--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - diffusers-training - text-to-image - diffusers - lora - template:sd-lora base_model: cookey39/aam_xl instance_prompt: In the style of Terada, license: openrail++ --- # SDXL LoRA DreamBooth - cookey39/teratera ## Model description ## Generate Examples https://www.pixiv.net/artworks/119150548 https://www.pixiv.net/artworks/119243202 https://www.pixiv.net/artworks/119243522 ### These are cookey39/teratera LoRA adaption weights for cookey39/aam_xl. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`teratera.safetensors` here 💾](/cookey39/teratera/blob/main/teratera.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`teratera_emb.safetensors` here 💾](/cookey39/teratera/blob/main/teratera_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `teratera_emb` to your prompt. For example, `In the style of Terada,` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('cookey39/teratera', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='cookey39/teratera', filename='teratera_emb.safetensors', repo_type="model") state_dict = load_file(embedding_path) # load embeddings of text_encoder 1 (CLIP ViT-L/14) pipeline.load_textual_inversion(state_dict["clip_l"], token=["", ""], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) # load embeddings of text_encoder 2 (CLIP ViT-G/14) pipeline.load_textual_inversion(state_dict["clip_g"], token=["", ""], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) instance_token = "" prompt = f"a {instance_token}masterpiece, best quality, full-length phoor portrait,Vibrant, solo, 1girl, smile, long hair, hair between eyes, multicolored eyes, hooded jacket, open jacket, shirt, long sleeves, ribbon, best quality, perfect anatomy, highres, absurdres{instance_token} " negative_prompt = "nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet" image = pipeline(prompt=prompt, negative_prompt = negative_prompt, num_inference_steps=100, cross_attention_kwargs={"scale": 1.0},width = 960, height=1280).images[0] image.save("./save.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `` in your prompt ## Details All [Files & versions](/cookey39/teratera/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: None.