|
--- |
|
base_model: klue/roberta-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: pogny_10_32_0.01 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bella05/huggingface/runs/8upm8cw9) |
|
# pogny_10_32_0.01 |
|
|
|
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6859 |
|
- Accuracy: 0.4376 |
|
- F1: 0.2665 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.01 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 2.8512 | 1.0 | 2409 | 3.1877 | 0.4376 | 0.2665 | |
|
| 2.7295 | 2.0 | 4818 | 3.5982 | 0.0702 | 0.0092 | |
|
| 2.5873 | 3.0 | 7227 | 1.9106 | 0.4376 | 0.2665 | |
|
| 2.3248 | 4.0 | 9636 | 2.4274 | 0.4376 | 0.2665 | |
|
| 2.2087 | 5.0 | 12045 | 2.0673 | 0.2545 | 0.1032 | |
|
| 2.17 | 6.0 | 14454 | 2.3342 | 0.4376 | 0.2665 | |
|
| 2.0611 | 7.0 | 16863 | 1.9937 | 0.4376 | 0.2665 | |
|
| 1.8834 | 8.0 | 19272 | 1.8107 | 0.4376 | 0.2665 | |
|
| 1.7959 | 9.0 | 21681 | 1.7571 | 0.4376 | 0.2665 | |
|
| 1.7009 | 10.0 | 24090 | 1.6859 | 0.4376 | 0.2665 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.2.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|