End of training
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: klue/roberta-large
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: pogny_10_32_0.01
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bella05/huggingface/runs/8upm8cw9)
|
17 |
+
# pogny_10_32_0.01
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.6859
|
22 |
+
- Accuracy: 0.4376
|
23 |
+
- F1: 0.2665
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.01
|
43 |
+
- train_batch_size: 32
|
44 |
+
- eval_batch_size: 32
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
|
54 |
+
| 2.8512 | 1.0 | 2409 | 3.1877 | 0.4376 | 0.2665 |
|
55 |
+
| 2.7295 | 2.0 | 4818 | 3.5982 | 0.0702 | 0.0092 |
|
56 |
+
| 2.5873 | 3.0 | 7227 | 1.9106 | 0.4376 | 0.2665 |
|
57 |
+
| 2.3248 | 4.0 | 9636 | 2.4274 | 0.4376 | 0.2665 |
|
58 |
+
| 2.2087 | 5.0 | 12045 | 2.0673 | 0.2545 | 0.1032 |
|
59 |
+
| 2.17 | 6.0 | 14454 | 2.3342 | 0.4376 | 0.2665 |
|
60 |
+
| 2.0611 | 7.0 | 16863 | 1.9937 | 0.4376 | 0.2665 |
|
61 |
+
| 1.8834 | 8.0 | 19272 | 1.8107 | 0.4376 | 0.2665 |
|
62 |
+
| 1.7959 | 9.0 | 21681 | 1.7571 | 0.4376 | 0.2665 |
|
63 |
+
| 1.7009 | 10.0 | 24090 | 1.6859 | 0.4376 | 0.2665 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.41.0
|
69 |
+
- Pytorch 2.2.2
|
70 |
+
- Datasets 2.19.1
|
71 |
+
- Tokenizers 0.19.1
|