question_text
stringlengths
2
3.82k
input_outputs
stringlengths
23
941
algo_tags
sequence
ATMs of a well-known bank of a small country are arranged so that they can not give any amount of money requested by the user. Due to the limited size of the bill dispenser (the device that is directly giving money from an ATM) and some peculiarities of the ATM structure, you can get at most k bills from it, and the bills may be of at most two distinct denominations.For example, if a country uses bills with denominations 10, 50, 100, 500, 1000 and 5000 burles, then at k = 20 such ATM can give sums 100 000 burles and 96 000 burles, but it cannot give sums 99 000 and 101 000 burles.Let's suppose that the country uses bills of n distinct denominations, and the ATM that you are using has an unlimited number of bills of each type. You know that during the day you will need to withdraw a certain amount of cash q times. You know that when the ATM has multiple ways to give money, it chooses the one which requires the minimum number of bills, or displays an error message if it cannot be done. Determine the result of each of the q of requests for cash withdrawal.
Input: ['6 2010 50 100 500 1000 5000842001000009500096000990001010020159950'] Output:['6201920-13-1-1']
[ 4 ]
Прошло много лет, и на вечеринке снова встретились n друзей. С момента последней встречи техника шагнула далеко вперёд, появились фотоаппараты с автоспуском, и теперь не требуется, чтобы один из друзей стоял с фотоаппаратом, и, тем самым, оказывался не запечатлённым на снимке.Упрощенно процесс фотографирования можно описать следующим образом. На фотографии каждый из друзей занимает прямоугольник из пикселей: в стоячем положении i-й из них занимает прямоугольник ширины wi пикселей и высоты hi пикселей. Но также, при фотографировании каждый человек может лечь, и тогда он будет занимать прямоугольник ширины hi пикселей и высоты wi пикселей.Общая фотография будет иметь размеры W × H, где W — суммарная ширина всех прямоугольников-людей, а H — максимальная из высот. Друзья хотят определить, какую минимальную площадь может иметь общая фотография. Помогите им в этом.
Input: ['310 120 230 3'] Output:['180']
[ 2 ]
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
Input: ['ababaobababbah'] Output:['2']
[ 2 ]
Polycarp is flying in the airplane. Finally, it is his favorite time — the lunchtime. The BerAvia company stewardess is giving food consecutively to all the passengers from the 1-th one to the last one. Polycarp is sitting on seat m, that means, he will be the m-th person to get food.The flight menu has k dishes in total and when Polycarp boarded the flight, he had time to count the number of portions of each dish on board. Thus, he knows values a1, a2, ..., ak, where ai is the number of portions of the i-th dish.The stewardess has already given food to m - 1 passengers, gave Polycarp a polite smile and asked him what he would prefer. That's when Polycarp realized that they might have run out of some dishes by that moment. For some of the m - 1 passengers ahead of him, he noticed what dishes they were given. Besides, he's heard some strange mumbling from some of the m - 1 passengers ahead of him, similar to phrase 'I'm disappointed'. That happened when a passenger asked for some dish but the stewardess gave him a polite smile and said that they had run out of that dish. In that case the passenger needed to choose some other dish that was available. If Polycarp heard no more sounds from a passenger, that meant that the passenger chose his dish at the first try.Help Polycarp to find out for each dish: whether they could have run out of the dish by the moment Polyarp was served or that dish was definitely available.
Input: ['23 42 3 2 11 00 05 51 2 1 3 13 00 02 14 0'] Output:['YNNYYYYNY']
[ 2 ]
Vasya plays one very well-known and extremely popular MMORPG game. His game character has k skill; currently the i-th of them equals to ai. Also this game has a common rating table in which the participants are ranked according to the product of all the skills of a hero in the descending order.Vasya decided to 'upgrade' his character via the game store. This store offers n possible ways to improve the hero's skills; Each of these ways belongs to one of three types: assign the i-th skill to b; add b to the i-th skill; multiply the i-th skill by b. Unfortunately, a) every improvement can only be used once; b) the money on Vasya's card is enough only to purchase not more than m of the n improvements. Help Vasya to reach the highest ranking in the game. To do this tell Vasya which of improvements he has to purchase and in what order he should use them to make his rating become as high as possible. If there are several ways to achieve it, print any of them.
Input: ['2 4 313 201 1 141 2 302 1 63 2 2'] Output:['32 3 4']
[ 2 ]
Vasya is sitting on an extremely boring math class. To have fun, he took a piece of paper and wrote out n numbers on a single line. After that, Vasya began to write out different ways to put pluses ("+") in the line between certain digits in the line so that the result was a correct arithmetic expression; formally, no two pluses in such a partition can stand together (between any two adjacent pluses there must be at least one digit), and no plus can stand at the beginning or the end of a line. For example, in the string 100500, ways 100500 (add no pluses), 1+00+500 or 10050+0 are correct, and ways 100++500, +1+0+0+5+0+0 or 100500+ are incorrect.The lesson was long, and Vasya has written all the correct ways to place exactly k pluses in a string of digits. At this point, he got caught having fun by a teacher and he was given the task to calculate the sum of all the resulting arithmetic expressions by the end of the lesson (when calculating the value of an expression the leading zeros should be ignored). As the answer can be large, Vasya is allowed to get only its remainder modulo 109 + 7. Help him!
Input: ['3 1108'] Output:['27']
[ 3 ]
Once Vasya and Petya assembled a figure of m cubes, each of them is associated with a number between 0 and m - 1 (inclusive, each number appeared exactly once). Let's consider a coordinate system such that the OX is the ground, and the OY is directed upwards. Each cube is associated with the coordinates of its lower left corner, these coordinates are integers for each cube.The figure turned out to be stable. This means that for any cube that is not on the ground, there is at least one cube under it such that those two cubes touch by a side or a corner. More formally, this means that for the cube with coordinates (x, y) either y = 0, or there is a cube with coordinates (x - 1, y - 1), (x, y - 1) or (x + 1, y - 1).Now the boys want to disassemble the figure and put all the cubes in a row. In one step the cube is removed from the figure and being put to the right of the blocks that have already been laid. The guys remove the cubes in such order that the figure remains stable. To make the process more interesting, the guys decided to play the following game. The guys take out the cubes from the figure in turns. It is easy to see that after the figure is disassembled, the integers written on the cubes form a number, written in the m-ary positional numerical system (possibly, with a leading zero). Vasya wants the resulting number to be maximum possible, and Petya, on the contrary, tries to make it as small as possible. Vasya starts the game.Your task is to determine what number is formed after the figure is disassembled, if the boys play optimally. Determine the remainder of the answer modulo 109 + 9.
Input: ['32 11 00 1'] Output:['19']
[ 2 ]
Vasya became interested in bioinformatics. He's going to write an article about similar cyclic DNA sequences, so he invented a new method for determining the similarity of cyclic sequences.Let's assume that strings s and t have the same length n, then the function h(s, t) is defined as the number of positions in which the respective symbols of s and t are the same. Function h(s, t) can be used to define the function of Vasya distance ρ(s, t): where is obtained from string s, by applying left circular shift i times. For example, ρ("AGC", "CGT") =  h("AGC", "CGT") + h("AGC", "GTC") + h("AGC", "TCG") +  h("GCA", "CGT") + h("GCA", "GTC") + h("GCA", "TCG") +  h("CAG", "CGT") + h("CAG", "GTC") + h("CAG", "TCG") =  1 + 1 + 0 + 0 + 1 + 1 + 1 + 0 + 1 = 6Vasya found a string s of length n on the Internet. Now he wants to count how many strings t there are such that the Vasya distance from the string s attains maximum possible value. Formally speaking, t must satisfy the equation: .Vasya could not try all possible strings to find an answer, so he needs your help. As the answer may be very large, count the number of such strings modulo 109 + 7.
Input: ['1C'] Output:['1']
[ 3 ]
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n.Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result?
Input: ['4 6'] Output:['2']
[ 2, 3 ]
A and B are preparing themselves for programming contests.The University where A and B study is a set of rooms connected by corridors. Overall, the University has n rooms connected by n - 1 corridors so that you can get from any room to any other one by moving along the corridors. The rooms are numbered from 1 to n.Every day А and B write contests in some rooms of their university, and after each contest they gather together in the same room and discuss problems. A and B want the distance from the rooms where problems are discussed to the rooms where contests are written to be equal. The distance between two rooms is the number of edges on the shortest path between them.As they write contests in new rooms every day, they asked you to help them find the number of possible rooms to discuss problems for each of the following m days.
Input: ['41 21 32 412 3'] Output:['1']
[ 4 ]
A and B are preparing themselves for programming contests.An important part of preparing for a competition is sharing programming knowledge from the experienced members to those who are just beginning to deal with the contests. Therefore, during the next team training A decided to make teams so that newbies are solving problems together with experienced participants.A believes that the optimal team of three people should consist of one experienced participant and two newbies. Thus, each experienced participant can share the experience with a large number of people.However, B believes that the optimal team should have two experienced members plus one newbie. Thus, each newbie can gain more knowledge and experience.As a result, A and B have decided that all the teams during the training session should belong to one of the two types described above. Furthermore, they agree that the total number of teams should be as much as possible.There are n experienced members and m newbies on the training session. Can you calculate what maximum number of teams can be formed?
Input: ['2 6'] Output:['2']
[ 2, 3 ]
On a certain meeting of a ruling party "A" minister Pavel suggested to improve the sewer system and to create a new pipe in the city.The city is an n × m rectangular squared field. Each square of the field is either empty (then the pipe can go in it), or occupied (the pipe cannot go in such square). Empty squares are denoted by character '.', occupied squares are denoted by character '#'.The pipe must meet the following criteria: the pipe is a polyline of width 1, the pipe goes in empty squares, the pipe starts from the edge of the field, but not from a corner square, the pipe ends at the edge of the field but not in a corner square, the pipe has at most 2 turns (90 degrees), the border squares of the field must share exactly two squares with the pipe, if the pipe looks like a single segment, then the end points of the pipe must lie on distinct edges of the field, for each non-border square of the pipe there are exacly two side-adjacent squares that also belong to the pipe, for each border square of the pipe there is exactly one side-adjacent cell that also belongs to the pipe. Here are some samples of allowed piping routes: ....# ....# .*..# ***** ****. .***. ..#.. ..#*. ..#*. #...# #..*# #..*# ..... ...*. ...*.Here are some samples of forbidden piping routes: .**.# *...# .*.*# ..... ****. .*.*. ..#.. ..#*. .*#*. #...# #..*# #*.*# ..... ...*. .***.In these samples the pipes are represented by characters ' * '.You were asked to write a program that calculates the number of distinct ways to make exactly one pipe in the city. The two ways to make a pipe are considered distinct if they are distinct in at least one square.
Input: ['3 3.....#...'] Output:['3']
[ 0, 4 ]
After bracket sequences Arthur took up number theory. He has got a new favorite sequence of length n (a1, a2, ..., an), consisting of integers and integer k, not exceeding n.This sequence had the following property: if you write out the sums of all its segments consisting of k consecutive elements (a1  +  a2 ...  +  ak,  a2  +  a3  +  ...  +  ak + 1,  ...,  an - k + 1  +  an - k + 2  +  ...  +  an), then those numbers will form strictly increasing sequence.For example, for the following sample: n = 5,  k = 3,  a = (1,  2,  4,  5,  6) the sequence of numbers will look as follows: (1  +  2  +  4,  2  +  4  +  5,  4  +  5  +  6) = (7,  11,  15), that means that sequence a meets the described property. Obviously the sequence of sums will have n - k + 1 elements.Somebody (we won't say who) replaced some numbers in Arthur's sequence by question marks (if this number is replaced, it is replaced by exactly one question mark). We need to restore the sequence so that it meets the required property and also minimize the sum |ai|, where |ai| is the absolute value of ai.
Input: ['3 2? 1 2'] Output:['0 1 2 ']
[ 2, 3, 4 ]
Ilya got tired of sports programming, left university and got a job in the subway. He was given the task to determine the escalator load factor. Let's assume that n people stand in the queue for the escalator. At each second one of the two following possibilities takes place: either the first person in the queue enters the escalator with probability p, or the first person in the queue doesn't move with probability (1 - p), paralyzed by his fear of escalators and making the whole queue wait behind him.Formally speaking, the i-th person in the queue cannot enter the escalator until people with indices from 1 to i - 1 inclusive enter it. In one second only one person can enter the escalator. The escalator is infinite, so if a person enters it, he never leaves it, that is he will be standing on the escalator at any following second. Ilya needs to count the expected value of the number of people standing on the escalator after t seconds. Your task is to help him solve this complicated task.
Input: ['1 0.50 1'] Output:['0.5']
[ 3 ]
Little Tanya decided to present her dad a postcard on his Birthday. She has already created a message — string s of length n, consisting of uppercase and lowercase English letters. Tanya can't write yet, so she found a newspaper and decided to cut out the letters and glue them into the postcard to achieve string s. The newspaper contains string t, consisting of uppercase and lowercase English letters. We know that the length of string t greater or equal to the length of the string s.The newspaper may possibly have too few of some letters needed to make the text and too many of some other letters. That's why Tanya wants to cut some n letters out of the newspaper and make a message of length exactly n, so that it looked as much as possible like s. If the letter in some position has correct value and correct letter case (in the string s and in the string that Tanya will make), then she shouts joyfully "YAY!", and if the letter in the given position has only the correct value but it is in the wrong case, then the girl says "WHOOPS".Tanya wants to make such message that lets her shout "YAY!" as much as possible. If there are multiple ways to do this, then her second priority is to maximize the number of times she says "WHOOPS". Your task is to help Tanya make the message.
Input: ['AbCDCbA'] Output:['3 0']
[ 2 ]
Drazil has many friends. Some of them are happy and some of them are unhappy. Drazil wants to make all his friends become happy. So he invented the following plan.There are n boys and m girls among his friends. Let's number them from 0 to n - 1 and 0 to m - 1 separately. In i-th day, Drazil invites -th boy and -th girl to have dinner together (as Drazil is programmer, i starts from 0). If one of those two people is happy, the other one will also become happy. Otherwise, those two people remain in their states. Once a person becomes happy (or if it is happy originally), he stays happy forever.Drazil wants to know on which day all his friends become happy or to determine if they won't become all happy at all.
Input: ['2 301 0'] Output:['4']
[ 3 ]
Drazil created a following problem about putting 1 × 2 tiles into an n × m grid:"There is a grid with some cells that are empty and some cells that are occupied. You should use 1 × 2 tiles to cover all empty cells and no two tiles should cover each other. And you should print a solution about how to do it."But Drazil doesn't like to write special checking program for this task. His friend, Varda advised him: "how about asking contestant only to print the solution when it exists and it is unique? Otherwise contestant may print 'Not unique' ".Drazil found that the constraints for this task may be much larger than for the original task!Can you solve this new problem?Note that you should print 'Not unique' either when there exists no solution or when there exists several different solutions for the original task.
Input: ['3 3....*....'] Output:['Not unique']
[ 2 ]
Drazil is playing a math game with Varda.Let's define for positive integer x as a product of factorials of its digits. For example, .First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:1. x doesn't contain neither digit 0 nor digit 1.2. = .Help friends find such number.
Input: ['41234'] Output:['33222']
[ 2, 3 ]
Drazil has many friends. Some of them are happy and some of them are unhappy. Drazil wants to make all his friends become happy. So he invented the following plan.There are n boys and m girls among his friends. Let's number them from 0 to n - 1 and 0 to m - 1 separately. In i-th day, Drazil invites -th boy and -th girl to have dinner together (as Drazil is programmer, i starts from 0). If one of those two people is happy, the other one will also become happy. Otherwise, those two people remain in their states. Once a person becomes happy (or if he/she was happy originally), he stays happy forever.Drazil wants to know whether he can use this plan to make all his friends become happy at some moment.
Input: ['2 301 0'] Output:['Yes']
[ 0 ]
Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0, 0) and Varda's home is located in point (a, b). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (x, y) he can go to positions (x + 1, y), (x - 1, y), (x, y + 1) or (x, y - 1). Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (a, b) and continue travelling. Luckily, Drazil arrived to the position (a, b) successfully. Drazil said to Varda: "It took me exactly s steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0, 0) to (a, b) in exactly s steps. Can you find out if it is possible for Varda?
Input: ['5 5 11'] Output:['No']
[ 3 ]
An army of n droids is lined up in one row. Each droid is described by m integers a1, a2, ..., am, where ai is the number of details of the i-th type in this droid's mechanism. R2-D2 wants to destroy the sequence of consecutive droids of maximum length. He has m weapons, the i-th weapon can affect all the droids in the army by destroying one detail of the i-th type (if the droid doesn't have details of this type, nothing happens to it). A droid is considered to be destroyed when all of its details are destroyed. R2-D2 can make at most k shots. How many shots from the weapon of what type should R2-D2 make to destroy the sequence of consecutive droids of maximum length?
Input: ['5 2 44 01 22 10 21 3'] Output:['2 2']
[ 4 ]
Watto, the owner of a spare parts store, has recently got an order for the mechanism that can process strings in a certain way. Initially the memory of the mechanism is filled with n strings. Then the mechanism should be able to process queries of the following type: "Given string s, determine if the memory of the mechanism contains string t that consists of the same number of characters as s and differs from s in exactly one position".Watto has already compiled the mechanism, all that's left is to write a program for it and check it on the data consisting of n initial lines and m queries. He decided to entrust this job to you.
Input: ['2 3aaaaaacacacaaabaaccacacccaaac'] Output:['YESNONO']
[ 4 ]
There are n Imperial stormtroopers on the field. The battle field is a plane with Cartesian coordinate system. Each stormtrooper is associated with his coordinates (x, y) on this plane. Han Solo has the newest duplex lazer gun to fight these stormtroopers. It is situated at the point (x0, y0). In one shot it can can destroy all the stormtroopers, situated on some line that crosses point (x0, y0).Your task is to determine what minimum number of shots Han Solo needs to defeat all the stormtroopers.The gun is the newest invention, it shoots very quickly and even after a very large number of shots the stormtroopers don't have enough time to realize what's happening and change their location.
Input: ['4 0 01 12 22 0-1 -1'] Output:['2']
[ 0, 3 ]
Luke Skywalker gave Chewbacca an integer number x. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit t means replacing it with digit 9 - t. Help Chewbacca to transform the initial number x to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.
Input: ['27'] Output:['22']
[ 2 ]
You are given a permutation of n numbers p1, p2, ..., pn. We perform k operations of the following type: choose uniformly at random two indices l and r (l ≤ r) and reverse the order of the elements pl, pl + 1, ..., pr. Your task is to find the expected value of the number of inversions in the resulting permutation.
Input: ['3 11 2 3'] Output:['0.833333333333333']
[ 0 ]
You are given a permutation p of numbers 1, 2, ..., n. Let's define f(p) as the following sum:Find the lexicographically m-th permutation of length n in the set of permutations having the maximum possible value of f(p).
Input: ['2 2'] Output:['2 1 ']
[ 3 ]
You are given a permutation p of numbers 1, 2, ..., n. Let's define f(p) as the following sum:Find the lexicographically m-th permutation of length n in the set of permutations having the maximum possible value of f(p).
Input: ['2 2'] Output:['2 1 ']
[ 0 ]
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly n1 balls and second player's box contains exactly n2 balls. In one move first player can take from 1 to k1 balls from his box and throw them away. Similarly, the second player can take from 1 to k2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
Input: ['2 2 1 2'] Output:['Second']
[ 3 ]
Fox Ciel is playing a game. In this game there is an infinite long tape with cells indexed by integers (positive, negative and zero). At the beginning she is standing at the cell 0.There are also n cards, each card has 2 attributes: length li and cost ci. If she pays ci dollars then she can apply i-th card. After applying i-th card she becomes able to make jumps of length li, i. e. from cell x to cell (x - li) or cell (x + li).She wants to be able to jump to any cell on the tape (possibly, visiting some intermediate cells). For achieving this goal, she wants to buy some cards, paying as little money as possible. If this is possible, calculate the minimal cost.
Input: ['3100 99 99001 1 1'] Output:['2']
[ 0, 3 ]
When Sasha was studying in the seventh grade, he started listening to music a lot. In order to evaluate which songs he likes more, he introduced the notion of the song's prettiness. The title of the song is a word consisting of uppercase Latin letters. The prettiness of the song is the prettiness of its title.Let's define the simple prettiness of a word as the ratio of the number of vowels in the word to the number of all letters in the word.Let's define the prettiness of a word as the sum of simple prettiness of all the substrings of the word.More formally, let's define the function vowel(c) which is equal to 1, if c is a vowel, and to 0 otherwise. Let si be the i-th character of string s, and si..j be the substring of word s, staring at the i-th character and ending at the j-th character (sisi + 1... sj, i ≤ j).Then the simple prettiness of s is defined by the formula:The prettiness of s equals Find the prettiness of the given song title.We assume that the vowels are I, E, A, O, U, Y.
Input: ['IEAIAIO'] Output:['28.0000000']
[ 3 ]
Vasya had two arrays consisting of non-negative integers: a of size n and b of size m. Vasya chose a positive integer k and created an n × m matrix v using the following formula:Vasya wrote down matrix v on a piece of paper and put it in the table.A year later Vasya was cleaning his table when he found a piece of paper containing an n × m matrix w. He remembered making a matrix one day by the rules given above but he was not sure if he had found the paper with the matrix v from those days. Your task is to find out if the matrix w that you've found could have been obtained by following these rules and if it could, then for what numbers k, a1, a2, ..., an, b1, b2, ..., bm it is possible.
Input: ['2 31 2 32 3 4'] Output:['YES10000000070 1 1 2 3 ']
[ 3 ]
Vasya had a strictly increasing sequence of positive integers a1, ..., an. Vasya used it to build a new sequence b1, ..., bn, where bi is the sum of digits of ai's decimal representation. Then sequence ai got lost and all that remained is sequence bi.Vasya wonders what the numbers ai could be like. Of all the possible options he likes the one sequence with the minimum possible last number an. Help Vasya restore the initial sequence.It is guaranteed that such a sequence always exists.
Input: ['3123'] Output:['123']
[ 2 ]
There are n piles of pebbles on the table, the i-th pile contains ai pebbles. Your task is to paint each pebble using one of the k given colors so that for each color c and any two piles i and j the difference between the number of pebbles of color c in pile i and number of pebbles of color c in pile j is at most one.In other words, let's say that bi, c is the number of pebbles of color c in the i-th pile. Then for any 1 ≤ c ≤ k, 1 ≤ i, j ≤ n the following condition must be satisfied |bi, c - bj, c| ≤ 1. It isn't necessary to use all k colors: if color c hasn't been used in pile i, then bi, c is considered to be zero.
Input: ['4 41 2 3 4'] Output:['YES11 41 2 41 2 3 4']
[ 2 ]
An n × n table a is defined as follows: The first row and the first column contain ones, that is: ai, 1 = a1, i = 1 for all i = 1, 2, ..., n. Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai, j = ai - 1, j + ai, j - 1. These conditions define all the values in the table.You are given a number n. You need to determine the maximum value in the n × n table defined by the rules above.
Input: ['1'] Output:['1']
[ 0 ]
Notice that the memory limit is non-standard.Recently Arthur and Sasha have studied correct bracket sequences. Arthur understood this topic perfectly and become so amazed about correct bracket sequences, so he even got himself a favorite correct bracket sequence of length 2n. Unlike Arthur, Sasha understood the topic very badly, and broke Arthur's favorite correct bracket sequence just to spite him.All Arthur remembers about his favorite sequence is for each opening parenthesis ('(') the approximate distance to the corresponding closing one (')'). For the i-th opening bracket he remembers the segment [li, ri], containing the distance to the corresponding closing bracket.Formally speaking, for the i-th opening bracket (in order from left to right) we know that the difference of its position and the position of the corresponding closing bracket belongs to the segment [li, ri].Help Arthur restore his favorite correct bracket sequence!
Input: ['41 11 11 11 1'] Output:['()()()()']
[ 2 ]
Anya loves to watch horror movies. In the best traditions of horror, she will be visited by m ghosts tonight. Anya has lots of candles prepared for the visits, each candle can produce light for exactly t seconds. It takes the girl one second to light one candle. More formally, Anya can spend one second to light one candle, then this candle burns for exactly t seconds and then goes out and can no longer be used.For each of the m ghosts Anya knows the time at which it comes: the i-th visit will happen wi seconds after midnight, all wi's are distinct. Each visit lasts exactly one second.What is the minimum number of candles Anya should use so that during each visit, at least r candles are burning? Anya can start to light a candle at any time that is integer number of seconds from midnight, possibly, at the time before midnight. That means, she can start to light a candle integer number of seconds before midnight or integer number of seconds after a midnight, or in other words in any integer moment of time.
Input: ['1 8 310'] Output:['3']
[ 2 ]
Berland, 2016. The exchange rate of currency you all know against the burle has increased so much that to simplify the calculations, its fractional part was neglected and the exchange rate is now assumed to be an integer.Reliable sources have informed the financier Anton of some information about the exchange rate of currency you all know against the burle for tomorrow. Now Anton knows that tomorrow the exchange rate will be an even number, which can be obtained from the present rate by swapping exactly two distinct digits in it. Of all the possible values that meet these conditions, the exchange rate for tomorrow will be the maximum possible. It is guaranteed that today the exchange rate is an odd positive integer n. Help Anton to determine the exchange rate of currency you all know for tomorrow!
Input: ['527'] Output:['572']
[ 2, 3 ]
Pasha loves his phone and also putting his hair up... But the hair is now irrelevant.Pasha has installed a new game to his phone. The goal of the game is following. There is a rectangular field consisting of n row with m pixels in each row. Initially, all the pixels are colored white. In one move, Pasha can choose any pixel and color it black. In particular, he can choose the pixel that is already black, then after the boy's move the pixel does not change, that is, it remains black. Pasha loses the game when a 2 × 2 square consisting of black pixels is formed. Pasha has made a plan of k moves, according to which he will paint pixels. Each turn in his plan is represented as a pair of numbers i and j, denoting respectively the row and the column of the pixel to be colored on the current move.Determine whether Pasha loses if he acts in accordance with his plan, and if he does, on what move the 2 × 2 square consisting of black pixels is formed.
Input: ['2 2 41 11 22 12 2'] Output:['4']
[ 0 ]
Amr bought a new video game "Guess Your Way Out!". The goal of the game is to find an exit from the maze that looks like a perfect binary tree of height h. The player is initially standing at the root of the tree and the exit from the tree is located at some leaf node. Let's index all the leaf nodes from the left to the right from 1 to 2h. The exit is located at some node n where 1 ≤ n ≤ 2h, the player doesn't know where the exit is so he has to guess his way out!Amr follows simple algorithm to choose the path. Let's consider infinite command string "LRLRLRLRL..." (consisting of alternating characters 'L' and 'R'). Amr sequentially executes the characters of the string using following rules: Character 'L' means "go to the left child of the current node"; Character 'R' means "go to the right child of the current node"; If the destination node is already visited, Amr skips current command, otherwise he moves to the destination node; If Amr skipped two consecutive commands, he goes back to the parent of the current node before executing next command; If he reached a leaf node that is not the exit, he returns to the parent of the current node; If he reaches an exit, the game is finished. Now Amr wonders, if he follows this algorithm, how many nodes he is going to visit before reaching the exit?
Input: ['1 2'] Output:['2']
[ 3 ]
Amr loves Geometry. One day he came up with a very interesting problem.Amr has a circle of radius r and center in point (x, y). He wants the circle center to be in new position (x', y').In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.Help Amr to achieve his goal in minimum number of steps.
Input: ['2 0 0 0 4'] Output:['1']
[ 3 ]
Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea.Amr has n instruments, it takes ai days to learn i-th instrument. Being busy, Amr dedicated k days to learn how to play the maximum possible number of instruments.Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
Input: ['4 104 3 1 2'] Output:['41 2 3 4']
[ 2 ]
Mr. Kitayuta has just bought an undirected graph with n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.Mr. Kitayuta wants you to process the following q queries.In the i-th query, he gives you two integers - ui and vi.Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.
Input: ['4 51 2 11 2 22 3 12 3 32 4 331 23 41 4'] Output:['210']
[ 0 ]
Mr. Kitayuta's garden is planted with n bamboos. (Bamboos are tall, fast-growing tropical plants with hollow stems.) At the moment, the height of the i-th bamboo is hi meters, and it grows ai meters at the end of each day. Actually, Mr. Kitayuta hates these bamboos. He once attempted to cut them down, but failed because their stems are too hard. Mr. Kitayuta have not given up, however. He has crafted Magical Hammer with his intelligence to drive them into the ground.He can use Magical Hammer at most k times during each day, due to his limited Magic Power. Each time he beat a bamboo with Magical Hammer, its height decreases by p meters. If the height would become negative by this change, it will become 0 meters instead (it does not disappear). In other words, if a bamboo whose height is h meters is beaten with Magical Hammer, its new height will be max(0, h - p) meters. It is possible to beat the same bamboo more than once in a day.Mr. Kitayuta will fight the bamboos for m days, starting today. His purpose is to minimize the height of the tallest bamboo after m days (that is, m iterations of "Mr. Kitayuta beats the bamboos and then they grow"). Find the lowest possible height of the tallest bamboo after m days.
Input: ['3 1 2 510 1010 1015 2'] Output:['17']
[ 2, 4 ]
Mr. Kitayuta has kindly given you a string s consisting of lowercase English letters. You are asked to insert exactly one lowercase English letter into s to make it a palindrome. A palindrome is a string that reads the same forward and backward. For example, "noon", "testset" and "a" are all palindromes, while "test" and "kitayuta" are not.You can choose any lowercase English letter, and insert it to any position of s, possibly to the beginning or the end of s. You have to insert a letter even if the given string is already a palindrome.If it is possible to insert one lowercase English letter into s so that the resulting string will be a palindrome, print the string after the insertion. Otherwise, print "NA" (without quotes, case-sensitive). In case there is more than one palindrome that can be obtained, you are allowed to print any of them.
Input: ['revive'] Output:['reviver']
[ 0 ]
Misha has a tree with characters written on the vertices. He can choose two vertices s and t of this tree and write down characters of vertices lying on a path from s to t. We'll say that such string corresponds to pair (s, t).Misha has m queries of type: you are given 4 vertices a, b, c, d; you need to find the largest common prefix of the strings that correspond to pairs (a, b) and (c, d). Your task is to help him.
Input: ['6bbbabb2 13 24 35 26 562 5 3 11 5 2 35 6 5 66 3 4 16 2 3 42 2 4 5'] Output:['222010']
[ 4 ]
Misha has an array of n integers indexed by integers from 1 to n. Let's define palindrome degree of array a as the number of such index pairs (l, r)(1 ≤ l ≤ r ≤ n), that the elements from the l-th to the r-th one inclusive can be rearranged in such a way that the whole array will be a palindrome. In other words, pair (l, r) should meet the condition that after some rearranging of numbers on positions from l to r, inclusive (it is allowed not to rearrange the numbers at all), for any 1 ≤ i ≤ n following condition holds: a[i] = a[n - i + 1]. Your task is to find the palindrome degree of Misha's array.
Input: ['32 2 2'] Output:['6']
[ 4 ]
Let's define a forest as a non-directed acyclic graph (also without loops and parallel edges). One day Misha played with the forest consisting of n vertices. For each vertex v from 0 to n - 1 he wrote down two integers, degreev and sv, were the first integer is the number of vertices adjacent to vertex v, and the second integer is the XOR sum of the numbers of vertices adjacent to v (if there were no adjacent vertices, he wrote down 0). Next day Misha couldn't remember what graph he initially had. Misha has values degreev and sv left, though. Help him find the number of edges and the edges of the initial graph. It is guaranteed that there exists a forest that corresponds to the numbers written by Misha.
Input: ['32 31 01 0'] Output:['21 02 0']
[ 2 ]
New Year is coming, and Jaehyun decided to read many books during 2015, unlike this year. He has n books numbered by integers from 1 to n. The weight of the i-th (1 ≤ i ≤ n) book is wi.As Jaehyun's house is not large enough to have a bookshelf, he keeps the n books by stacking them vertically. When he wants to read a certain book x, he follows the steps described below. He lifts all the books above book x. He pushes book x out of the stack. He puts down the lifted books without changing their order. After reading book x, he puts book x on the top of the stack. He decided to read books for m days. In the j-th (1 ≤ j ≤ m) day, he will read the book that is numbered with integer bj (1 ≤ bj ≤ n). To read the book, he has to use the process described in the paragraph above. It is possible that he decides to re-read the same book several times.After making this plan, he realized that the total weight of books he should lift during m days would be too heavy. So, he decided to change the order of the stacked books before the New Year comes, and minimize the total weight. You may assume that books can be stacked in any possible order. Note that book that he is going to read on certain step isn't considered as lifted on that step. Can you help him?
Input: ['3 51 2 31 3 2 3 1'] Output:['12']
[ 2, 3 ]
User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrix A, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ n, i ≠ j) if and only if Ai, j = 1.Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.
Input: ['75 2 4 3 6 7 10001001000000000000101000001000000000100001001000'] Output:['1 2 4 3 6 7 5']
[ 2, 3 ]
You have decided to watch the best moments of some movie. There are two buttons on your player: Watch the current minute of the movie. By pressing this button, you watch the current minute of the movie and the player automatically proceeds to the next minute of the movie. Skip exactly x minutes of the movie (x is some fixed positive integer). If the player is now at the t-th minute of the movie, then as a result of pressing this button, it proceeds to the minute (t + x). Initially the movie is turned on in the player on the first minute, and you want to watch exactly n best moments of the movie, the i-th best moment starts at the li-th minute and ends at the ri-th minute (more formally, the i-th best moment consists of minutes: li, li + 1, ..., ri). Determine, what is the minimum number of minutes of the movie you have to watch if you want to watch all the best moments?
Input: ['2 35 610 12'] Output:['6']
[ 2 ]
You are an assistant director in a new musical play. The play consists of n musical parts, each part must be performed by exactly one actor. After the casting the director chose m actors who can take part in the play. Your task is to assign the parts to actors. However, there are several limitations.First, each actor has a certain voice range and there are some parts that he cannot sing. Formally, there are two integers for each actor, ci and di (ci ≤ di) — the pitch of the lowest and the highest note that the actor can sing. There also are two integers for each part — aj and bj (aj ≤ bj) — the pitch of the lowest and the highest notes that are present in the part. The i-th actor can perform the j-th part if and only if ci ≤ aj ≤ bj ≤ di, i.e. each note of the part is in the actor's voice range.According to the contract, the i-th actor can perform at most ki parts. Besides, you are allowed not to give any part to some actors (then they take part in crowd scenes).The rehearsal starts in two hours and you need to do the assignment quickly!
Input: ['31 32 43 521 4 22 5 1'] Output:['YES1 1 2']
[ 2 ]
Petya and Gena love playing table tennis. A single match is played according to the following rules: a match consists of multiple sets, each set consists of multiple serves. Each serve is won by one of the players, this player scores one point. As soon as one of the players scores t points, he wins the set; then the next set starts and scores of both players are being set to 0. As soon as one of the players wins the total of s sets, he wins the match and the match is over. Here s and t are some positive integer numbers.To spice it up, Petya and Gena choose new numbers s and t before every match. Besides, for the sake of history they keep a record of each match: that is, for each serve they write down the winner. Serve winners are recorded in the chronological order. In a record the set is over as soon as one of the players scores t points and the match is over as soon as one of the players wins s sets.Petya and Gena have found a record of an old match. Unfortunately, the sequence of serves in the record isn't divided into sets and numbers s and t for the given match are also lost. The players now wonder what values of s and t might be. Can you determine all the possible options?
Input: ['51 2 1 2 1'] Output:['21 33 1']
[ 4 ]
You are given an n × m rectangular table consisting of lower case English letters. In one operation you can completely remove one column from the table. The remaining parts are combined forming a new table. For example, after removing the second column from the tableabcdedfghijk we obtain the table:acdefghjk A table is called good if its rows are ordered from top to bottom lexicographically, i.e. each row is lexicographically no larger than the following one. Determine the minimum number of operations of removing a column needed to make a given table good.
Input: ['1 10codeforces'] Output:['0']
[ 0 ]
You got a box with a combination lock. The lock has a display showing n digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068.You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number.
Input: ['3579'] Output:['024']
[ 0 ]
Mike is trying rock climbing but he is awful at it. There are n holds on the wall, i-th hold is at height ai off the ground. Besides, let the sequence ai increase, that is, ai < ai + 1 for all i from 1 to n - 1; we will call such sequence a track. Mike thinks that the track a1, ..., an has difficulty . In other words, difficulty equals the maximum distance between two holds that are adjacent in height.Today Mike decided to cover the track with holds hanging on heights a1, ..., an. To make the problem harder, Mike decided to remove one hold, that is, remove one element of the sequence (for example, if we take the sequence (1, 2, 3, 4, 5) and remove the third element from it, we obtain the sequence (1, 2, 4, 5)). However, as Mike is awful at climbing, he wants the final difficulty (i.e. the maximum difference of heights between adjacent holds after removing the hold) to be as small as possible among all possible options of removing a hold. The first and last holds must stay at their positions.Help Mike determine the minimum difficulty of the track after removing one hold.
Input: ['31 4 6'] Output:['5']
[ 0, 3 ]
Last week, Hamed learned about a new type of equations in his math class called Modular Equations. Lets define i modulo j as the remainder of division of i by j and denote it by . A Modular Equation, as Hamed's teacher described, is an equation of the form in which a and b are two non-negative integers and x is a variable. We call a positive integer x for which a solution of our equation.Hamed didn't pay much attention to the class since he was watching a movie. He only managed to understand the definitions of these equations.Now he wants to write his math exercises but since he has no idea how to do that, he asked you for help. He has told you all he knows about Modular Equations and asked you to write a program which given two numbers a and b determines how many answers the Modular Equation has.
Input: ['21 5'] Output:['2']
[ 3 ]
Malek has recently found a treasure map. While he was looking for a treasure he found a locked door. There was a string s written on the door consisting of characters '(', ')' and '#'. Below there was a manual on how to open the door. After spending a long time Malek managed to decode the manual and found out that the goal is to replace each '#' with one or more ')' characters so that the final string becomes beautiful. Below there was also written that a string is called beautiful if for each i (1 ≤ i ≤ |s|) there are no more ')' characters than '(' characters among the first i characters of s and also the total number of '(' characters is equal to the total number of ')' characters. Help Malek open the door by telling him for each '#' character how many ')' characters he must replace it with.
Input: ['(((#)((#)'] Output:['12']
[ 2 ]
Vasya is studying in the last class of school and soon he will take exams. He decided to study polynomials. Polynomial is a function P(x) = a0 + a1x1 + ... + anxn. Numbers ai are called coefficients of a polynomial, non-negative integer n is called a degree of a polynomial.Vasya has made a bet with his friends that he can solve any problem with polynomials. They suggested him the problem: "Determine how many polynomials P(x) exist with integer non-negative coefficients so that , and , where and b are given positive integers"? Vasya does not like losing bets, but he has no idea how to solve this task, so please help him to solve the problem.
Input: ['2 2 2'] Output:['2']
[ 3 ]
Vasya decided to learn to play chess. Classic chess doesn't seem interesting to him, so he plays his own sort of chess.The queen is the piece that captures all squares on its vertical, horizontal and diagonal lines. If the cell is located on the same vertical, horizontal or diagonal line with queen, and the cell contains a piece of the enemy color, the queen is able to move to this square. After that the enemy's piece is removed from the board. The queen cannot move to a cell containing an enemy piece if there is some other piece between it and the queen. There is an n × n chessboard. We'll denote a cell on the intersection of the r-th row and c-th column as (r, c). The square (1, 1) contains the white queen and the square (1, n) contains the black queen. All other squares contain green pawns that don't belong to anyone.The players move in turns. The player that moves first plays for the white queen, his opponent plays for the black queen.On each move the player has to capture some piece with his queen (that is, move to a square that contains either a green pawn or the enemy queen). The player loses if either he cannot capture any piece during his move or the opponent took his queen during the previous move. Help Vasya determine who wins if both players play with an optimal strategy on the board n × n.
Input: ['2'] Output:['white1 2']
[ 3 ]
Vasya follows a basketball game and marks the distances from which each team makes a throw. He knows that each successful throw has value of either 2 or 3 points. A throw is worth 2 points if the distance it was made from doesn't exceed some value of d meters, and a throw is worth 3 points if the distance is larger than d meters, where d is some non-negative integer.Vasya would like the advantage of the points scored by the first team (the points of the first team minus the points of the second team) to be maximum. For that he can mentally choose the value of d. Help him to do that.
Input: ['31 2 325 6'] Output:['9:6']
[ 0, 4 ]
Vanya decided to walk in the field of size n × n cells. The field contains m apple trees, the i-th apple tree is at the cell with coordinates (xi, yi). Vanya moves towards vector (dx, dy). That means that if Vanya is now at the cell (x, y), then in a second he will be at cell . The following condition is satisfied for the vector: , where is the largest integer that divides both a and b. Vanya ends his path when he reaches the square he has already visited. Vanya wonders, from what square of the field he should start his path to see as many apple trees as possible.
Input: ['5 5 2 30 01 21 32 43 1'] Output:['1 3']
[ 3 ]
Vanya and his friend Vova play a computer game where they need to destroy n monsters to pass a level. Vanya's character performs attack with frequency x hits per second and Vova's character performs attack with frequency y hits per second. Each character spends fixed time to raise a weapon and then he hits (the time to raise the weapon is 1 / x seconds for the first character and 1 / y seconds for the second one). The i-th monster dies after he receives ai hits. Vanya and Vova wonder who makes the last hit on each monster. If Vanya and Vova make the last hit at the same time, we assume that both of them have made the last hit.
Input: ['4 3 21234'] Output:['VanyaVovaVanyaBoth']
[ 3, 4 ]
Vanya wants to pass n exams and get the academic scholarship. He will get the scholarship if the average grade mark for all the exams is at least avg. The exam grade cannot exceed r. Vanya has passed the exams and got grade ai for the i-th exam. To increase the grade for the i-th exam by 1 point, Vanya must write bi essays. He can raise the exam grade multiple times.What is the minimum number of essays that Vanya needs to write to get scholarship?
Input: ['5 5 45 24 73 13 22 5'] Output:['4']
[ 2 ]
Vanya walks late at night along a straight street of length l, lit by n lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point l. Then the i-th lantern is at the point ai. The lantern lights all points of the street that are at the distance of at most d from it, where d is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius d should the lanterns have to light the whole street?
Input: ['7 1515 5 3 7 9 14 0'] Output:['2.5000000000']
[ 3, 4 ]
Think of New York as a rectangular grid consisting of N vertical avenues numerated from 1 to N and M horizontal streets numerated 1 to M. C friends are staying at C hotels located at some street-avenue crossings. They are going to celebrate birthday of one of them in the one of H restaurants also located at some street-avenue crossings. They also want that the maximum distance covered by one of them while traveling to the restaurant to be minimum possible. Help friends choose optimal restaurant for a celebration.Suppose that the distance between neighboring crossings are all the same equal to one kilometer.
Input: ['10 1021 13 321 104 4'] Output:['62']
[ 2, 3 ]
Peter wrote on the board a strictly increasing sequence of positive integers a1, a2, ..., an. Then Vasil replaced some digits in the numbers of this sequence by question marks. Thus, each question mark corresponds to exactly one lost digit.Restore the the original sequence knowing digits remaining on the board.
Input: ['3?181?'] Output:['YES11819']
[ 0, 2, 4 ]
Polycarpus likes giving presents to Paraskevi. He has bought two chocolate bars, each of them has the shape of a segmented rectangle. The first bar is a1 × b1 segments large and the second one is a2 × b2 segments large.Polycarpus wants to give Paraskevi one of the bars at the lunch break and eat the other one himself. Besides, he wants to show that Polycarpus's mind and Paraskevi's beauty are equally matched, so the two bars must have the same number of squares.To make the bars have the same number of squares, Polycarpus eats a little piece of chocolate each minute. Each minute he does the following: he either breaks one bar exactly in half (vertically or horizontally) and eats exactly a half of the bar, or he chips of exactly one third of a bar (vertically or horizontally) and eats exactly a third of the bar. In the first case he is left with a half, of the bar and in the second case he is left with two thirds of the bar.Both variants aren't always possible, and sometimes Polycarpus cannot chip off a half nor a third. For example, if the bar is 16 × 23, then Polycarpus can chip off a half, but not a third. If the bar is 20 × 18, then Polycarpus can chip off both a half and a third. If the bar is 5 × 7, then Polycarpus cannot chip off a half nor a third.What is the minimum number of minutes Polycarpus needs to make two bars consist of the same number of squares? Find not only the required minimum number of minutes, but also the possible sizes of the bars after the process.
Input: ['2 62 3'] Output:['11 62 3']
[ 0, 3 ]
Polycarpus participates in a competition for hacking into a new secure messenger. He's almost won.Having carefully studied the interaction protocol, Polycarpus came to the conclusion that the secret key can be obtained if he properly cuts the public key of the application into two parts. The public key is a long integer which may consist of even a million digits!Polycarpus needs to find such a way to cut the public key into two nonempty parts, that the first (left) part is divisible by a as a separate number, and the second (right) part is divisible by b as a separate number. Both parts should be positive integers that have no leading zeros. Polycarpus knows values a and b.Help Polycarpus and find any suitable method to cut the public key.
Input: ['11640102497 1024'] Output:['YES116401024']
[ 0, 3 ]
The School №0 of the capital of Berland has n children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value ti: ti = 1, if the i-th child is good at programming, ti = 2, if the i-th child is good at maths, ti = 3, if the i-th child is good at PE Each child happens to be good at exactly one of these three subjects.The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
Input: ['71 3 1 3 2 1 2'] Output:['23 5 26 7 4']
[ 2 ]
A traveler is planning a water hike along the river. He noted the suitable rest points for the night and wrote out their distances from the starting point. Each of these locations is further characterized by its picturesqueness, so for the i-th rest point the distance from the start equals xi, and its picturesqueness equals bi. The traveler will move down the river in one direction, we can assume that he will start from point 0 on the coordinate axis and rest points are points with coordinates xi.Every day the traveler wants to cover the distance l. In practice, it turns out that this is not always possible, because he needs to end each day at one of the resting points. In addition, the traveler is choosing between two desires: cover distance l every day and visit the most picturesque places.Let's assume that if the traveler covers distance rj in a day, then he feels frustration , and his total frustration over the hike is calculated as the total frustration on all days.Help him plan the route so as to minimize the relative total frustration: the total frustration divided by the total picturesqueness of all the rest points he used.The traveler's path must end in the farthest rest point.
Input: ['5 910 1020 1030 131 540 10'] Output:['1 2 4 5 ']
[ 4 ]
Tomash keeps wandering off and getting lost while he is walking along the streets of Berland. It's no surprise! In his home town, for any pair of intersections there is exactly one way to walk from one intersection to the other one. The capital of Berland is very different!Tomash has noticed that even simple cases of ambiguity confuse him. So, when he sees a group of four distinct intersections a, b, c and d, such that there are two paths from a to c — one through b and the other one through d, he calls the group a "damn rhombus". Note that pairs (a, b), (b, c), (a, d), (d, c) should be directly connected by the roads. Schematically, a damn rhombus is shown on the figure below: Other roads between any of the intersections don't make the rhombus any more appealing to Tomash, so the four intersections remain a "damn rhombus" for him.Given that the capital of Berland has n intersections and m roads and all roads are unidirectional and are known in advance, find the number of "damn rhombi" in the city.When rhombi are compared, the order of intersections b and d doesn't matter.
Input: ['5 41 22 31 44 3'] Output:['1']
[ 0 ]
You have a positive integer m and a non-negative integer s. Your task is to find the smallest and the largest of the numbers that have length m and sum of digits s. The required numbers should be non-negative integers written in the decimal base without leading zeroes.
Input: ['2 15'] Output:['69 96']
[ 2 ]
The Berland State University is hosting a ballroom dance in celebration of its 100500-th anniversary! n boys and m girls are already busy rehearsing waltz, minuet, polonaise and quadrille moves.We know that several boy&girl pairs are going to be invited to the ball. However, the partners' dancing skill in each pair must differ by at most one.For each boy, we know his dancing skills. Similarly, for each girl we know her dancing skills. Write a code that can determine the largest possible number of pairs that can be formed from n boys and m girls.
Input: ['41 4 6 255 1 5 7 9'] Output:['3']
[ 2 ]
In this problem your goal is to sort an array consisting of n integers in at most n swaps. For the given array find the sequence of swaps that makes the array sorted in the non-descending order. Swaps are performed consecutively, one after another.Note that in this problem you do not have to minimize the number of swaps — your task is to find any sequence that is no longer than n.
Input: ['55 2 5 1 4'] Output:['20 34 2']
[ 2 ]
There is an old tradition of keeping 4 boxes of candies in the house in Cyberland. The numbers of candies are special if their arithmetic mean, their median and their range are all equal. By definition, for a set {x1, x2, x3, x4} (x1 ≤ x2 ≤ x3 ≤ x4) arithmetic mean is , median is and range is x4 - x1. The arithmetic mean and median are not necessary integer. It is well-known that if those three numbers are same, boxes will create a "debugging field" and codes in the field will have no bugs.For example, 1, 1, 3, 3 is the example of 4 numbers meeting the condition because their mean, median and range are all equal to 2.Jeff has 4 special boxes of candies. However, something bad has happened! Some of the boxes could have been lost and now there are only n (0 ≤ n ≤ 4) boxes remaining. The i-th remaining box contains ai candies.Now Jeff wants to know: is there a possible way to find the number of candies of the 4 - n missing boxes, meeting the condition above (the mean, median and range are equal)?
Input: ['211'] Output:['YES33']
[ 0, 3 ]
Giga Tower is the tallest and deepest building in Cyberland. There are 17 777 777 777 floors, numbered from  - 8 888 888 888 to 8 888 888 888. In particular, there is floor 0 between floor  - 1 and floor 1. Every day, thousands of tourists come to this place to enjoy the wonderful view. In Cyberland, it is believed that the number "8" is a lucky number (that's why Giga Tower has 8 888 888 888 floors above the ground), and, an integer is lucky, if and only if its decimal notation contains at least one digit "8". For example, 8,  - 180, 808 are all lucky while 42,  - 10 are not. In the Giga Tower, if you write code at a floor with lucky floor number, good luck will always be with you (Well, this round is #278, also lucky, huh?).Tourist Henry goes to the tower to seek good luck. Now he is at the floor numbered a. He wants to find the minimum positive integer b, such that, if he walks b floors higher, he will arrive at a floor with a lucky number.
Input: ['179'] Output:['1']
[ 0 ]
Consider a sequence [a1, a2, ... , an]. Define its prefix product sequence .Now given n, find a permutation of [1, 2, ..., n], such that its prefix product sequence is a permutation of [0, 1, ..., n - 1].
Input: ['7'] Output:['YES1436527']
[ 3 ]
Alexandra has a paper strip with n numbers on it. Let's call them ai from left to right.Now Alexandra wants to split it into some pieces (possibly 1). For each piece of strip, it must satisfy: Each piece should contain at least l numbers. The difference between the maximal and the minimal number on the piece should be at most s.Please help Alexandra to find the minimal number of pieces meeting the condition above.
Input: ['7 2 21 3 1 2 4 1 2'] Output:['3']
[ 4 ]
A monster is attacking the Cyberland!Master Yang, a braver, is going to beat the monster. Yang and the monster each have 3 attributes: hitpoints (HP), offensive power (ATK) and defensive power (DEF).During the battle, every second the monster's HP decrease by max(0, ATKY - DEFM), while Yang's HP decreases by max(0, ATKM - DEFY), where index Y denotes Master Yang and index M denotes monster. Both decreases happen simultaneously Once monster's HP ≤ 0 and the same time Master Yang's HP > 0, Master Yang wins.Master Yang can buy attributes from the magic shop of Cyberland: h bitcoins per HP, a bitcoins per ATK, and d bitcoins per DEF.Now Master Yang wants to know the minimum number of bitcoins he can spend in order to win.
Input: ['1 2 11 100 11 100 100'] Output:['99']
[ 0, 4 ]
The next "Data Structures and Algorithms" lesson will be about Longest Increasing Subsequence (LIS for short) of a sequence. For better understanding, Nam decided to learn it a few days before the lesson.Nam created a sequence a consisting of n (1 ≤ n ≤ 105) elements a1, a2, ..., an (1 ≤ ai ≤ 105). A subsequence ai1, ai2, ..., aik where 1 ≤ i1 < i2 < ... < ik ≤ n is called increasing if ai1 < ai2 < ai3 < ... < aik. An increasing subsequence is called longest if it has maximum length among all increasing subsequences. Nam realizes that a sequence may have several longest increasing subsequences. Hence, he divides all indexes i (1 ≤ i ≤ n), into three groups: group of all i such that ai belongs to no longest increasing subsequences. group of all i such that ai belongs to at least one but not every longest increasing subsequence. group of all i such that ai belongs to every longest increasing subsequence. Since the number of longest increasing subsequences of a may be very large, categorizing process is very difficult. Your task is to help him finish this job.
Input: ['14'] Output:['3']
[ 2, 3 ]
As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.We call a set S of tree nodes valid if following conditions are satisfied: S is non-empty. S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S. .Your task is to count the number of valid sets. Since the result can be very large, you must print its remainder modulo 1000000007 (109 + 7).
Input: ['1 42 1 3 21 21 33 4'] Output:['8']
[ 3 ]
Nam is playing with a string on his computer. The string consists of n lowercase English letters. It is meaningless, so Nam decided to make the string more beautiful, that is to make it be a palindrome by using 4 arrow keys: left, right, up, down.There is a cursor pointing at some symbol of the string. Suppose that cursor is at position i (1 ≤ i ≤ n, the string uses 1-based indexing) now. Left and right arrow keys are used to move cursor around the string. The string is cyclic, that means that when Nam presses left arrow key, the cursor will move to position i - 1 if i > 1 or to the end of the string (i. e. position n) otherwise. The same holds when he presses the right arrow key (if i = n, the cursor appears at the beginning of the string).When Nam presses up arrow key, the letter which the text cursor is pointing to will change to the next letter in English alphabet (assuming that alphabet is also cyclic, i. e. after 'z' follows 'a'). The same holds when he presses the down arrow key.Initially, the text cursor is at position p. Because Nam has a lot homework to do, he wants to complete this as fast as possible. Can you help him by calculating the minimum number of arrow keys presses to make the string to be a palindrome?
Input: ['8 3aeabcaez'] Output:['6']
[ 0, 2 ]
Let's define logical OR as an operation on two logical values (i. e. values that belong to the set {0, 1}) that is equal to 1 if either or both of the logical values is set to 1, otherwise it is 0. We can define logical OR of three or more logical values in the same manner: where is equal to 1 if some ai = 1, otherwise it is equal to 0.Nam has a matrix A consisting of m rows and n columns. The rows are numbered from 1 to m, columns are numbered from 1 to n. Element at row i (1 ≤ i ≤ m) and column j (1 ≤ j ≤ n) is denoted as Aij. All elements of A are either 0 or 1. From matrix A, Nam creates another matrix B of the same size using formula:.(Bij is OR of all elements in row i and column j of matrix A)Nam gives you matrix B and challenges you to guess matrix A. Although Nam is smart, he could probably make a mistake while calculating matrix B, since size of A can be large.
Input: ['2 21 00 0'] Output:['NO']
[ 2 ]
For a positive integer n let's define a function f:f(n) =  - 1 + 2 - 3 + .. + ( - 1)nn Your task is to calculate f(n) for a given integer n.
Input: ['4'] Output:['2']
[ 3 ]
Many computer strategy games require building cities, recruiting army, conquering tribes, collecting resources. Sometimes it leads to interesting problems. Let's suppose that your task is to build a square city. The world map uses the Cartesian coordinates. The sides of the city should be parallel to coordinate axes. The map contains mines with valuable resources, located at some points with integer coordinates. The sizes of mines are relatively small, i.e. they can be treated as points. The city should be built in such a way that all the mines are inside or on the border of the city square. Building a city takes large amount of money depending on the size of the city, so you have to build the city with the minimum area. Given the positions of the mines find the minimum possible area of the city.
Input: ['20 02 2'] Output:['4']
[ 0, 2 ]
One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were x details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing x by m) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory. The board of directors are worried that the production by the given plan may eventually stop (that means that there will be а moment when the current number of details on the factory is divisible by m). Given the number of details a on the first day and number m check if the production stops at some moment.
Input: ['1 5'] Output:['No']
[ 3 ]
Bizon the Champion has recently finished painting his wood fence. The fence consists of a sequence of n panels of 1 meter width and of arbitrary height. The i-th panel's height is hi meters. The adjacent planks follow without a gap between them.After Bizon painted the fence he decided to put a "for sale" sign on it. The sign will be drawn on a rectangular piece of paper and placed on the fence so that the sides of the sign are parallel to the fence panels and are also aligned with the edges of some panels. Bizon the Champion introduced the following constraints for the sign position: The width of the sign should be exactly w meters. The sign must fit into the segment of the fence from the l-th to the r-th panels, inclusive (also, it can't exceed the fence's bound in vertical direction). The sign will be really pretty, So Bizon the Champion wants the sign's height to be as large as possible.You are given the description of the fence and several queries for placing sign. For each query print the maximum possible height of the sign that can be placed on the corresponding segment of the fence with the given fixed width of the sign.
Input: ['51 2 2 3 332 5 32 5 21 5 5'] Output:['231']
[ 4 ]
In a kindergarten, the children are being divided into groups. The teacher put the children in a line and associated each child with his or her integer charisma value. Each child should go to exactly one group. Each group should be a nonempty segment of consecutive children of a line. A group's sociability is the maximum difference of charisma of two children in the group (in particular, if the group consists of one child, its sociability equals a zero). The teacher wants to divide the children into some number of groups in such way that the total sociability of the groups is maximum. Help him find this value.
Input: ['51 2 3 1 2'] Output:['3']
[ 2 ]
How many specific orders do you know? Ascending order, descending order, order of ascending length, order of ascending polar angle... Let's have a look at another specific order: d-sorting. This sorting is applied to the strings of length at least d, where d is some positive integer. The characters of the string are sorted in following manner: first come all the 0-th characters of the initial string, then the 1-st ones, then the 2-nd ones and so on, in the end go all the (d - 1)-th characters of the initial string. By the i-th characters we mean all the character whose positions are exactly i modulo d. If two characters stand on the positions with the same remainder of integer division by d, their relative order after the sorting shouldn't be changed. The string is zero-indexed. For example, for string 'qwerty':Its 1-sorting is the string 'qwerty' (all characters stand on 0 positions),Its 2-sorting is the string 'qetwry' (characters 'q', 'e' and 't' stand on 0 positions and characters 'w', 'r' and 'y' are on 1 positions),Its 3-sorting is the string 'qrwtey' (characters 'q' and 'r' stand on 0 positions, characters 'w' and 't' stand on 1 positions and characters 'e' and 'y' stand on 2 positions),Its 4-sorting is the string 'qtwyer',Its 5-sorting is the string 'qywert'.You are given string S of length n and m shuffling operations of this string. Each shuffling operation accepts two integer arguments k and d and transforms string S as follows. For each i from 0 to n - k in the increasing order we apply the operation of d-sorting to the substring S[i..i + k - 1]. Here S[a..b] represents a substring that consists of characters on positions from a to b inclusive.After each shuffling operation you need to print string S.
Input: ['qwerty34 26 35 2'] Output:['qertwyqtewryqetyrw']
[ 3 ]
You are given a sequence a consisting of n integers. Find the maximum possible value of (integer remainder of ai divided by aj), where 1 ≤ i, j ≤ n and ai ≥ aj.
Input: ['33 4 5'] Output:['2']
[ 3, 4 ]
You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.
Input: ['3 1 2 3'] Output:['5']
[ 3, 4 ]
Your friend has recently learned about coprime numbers. A pair of numbers {a, b} is called coprime if the maximum number that divides both a and b is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (a, b) is coprime and the pair (b, c) is coprime, then the pair (a, c) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (a, b, c), for which the statement is false, and the numbers meet the condition l ≤ a < b < c ≤ r. More specifically, you need to find three numbers (a, b, c), such that l ≤ a < b < c ≤ r, pairs (a, b) and (b, c) are coprime, and pair (a, c) is not coprime.
Input: ['2 4'] Output:['2 3 4']
[ 0, 3 ]
Permutation p is an ordered set of integers p1,   p2,   ...,   pn, consisting of n distinct positive integers not larger than n. We'll denote as n the length of permutation p1,   p2,   ...,   pn.Your task is to find such permutation p of length n, that the group of numbers |p1 - p2|, |p2 - p3|, ..., |pn - 1 - pn| has exactly k distinct elements.
Input: ['3 2'] Output:['1 3 2']
[ 2 ]
Valery is a PE teacher at a school in Berland. Soon the students are going to take a test in long jumps, and Valery has lost his favorite ruler! However, there is no reason for disappointment, as Valery has found another ruler, its length is l centimeters. The ruler already has n marks, with which he can make measurements. We assume that the marks are numbered from 1 to n in the order they appear from the beginning of the ruler to its end. The first point coincides with the beginning of the ruler and represents the origin. The last mark coincides with the end of the ruler, at distance l from the origin. This ruler can be repesented by an increasing sequence a1, a2, ..., an, where ai denotes the distance of the i-th mark from the origin (a1 = 0, an = l).Valery believes that with a ruler he can measure the distance of d centimeters, if there is a pair of integers i and j (1 ≤ i ≤ j ≤ n), such that the distance between the i-th and the j-th mark is exactly equal to d (in other words, aj - ai = d). Under the rules, the girls should be able to jump at least x centimeters, and the boys should be able to jump at least y (x < y) centimeters. To test the children's abilities, Valery needs a ruler to measure each of the distances x and y. Your task is to determine what is the minimum number of additional marks you need to add on the ruler so that they can be used to measure the distances x and y. Valery can add the marks at any integer non-negative distance from the origin not exceeding the length of the ruler.
Input: ['3 250 185 2300 185 250'] Output:['1230']
[ 2, 4 ]
Student Valera is an undergraduate student at the University. His end of term exams are approaching and he is to pass exactly n exams. Valera is a smart guy, so he will be able to pass any exam he takes on his first try. Besides, he can take several exams on one day, and in any order.According to the schedule, a student can take the exam for the i-th subject on the day number ai. However, Valera has made an arrangement with each teacher and the teacher of the i-th subject allowed him to take an exam before the schedule time on day bi (bi < ai). Thus, Valera can take an exam for the i-th subject either on day ai, or on day bi. All the teachers put the record of the exam in the student's record book on the day of the actual exam and write down the date of the mark as number ai.Valera believes that it would be rather strange if the entries in the record book did not go in the order of non-decreasing date. Therefore Valera asks you to help him. Find the minimum possible value of the day when Valera can take the final exam if he takes exams so that all the records in his record book go in the order of non-decreasing date.
Input: ['35 23 14 2'] Output:['2']
[ 2 ]
As you know, all the kids in Berland love playing with cubes. Little Petya has n towers consisting of cubes of the same size. Tower with number i consists of ai cubes stacked one on top of the other. Petya defines the instability of a set of towers as a value equal to the difference between the heights of the highest and the lowest of the towers. For example, if Petya built five cube towers with heights (8, 3, 2, 6, 3), the instability of this set is equal to 6 (the highest tower has height 8, the lowest one has height 2). The boy wants the instability of his set of towers to be as low as possible. All he can do is to perform the following operation several times: take the top cube from some tower and put it on top of some other tower of his set. Please note that Petya would never put the cube on the same tower from which it was removed because he thinks it's a waste of time. Before going to school, the boy will have time to perform no more than k such operations. Petya does not want to be late for class, so you have to help him accomplish this task.
Input: ['3 25 8 5'] Output:['0 22 12 3']
[ 0, 2 ]
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers a, b, c on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: 1+2*3=7 1*(2+3)=5 1*2*3=6 (1+2)*3=9 Note that you can insert operation signs only between a and b, and between b and c, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2.It's easy to see that the maximum value that you can obtain is 9.Your task is: given a, b and c print the maximum value that you can get.
Input: ['123'] Output:['9']
[ 0, 3 ]
A wavy number is such positive integer that for any digit of its decimal representation except for the first one and the last one following condition holds: the digit is either strictly larger than both its adjacent digits or strictly less than both its adjacent digits. For example, numbers 35270, 102, 747, 20 and 3 are wavy and numbers 123, 1000 and 2212 are not.The task is to find the k-th smallest wavy number r that is divisible by n for the given integer values n and k.You are to write a program that will find the value of r if it doesn't exceed 1014.
Input: ['123 4'] Output:['1845']
[ 0 ]
You have r red, g green and b blue balloons. To decorate a single table for the banquet you need exactly three balloons. Three balloons attached to some table shouldn't have the same color. What maximum number t of tables can be decorated if we know number of balloons of each color?Your task is to write a program that for given values r, g and b will find the maximum number t of tables, that can be decorated in the required manner.
Input: ['5 4 3'] Output:['4']
[ 2 ]
n participants of the competition were split into m teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.
Input: ['5 1'] Output:['10 10']
[ 2, 3 ]