xlm_roberta_kriter / README.md
alionder's picture
Training completed!
62344b1 verified
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: xlm_roberta_kriter
    results: []

xlm_roberta_kriter

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1944
  • F1: 0.7931
  • Roc Auc: 0.8977
  • Accuracy: 0.7656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.3583 1.0 1151 0.3227 0.1209 0.5303 0.4766
0.289 2.0 2302 0.2266 0.6301 0.7660 0.6719
0.214 3.0 3453 0.1938 0.7500 0.8319 0.7344
0.1901 4.0 4604 0.1990 0.7328 0.8522 0.7188
0.1646 5.0 5755 0.1865 0.7664 0.8626 0.7344
0.1507 6.0 6906 0.1760 0.8030 0.8955 0.7773
0.1247 7.0 8057 0.1797 0.8010 0.9033 0.7695
0.1084 8.0 9208 0.1869 0.8051 0.8918 0.7812
0.0767 9.0 10359 0.1942 0.7931 0.8977 0.7617
0.0796 10.0 11510 0.1944 0.7931 0.8977 0.7656

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1