aiguy68's picture
End of training
09f3b93 verified
|
raw
history blame
2.57 kB
metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: Super_legal_text_summarizer
    results: []

Super_legal_text_summarizer

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7796
  • Rouge1: 0.3102
  • Rouge2: 0.1753
  • Rougel: 0.2022
  • Rougelsum: 0.2037
  • Gen Len: 142.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 34 1.7714 0.3079 0.1651 0.1946 0.1965 142.0
No log 2.0 68 1.7531 0.3151 0.1752 0.207 0.2081 142.0
No log 3.0 102 1.7471 0.3041 0.1665 0.1963 0.198 142.0
No log 4.0 136 1.7520 0.3104 0.1727 0.2039 0.2053 142.0
No log 5.0 170 1.7547 0.3123 0.1747 0.2018 0.203 142.0
No log 6.0 204 1.7636 0.3079 0.169 0.1969 0.1984 142.0
No log 7.0 238 1.7691 0.3134 0.1783 0.2067 0.208 142.0
No log 8.0 272 1.7703 0.3082 0.1727 0.2023 0.204 142.0
No log 9.0 306 1.7746 0.3091 0.1753 0.2016 0.2034 142.0
No log 10.0 340 1.7796 0.3102 0.1753 0.2022 0.2037 142.0

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2