|
--- |
|
base_model: indobenchmark/indobert-base-p1 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:12800 |
|
- loss:ContrastiveTensionLoss |
|
widget: |
|
- source_sentence: Makalah ini diterbitkan dalam format online hanya oleh Metro International. |
|
sentences: |
|
- Liga ini berkembang dari tahun 1200 hingga 1500, dan terus menjadi semakin penting |
|
setelahnya. |
|
- Ini dirancang oleh orang lain selain WL Bottomley / William Lawrence Bottomley. |
|
- Lahan tersebut sekarang menjadi Cagar Alam Bentley Priory, sebuah Situs Kepentingan |
|
Ilmiah Khusus. |
|
- source_sentence: Pengadilan menentang keputusan tahun 2010 dan kasus ini dilanjutkan |
|
sesuai dengan manfaatnya. |
|
sentences: |
|
- Gunung itu berada di Front Allegheny. |
|
- Stasiun St Albans Abbey adalah stasiun dalam perjalanan jalur ganda dari stasiun |
|
Watford Junction. |
|
- Pada tahun 2011, keluarga Penner tidak lagi menyebut rumah Habitatnya, rumah. |
|
- source_sentence: Aku tidak jahat dalam hal ini. |
|
sentences: |
|
- Awalnya disetujui untuk onchocerciasis dan strongyloidiasis, Ivermectin sekarang |
|
disetujui oleh FDA untuk pedikulosis. |
|
- Lagu ini mencapai ARIA Singles Chart Top 100. |
|
- Bebaskan diri Anda dari permusuhan dan kemarahan untuk menunjukkan rasa hormat |
|
terhadap tubuh dan kehidupan Anda. |
|
- source_sentence: Waktu pengiriman sangat cepat. |
|
sentences: |
|
- Dia kemudian bermain untuk South West Ham. |
|
- Qatar, bagaimanapun, tidak diminta untuk mengibarkan bendera Trucial yang ditentukan. |
|
- Sepasang pintu ini juga meredam suara dari luar. |
|
- source_sentence: Dengan demikian, seorang model penutur harus mengolah representasi |
|
warna dalam konteks dan menghasilkan ujaran yang dapat membedakan warna sasaran |
|
dengan ujaran lainnya. |
|
sentences: |
|
- Dia bukan bagian dari American Institute of Architects. |
|
- Pada tahun 1975 VTL dibeli oleh Greyhound Lines, menjadi anak perusahaan. |
|
- Pada tanggal 24 April 2009, Forum Terbuka IBIS menyetujui versi 2.0. |
|
model-index: |
|
- name: SentenceTransformer based on indobenchmark/indobert-base-p1 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: str dev |
|
type: str-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.47668991144701395 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.48495339068233534 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.5041035764250676 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.49270037559673846 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.5059182139447496 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.4915516775931335 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.2991963739133043 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.2630042391245101 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.5059182139447496 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.49270037559673846 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: str test |
|
type: str-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.47374249981827143 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.5083479438750005 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.49828227586252527 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.4962152495999787 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.5006486050380166 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.49701891829828837 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.2573207350736585 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.24350607759185028 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.5006486050380166 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.5083479438750005 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on indobenchmark/indobert-base-p1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) <!-- at revision c2cd0b51ddce6580eb35263b39b0a1e5fb0a39e2 --> |
|
- **Maximum Sequence Length:** 32 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("damand2061/negasibert-ct") |
|
# Run inference |
|
sentences = [ |
|
'Dengan demikian, seorang model penutur harus mengolah representasi warna dalam konteks dan menghasilkan ujaran yang dapat membedakan warna sasaran dengan ujaran lainnya.', |
|
'Pada tahun 1975 VTL dibeli oleh Greyhound Lines, menjadi anak perusahaan.', |
|
'Pada tanggal 24 April 2009, Forum Terbuka IBIS menyetujui versi 2.0.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `str-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.4767 | |
|
| spearman_cosine | 0.485 | |
|
| pearson_manhattan | 0.5041 | |
|
| spearman_manhattan | 0.4927 | |
|
| pearson_euclidean | 0.5059 | |
|
| spearman_euclidean | 0.4916 | |
|
| pearson_dot | 0.2992 | |
|
| spearman_dot | 0.263 | |
|
| pearson_max | 0.5059 | |
|
| **spearman_max** | **0.4927** | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `str-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.4737 | |
|
| spearman_cosine | 0.5083 | |
|
| pearson_manhattan | 0.4983 | |
|
| spearman_manhattan | 0.4962 | |
|
| pearson_euclidean | 0.5006 | |
|
| spearman_euclidean | 0.497 | |
|
| pearson_dot | 0.2573 | |
|
| spearman_dot | 0.2435 | |
|
| pearson_max | 0.5006 | |
|
| **spearman_max** | **0.5083** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 12,800 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 14.81 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.92 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~87.50%</li><li>1: ~12.50%</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:-------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------| |
|
| <code>Warnanya tercermin pada corak dan lambang universitas kota tersebut.</code> | <code>Warnanya tercermin pada corak dan lambang universitas kota tersebut.</code> | <code>1</code> | |
|
| <code>Pada awal tahun 2008, Ikerbasque menolak menugaskan Enrique Zuazua.</code> | <code>Oh, ayolah, itu adil.</code> | <code>0</code> | |
|
| <code>Pada tahun 2006, sebuah studi diselesaikan tentang prospek jalur Scarborough.</code> | <code>Jurnal Pendidikan Modern didirikan olehnya.</code> | <code>0</code> | |
|
* Loss: [<code>ContrastiveTensionLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastivetensionloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 5 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | str-dev_spearman_max | str-test_spearman_max | |
|
|:-----:|:----:|:-------------:|:--------------------:|:---------------------:| |
|
| 1.0 | 200 | - | 0.5009 | 0.5084 | |
|
| 2.0 | 400 | - | 0.4926 | 0.5025 | |
|
| 2.5 | 500 | 2328.8573 | - | - | |
|
| 3.0 | 600 | - | 0.4909 | 0.5058 | |
|
| 4.0 | 800 | - | 0.4909 | 0.5064 | |
|
| 5.0 | 1000 | 0.5625 | 0.4927 | 0.5083 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.44.0 |
|
- PyTorch: 2.4.0 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### ContrastiveTensionLoss |
|
```bibtex |
|
@inproceedings{carlsson2021semantic, |
|
title={Semantic Re-tuning with Contrastive Tension}, |
|
author={Fredrik Carlsson and Amaru Cuba Gyllensten and Evangelia Gogoulou and Erik Ylip{"a}{"a} Hellqvist and Magnus Sahlgren}, |
|
booktitle={International Conference on Learning Representations}, |
|
year={2021}, |
|
url={https://openreview.net/forum?id=Ov_sMNau-PF} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |