|
import torch |
|
from torch import nn as nn |
|
|
|
from r_basicsr.utils.registry import ARCH_REGISTRY |
|
from .arch_util import Upsample, make_layer |
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
"""Channel attention used in RCAN. |
|
|
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
squeeze_factor (int): Channel squeeze factor. Default: 16. |
|
""" |
|
|
|
def __init__(self, num_feat, squeeze_factor=16): |
|
super(ChannelAttention, self).__init__() |
|
self.attention = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), |
|
nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid()) |
|
|
|
def forward(self, x): |
|
y = self.attention(x) |
|
return x * y |
|
|
|
|
|
class RCAB(nn.Module): |
|
"""Residual Channel Attention Block (RCAB) used in RCAN. |
|
|
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
squeeze_factor (int): Channel squeeze factor. Default: 16. |
|
res_scale (float): Scale the residual. Default: 1. |
|
""" |
|
|
|
def __init__(self, num_feat, squeeze_factor=16, res_scale=1): |
|
super(RCAB, self).__init__() |
|
self.res_scale = res_scale |
|
|
|
self.rcab = nn.Sequential( |
|
nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1), |
|
ChannelAttention(num_feat, squeeze_factor)) |
|
|
|
def forward(self, x): |
|
res = self.rcab(x) * self.res_scale |
|
return res + x |
|
|
|
|
|
class ResidualGroup(nn.Module): |
|
"""Residual Group of RCAB. |
|
|
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
num_block (int): Block number in the body network. |
|
squeeze_factor (int): Channel squeeze factor. Default: 16. |
|
res_scale (float): Scale the residual. Default: 1. |
|
""" |
|
|
|
def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1): |
|
super(ResidualGroup, self).__init__() |
|
|
|
self.residual_group = make_layer( |
|
RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale) |
|
self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
|
|
def forward(self, x): |
|
res = self.conv(self.residual_group(x)) |
|
return res + x |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class RCAN(nn.Module): |
|
"""Residual Channel Attention Networks. |
|
|
|
Paper: Image Super-Resolution Using Very Deep Residual Channel Attention |
|
Networks |
|
Ref git repo: https://github.com/yulunzhang/RCAN. |
|
|
|
Args: |
|
num_in_ch (int): Channel number of inputs. |
|
num_out_ch (int): Channel number of outputs. |
|
num_feat (int): Channel number of intermediate features. |
|
Default: 64. |
|
num_group (int): Number of ResidualGroup. Default: 10. |
|
num_block (int): Number of RCAB in ResidualGroup. Default: 16. |
|
squeeze_factor (int): Channel squeeze factor. Default: 16. |
|
upscale (int): Upsampling factor. Support 2^n and 3. |
|
Default: 4. |
|
res_scale (float): Used to scale the residual in residual block. |
|
Default: 1. |
|
img_range (float): Image range. Default: 255. |
|
rgb_mean (tuple[float]): Image mean in RGB orders. |
|
Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset. |
|
""" |
|
|
|
def __init__(self, |
|
num_in_ch, |
|
num_out_ch, |
|
num_feat=64, |
|
num_group=10, |
|
num_block=16, |
|
squeeze_factor=16, |
|
upscale=4, |
|
res_scale=1, |
|
img_range=255., |
|
rgb_mean=(0.4488, 0.4371, 0.4040)): |
|
super(RCAN, self).__init__() |
|
|
|
self.img_range = img_range |
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) |
|
self.body = make_layer( |
|
ResidualGroup, |
|
num_group, |
|
num_feat=num_feat, |
|
num_block=num_block, |
|
squeeze_factor=squeeze_factor, |
|
res_scale=res_scale) |
|
self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
def forward(self, x): |
|
self.mean = self.mean.type_as(x) |
|
|
|
x = (x - self.mean) * self.img_range |
|
x = self.conv_first(x) |
|
res = self.conv_after_body(self.body(x)) |
|
res += x |
|
|
|
x = self.conv_last(self.upsample(res)) |
|
x = x / self.img_range + self.mean |
|
|
|
return x |
|
|