|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GPTQ |
|
model-index: |
|
- name: output_solor/exp_16 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GPTQ |
|
is_llama_derived_model: false |
|
gptq: true |
|
gptq_disable_exllama: true |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
tokenizer_use_fast: true |
|
tokenizer_legacy: true |
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
push_dataset_to_hub: |
|
hf_use_auth_token: true |
|
datasets: |
|
- path: datasets_cleansinng/datasets/helper_selector_1280_0305_v01.jsonl #Path to json dataset file in huggingface |
|
#for type,conversation arguments read axolotl readme and pick what is suited for your project, I wanted a chatbot and put sharegpt and chatml |
|
type: |
|
system_prompt: "Instruction์ ๋ฐ๋ผ ์ ์ ํ๊ฒ Input ๋ฐ์ดํฐ๋ฅผ ํ์ฉํ์ฌ Output ๋ต๋ณ์ ํ์ธ์. ๋๋ ์ฌ์ฉ์ ์ง๋ฌธ(Instruction)์ ์ค์๊ฐ์ผ๋ก API ํธ์ถ์ ์ํ Json ํ์์ ๊ตฌ์กฐํ๋ ๊ฒฐ๊ณผ๋ฅผ ์์ฑํ๋ ์ธ๊ณต์ง๋ฅ์ด์ผ." |
|
format: "[INST]### Instruction:\n{instruction}\n\n### Input:{input}\n\n[/INST]### Output: " |
|
no_input_format: "[INST]### Instruction:\n{instruction}\n\n[/INST]### Output: " |
|
field_instruction: Instruction |
|
field_input: Input |
|
field_output: Output |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
adapter: lora |
|
lora_model_dir: |
|
sequence_len: 4096 |
|
sample_packing: |
|
lora_r: 32 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
- k_proj |
|
- o_proj |
|
- q_proj |
|
- v_proj |
|
lora_target_linear: |
|
lora_fan_in_fan_out: |
|
wandb_project: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
output_dir: ./output_solor/exp_16 |
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 8 |
|
num_epochs: 5 |
|
optimizer: adamw_torch |
|
adam_beta2: 0.95 |
|
adam_eps: 0.00001 |
|
max_grad_norm: 1.0 |
|
torchdistx_path: |
|
lr_scheduler: cosine |
|
lr_quadratic_warmup: true |
|
learning_rate: 0.0005 |
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: false |
|
fp16: false |
|
float16: true |
|
tf32: true |
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: |
|
sdp_attention: |
|
flash_optimum: |
|
warmup_steps: 100 |
|
evals_per_epoch: 4 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: deepspeed_configs/zero1.json |
|
weight_decay: 0.1 |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# output_solor/exp_16 |
|
|
|
This model is a fine-tuned version of [TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GPTQ](https://huggingface.co/TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GPTQ) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2015 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.3493 | 0.05 | 1 | 1.2795 | |
|
| 1.2483 | 0.26 | 5 | 1.2769 | |
|
| 1.2275 | 0.53 | 10 | 1.2099 | |
|
| 1.0529 | 0.79 | 15 | 1.0724 | |
|
| 0.8642 | 1.05 | 20 | 0.9709 | |
|
| 0.8477 | 1.32 | 25 | 0.8245 | |
|
| 0.7207 | 1.58 | 30 | 0.6994 | |
|
| 0.4656 | 1.84 | 35 | 0.5878 | |
|
| 0.4949 | 2.11 | 40 | 0.4970 | |
|
| 0.3497 | 2.37 | 45 | 0.4221 | |
|
| 0.3288 | 2.63 | 50 | 0.3672 | |
|
| 0.3011 | 2.89 | 55 | 0.3250 | |
|
| 0.2648 | 3.16 | 60 | 0.2900 | |
|
| 0.3084 | 3.42 | 65 | 0.2591 | |
|
| 0.2696 | 3.68 | 70 | 0.2459 | |
|
| 0.2197 | 3.95 | 75 | 0.2286 | |
|
| 0.1905 | 4.21 | 80 | 0.2111 | |
|
| 0.1815 | 4.47 | 85 | 0.2084 | |
|
| 0.2164 | 4.74 | 90 | 0.2128 | |
|
| 0.1412 | 5.0 | 95 | 0.2015 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.1.dev0 |
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |