Datasets:
Tasks:
Audio Classification
Sub-tasks:
audio-emotion-recognition
Languages:
English
Size:
1K<n<10K
License:
# coding=utf-8 | |
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""RAVDESS multimodal dataset for emotion recognition.""" | |
import os | |
from pathlib import Path, PurePath, PurePosixPath | |
from collections import OrderedDict | |
import pandas as pd | |
import datasets | |
_CITATION = """\ | |
""" | |
_DESCRIPTION = """\ | |
""" | |
_URL = "https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24.zip" | |
_HOMEPAGE = "https://smartlaboratory.org/ravdess/" | |
_CLASS_NAMES = [ | |
'neutral', | |
'calm', | |
'happy', | |
'sad', | |
'angry', | |
'fearful', | |
'disgust', | |
'surprised' | |
] | |
_FEAT_DICT = OrderedDict([ | |
('Modality', ['full-AV', 'video-only', 'audio-only']), | |
('Vocal channel', ['speech', 'song']), | |
('Emotion', ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised']), | |
('Emotion intensity', ['normal', 'strong']), | |
('Statement', ["Kids are talking by the door", "Dogs are sitting by the door"]), | |
('Repetition', ["1st repetition", "2nd repetition"]), | |
]) | |
def filename2feats(filename): | |
codes = filename.stem.split('-') | |
d = {} | |
for i, k in enumerate(_FEAT_DICT.keys()): | |
d[k] = _FEAT_DICT[k][int(codes[i])-1] | |
d['Actor'] = codes[-1] | |
d['Gender'] = 'female' if int(codes[-1]) % 2 == 0 else 'male' | |
d['Path_to_Wav'] = str(filename) | |
return d | |
def preprocess(data_root_path): | |
output_dir = data_root_path / "RAVDESS_ser" | |
output_dir.mkdir(parents=True, exist_ok=True) | |
data = [] | |
for actor_dir in data_root_path.iterdir(): | |
if actor_dir.is_dir() and "Actor" in actor_dir.name: | |
for f in actor_dir.iterdir(): | |
data.append(filename2feats(f)) | |
df = pd.DataFrame(data, columns=list(_FEAT_DICT.keys()) + ['Actor', 'Gender', 'Path_to_Wav']) | |
df.to_csv(output_dir / 'data.csv') | |
class RAVDESSConfig(datasets.BuilderConfig): | |
"""BuilderConfig for RAVDESS.""" | |
def __init__(self, **kwargs): | |
""" | |
Args: | |
data_dir: `string`, the path to the folder containing the files in the | |
downloaded .tar | |
citation: `string`, citation for the data set | |
url: `string`, url for information about the data set | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(RAVDESSConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs) | |
class RAVDESS(datasets.GeneratorBasedBuilder): | |
"""RAVDESS dataset.""" | |
BUILDER_CONFIGS = [] #RAVDESSConfig(name="clean", description="'Clean' speech.")] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"audio": datasets.Audio(sampling_rate=48000), | |
"text": datasets.Value("string"), | |
"labels": datasets.ClassLabel(names=_CLASS_NAMES), | |
"speaker_id": datasets.Value("string"), | |
"speaker_gender": datasets.Value("string") | |
# "id": datasets.Value("string"), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION | |
) | |
def _split_generators(self, dl_manager): | |
archive_path = dl_manager.download_and_extract(_URL) | |
archive_path = Path(archive_path) | |
preprocess(archive_path) | |
csv_path = os.path.join(archive_path, "RAVDESS_ser/data.csv") | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, | |
gen_kwargs={"data_info_csv": csv_path}), | |
] | |
def _generate_examples(self, data_info_csv): | |
print("\nGenerating an example") | |
# Read the data info to extract rows mentioning about non-converted audio only | |
data_info = pd.read_csv(open(data_info_csv, encoding="utf8")) | |
# Iterating the contents of the data to extract the relevant information | |
for audio_idx in range(data_info.shape[0]): | |
audio_data = data_info.iloc[audio_idx] | |
# subpath = str(audio_data["Path_to_Wav"]) | |
# import pathlib | |
# subpath = subpath.replace('\\', '/') | |
# p2 = pathlib.PurePosixPath(subpath) | |
# wav_path = str(pathlib.PurePath(data_path) / p2) | |
# labels = audio_data["Emotion"] #.lower().split(',') | |
# labels = [l for l in labels if len(l) > 1] | |
example = { | |
"audio": audio_data['Path_to_Wav'], #wav_path, | |
"text": audio_data['Statement'], | |
"labels": audio_data['Emotion'], | |
"speaker_id": audio_data["Actor"], | |
"speaker_gender": audio_data["Gender"] | |
} | |
yield audio_idx, example | |
# def class_names(self): | |
# return _CLASS_NAMES | |
# transcript = | |
# # extract transcript | |
# with open(wav_path.replace(".WAV", ".TXT"), encoding="utf-8") as op: | |
# transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number | |