|
--- |
|
tags: |
|
- stable-diffusion-xl |
|
- stable-diffusion-xl-diffusers |
|
- diffusers-training |
|
- text-to-image |
|
- diffusers |
|
- lora |
|
- template:sd-lora |
|
|
|
|
|
base_model: cookey39/aam_xl |
|
instance_prompt: In the style of Terada, |
|
license: openrail++ |
|
--- |
|
|
|
# SDXL LoRA DreamBooth - cookey39/teratera |
|
|
|
<Gallery /> |
|
|
|
## Model description |
|
|
|
## Generate Examples |
|
https://www.pixiv.net/artworks/119150548 |
|
|
|
https://www.pixiv.net/artworks/119243202 |
|
|
|
https://www.pixiv.net/artworks/119243522 |
|
|
|
### These are cookey39/teratera LoRA adaption weights for cookey39/aam_xl. |
|
|
|
## Download model |
|
|
|
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke |
|
|
|
- **LoRA**: download **[`teratera.safetensors` here 💾](/cookey39/teratera/blob/main/teratera.safetensors)**. |
|
- Place it on your `models/Lora` folder. |
|
- On AUTOMATIC1111, load the LoRA by adding `<lora:teratera:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). |
|
- *Embeddings*: download **[`teratera_emb.safetensors` here 💾](/cookey39/teratera/blob/main/teratera_emb.safetensors)**. |
|
- Place it on it on your `embeddings` folder |
|
- Use it by adding `teratera_emb` to your prompt. For example, `In the style of Terada,` |
|
(you need both the LoRA and the embeddings as they were trained together for this LoRA) |
|
|
|
|
|
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) |
|
|
|
```py |
|
from diffusers import AutoPipelineForText2Image |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
|
|
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') |
|
pipeline.load_lora_weights('cookey39/teratera', weight_name='pytorch_lora_weights.safetensors') |
|
embedding_path = hf_hub_download(repo_id='cookey39/teratera', filename='teratera_emb.safetensors', repo_type="model") |
|
state_dict = load_file(embedding_path) |
|
# load embeddings of text_encoder 1 (CLIP ViT-L/14) |
|
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) |
|
# load embeddings of text_encoder 2 (CLIP ViT-G/14) |
|
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) |
|
|
|
instance_token = "<s0><s1>" |
|
prompt = f"a {instance_token}masterpiece, best quality, full-length phoor portrait,Vibrant, solo, 1girl, smile, long hair, hair between eyes, multicolored eyes, hooded jacket, open jacket, shirt, long sleeves, ribbon, best quality, perfect anatomy, highres, absurdres{instance_token} " |
|
negative_prompt = "nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet" |
|
image = pipeline(prompt=prompt, negative_prompt = negative_prompt, num_inference_steps=100, cross_attention_kwargs={"scale": 1.0},width = 960, height=1280).images[0] |
|
image.save("./save.png") |
|
``` |
|
|
|
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) |
|
|
|
## Trigger words |
|
|
|
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: |
|
|
|
to trigger concept `TOK` → use `<s0><s1>` in your prompt |
|
|
|
|
|
|
|
## Details |
|
All [Files & versions](/cookey39/teratera/tree/main). |
|
|
|
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). |
|
|
|
LoRA for the text encoder was enabled. False. |
|
|
|
Pivotal tuning was enabled: True. |
|
|
|
Special VAE used for training: None. |
|
|
|
|