Datasets:
Tasks:
Audio Classification
Sub-tasks:
audio-emotion-recognition
Languages:
English
Size:
1K<n<10K
License:
File size: 5,832 Bytes
79c4595 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""RAVDESS multimodal dataset for emotion recognition."""
import os
from pathlib import Path, PurePath, PurePosixPath
from collections import OrderedDict
import pandas as pd
import datasets
_CITATION = """\
"""
_DESCRIPTION = """\
"""
_URL = "https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24.zip"
_HOMEPAGE = "https://smartlaboratory.org/ravdess/"
_CLASS_NAMES = [
'neutral',
'calm',
'happy',
'sad',
'angry',
'fearful',
'disgust',
'surprised'
]
_FEAT_DICT = OrderedDict([
('Modality', ['full-AV', 'video-only', 'audio-only']),
('Vocal channel', ['speech', 'song']),
('Emotion', ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised']),
('Emotion intensity', ['normal', 'strong']),
('Statement', ["Kids are talking by the door", "Dogs are sitting by the door"]),
('Repetition', ["1st repetition", "2nd repetition"]),
])
def filename2feats(filename):
codes = filename.stem.split('-')
d = {}
for i, k in enumerate(_FEAT_DICT.keys()):
d[k] = _FEAT_DICT[k][int(codes[i])-1]
d['Actor'] = codes[-1]
d['Gender'] = 'female' if int(codes[-1]) % 2 == 0 else 'male'
d['Path_to_Wav'] = str(filename)
return d
def preprocess(data_root_path):
output_dir = data_root_path / "RAVDESS_ser"
output_dir.mkdir(parents=True, exist_ok=True)
data = []
for actor_dir in data_root_path.iterdir():
if actor_dir.is_dir() and "Actor" in actor_dir.name:
for f in actor_dir.iterdir():
data.append(filename2feats(f))
df = pd.DataFrame(data, columns=list(_FEAT_DICT.keys()) + ['Actor', 'Gender', 'Path_to_Wav'])
df.to_csv(output_dir / 'data.csv')
class RAVDESSConfig(datasets.BuilderConfig):
"""BuilderConfig for RAVDESS."""
def __init__(self, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
super(RAVDESSConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)
class RAVDESS(datasets.GeneratorBasedBuilder):
"""RAVDESS dataset."""
BUILDER_CONFIGS = [] #RAVDESSConfig(name="clean", description="'Clean' speech.")]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"audio": datasets.Audio(sampling_rate=48000),
"text": datasets.Value("string"),
"labels": datasets.ClassLabel(names=_CLASS_NAMES),
"speaker_id": datasets.Value("string"),
"speaker_gender": datasets.Value("string")
# "id": datasets.Value("string"),
}
),
homepage=_HOMEPAGE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download_and_extract(_URL)
archive_path = Path(archive_path)
preprocess(archive_path)
csv_path = os.path.join(archive_path, "RAVDESS_ser/data.csv")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={"data_info_csv": csv_path}),
]
def _generate_examples(self, data_info_csv):
print("\nGenerating an example")
# Read the data info to extract rows mentioning about non-converted audio only
data_info = pd.read_csv(open(data_info_csv, encoding="utf8"))
# Iterating the contents of the data to extract the relevant information
for audio_idx in range(data_info.shape[0]):
audio_data = data_info.iloc[audio_idx]
# subpath = str(audio_data["Path_to_Wav"])
# import pathlib
# subpath = subpath.replace('\\', '/')
# p2 = pathlib.PurePosixPath(subpath)
# wav_path = str(pathlib.PurePath(data_path) / p2)
# labels = audio_data["Emotion"] #.lower().split(',')
# labels = [l for l in labels if len(l) > 1]
example = {
"audio": audio_data['Path_to_Wav'], #wav_path,
"text": audio_data['Statement'],
"labels": audio_data['Emotion'],
"speaker_id": audio_data["Actor"],
"speaker_gender": audio_data["Gender"]
}
yield audio_idx, example
# def class_names(self):
# return _CLASS_NAMES
# transcript =
# # extract transcript
# with open(wav_path.replace(".WAV", ".TXT"), encoding="utf-8") as op:
# transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number
|