|
--- |
|
license: mit |
|
base_model: facebook/esm2_t12_35M_UR50D |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- spearmanr |
|
model-index: |
|
- name: esm2_t12_35M_UR50D-finetuned-rep7868aav2-v0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# esm2_t12_35M_UR50D-finetuned-rep7868aav2-v0 |
|
|
|
This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0513 |
|
- Spearmanr: 0.7389 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Spearmanr | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:| |
|
| 0.118 | 1.0 | 1180 | 0.1154 | 0.3185 | |
|
| 0.1156 | 2.0 | 2360 | 0.1109 | 0.3383 | |
|
| 0.1143 | 3.0 | 3540 | 0.1162 | 0.3194 | |
|
| 0.1192 | 4.0 | 4720 | 0.1111 | 0.2974 | |
|
| 0.1147 | 5.0 | 5900 | 0.1125 | 0.4043 | |
|
| 0.1196 | 6.0 | 7080 | 0.1116 | 0.1580 | |
|
| 0.1171 | 7.0 | 8260 | 0.1114 | 0.2923 | |
|
| 0.1177 | 8.0 | 9440 | 0.1106 | 0.3592 | |
|
| 0.1126 | 9.0 | 10620 | 0.1105 | 0.3724 | |
|
| 0.1152 | 10.0 | 11800 | 0.1135 | 0.4947 | |
|
| 0.1159 | 11.0 | 12980 | 0.1082 | 0.5113 | |
|
| 0.0953 | 12.0 | 14160 | 0.0820 | 0.6096 | |
|
| 0.0798 | 13.0 | 15340 | 0.0688 | 0.6442 | |
|
| 0.074 | 14.0 | 16520 | 0.0710 | 0.6738 | |
|
| 0.0704 | 15.0 | 17700 | 0.0816 | 0.6736 | |
|
| 0.0678 | 16.0 | 18880 | 0.0596 | 0.7142 | |
|
| 0.0599 | 17.0 | 20060 | 0.0689 | 0.7187 | |
|
| 0.0568 | 18.0 | 21240 | 0.0566 | 0.7308 | |
|
| 0.0534 | 19.0 | 22420 | 0.0518 | 0.7340 | |
|
| 0.0522 | 20.0 | 23600 | 0.0513 | 0.7389 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|