arjan-hada
commited on
Commit
•
5cb046e
1
Parent(s):
173d941
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/esm2_t12_35M_UR50D
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- spearmanr
|
8 |
+
model-index:
|
9 |
+
- name: esm2_t12_35M_UR50D-finetuned-rep7868aav2-v0
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# esm2_t12_35M_UR50D-finetuned-rep7868aav2-v0
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0513
|
21 |
+
- Spearmanr: 0.7389
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 20
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Spearmanr |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
|
53 |
+
| 0.118 | 1.0 | 1180 | 0.1154 | 0.3185 |
|
54 |
+
| 0.1156 | 2.0 | 2360 | 0.1109 | 0.3383 |
|
55 |
+
| 0.1143 | 3.0 | 3540 | 0.1162 | 0.3194 |
|
56 |
+
| 0.1192 | 4.0 | 4720 | 0.1111 | 0.2974 |
|
57 |
+
| 0.1147 | 5.0 | 5900 | 0.1125 | 0.4043 |
|
58 |
+
| 0.1196 | 6.0 | 7080 | 0.1116 | 0.1580 |
|
59 |
+
| 0.1171 | 7.0 | 8260 | 0.1114 | 0.2923 |
|
60 |
+
| 0.1177 | 8.0 | 9440 | 0.1106 | 0.3592 |
|
61 |
+
| 0.1126 | 9.0 | 10620 | 0.1105 | 0.3724 |
|
62 |
+
| 0.1152 | 10.0 | 11800 | 0.1135 | 0.4947 |
|
63 |
+
| 0.1159 | 11.0 | 12980 | 0.1082 | 0.5113 |
|
64 |
+
| 0.0953 | 12.0 | 14160 | 0.0820 | 0.6096 |
|
65 |
+
| 0.0798 | 13.0 | 15340 | 0.0688 | 0.6442 |
|
66 |
+
| 0.074 | 14.0 | 16520 | 0.0710 | 0.6738 |
|
67 |
+
| 0.0704 | 15.0 | 17700 | 0.0816 | 0.6736 |
|
68 |
+
| 0.0678 | 16.0 | 18880 | 0.0596 | 0.7142 |
|
69 |
+
| 0.0599 | 17.0 | 20060 | 0.0689 | 0.7187 |
|
70 |
+
| 0.0568 | 18.0 | 21240 | 0.0566 | 0.7308 |
|
71 |
+
| 0.0534 | 19.0 | 22420 | 0.0518 | 0.7340 |
|
72 |
+
| 0.0522 | 20.0 | 23600 | 0.0513 | 0.7389 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.35.2
|
78 |
+
- Pytorch 2.1.0+cu121
|
79 |
+
- Datasets 2.16.1
|
80 |
+
- Tokenizers 0.15.1
|