|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- xlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-summary |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xlsum |
|
type: xlsum |
|
config: french |
|
split: validation |
|
args: french |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 22.1761 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-summary |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2770 |
|
- Rouge1: 22.1761 |
|
- Rouge2: 8.0115 |
|
- Rougel: 18.8245 |
|
- Rougelsum: 18.8574 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 4.7862 | 1.0 | 1085 | 2.5085 | 21.2935 | 7.4006 | 18.0791 | 18.0868 | |
|
| 3.2212 | 2.0 | 2170 | 2.4069 | 21.968 | 7.9139 | 18.5785 | 18.6248 | |
|
| 3.0201 | 3.0 | 3255 | 2.3489 | 21.8529 | 7.9865 | 18.6842 | 18.7074 | |
|
| 2.9085 | 4.0 | 4340 | 2.3173 | 22.1605 | 8.2646 | 18.8284 | 18.838 | |
|
| 2.8285 | 5.0 | 5425 | 2.2965 | 22.0612 | 8.0447 | 18.7454 | 18.7784 | |
|
| 2.7727 | 6.0 | 6510 | 2.2899 | 22.1416 | 7.9747 | 18.7622 | 18.8029 | |
|
| 2.7311 | 7.0 | 7595 | 2.2797 | 22.2979 | 8.1382 | 18.9798 | 19.035 | |
|
| 2.7171 | 8.0 | 8680 | 2.2770 | 22.1761 | 8.0115 | 18.8245 | 18.8574 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|