msmarco_retrieval / README.md
librarian-bot's picture
Librarian Bot: Add language metadata for dataset
0d244e3 verified
|
raw
history blame
1.61 kB
metadata
language:
  - en
dataset_info:
  features:
    - name: passages
      struct:
        - name: is_selected
          sequence: int32
        - name: passage_text
          sequence: string
        - name: url
          sequence: string
    - name: query
      dtype: string
    - name: query_id
      dtype: int32
    - name: query_type
      dtype: string
    - name: golden_passages
      sequence: string
    - name: answer
      dtype: string
  splits:
    - name: train
      num_bytes: 326842258
      num_examples: 70616
  download_size: 168328467
  dataset_size: 326842258
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*

This dataset was created by filtering and adding columns needed to evaluate retrievers to "v1.1" version of [MSMARCO dataset] (https://github.com/microsoft/MSMARCO-Question-Answering). I am additionally providing the code used to filter the dataset in order to make everything clear.

msmarco = load_dataset("ms_marco", "v1.1", split="train").to_pandas()
msmarco["golden_passages"] = [row["passages"]["passage_text"][row["passages"]["is_selected"]==1] for _, row in msmarco.iterrows()]
msmarco_correct_answers = msmarco[msmarco["answers"].apply(lambda x: len(x) == 1)]
msmarco_correct_answers = msmarco_correct_answers[msmarco_correct_answers["wellFormedAnswers"].apply(lambda x: len(x) == 0)]
msmarco_correct_answers.dropna(inplace=True)
msmarco_correct_answers["answer"] = msmarco_correct_answers["answers"].apply(lambda x: x[0])
msmarco_correct_answers.drop(["wellFormedAnswers", "answers"], axis=1, inplace=True)
msmarco_correct_answers.reset_index(inplace=True, drop=True)