import torch from torch import nn as nn from r_basicsr.utils.registry import ARCH_REGISTRY from .arch_util import Upsample, make_layer class ChannelAttention(nn.Module): """Channel attention used in RCAN. Args: num_feat (int): Channel number of intermediate features. squeeze_factor (int): Channel squeeze factor. Default: 16. """ def __init__(self, num_feat, squeeze_factor=16): super(ChannelAttention, self).__init__() self.attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid()) def forward(self, x): y = self.attention(x) return x * y class RCAB(nn.Module): """Residual Channel Attention Block (RCAB) used in RCAN. Args: num_feat (int): Channel number of intermediate features. squeeze_factor (int): Channel squeeze factor. Default: 16. res_scale (float): Scale the residual. Default: 1. """ def __init__(self, num_feat, squeeze_factor=16, res_scale=1): super(RCAB, self).__init__() self.res_scale = res_scale self.rcab = nn.Sequential( nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1), ChannelAttention(num_feat, squeeze_factor)) def forward(self, x): res = self.rcab(x) * self.res_scale return res + x class ResidualGroup(nn.Module): """Residual Group of RCAB. Args: num_feat (int): Channel number of intermediate features. num_block (int): Block number in the body network. squeeze_factor (int): Channel squeeze factor. Default: 16. res_scale (float): Scale the residual. Default: 1. """ def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1): super(ResidualGroup, self).__init__() self.residual_group = make_layer( RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale) self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1) def forward(self, x): res = self.conv(self.residual_group(x)) return res + x @ARCH_REGISTRY.register() class RCAN(nn.Module): """Residual Channel Attention Networks. Paper: Image Super-Resolution Using Very Deep Residual Channel Attention Networks Ref git repo: https://github.com/yulunzhang/RCAN. Args: num_in_ch (int): Channel number of inputs. num_out_ch (int): Channel number of outputs. num_feat (int): Channel number of intermediate features. Default: 64. num_group (int): Number of ResidualGroup. Default: 10. num_block (int): Number of RCAB in ResidualGroup. Default: 16. squeeze_factor (int): Channel squeeze factor. Default: 16. upscale (int): Upsampling factor. Support 2^n and 3. Default: 4. res_scale (float): Used to scale the residual in residual block. Default: 1. img_range (float): Image range. Default: 255. rgb_mean (tuple[float]): Image mean in RGB orders. Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset. """ def __init__(self, num_in_ch, num_out_ch, num_feat=64, num_group=10, num_block=16, squeeze_factor=16, upscale=4, res_scale=1, img_range=255., rgb_mean=(0.4488, 0.4371, 0.4040)): super(RCAN, self).__init__() self.img_range = img_range self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) self.body = make_layer( ResidualGroup, num_group, num_feat=num_feat, num_block=num_block, squeeze_factor=squeeze_factor, res_scale=res_scale) self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) def forward(self, x): self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range x = self.conv_first(x) res = self.conv_after_body(self.body(x)) res += x x = self.conv_last(self.upsample(res)) x = x / self.img_range + self.mean return x