File size: 3,644 Bytes
6df9f25
 
0ec8825
 
 
6df9f25
0ec8825
 
 
6df9f25
 
0ec8825
 
6df9f25
0ec8825
 
6df9f25
0ec8825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6df9f25
 
 
 
 
0ec8825
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer
model-index:
- name: Qwen2-37B-Pruned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer
trust_remote_code: false

load_in_8bit: false
load_in_4bit: true # Changed to false
strict: false

datasets:
  - path: teknium/OpenHermes-2.5
    # type:
    #   system_prompt: ""
    #   system_format: "{system}"
    #   field_system: system
    #   field_instruction: human
    #   field_input: system
    #   field_output: gpt
    #   format: |-
    #     User: {instruction} {input}
    #     Assistant:
    #   no_input_format: "{instruction} "
    type: sharegpt

dataset_prepared_path:
val_set_size: 0
output_dir: ./outputs/out

sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

hub_model_id: carsonpoole/Qwen2-37B-Pruned # Specify the repository name for pushing to the Hub
hub_strategy: every_save # Push checkpoint to the Hub on every save

wandb_project: forefront-research
wandb_entity: helloforefront
wandb_watch:
wandb_name: qwen2-37b-pruned-v0_3_2
wandb_log_model:

adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: true

hf_use_auth_token: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
max_steps: 192
debug:
deepspeed:
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:

```

</details><br>

# Qwen2-37B-Pruned

This model is a fine-tuned version of [carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer](https://huggingface.co/carsonpoole/Qwen2-72B-Instruct-Every-Other-Layer) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 192

### Training results



### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1