alirzb's picture
Model save
a81f585 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: SeizureClassifier_Wav2Vec_43243498
    results: []

SeizureClassifier_Wav2Vec_43243498

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0520
  • Accuracy: 0.9901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1121 0.99 44 0.9842 0.8144
0.6303 1.99 88 0.5874 0.8861
0.4605 2.98 132 0.3826 0.9406
0.323 4.0 177 0.2791 0.9530
0.2435 4.99 221 0.3828 0.8688
0.2354 5.99 265 0.1321 0.9752
0.2491 6.98 309 0.1552 0.9653
0.1116 8.0 354 0.1540 0.9579
0.0934 8.99 398 0.1053 0.9827
0.0774 9.99 442 0.1016 0.9777
0.0553 10.98 486 0.1856 0.9530
0.0368 12.0 531 0.1151 0.9728
0.017 12.99 575 0.0516 0.9876
0.0153 13.99 619 0.0540 0.9901
0.0144 14.92 660 0.0520 0.9901

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0