alirzb's picture
Model save
a81f585 verified
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: SeizureClassifier_Wav2Vec_43243498
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SeizureClassifier_Wav2Vec_43243498
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0520
- Accuracy: 0.9901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1121 | 0.99 | 44 | 0.9842 | 0.8144 |
| 0.6303 | 1.99 | 88 | 0.5874 | 0.8861 |
| 0.4605 | 2.98 | 132 | 0.3826 | 0.9406 |
| 0.323 | 4.0 | 177 | 0.2791 | 0.9530 |
| 0.2435 | 4.99 | 221 | 0.3828 | 0.8688 |
| 0.2354 | 5.99 | 265 | 0.1321 | 0.9752 |
| 0.2491 | 6.98 | 309 | 0.1552 | 0.9653 |
| 0.1116 | 8.0 | 354 | 0.1540 | 0.9579 |
| 0.0934 | 8.99 | 398 | 0.1053 | 0.9827 |
| 0.0774 | 9.99 | 442 | 0.1016 | 0.9777 |
| 0.0553 | 10.98 | 486 | 0.1856 | 0.9530 |
| 0.0368 | 12.0 | 531 | 0.1151 | 0.9728 |
| 0.017 | 12.99 | 575 | 0.0516 | 0.9876 |
| 0.0153 | 13.99 | 619 | 0.0540 | 0.9901 |
| 0.0144 | 14.92 | 660 | 0.0520 | 0.9901 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0