bertrand-fournel's picture
Training complete
293a4eb
|
raw
history blame
2.47 kB
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - summarization
  - generated_from_trainer
datasets:
  - xlsum
metrics:
  - rouge
model-index:
  - name: mt5-small-finetuned-summary
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xlsum
          type: xlsum
          config: french
          split: validation
          args: french
        metrics:
          - name: Rouge1
            type: rouge
            value: 22.1761

mt5-small-finetuned-summary

This model is a fine-tuned version of google/mt5-small on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2770
  • Rouge1: 22.1761
  • Rouge2: 8.0115
  • Rougel: 18.8245
  • Rougelsum: 18.8574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
4.7862 1.0 1085 2.5085 21.2935 7.4006 18.0791 18.0868
3.2212 2.0 2170 2.4069 21.968 7.9139 18.5785 18.6248
3.0201 3.0 3255 2.3489 21.8529 7.9865 18.6842 18.7074
2.9085 4.0 4340 2.3173 22.1605 8.2646 18.8284 18.838
2.8285 5.0 5425 2.2965 22.0612 8.0447 18.7454 18.7784
2.7727 6.0 6510 2.2899 22.1416 7.9747 18.7622 18.8029
2.7311 7.0 7595 2.2797 22.2979 8.1382 18.9798 19.035
2.7171 8.0 8680 2.2770 22.1761 8.0115 18.8245 18.8574

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0