File size: 2,569 Bytes
69a9a44
43b7224
 
69a9a44
 
 
 
 
 
 
 
 
 
 
 
 
 
43b7224
69a9a44
09f3b93
 
 
 
 
 
69a9a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09f3b93
 
69a9a44
09f3b93
 
69a9a44
 
09f3b93
69a9a44
 
 
 
09f3b93
 
 
 
 
 
 
 
 
 
 
 
69a9a44
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: Super_legal_text_summarizer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Super_legal_text_summarizer

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7796
- Rouge1: 0.3102
- Rouge2: 0.1753
- Rougel: 0.2022
- Rougelsum: 0.2037
- Gen Len: 142.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 34   | 1.7714          | 0.3079 | 0.1651 | 0.1946 | 0.1965    | 142.0   |
| No log        | 2.0   | 68   | 1.7531          | 0.3151 | 0.1752 | 0.207  | 0.2081    | 142.0   |
| No log        | 3.0   | 102  | 1.7471          | 0.3041 | 0.1665 | 0.1963 | 0.198     | 142.0   |
| No log        | 4.0   | 136  | 1.7520          | 0.3104 | 0.1727 | 0.2039 | 0.2053    | 142.0   |
| No log        | 5.0   | 170  | 1.7547          | 0.3123 | 0.1747 | 0.2018 | 0.203     | 142.0   |
| No log        | 6.0   | 204  | 1.7636          | 0.3079 | 0.169  | 0.1969 | 0.1984    | 142.0   |
| No log        | 7.0   | 238  | 1.7691          | 0.3134 | 0.1783 | 0.2067 | 0.208     | 142.0   |
| No log        | 8.0   | 272  | 1.7703          | 0.3082 | 0.1727 | 0.2023 | 0.204     | 142.0   |
| No log        | 9.0   | 306  | 1.7746          | 0.3091 | 0.1753 | 0.2016 | 0.2034    | 142.0   |
| No log        | 10.0  | 340  | 1.7796          | 0.3102 | 0.1753 | 0.2022 | 0.2037    | 142.0   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2