ny < m: if tmp[nx][ny] == 0: tmp[nx][ny] = 2 dfs_virus(nx, ny) def safe(): score = 0 for i in range(n): for j in range(m): if tmp[i][j] == 0: score += 1 return score def dfs(cnt): global res if cnt == 3: for i in range(n): for j in range(m): tmp[i][j] = data[i][j] for i in range(n): for j in range(m): if tmp[i][j] == 2: dfs_virus(i, j) res = max(res, safe()) return for i in range(n): for j in range(m): if data[i][j] == 0: data[i][j] = 1 cnt += 1 dfs(cnt) data[i][j] = 0 cnt -= 1 dfs(0) print(res)
python
import os import sys import click from modules import az, logging_util from modules.cli.args import Arguments from modules.cli.parser import Parser from modules.cli.validator import Validator from modules.entities.criteria import Criteria from modules.exceptions import AzException, NoArgsException @click.command() @click.option('--number', '-n', type=click.INT, help='Number of apks to download.') @click.option('--dexdate', '-d', help='The date on a dex file, format %Y-%m-%d, e.g. 2015-10-03.') @click.option('--apksize', '-s', help='Apk size, in bytes.') @click.option('--vtdetection', '-vt', help='Virus total rating, integer.') @click.option('--pkgname', '-pn', help='Package names.') @click.option('--markets', '-m', help='Markets, e.g. play.google.com. Possible values (can differ, since repository is updating): 1mobile,angeeks,anzhi,apk_bang,appchina,fdroid,freewarelovers,genome,hiapk,markets,mi.com,play.google.com,proandroid,slideme,torrents.') @click.option('--sha256', help='SHA256 hashes of apks to download.') @click.option('--sha1', help='SHA1 hashes of apks to download.') @click.option('--md5', help='MD5 hashes of apks to download.') @click.option('--metadata', '-md', help='Metadata. This is a subset of latest.csv column names to keep in metadata.csv. By default sha256,pkg_name,apk_size,dex_date,markets.') @click.option('--out', '-o', help='Output folder name. By default current directory.') @click.option('--seed', '-sd', type=click.INT, help='Seed for a random algorithm.') @click.option('--key', '-k', help='Androzoo api key.') @click.option('--input-file', '-i', help='Path to input csv.') @click.option('--threads', '-t', type=click.INT, default=4, help='Number of threads for concurrent download. 4 by default.') @click.version_option(message='%(version)s') def run(number, dexdate, apksize, vtdetection, pkgname, markets, metadata, out, seed, sha256, sha1, md5, key, input_file, threads): """Downloads specified number of apks satisfying specified criteria from androzoo repository. Saves specified metadata to metadata.csv. dexdate, apksize and vtdetection require specifying lower and upper bounds in format lower:upper, both inclusive. One of the bounds can be omitted (i.e. you can write :upper or lower:) pkgname, markets, metadata, sha256, sha1, md5 can be either single values or comma separated lists. Key and input file can be specified as options or via local or global config file. Allows downloading in the multiple threads. Sample usage: az -n 10 -d 2015-12-11: -s :3000000 -m play.google.com,appchina This means: download 10 apks with the dexdate starting from the 2015-12-11(inclusive), size up to 3000000 bytes(inclusive) and present on either play.google.com or appchina """ try: args = Arguments(number, dexdate, apksize, vtdetection, markets, pkgname, metadata, sha256, sha1, md5, key, input_file) Validator(args).validate() logging_util.setup_logging() number, *criteria_args, metadata, key, input_file = Parser(args).parse() criteria = Criteria(*criteria_args) az.run(input_file, key, number, criteria, out_dir=out if out else os.getcwd(), metadata=metadata, seed=seed, threads=threads) except NoArgsException: with click.Context(run) as ctx: click.echo(run.get_help(ctx)) except AzException as e: sys.exit(str(e)) else: sys.exit(0) if __name__ == '__main__': run(['-vt', '0:0'])
python