File size: 3,644 Bytes
6df9f25 0ec8825 6df9f25 0ec8825 6df9f25 0ec8825 6df9f25 0ec8825 6df9f25 0ec8825 6df9f25 0ec8825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer
model-index:
- name: Qwen2-37B-Pruned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer
trust_remote_code: false
load_in_8bit: false
load_in_4bit: true # Changed to false
strict: false
datasets:
- path: teknium/OpenHermes-2.5
# type:
# system_prompt: ""
# system_format: "{system}"
# field_system: system
# field_instruction: human
# field_input: system
# field_output: gpt
# format: |-
# User: {instruction} {input}
# Assistant:
# no_input_format: "{instruction} "
type: sharegpt
dataset_prepared_path:
val_set_size: 0
output_dir: ./outputs/out
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
hub_model_id: carsonpoole/Qwen2-37B-Pruned # Specify the repository name for pushing to the Hub
hub_strategy: every_save # Push checkpoint to the Hub on every save
wandb_project: forefront-research
wandb_entity: helloforefront
wandb_watch:
wandb_name: qwen2-37b-pruned-v0_3_2
wandb_log_model:
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: true
hf_use_auth_token: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
max_steps: 192
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:
```
</details><br>
# Qwen2-37B-Pruned
This model is a fine-tuned version of [carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer](https://huggingface.co/carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 192
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |