File size: 5,050 Bytes
cbbc090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GPTQ
model-index:
- name: output_solor/exp_16
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GPTQ
is_llama_derived_model: false
gptq: true
gptq_disable_exllama: true
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
tokenizer_use_fast: true
tokenizer_legacy: true
load_in_8bit: false
load_in_4bit: false
strict: false
push_dataset_to_hub:
hf_use_auth_token: true
datasets:
  - path:  datasets_cleansinng/datasets/helper_selector_1280_0305_v01.jsonl #Path to json dataset file in huggingface
    #for type,conversation arguments read axolotl readme and pick what is suited for your project, I wanted a chatbot and put sharegpt and chatml
    type: 
      system_prompt: "Instruction์— ๋”ฐ๋ผ ์ ์ ˆํ•˜๊ฒŒ Input ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ Output ๋‹ต๋ณ€์„ ํ•˜์„ธ์š”. ๋„ˆ๋Š” ์‚ฌ์šฉ์ž ์งˆ๋ฌธ(Instruction)์— ์‹ค์‹œ๊ฐ„์œผ๋กœ API ํ˜ธ์ถœ์„ ์œ„ํ•œ Json ํ˜•์‹์˜ ๊ตฌ์กฐํ™”๋œ ๊ฒฐ๊ณผ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์ธ๊ณต์ง€๋Šฅ์ด์•ผ."
      format: "[INST]### Instruction:\n{instruction}\n\n### Input:{input}\n\n[/INST]### Output: "
      no_input_format: "[INST]### Instruction:\n{instruction}\n\n[/INST]### Output: "
      field_instruction: Instruction 
      field_input: Input
      field_output: Output
dataset_prepared_path:
val_set_size: 0.05
adapter: lora
lora_model_dir:
sequence_len: 4096
sample_packing:
lora_r: 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
  - k_proj
  - o_proj
  - q_proj
  - v_proj
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./output_solor/exp_16
gradient_accumulation_steps: 8
micro_batch_size: 8
num_epochs: 5
optimizer: adamw_torch
adam_beta2: 0.95
adam_eps: 0.00001
max_grad_norm: 1.0
torchdistx_path:
lr_scheduler: cosine
lr_quadratic_warmup: true
learning_rate: 0.0005
train_on_inputs: false
group_by_length: false
bf16: false
fp16: false
float16: true
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
sdp_attention:
flash_optimum:
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.1
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# output_solor/exp_16

This model is a fine-tuned version of [TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GPTQ](https://huggingface.co/TheBloke/SOLAR-10.7B-Instruct-v1.0-uncensored-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2015

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3493        | 0.05  | 1    | 1.2795          |
| 1.2483        | 0.26  | 5    | 1.2769          |
| 1.2275        | 0.53  | 10   | 1.2099          |
| 1.0529        | 0.79  | 15   | 1.0724          |
| 0.8642        | 1.05  | 20   | 0.9709          |
| 0.8477        | 1.32  | 25   | 0.8245          |
| 0.7207        | 1.58  | 30   | 0.6994          |
| 0.4656        | 1.84  | 35   | 0.5878          |
| 0.4949        | 2.11  | 40   | 0.4970          |
| 0.3497        | 2.37  | 45   | 0.4221          |
| 0.3288        | 2.63  | 50   | 0.3672          |
| 0.3011        | 2.89  | 55   | 0.3250          |
| 0.2648        | 3.16  | 60   | 0.2900          |
| 0.3084        | 3.42  | 65   | 0.2591          |
| 0.2696        | 3.68  | 70   | 0.2459          |
| 0.2197        | 3.95  | 75   | 0.2286          |
| 0.1905        | 4.21  | 80   | 0.2111          |
| 0.1815        | 4.47  | 85   | 0.2084          |
| 0.2164        | 4.74  | 90   | 0.2128          |
| 0.1412        | 5.0   | 95   | 0.2015          |


### Framework versions

- PEFT 0.9.1.dev0
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.0