--- base_model: indobenchmark/indobert-base-p1 datasets: [] language: [] library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:12800 - loss:ContrastiveTensionLoss widget: - source_sentence: Makalah ini diterbitkan dalam format online hanya oleh Metro International. sentences: - Liga ini berkembang dari tahun 1200 hingga 1500, dan terus menjadi semakin penting setelahnya. - Ini dirancang oleh orang lain selain WL Bottomley / William Lawrence Bottomley. - Lahan tersebut sekarang menjadi Cagar Alam Bentley Priory, sebuah Situs Kepentingan Ilmiah Khusus. - source_sentence: Pengadilan menentang keputusan tahun 2010 dan kasus ini dilanjutkan sesuai dengan manfaatnya. sentences: - Gunung itu berada di Front Allegheny. - Stasiun St Albans Abbey adalah stasiun dalam perjalanan jalur ganda dari stasiun Watford Junction. - Pada tahun 2011, keluarga Penner tidak lagi menyebut rumah Habitatnya, rumah. - source_sentence: Aku tidak jahat dalam hal ini. sentences: - Awalnya disetujui untuk onchocerciasis dan strongyloidiasis, Ivermectin sekarang disetujui oleh FDA untuk pedikulosis. - Lagu ini mencapai ARIA Singles Chart Top 100. - Bebaskan diri Anda dari permusuhan dan kemarahan untuk menunjukkan rasa hormat terhadap tubuh dan kehidupan Anda. - source_sentence: Waktu pengiriman sangat cepat. sentences: - Dia kemudian bermain untuk South West Ham. - Qatar, bagaimanapun, tidak diminta untuk mengibarkan bendera Trucial yang ditentukan. - Sepasang pintu ini juga meredam suara dari luar. - source_sentence: Dengan demikian, seorang model penutur harus mengolah representasi warna dalam konteks dan menghasilkan ujaran yang dapat membedakan warna sasaran dengan ujaran lainnya. sentences: - Dia bukan bagian dari American Institute of Architects. - Pada tahun 1975 VTL dibeli oleh Greyhound Lines, menjadi anak perusahaan. - Pada tanggal 24 April 2009, Forum Terbuka IBIS menyetujui versi 2.0. model-index: - name: SentenceTransformer based on indobenchmark/indobert-base-p1 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: str dev type: str-dev metrics: - type: pearson_cosine value: 0.47668991144701395 name: Pearson Cosine - type: spearman_cosine value: 0.48495339068233534 name: Spearman Cosine - type: pearson_manhattan value: 0.5041035764250676 name: Pearson Manhattan - type: spearman_manhattan value: 0.49270037559673846 name: Spearman Manhattan - type: pearson_euclidean value: 0.5059182139447496 name: Pearson Euclidean - type: spearman_euclidean value: 0.4915516775931335 name: Spearman Euclidean - type: pearson_dot value: 0.2991963739133043 name: Pearson Dot - type: spearman_dot value: 0.2630042391245101 name: Spearman Dot - type: pearson_max value: 0.5059182139447496 name: Pearson Max - type: spearman_max value: 0.49270037559673846 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: str test type: str-test metrics: - type: pearson_cosine value: 0.47374249981827143 name: Pearson Cosine - type: spearman_cosine value: 0.5083479438750005 name: Spearman Cosine - type: pearson_manhattan value: 0.49828227586252527 name: Pearson Manhattan - type: spearman_manhattan value: 0.4962152495999787 name: Spearman Manhattan - type: pearson_euclidean value: 0.5006486050380166 name: Pearson Euclidean - type: spearman_euclidean value: 0.49701891829828837 name: Spearman Euclidean - type: pearson_dot value: 0.2573207350736585 name: Pearson Dot - type: spearman_dot value: 0.24350607759185028 name: Spearman Dot - type: pearson_max value: 0.5006486050380166 name: Pearson Max - type: spearman_max value: 0.5083479438750005 name: Spearman Max --- # SentenceTransformer based on indobenchmark/indobert-base-p1 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) - **Maximum Sequence Length:** 32 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("damand2061/negasibert-ct") # Run inference sentences = [ 'Dengan demikian, seorang model penutur harus mengolah representasi warna dalam konteks dan menghasilkan ujaran yang dapat membedakan warna sasaran dengan ujaran lainnya.', 'Pada tahun 1975 VTL dibeli oleh Greyhound Lines, menjadi anak perusahaan.', 'Pada tanggal 24 April 2009, Forum Terbuka IBIS menyetujui versi 2.0.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `str-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-------------------|:-----------| | pearson_cosine | 0.4767 | | spearman_cosine | 0.485 | | pearson_manhattan | 0.5041 | | spearman_manhattan | 0.4927 | | pearson_euclidean | 0.5059 | | spearman_euclidean | 0.4916 | | pearson_dot | 0.2992 | | spearman_dot | 0.263 | | pearson_max | 0.5059 | | **spearman_max** | **0.4927** | #### Semantic Similarity * Dataset: `str-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-------------------|:-----------| | pearson_cosine | 0.4737 | | spearman_cosine | 0.5083 | | pearson_manhattan | 0.4983 | | spearman_manhattan | 0.4962 | | pearson_euclidean | 0.5006 | | spearman_euclidean | 0.497 | | pearson_dot | 0.2573 | | spearman_dot | 0.2435 | | pearson_max | 0.5006 | | **spearman_max** | **0.5083** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 12,800 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:-------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------| | Warnanya tercermin pada corak dan lambang universitas kota tersebut. | Warnanya tercermin pada corak dan lambang universitas kota tersebut. | 1 | | Pada awal tahun 2008, Ikerbasque menolak menugaskan Enrique Zuazua. | Oh, ayolah, itu adil. | 0 | | Pada tahun 2006, sebuah studi diselesaikan tentang prospek jalur Scarborough. | Jurnal Pendidikan Modern didirikan olehnya. | 0 | * Loss: [ContrastiveTensionLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastivetensionloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 5 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | str-dev_spearman_max | str-test_spearman_max | |:-----:|:----:|:-------------:|:--------------------:|:---------------------:| | 1.0 | 200 | - | 0.5009 | 0.5084 | | 2.0 | 400 | - | 0.4926 | 0.5025 | | 2.5 | 500 | 2328.8573 | - | - | | 3.0 | 600 | - | 0.4909 | 0.5058 | | 4.0 | 800 | - | 0.4909 | 0.5064 | | 5.0 | 1000 | 0.5625 | 0.4927 | 0.5083 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.1 - Transformers: 4.44.0 - PyTorch: 2.4.0 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ContrastiveTensionLoss ```bibtex @inproceedings{carlsson2021semantic, title={Semantic Re-tuning with Contrastive Tension}, author={Fredrik Carlsson and Amaru Cuba Gyllensten and Evangelia Gogoulou and Erik Ylip{"a}{"a} Hellqvist and Magnus Sahlgren}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=Ov_sMNau-PF} } ```