language: | |
- en | |
dataset_info: | |
features: | |
- name: passages | |
struct: | |
- name: is_selected | |
sequence: int32 | |
- name: passage_text | |
sequence: string | |
- name: url | |
sequence: string | |
- name: query | |
dtype: string | |
- name: query_id | |
dtype: int32 | |
- name: query_type | |
dtype: string | |
- name: golden_passages | |
sequence: string | |
- name: answer | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 326842258 | |
num_examples: 70616 | |
download_size: 168328467 | |
dataset_size: 326842258 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
This dataset was created by filtering and adding columns needed to evaluate retrievers to "v1.1" version of [MSMARCO dataset] (https://github.com/microsoft/MSMARCO-Question-Answering). I am additionally providing the code used to filter the dataset in order to make everything clear. | |
``` | |
msmarco = load_dataset("ms_marco", "v1.1", split="train").to_pandas() | |
msmarco["golden_passages"] = [row["passages"]["passage_text"][row["passages"]["is_selected"]==1] for _, row in msmarco.iterrows()] | |
msmarco_correct_answers = msmarco[msmarco["answers"].apply(lambda x: len(x) == 1)] | |
msmarco_correct_answers = msmarco_correct_answers[msmarco_correct_answers["wellFormedAnswers"].apply(lambda x: len(x) == 0)] | |
msmarco_correct_answers.dropna(inplace=True) | |
msmarco_correct_answers["answer"] = msmarco_correct_answers["answers"].apply(lambda x: x[0]) | |
msmarco_correct_answers.drop(["wellFormedAnswers", "answers"], axis=1, inplace=True) | |
msmarco_correct_answers.reset_index(inplace=True, drop=True) | |
``` | |