Datasets:
Tasks:
Audio Classification
Sub-tasks:
audio-emotion-recognition
Languages:
English
Size:
1K<n<10K
License:
Upload ravdess.py
Browse files- ravdess.py +191 -0
ravdess.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""RAVDESS multimodal dataset for emotion recognition."""
|
18 |
+
|
19 |
+
|
20 |
+
import os
|
21 |
+
from pathlib import Path, PurePath, PurePosixPath
|
22 |
+
from collections import OrderedDict
|
23 |
+
import pandas as pd
|
24 |
+
import datasets
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
|
33 |
+
"""
|
34 |
+
|
35 |
+
_URL = "https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24.zip"
|
36 |
+
_HOMEPAGE = "https://smartlaboratory.org/ravdess/"
|
37 |
+
|
38 |
+
_CLASS_NAMES = [
|
39 |
+
'neutral',
|
40 |
+
'calm',
|
41 |
+
'happy',
|
42 |
+
'sad',
|
43 |
+
'angry',
|
44 |
+
'fearful',
|
45 |
+
'disgust',
|
46 |
+
'surprised'
|
47 |
+
]
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
_FEAT_DICT = OrderedDict([
|
52 |
+
('Modality', ['full-AV', 'video-only', 'audio-only']),
|
53 |
+
('Vocal channel', ['speech', 'song']),
|
54 |
+
('Emotion', ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised']),
|
55 |
+
('Emotion intensity', ['normal', 'strong']),
|
56 |
+
('Statement', ["Kids are talking by the door", "Dogs are sitting by the door"]),
|
57 |
+
('Repetition', ["1st repetition", "2nd repetition"]),
|
58 |
+
])
|
59 |
+
|
60 |
+
|
61 |
+
def filename2feats(filename):
|
62 |
+
codes = filename.stem.split('-')
|
63 |
+
d = {}
|
64 |
+
for i, k in enumerate(_FEAT_DICT.keys()):
|
65 |
+
d[k] = _FEAT_DICT[k][int(codes[i])-1]
|
66 |
+
d['Actor'] = codes[-1]
|
67 |
+
d['Gender'] = 'female' if int(codes[-1]) % 2 == 0 else 'male'
|
68 |
+
d['Path_to_Wav'] = str(filename)
|
69 |
+
return d
|
70 |
+
|
71 |
+
|
72 |
+
def preprocess(data_root_path):
|
73 |
+
output_dir = data_root_path / "RAVDESS_ser"
|
74 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
75 |
+
|
76 |
+
data = []
|
77 |
+
for actor_dir in data_root_path.iterdir():
|
78 |
+
if actor_dir.is_dir() and "Actor" in actor_dir.name:
|
79 |
+
for f in actor_dir.iterdir():
|
80 |
+
data.append(filename2feats(f))
|
81 |
+
|
82 |
+
df = pd.DataFrame(data, columns=list(_FEAT_DICT.keys()) + ['Actor', 'Gender', 'Path_to_Wav'])
|
83 |
+
df.to_csv(output_dir / 'data.csv')
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
class RAVDESSConfig(datasets.BuilderConfig):
|
88 |
+
"""BuilderConfig for RAVDESS."""
|
89 |
+
|
90 |
+
def __init__(self, **kwargs):
|
91 |
+
"""
|
92 |
+
Args:
|
93 |
+
data_dir: `string`, the path to the folder containing the files in the
|
94 |
+
downloaded .tar
|
95 |
+
citation: `string`, citation for the data set
|
96 |
+
url: `string`, url for information about the data set
|
97 |
+
**kwargs: keyword arguments forwarded to super.
|
98 |
+
"""
|
99 |
+
super(RAVDESSConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)
|
100 |
+
|
101 |
+
|
102 |
+
class RAVDESS(datasets.GeneratorBasedBuilder):
|
103 |
+
"""RAVDESS dataset."""
|
104 |
+
|
105 |
+
BUILDER_CONFIGS = [] #RAVDESSConfig(name="clean", description="'Clean' speech.")]
|
106 |
+
|
107 |
+
def _info(self):
|
108 |
+
return datasets.DatasetInfo(
|
109 |
+
description=_DESCRIPTION,
|
110 |
+
features=datasets.Features(
|
111 |
+
{
|
112 |
+
"audio": datasets.Audio(sampling_rate=48000),
|
113 |
+
"text": datasets.Value("string"),
|
114 |
+
"labels": datasets.ClassLabel(names=_CLASS_NAMES),
|
115 |
+
"speaker_id": datasets.Value("string"),
|
116 |
+
"speaker_gender": datasets.Value("string")
|
117 |
+
# "id": datasets.Value("string"),
|
118 |
+
}
|
119 |
+
),
|
120 |
+
homepage=_HOMEPAGE,
|
121 |
+
citation=_CITATION
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def _split_generators(self, dl_manager):
|
126 |
+
archive_path = dl_manager.download_and_extract(_URL)
|
127 |
+
archive_path = Path(archive_path)
|
128 |
+
preprocess(archive_path)
|
129 |
+
csv_path = os.path.join(archive_path, "RAVDESS_ser/data.csv")
|
130 |
+
|
131 |
+
|
132 |
+
return [
|
133 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
134 |
+
gen_kwargs={"data_info_csv": csv_path}),
|
135 |
+
]
|
136 |
+
|
137 |
+
|
138 |
+
def _generate_examples(self, data_info_csv):
|
139 |
+
print("\nGenerating an example")
|
140 |
+
|
141 |
+
# Read the data info to extract rows mentioning about non-converted audio only
|
142 |
+
data_info = pd.read_csv(open(data_info_csv, encoding="utf8"))
|
143 |
+
|
144 |
+
# Iterating the contents of the data to extract the relevant information
|
145 |
+
for audio_idx in range(data_info.shape[0]):
|
146 |
+
audio_data = data_info.iloc[audio_idx]
|
147 |
+
|
148 |
+
# subpath = str(audio_data["Path_to_Wav"])
|
149 |
+
# import pathlib
|
150 |
+
# subpath = subpath.replace('\\', '/')
|
151 |
+
# p2 = pathlib.PurePosixPath(subpath)
|
152 |
+
# wav_path = str(pathlib.PurePath(data_path) / p2)
|
153 |
+
# labels = audio_data["Emotion"] #.lower().split(',')
|
154 |
+
|
155 |
+
# labels = [l for l in labels if len(l) > 1]
|
156 |
+
|
157 |
+
example = {
|
158 |
+
"audio": audio_data['Path_to_Wav'], #wav_path,
|
159 |
+
"text": audio_data['Statement'],
|
160 |
+
"labels": audio_data['Emotion'],
|
161 |
+
"speaker_id": audio_data["Actor"],
|
162 |
+
"speaker_gender": audio_data["Gender"]
|
163 |
+
}
|
164 |
+
|
165 |
+
yield audio_idx, example
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
# def class_names(self):
|
182 |
+
# return _CLASS_NAMES
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
# transcript =
|
189 |
+
# # extract transcript
|
190 |
+
# with open(wav_path.replace(".WAV", ".TXT"), encoding="utf-8") as op:
|
191 |
+
# transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number
|