metadata
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer
model-index:
- name: Qwen2-37B-Pruned
results: []
See axolotl config
axolotl version: 0.4.1
base_model: carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer
trust_remote_code: false
load_in_8bit: false
load_in_4bit: true # Changed to false
strict: false
datasets:
- path: teknium/OpenHermes-2.5
# type:
# system_prompt: ""
# system_format: "{system}"
# field_system: system
# field_instruction: human
# field_input: system
# field_output: gpt
# format: |-
# User: {instruction} {input}
# Assistant:
# no_input_format: "{instruction} "
type: sharegpt
dataset_prepared_path:
val_set_size: 0
output_dir: ./outputs/out
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
hub_model_id: carsonpoole/Qwen2-37B-Pruned # Specify the repository name for pushing to the Hub
hub_strategy: every_save # Push checkpoint to the Hub on every save
wandb_project: forefront-research
wandb_entity: helloforefront
wandb_watch:
wandb_name: qwen2-37b-pruned-v0_3_2
wandb_log_model:
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: true
hf_use_auth_token: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
max_steps: 192
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:
Qwen2-37B-Pruned
This model is a fine-tuned version of carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 192
Training results
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1