--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm_roberta_kriter results: [] --- # xlm_roberta_kriter This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1944 - F1: 0.7931 - Roc Auc: 0.8977 - Accuracy: 0.7656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.3583 | 1.0 | 1151 | 0.3227 | 0.1209 | 0.5303 | 0.4766 | | 0.289 | 2.0 | 2302 | 0.2266 | 0.6301 | 0.7660 | 0.6719 | | 0.214 | 3.0 | 3453 | 0.1938 | 0.7500 | 0.8319 | 0.7344 | | 0.1901 | 4.0 | 4604 | 0.1990 | 0.7328 | 0.8522 | 0.7188 | | 0.1646 | 5.0 | 5755 | 0.1865 | 0.7664 | 0.8626 | 0.7344 | | 0.1507 | 6.0 | 6906 | 0.1760 | 0.8030 | 0.8955 | 0.7773 | | 0.1247 | 7.0 | 8057 | 0.1797 | 0.8010 | 0.9033 | 0.7695 | | 0.1084 | 8.0 | 9208 | 0.1869 | 0.8051 | 0.8918 | 0.7812 | | 0.0767 | 9.0 | 10359 | 0.1942 | 0.7931 | 0.8977 | 0.7617 | | 0.0796 | 10.0 | 11510 | 0.1944 | 0.7931 | 0.8977 | 0.7656 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1