ZiqianLiu commited on
Commit
cb2f529
1 Parent(s): 7688e34

Upload 183 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. r_basicsr/__init__.py +12 -0
  2. r_basicsr/__pycache__/__init__.cpython-310.pyc +0 -0
  3. r_basicsr/__pycache__/test.cpython-310.pyc +0 -0
  4. r_basicsr/__pycache__/train.cpython-310.pyc +0 -0
  5. r_basicsr/__pycache__/version.cpython-310.pyc +0 -0
  6. r_basicsr/archs/__init__.py +25 -0
  7. r_basicsr/archs/__pycache__/__init__.cpython-310.pyc +0 -0
  8. r_basicsr/archs/__pycache__/arch_util.cpython-310.pyc +0 -0
  9. r_basicsr/archs/__pycache__/basicvsr_arch.cpython-310.pyc +0 -0
  10. r_basicsr/archs/__pycache__/basicvsrpp_arch.cpython-310.pyc +0 -0
  11. r_basicsr/archs/__pycache__/dfdnet_arch.cpython-310.pyc +0 -0
  12. r_basicsr/archs/__pycache__/dfdnet_util.cpython-310.pyc +0 -0
  13. r_basicsr/archs/__pycache__/discriminator_arch.cpython-310.pyc +0 -0
  14. r_basicsr/archs/__pycache__/duf_arch.cpython-310.pyc +0 -0
  15. r_basicsr/archs/__pycache__/ecbsr_arch.cpython-310.pyc +0 -0
  16. r_basicsr/archs/__pycache__/edsr_arch.cpython-310.pyc +0 -0
  17. r_basicsr/archs/__pycache__/edvr_arch.cpython-310.pyc +0 -0
  18. r_basicsr/archs/__pycache__/hifacegan_arch.cpython-310.pyc +0 -0
  19. r_basicsr/archs/__pycache__/hifacegan_util.cpython-310.pyc +0 -0
  20. r_basicsr/archs/__pycache__/rcan_arch.cpython-310.pyc +0 -0
  21. r_basicsr/archs/__pycache__/ridnet_arch.cpython-310.pyc +0 -0
  22. r_basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc +0 -0
  23. r_basicsr/archs/__pycache__/spynet_arch.cpython-310.pyc +0 -0
  24. r_basicsr/archs/__pycache__/srresnet_arch.cpython-310.pyc +0 -0
  25. r_basicsr/archs/__pycache__/srvgg_arch.cpython-310.pyc +0 -0
  26. r_basicsr/archs/__pycache__/stylegan2_arch.cpython-310.pyc +0 -0
  27. r_basicsr/archs/__pycache__/swinir_arch.cpython-310.pyc +0 -0
  28. r_basicsr/archs/__pycache__/tof_arch.cpython-310.pyc +0 -0
  29. r_basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc +0 -0
  30. r_basicsr/archs/arch_util.py +318 -0
  31. r_basicsr/archs/basicvsr_arch.py +336 -0
  32. r_basicsr/archs/basicvsrpp_arch.py +407 -0
  33. r_basicsr/archs/dfdnet_arch.py +169 -0
  34. r_basicsr/archs/dfdnet_util.py +162 -0
  35. r_basicsr/archs/discriminator_arch.py +150 -0
  36. r_basicsr/archs/duf_arch.py +277 -0
  37. r_basicsr/archs/ecbsr_arch.py +274 -0
  38. r_basicsr/archs/edsr_arch.py +61 -0
  39. r_basicsr/archs/edvr_arch.py +383 -0
  40. r_basicsr/archs/hifacegan_arch.py +259 -0
  41. r_basicsr/archs/hifacegan_util.py +255 -0
  42. r_basicsr/archs/inception.py +307 -0
  43. r_basicsr/archs/rcan_arch.py +135 -0
  44. r_basicsr/archs/ridnet_arch.py +184 -0
  45. r_basicsr/archs/rrdbnet_arch.py +119 -0
  46. r_basicsr/archs/spynet_arch.py +96 -0
  47. r_basicsr/archs/srresnet_arch.py +65 -0
  48. r_basicsr/archs/srvgg_arch.py +70 -0
  49. r_basicsr/archs/stylegan2_arch.py +799 -0
  50. r_basicsr/archs/swinir_arch.py +956 -0
r_basicsr/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/xinntao/BasicSR
2
+ # flake8: noqa
3
+ from .archs import *
4
+ from .data import *
5
+ from .losses import *
6
+ from .metrics import *
7
+ from .models import *
8
+ from .ops import *
9
+ from .test import *
10
+ from .train import *
11
+ from .utils import *
12
+ from .version import __gitsha__, __version__
r_basicsr/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (399 Bytes). View file
 
r_basicsr/__pycache__/test.cpython-310.pyc ADDED
Binary file (1.65 kB). View file
 
r_basicsr/__pycache__/train.cpython-310.pyc ADDED
Binary file (6.44 kB). View file
 
r_basicsr/__pycache__/version.cpython-310.pyc ADDED
Binary file (261 Bytes). View file
 
r_basicsr/archs/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from copy import deepcopy
3
+ from os import path as osp
4
+
5
+ from r_basicsr.utils import get_root_logger, scandir
6
+ from r_basicsr.utils.registry import ARCH_REGISTRY
7
+
8
+ __all__ = ['build_network']
9
+
10
+ # automatically scan and import arch modules for registry
11
+ # scan all the files under the 'archs' folder and collect files ending with
12
+ # '_arch.py'
13
+ arch_folder = osp.dirname(osp.abspath(__file__))
14
+ arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
15
+ # import all the arch modules
16
+ _arch_modules = [importlib.import_module(f'r_basicsr.archs.{file_name}') for file_name in arch_filenames]
17
+
18
+
19
+ def build_network(opt):
20
+ opt = deepcopy(opt)
21
+ network_type = opt.pop('type')
22
+ net = ARCH_REGISTRY.get(network_type)(**opt)
23
+ logger = get_root_logger()
24
+ logger.info(f'Network [{net.__class__.__name__}] is created.')
25
+ return net
r_basicsr/archs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.18 kB). View file
 
r_basicsr/archs/__pycache__/arch_util.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
r_basicsr/archs/__pycache__/basicvsr_arch.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
r_basicsr/archs/__pycache__/basicvsrpp_arch.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
r_basicsr/archs/__pycache__/dfdnet_arch.cpython-310.pyc ADDED
Binary file (5.47 kB). View file
 
r_basicsr/archs/__pycache__/dfdnet_util.cpython-310.pyc ADDED
Binary file (5.52 kB). View file
 
r_basicsr/archs/__pycache__/discriminator_arch.cpython-310.pyc ADDED
Binary file (4.96 kB). View file
 
r_basicsr/archs/__pycache__/duf_arch.cpython-310.pyc ADDED
Binary file (9.27 kB). View file
 
r_basicsr/archs/__pycache__/ecbsr_arch.cpython-310.pyc ADDED
Binary file (8.41 kB). View file
 
r_basicsr/archs/__pycache__/edsr_arch.cpython-310.pyc ADDED
Binary file (2.35 kB). View file
 
r_basicsr/archs/__pycache__/edvr_arch.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
r_basicsr/archs/__pycache__/hifacegan_arch.cpython-310.pyc ADDED
Binary file (7.62 kB). View file
 
r_basicsr/archs/__pycache__/hifacegan_util.cpython-310.pyc ADDED
Binary file (8.52 kB). View file
 
r_basicsr/archs/__pycache__/rcan_arch.cpython-310.pyc ADDED
Binary file (5 kB). View file
 
r_basicsr/archs/__pycache__/ridnet_arch.cpython-310.pyc ADDED
Binary file (6.62 kB). View file
 
r_basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc ADDED
Binary file (4.47 kB). View file
 
r_basicsr/archs/__pycache__/spynet_arch.cpython-310.pyc ADDED
Binary file (3.93 kB). View file
 
r_basicsr/archs/__pycache__/srresnet_arch.cpython-310.pyc ADDED
Binary file (2.54 kB). View file
 
r_basicsr/archs/__pycache__/srvgg_arch.cpython-310.pyc ADDED
Binary file (2.44 kB). View file
 
r_basicsr/archs/__pycache__/stylegan2_arch.cpython-310.pyc ADDED
Binary file (25.2 kB). View file
 
r_basicsr/archs/__pycache__/swinir_arch.cpython-310.pyc ADDED
Binary file (28.7 kB). View file
 
r_basicsr/archs/__pycache__/tof_arch.cpython-310.pyc ADDED
Binary file (6.38 kB). View file
 
r_basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc ADDED
Binary file (4.87 kB). View file
 
r_basicsr/archs/arch_util.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections.abc
2
+ import math
3
+ import torch
4
+ import torchvision
5
+ import warnings
6
+ from distutils.version import LooseVersion
7
+ from itertools import repeat
8
+ from torch import nn as nn
9
+ from torch.nn import functional as F
10
+ from torch.nn import init as init
11
+ from torch.nn.modules.batchnorm import _BatchNorm
12
+
13
+ from r_basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
14
+ from r_basicsr.utils import get_root_logger
15
+
16
+
17
+ @torch.no_grad()
18
+ def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
19
+ """Initialize network weights.
20
+
21
+ Args:
22
+ module_list (list[nn.Module] | nn.Module): Modules to be initialized.
23
+ scale (float): Scale initialized weights, especially for residual
24
+ blocks. Default: 1.
25
+ bias_fill (float): The value to fill bias. Default: 0
26
+ kwargs (dict): Other arguments for initialization function.
27
+ """
28
+ if not isinstance(module_list, list):
29
+ module_list = [module_list]
30
+ for module in module_list:
31
+ for m in module.modules():
32
+ if isinstance(m, nn.Conv2d):
33
+ init.kaiming_normal_(m.weight, **kwargs)
34
+ m.weight.data *= scale
35
+ if m.bias is not None:
36
+ m.bias.data.fill_(bias_fill)
37
+ elif isinstance(m, nn.Linear):
38
+ init.kaiming_normal_(m.weight, **kwargs)
39
+ m.weight.data *= scale
40
+ if m.bias is not None:
41
+ m.bias.data.fill_(bias_fill)
42
+ elif isinstance(m, _BatchNorm):
43
+ init.constant_(m.weight, 1)
44
+ if m.bias is not None:
45
+ m.bias.data.fill_(bias_fill)
46
+
47
+
48
+ def make_layer(basic_block, num_basic_block, **kwarg):
49
+ """Make layers by stacking the same blocks.
50
+
51
+ Args:
52
+ basic_block (nn.module): nn.module class for basic block.
53
+ num_basic_block (int): number of blocks.
54
+
55
+ Returns:
56
+ nn.Sequential: Stacked blocks in nn.Sequential.
57
+ """
58
+ layers = []
59
+ for _ in range(num_basic_block):
60
+ layers.append(basic_block(**kwarg))
61
+ return nn.Sequential(*layers)
62
+
63
+
64
+ class ResidualBlockNoBN(nn.Module):
65
+ """Residual block without BN.
66
+
67
+ It has a style of:
68
+ ---Conv-ReLU-Conv-+-
69
+ |________________|
70
+
71
+ Args:
72
+ num_feat (int): Channel number of intermediate features.
73
+ Default: 64.
74
+ res_scale (float): Residual scale. Default: 1.
75
+ pytorch_init (bool): If set to True, use pytorch default init,
76
+ otherwise, use default_init_weights. Default: False.
77
+ """
78
+
79
+ def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
80
+ super(ResidualBlockNoBN, self).__init__()
81
+ self.res_scale = res_scale
82
+ self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
83
+ self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
84
+ self.relu = nn.ReLU(inplace=True)
85
+
86
+ if not pytorch_init:
87
+ default_init_weights([self.conv1, self.conv2], 0.1)
88
+
89
+ def forward(self, x):
90
+ identity = x
91
+ out = self.conv2(self.relu(self.conv1(x)))
92
+ return identity + out * self.res_scale
93
+
94
+
95
+ class Upsample(nn.Sequential):
96
+ """Upsample module.
97
+
98
+ Args:
99
+ scale (int): Scale factor. Supported scales: 2^n and 3.
100
+ num_feat (int): Channel number of intermediate features.
101
+ """
102
+
103
+ def __init__(self, scale, num_feat):
104
+ m = []
105
+ if (scale & (scale - 1)) == 0: # scale = 2^n
106
+ for _ in range(int(math.log(scale, 2))):
107
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
108
+ m.append(nn.PixelShuffle(2))
109
+ elif scale == 3:
110
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
111
+ m.append(nn.PixelShuffle(3))
112
+ else:
113
+ raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
114
+ super(Upsample, self).__init__(*m)
115
+
116
+
117
+ def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
118
+ """Warp an image or feature map with optical flow.
119
+
120
+ Args:
121
+ x (Tensor): Tensor with size (n, c, h, w).
122
+ flow (Tensor): Tensor with size (n, h, w, 2), normal value.
123
+ interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
124
+ padding_mode (str): 'zeros' or 'border' or 'reflection'.
125
+ Default: 'zeros'.
126
+ align_corners (bool): Before pytorch 1.3, the default value is
127
+ align_corners=True. After pytorch 1.3, the default value is
128
+ align_corners=False. Here, we use the True as default.
129
+
130
+ Returns:
131
+ Tensor: Warped image or feature map.
132
+ """
133
+ assert x.size()[-2:] == flow.size()[1:3]
134
+ _, _, h, w = x.size()
135
+ # create mesh grid
136
+ grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
137
+ grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
138
+ grid.requires_grad = False
139
+
140
+ vgrid = grid + flow
141
+ # scale grid to [-1,1]
142
+ vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
143
+ vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
144
+ vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
145
+ output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
146
+
147
+ # TODO, what if align_corners=False
148
+ return output
149
+
150
+
151
+ def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
152
+ """Resize a flow according to ratio or shape.
153
+
154
+ Args:
155
+ flow (Tensor): Precomputed flow. shape [N, 2, H, W].
156
+ size_type (str): 'ratio' or 'shape'.
157
+ sizes (list[int | float]): the ratio for resizing or the final output
158
+ shape.
159
+ 1) The order of ratio should be [ratio_h, ratio_w]. For
160
+ downsampling, the ratio should be smaller than 1.0 (i.e., ratio
161
+ < 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
162
+ ratio > 1.0).
163
+ 2) The order of output_size should be [out_h, out_w].
164
+ interp_mode (str): The mode of interpolation for resizing.
165
+ Default: 'bilinear'.
166
+ align_corners (bool): Whether align corners. Default: False.
167
+
168
+ Returns:
169
+ Tensor: Resized flow.
170
+ """
171
+ _, _, flow_h, flow_w = flow.size()
172
+ if size_type == 'ratio':
173
+ output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
174
+ elif size_type == 'shape':
175
+ output_h, output_w = sizes[0], sizes[1]
176
+ else:
177
+ raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
178
+
179
+ input_flow = flow.clone()
180
+ ratio_h = output_h / flow_h
181
+ ratio_w = output_w / flow_w
182
+ input_flow[:, 0, :, :] *= ratio_w
183
+ input_flow[:, 1, :, :] *= ratio_h
184
+ resized_flow = F.interpolate(
185
+ input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
186
+ return resized_flow
187
+
188
+
189
+ # TODO: may write a cpp file
190
+ def pixel_unshuffle(x, scale):
191
+ """ Pixel unshuffle.
192
+
193
+ Args:
194
+ x (Tensor): Input feature with shape (b, c, hh, hw).
195
+ scale (int): Downsample ratio.
196
+
197
+ Returns:
198
+ Tensor: the pixel unshuffled feature.
199
+ """
200
+ b, c, hh, hw = x.size()
201
+ out_channel = c * (scale**2)
202
+ assert hh % scale == 0 and hw % scale == 0
203
+ h = hh // scale
204
+ w = hw // scale
205
+ x_view = x.view(b, c, h, scale, w, scale)
206
+ return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
207
+
208
+
209
+ class DCNv2Pack(ModulatedDeformConvPack):
210
+ """Modulated deformable conv for deformable alignment.
211
+
212
+ Different from the official DCNv2Pack, which generates offsets and masks
213
+ from the preceding features, this DCNv2Pack takes another different
214
+ features to generate offsets and masks.
215
+
216
+ Ref:
217
+ Delving Deep into Deformable Alignment in Video Super-Resolution.
218
+ """
219
+
220
+ def forward(self, x, feat):
221
+ out = self.conv_offset(feat)
222
+ o1, o2, mask = torch.chunk(out, 3, dim=1)
223
+ offset = torch.cat((o1, o2), dim=1)
224
+ mask = torch.sigmoid(mask)
225
+
226
+ offset_absmean = torch.mean(torch.abs(offset))
227
+ if offset_absmean > 50:
228
+ logger = get_root_logger()
229
+ logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
230
+
231
+ if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'):
232
+ return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
233
+ self.dilation, mask)
234
+ else:
235
+ return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding,
236
+ self.dilation, self.groups, self.deformable_groups)
237
+
238
+
239
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
240
+ # From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
241
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
242
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
243
+ def norm_cdf(x):
244
+ # Computes standard normal cumulative distribution function
245
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
246
+
247
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
248
+ warnings.warn(
249
+ 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
250
+ 'The distribution of values may be incorrect.',
251
+ stacklevel=2)
252
+
253
+ with torch.no_grad():
254
+ # Values are generated by using a truncated uniform distribution and
255
+ # then using the inverse CDF for the normal distribution.
256
+ # Get upper and lower cdf values
257
+ low = norm_cdf((a - mean) / std)
258
+ up = norm_cdf((b - mean) / std)
259
+
260
+ # Uniformly fill tensor with values from [low, up], then translate to
261
+ # [2l-1, 2u-1].
262
+ tensor.uniform_(2 * low - 1, 2 * up - 1)
263
+
264
+ # Use inverse cdf transform for normal distribution to get truncated
265
+ # standard normal
266
+ tensor.erfinv_()
267
+
268
+ # Transform to proper mean, std
269
+ tensor.mul_(std * math.sqrt(2.))
270
+ tensor.add_(mean)
271
+
272
+ # Clamp to ensure it's in the proper range
273
+ tensor.clamp_(min=a, max=b)
274
+ return tensor
275
+
276
+
277
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
278
+ r"""Fills the input Tensor with values drawn from a truncated
279
+ normal distribution.
280
+
281
+ From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
282
+
283
+ The values are effectively drawn from the
284
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
285
+ with values outside :math:`[a, b]` redrawn until they are within
286
+ the bounds. The method used for generating the random values works
287
+ best when :math:`a \leq \text{mean} \leq b`.
288
+
289
+ Args:
290
+ tensor: an n-dimensional `torch.Tensor`
291
+ mean: the mean of the normal distribution
292
+ std: the standard deviation of the normal distribution
293
+ a: the minimum cutoff value
294
+ b: the maximum cutoff value
295
+
296
+ Examples:
297
+ >>> w = torch.empty(3, 5)
298
+ >>> nn.init.trunc_normal_(w)
299
+ """
300
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
301
+
302
+
303
+ # From PyTorch
304
+ def _ntuple(n):
305
+
306
+ def parse(x):
307
+ if isinstance(x, collections.abc.Iterable):
308
+ return x
309
+ return tuple(repeat(x, n))
310
+
311
+ return parse
312
+
313
+
314
+ to_1tuple = _ntuple(1)
315
+ to_2tuple = _ntuple(2)
316
+ to_3tuple = _ntuple(3)
317
+ to_4tuple = _ntuple(4)
318
+ to_ntuple = _ntuple
r_basicsr/archs/basicvsr_arch.py ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ from r_basicsr.utils.registry import ARCH_REGISTRY
6
+ from .arch_util import ResidualBlockNoBN, flow_warp, make_layer
7
+ from .edvr_arch import PCDAlignment, TSAFusion
8
+ from .spynet_arch import SpyNet
9
+
10
+
11
+ @ARCH_REGISTRY.register()
12
+ class BasicVSR(nn.Module):
13
+ """A recurrent network for video SR. Now only x4 is supported.
14
+
15
+ Args:
16
+ num_feat (int): Number of channels. Default: 64.
17
+ num_block (int): Number of residual blocks for each branch. Default: 15
18
+ spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
19
+ """
20
+
21
+ def __init__(self, num_feat=64, num_block=15, spynet_path=None):
22
+ super().__init__()
23
+ self.num_feat = num_feat
24
+
25
+ # alignment
26
+ self.spynet = SpyNet(spynet_path)
27
+
28
+ # propagation
29
+ self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
30
+ self.forward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
31
+
32
+ # reconstruction
33
+ self.fusion = nn.Conv2d(num_feat * 2, num_feat, 1, 1, 0, bias=True)
34
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True)
35
+ self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True)
36
+ self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
37
+ self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
38
+
39
+ self.pixel_shuffle = nn.PixelShuffle(2)
40
+
41
+ # activation functions
42
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
43
+
44
+ def get_flow(self, x):
45
+ b, n, c, h, w = x.size()
46
+
47
+ x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w)
48
+ x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w)
49
+
50
+ flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w)
51
+ flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w)
52
+
53
+ return flows_forward, flows_backward
54
+
55
+ def forward(self, x):
56
+ """Forward function of BasicVSR.
57
+
58
+ Args:
59
+ x: Input frames with shape (b, n, c, h, w). n is the temporal dimension / number of frames.
60
+ """
61
+ flows_forward, flows_backward = self.get_flow(x)
62
+ b, n, _, h, w = x.size()
63
+
64
+ # backward branch
65
+ out_l = []
66
+ feat_prop = x.new_zeros(b, self.num_feat, h, w)
67
+ for i in range(n - 1, -1, -1):
68
+ x_i = x[:, i, :, :, :]
69
+ if i < n - 1:
70
+ flow = flows_backward[:, i, :, :, :]
71
+ feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
72
+ feat_prop = torch.cat([x_i, feat_prop], dim=1)
73
+ feat_prop = self.backward_trunk(feat_prop)
74
+ out_l.insert(0, feat_prop)
75
+
76
+ # forward branch
77
+ feat_prop = torch.zeros_like(feat_prop)
78
+ for i in range(0, n):
79
+ x_i = x[:, i, :, :, :]
80
+ if i > 0:
81
+ flow = flows_forward[:, i - 1, :, :, :]
82
+ feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
83
+
84
+ feat_prop = torch.cat([x_i, feat_prop], dim=1)
85
+ feat_prop = self.forward_trunk(feat_prop)
86
+
87
+ # upsample
88
+ out = torch.cat([out_l[i], feat_prop], dim=1)
89
+ out = self.lrelu(self.fusion(out))
90
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
91
+ out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
92
+ out = self.lrelu(self.conv_hr(out))
93
+ out = self.conv_last(out)
94
+ base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False)
95
+ out += base
96
+ out_l[i] = out
97
+
98
+ return torch.stack(out_l, dim=1)
99
+
100
+
101
+ class ConvResidualBlocks(nn.Module):
102
+ """Conv and residual block used in BasicVSR.
103
+
104
+ Args:
105
+ num_in_ch (int): Number of input channels. Default: 3.
106
+ num_out_ch (int): Number of output channels. Default: 64.
107
+ num_block (int): Number of residual blocks. Default: 15.
108
+ """
109
+
110
+ def __init__(self, num_in_ch=3, num_out_ch=64, num_block=15):
111
+ super().__init__()
112
+ self.main = nn.Sequential(
113
+ nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1, bias=True), nn.LeakyReLU(negative_slope=0.1, inplace=True),
114
+ make_layer(ResidualBlockNoBN, num_block, num_feat=num_out_ch))
115
+
116
+ def forward(self, fea):
117
+ return self.main(fea)
118
+
119
+
120
+ @ARCH_REGISTRY.register()
121
+ class IconVSR(nn.Module):
122
+ """IconVSR, proposed also in the BasicVSR paper.
123
+
124
+ Args:
125
+ num_feat (int): Number of channels. Default: 64.
126
+ num_block (int): Number of residual blocks for each branch. Default: 15.
127
+ keyframe_stride (int): Keyframe stride. Default: 5.
128
+ temporal_padding (int): Temporal padding. Default: 2.
129
+ spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
130
+ edvr_path (str): Path to the pretrained EDVR model. Default: None.
131
+ """
132
+
133
+ def __init__(self,
134
+ num_feat=64,
135
+ num_block=15,
136
+ keyframe_stride=5,
137
+ temporal_padding=2,
138
+ spynet_path=None,
139
+ edvr_path=None):
140
+ super().__init__()
141
+
142
+ self.num_feat = num_feat
143
+ self.temporal_padding = temporal_padding
144
+ self.keyframe_stride = keyframe_stride
145
+
146
+ # keyframe_branch
147
+ self.edvr = EDVRFeatureExtractor(temporal_padding * 2 + 1, num_feat, edvr_path)
148
+ # alignment
149
+ self.spynet = SpyNet(spynet_path)
150
+
151
+ # propagation
152
+ self.backward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True)
153
+ self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
154
+
155
+ self.forward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True)
156
+ self.forward_trunk = ConvResidualBlocks(2 * num_feat + 3, num_feat, num_block)
157
+
158
+ # reconstruction
159
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True)
160
+ self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True)
161
+ self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
162
+ self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
163
+
164
+ self.pixel_shuffle = nn.PixelShuffle(2)
165
+
166
+ # activation functions
167
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
168
+
169
+ def pad_spatial(self, x):
170
+ """Apply padding spatially.
171
+
172
+ Since the PCD module in EDVR requires that the resolution is a multiple
173
+ of 4, we apply padding to the input LR images if their resolution is
174
+ not divisible by 4.
175
+
176
+ Args:
177
+ x (Tensor): Input LR sequence with shape (n, t, c, h, w).
178
+ Returns:
179
+ Tensor: Padded LR sequence with shape (n, t, c, h_pad, w_pad).
180
+ """
181
+ n, t, c, h, w = x.size()
182
+
183
+ pad_h = (4 - h % 4) % 4
184
+ pad_w = (4 - w % 4) % 4
185
+
186
+ # padding
187
+ x = x.view(-1, c, h, w)
188
+ x = F.pad(x, [0, pad_w, 0, pad_h], mode='reflect')
189
+
190
+ return x.view(n, t, c, h + pad_h, w + pad_w)
191
+
192
+ def get_flow(self, x):
193
+ b, n, c, h, w = x.size()
194
+
195
+ x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w)
196
+ x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w)
197
+
198
+ flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w)
199
+ flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w)
200
+
201
+ return flows_forward, flows_backward
202
+
203
+ def get_keyframe_feature(self, x, keyframe_idx):
204
+ if self.temporal_padding == 2:
205
+ x = [x[:, [4, 3]], x, x[:, [-4, -5]]]
206
+ elif self.temporal_padding == 3:
207
+ x = [x[:, [6, 5, 4]], x, x[:, [-5, -6, -7]]]
208
+ x = torch.cat(x, dim=1)
209
+
210
+ num_frames = 2 * self.temporal_padding + 1
211
+ feats_keyframe = {}
212
+ for i in keyframe_idx:
213
+ feats_keyframe[i] = self.edvr(x[:, i:i + num_frames].contiguous())
214
+ return feats_keyframe
215
+
216
+ def forward(self, x):
217
+ b, n, _, h_input, w_input = x.size()
218
+
219
+ x = self.pad_spatial(x)
220
+ h, w = x.shape[3:]
221
+
222
+ keyframe_idx = list(range(0, n, self.keyframe_stride))
223
+ if keyframe_idx[-1] != n - 1:
224
+ keyframe_idx.append(n - 1) # last frame is a keyframe
225
+
226
+ # compute flow and keyframe features
227
+ flows_forward, flows_backward = self.get_flow(x)
228
+ feats_keyframe = self.get_keyframe_feature(x, keyframe_idx)
229
+
230
+ # backward branch
231
+ out_l = []
232
+ feat_prop = x.new_zeros(b, self.num_feat, h, w)
233
+ for i in range(n - 1, -1, -1):
234
+ x_i = x[:, i, :, :, :]
235
+ if i < n - 1:
236
+ flow = flows_backward[:, i, :, :, :]
237
+ feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
238
+ if i in keyframe_idx:
239
+ feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1)
240
+ feat_prop = self.backward_fusion(feat_prop)
241
+ feat_prop = torch.cat([x_i, feat_prop], dim=1)
242
+ feat_prop = self.backward_trunk(feat_prop)
243
+ out_l.insert(0, feat_prop)
244
+
245
+ # forward branch
246
+ feat_prop = torch.zeros_like(feat_prop)
247
+ for i in range(0, n):
248
+ x_i = x[:, i, :, :, :]
249
+ if i > 0:
250
+ flow = flows_forward[:, i - 1, :, :, :]
251
+ feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
252
+ if i in keyframe_idx:
253
+ feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1)
254
+ feat_prop = self.forward_fusion(feat_prop)
255
+
256
+ feat_prop = torch.cat([x_i, out_l[i], feat_prop], dim=1)
257
+ feat_prop = self.forward_trunk(feat_prop)
258
+
259
+ # upsample
260
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(feat_prop)))
261
+ out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
262
+ out = self.lrelu(self.conv_hr(out))
263
+ out = self.conv_last(out)
264
+ base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False)
265
+ out += base
266
+ out_l[i] = out
267
+
268
+ return torch.stack(out_l, dim=1)[..., :4 * h_input, :4 * w_input]
269
+
270
+
271
+ class EDVRFeatureExtractor(nn.Module):
272
+ """EDVR feature extractor used in IconVSR.
273
+
274
+ Args:
275
+ num_input_frame (int): Number of input frames.
276
+ num_feat (int): Number of feature channels
277
+ load_path (str): Path to the pretrained weights of EDVR. Default: None.
278
+ """
279
+
280
+ def __init__(self, num_input_frame, num_feat, load_path):
281
+
282
+ super(EDVRFeatureExtractor, self).__init__()
283
+
284
+ self.center_frame_idx = num_input_frame // 2
285
+
286
+ # extract pyramid features
287
+ self.conv_first = nn.Conv2d(3, num_feat, 3, 1, 1)
288
+ self.feature_extraction = make_layer(ResidualBlockNoBN, 5, num_feat=num_feat)
289
+ self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
290
+ self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
291
+ self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
292
+ self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
293
+
294
+ # pcd and tsa module
295
+ self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=8)
296
+ self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_input_frame, center_frame_idx=self.center_frame_idx)
297
+
298
+ # activation function
299
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
300
+
301
+ if load_path:
302
+ self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
303
+
304
+ def forward(self, x):
305
+ b, n, c, h, w = x.size()
306
+
307
+ # extract features for each frame
308
+ # L1
309
+ feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))
310
+ feat_l1 = self.feature_extraction(feat_l1)
311
+ # L2
312
+ feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
313
+ feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
314
+ # L3
315
+ feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
316
+ feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))
317
+
318
+ feat_l1 = feat_l1.view(b, n, -1, h, w)
319
+ feat_l2 = feat_l2.view(b, n, -1, h // 2, w // 2)
320
+ feat_l3 = feat_l3.view(b, n, -1, h // 4, w // 4)
321
+
322
+ # PCD alignment
323
+ ref_feat_l = [ # reference feature list
324
+ feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
325
+ feat_l3[:, self.center_frame_idx, :, :, :].clone()
326
+ ]
327
+ aligned_feat = []
328
+ for i in range(n):
329
+ nbr_feat_l = [ # neighboring feature list
330
+ feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
331
+ ]
332
+ aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
333
+ aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w)
334
+
335
+ # TSA fusion
336
+ return self.fusion(aligned_feat)
r_basicsr/archs/basicvsrpp_arch.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torchvision
5
+ import warnings
6
+
7
+ from r_basicsr.archs.arch_util import flow_warp
8
+ from r_basicsr.archs.basicvsr_arch import ConvResidualBlocks
9
+ from r_basicsr.archs.spynet_arch import SpyNet
10
+ from r_basicsr.ops.dcn import ModulatedDeformConvPack
11
+ from r_basicsr.utils.registry import ARCH_REGISTRY
12
+
13
+
14
+ @ARCH_REGISTRY.register()
15
+ class BasicVSRPlusPlus(nn.Module):
16
+ """BasicVSR++ network structure.
17
+ Support either x4 upsampling or same size output. Since DCN is used in this
18
+ model, it can only be used with CUDA enabled. If CUDA is not enabled,
19
+ feature alignment will be skipped. Besides, we adopt the official DCN
20
+ implementation and the version of torch need to be higher than 1.9.
21
+ Paper:
22
+ BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation
23
+ and Alignment
24
+ Args:
25
+ mid_channels (int, optional): Channel number of the intermediate
26
+ features. Default: 64.
27
+ num_blocks (int, optional): The number of residual blocks in each
28
+ propagation branch. Default: 7.
29
+ max_residue_magnitude (int): The maximum magnitude of the offset
30
+ residue (Eq. 6 in paper). Default: 10.
31
+ is_low_res_input (bool, optional): Whether the input is low-resolution
32
+ or not. If False, the output resolution is equal to the input
33
+ resolution. Default: True.
34
+ spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
35
+ cpu_cache_length (int, optional): When the length of sequence is larger
36
+ than this value, the intermediate features are sent to CPU. This
37
+ saves GPU memory, but slows down the inference speed. You can
38
+ increase this number if you have a GPU with large memory.
39
+ Default: 100.
40
+ """
41
+
42
+ def __init__(self,
43
+ mid_channels=64,
44
+ num_blocks=7,
45
+ max_residue_magnitude=10,
46
+ is_low_res_input=True,
47
+ spynet_path=None,
48
+ cpu_cache_length=100):
49
+
50
+ super().__init__()
51
+ self.mid_channels = mid_channels
52
+ self.is_low_res_input = is_low_res_input
53
+ self.cpu_cache_length = cpu_cache_length
54
+
55
+ # optical flow
56
+ self.spynet = SpyNet(spynet_path)
57
+
58
+ # feature extraction module
59
+ if is_low_res_input:
60
+ self.feat_extract = ConvResidualBlocks(3, mid_channels, 5)
61
+ else:
62
+ self.feat_extract = nn.Sequential(
63
+ nn.Conv2d(3, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
64
+ nn.Conv2d(mid_channels, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
65
+ ConvResidualBlocks(mid_channels, mid_channels, 5))
66
+
67
+ # propagation branches
68
+ self.deform_align = nn.ModuleDict()
69
+ self.backbone = nn.ModuleDict()
70
+ modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2']
71
+ for i, module in enumerate(modules):
72
+ if torch.cuda.is_available():
73
+ self.deform_align[module] = SecondOrderDeformableAlignment(
74
+ 2 * mid_channels,
75
+ mid_channels,
76
+ 3,
77
+ padding=1,
78
+ deformable_groups=16,
79
+ max_residue_magnitude=max_residue_magnitude)
80
+ self.backbone[module] = ConvResidualBlocks((2 + i) * mid_channels, mid_channels, num_blocks)
81
+
82
+ # upsampling module
83
+ self.reconstruction = ConvResidualBlocks(5 * mid_channels, mid_channels, 5)
84
+
85
+ self.upconv1 = nn.Conv2d(mid_channels, mid_channels * 4, 3, 1, 1, bias=True)
86
+ self.upconv2 = nn.Conv2d(mid_channels, 64 * 4, 3, 1, 1, bias=True)
87
+
88
+ self.pixel_shuffle = nn.PixelShuffle(2)
89
+
90
+ self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
91
+ self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
92
+ self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False)
93
+
94
+ # activation function
95
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
96
+
97
+ # check if the sequence is augmented by flipping
98
+ self.is_mirror_extended = False
99
+
100
+ if len(self.deform_align) > 0:
101
+ self.is_with_alignment = True
102
+ else:
103
+ self.is_with_alignment = False
104
+ warnings.warn('Deformable alignment module is not added. '
105
+ 'Probably your CUDA is not configured correctly. DCN can only '
106
+ 'be used with CUDA enabled. Alignment is skipped now.')
107
+
108
+ def check_if_mirror_extended(self, lqs):
109
+ """Check whether the input is a mirror-extended sequence.
110
+ If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the
111
+ (t-1-i)-th frame.
112
+ Args:
113
+ lqs (tensor): Input low quality (LQ) sequence with
114
+ shape (n, t, c, h, w).
115
+ """
116
+
117
+ if lqs.size(1) % 2 == 0:
118
+ lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1)
119
+ if torch.norm(lqs_1 - lqs_2.flip(1)) == 0:
120
+ self.is_mirror_extended = True
121
+
122
+ def compute_flow(self, lqs):
123
+ """Compute optical flow using SPyNet for feature alignment.
124
+ Note that if the input is an mirror-extended sequence, 'flows_forward'
125
+ is not needed, since it is equal to 'flows_backward.flip(1)'.
126
+ Args:
127
+ lqs (tensor): Input low quality (LQ) sequence with
128
+ shape (n, t, c, h, w).
129
+ Return:
130
+ tuple(Tensor): Optical flow. 'flows_forward' corresponds to the
131
+ flows used for forward-time propagation (current to previous).
132
+ 'flows_backward' corresponds to the flows used for
133
+ backward-time propagation (current to next).
134
+ """
135
+
136
+ n, t, c, h, w = lqs.size()
137
+ lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w)
138
+ lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w)
139
+
140
+ flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w)
141
+
142
+ if self.is_mirror_extended: # flows_forward = flows_backward.flip(1)
143
+ flows_forward = flows_backward.flip(1)
144
+ else:
145
+ flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w)
146
+
147
+ if self.cpu_cache:
148
+ flows_backward = flows_backward.cpu()
149
+ flows_forward = flows_forward.cpu()
150
+
151
+ return flows_forward, flows_backward
152
+
153
+ def propagate(self, feats, flows, module_name):
154
+ """Propagate the latent features throughout the sequence.
155
+ Args:
156
+ feats dict(list[tensor]): Features from previous branches. Each
157
+ component is a list of tensors with shape (n, c, h, w).
158
+ flows (tensor): Optical flows with shape (n, t - 1, 2, h, w).
159
+ module_name (str): The name of the propgation branches. Can either
160
+ be 'backward_1', 'forward_1', 'backward_2', 'forward_2'.
161
+ Return:
162
+ dict(list[tensor]): A dictionary containing all the propagated
163
+ features. Each key in the dictionary corresponds to a
164
+ propagation branch, which is represented by a list of tensors.
165
+ """
166
+
167
+ n, t, _, h, w = flows.size()
168
+
169
+ frame_idx = range(0, t + 1)
170
+ flow_idx = range(-1, t)
171
+ mapping_idx = list(range(0, len(feats['spatial'])))
172
+ mapping_idx += mapping_idx[::-1]
173
+
174
+ if 'backward' in module_name:
175
+ frame_idx = frame_idx[::-1]
176
+ flow_idx = frame_idx
177
+
178
+ feat_prop = flows.new_zeros(n, self.mid_channels, h, w)
179
+ for i, idx in enumerate(frame_idx):
180
+ feat_current = feats['spatial'][mapping_idx[idx]]
181
+ if self.cpu_cache:
182
+ feat_current = feat_current.cuda()
183
+ feat_prop = feat_prop.cuda()
184
+ # second-order deformable alignment
185
+ if i > 0 and self.is_with_alignment:
186
+ flow_n1 = flows[:, flow_idx[i], :, :, :]
187
+ if self.cpu_cache:
188
+ flow_n1 = flow_n1.cuda()
189
+
190
+ cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1))
191
+
192
+ # initialize second-order features
193
+ feat_n2 = torch.zeros_like(feat_prop)
194
+ flow_n2 = torch.zeros_like(flow_n1)
195
+ cond_n2 = torch.zeros_like(cond_n1)
196
+
197
+ if i > 1: # second-order features
198
+ feat_n2 = feats[module_name][-2]
199
+ if self.cpu_cache:
200
+ feat_n2 = feat_n2.cuda()
201
+
202
+ flow_n2 = flows[:, flow_idx[i - 1], :, :, :]
203
+ if self.cpu_cache:
204
+ flow_n2 = flow_n2.cuda()
205
+
206
+ flow_n2 = flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))
207
+ cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1))
208
+
209
+ # flow-guided deformable convolution
210
+ cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1)
211
+ feat_prop = torch.cat([feat_prop, feat_n2], dim=1)
212
+ feat_prop = self.deform_align[module_name](feat_prop, cond, flow_n1, flow_n2)
213
+
214
+ # concatenate and residual blocks
215
+ feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop]
216
+ if self.cpu_cache:
217
+ feat = [f.cuda() for f in feat]
218
+
219
+ feat = torch.cat(feat, dim=1)
220
+ feat_prop = feat_prop + self.backbone[module_name](feat)
221
+ feats[module_name].append(feat_prop)
222
+
223
+ if self.cpu_cache:
224
+ feats[module_name][-1] = feats[module_name][-1].cpu()
225
+ torch.cuda.empty_cache()
226
+
227
+ if 'backward' in module_name:
228
+ feats[module_name] = feats[module_name][::-1]
229
+
230
+ return feats
231
+
232
+ def upsample(self, lqs, feats):
233
+ """Compute the output image given the features.
234
+ Args:
235
+ lqs (tensor): Input low quality (LQ) sequence with
236
+ shape (n, t, c, h, w).
237
+ feats (dict): The features from the propgation branches.
238
+ Returns:
239
+ Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
240
+ """
241
+
242
+ outputs = []
243
+ num_outputs = len(feats['spatial'])
244
+
245
+ mapping_idx = list(range(0, num_outputs))
246
+ mapping_idx += mapping_idx[::-1]
247
+
248
+ for i in range(0, lqs.size(1)):
249
+ hr = [feats[k].pop(0) for k in feats if k != 'spatial']
250
+ hr.insert(0, feats['spatial'][mapping_idx[i]])
251
+ hr = torch.cat(hr, dim=1)
252
+ if self.cpu_cache:
253
+ hr = hr.cuda()
254
+
255
+ hr = self.reconstruction(hr)
256
+ hr = self.lrelu(self.pixel_shuffle(self.upconv1(hr)))
257
+ hr = self.lrelu(self.pixel_shuffle(self.upconv2(hr)))
258
+ hr = self.lrelu(self.conv_hr(hr))
259
+ hr = self.conv_last(hr)
260
+ if self.is_low_res_input:
261
+ hr += self.img_upsample(lqs[:, i, :, :, :])
262
+ else:
263
+ hr += lqs[:, i, :, :, :]
264
+
265
+ if self.cpu_cache:
266
+ hr = hr.cpu()
267
+ torch.cuda.empty_cache()
268
+
269
+ outputs.append(hr)
270
+
271
+ return torch.stack(outputs, dim=1)
272
+
273
+ def forward(self, lqs):
274
+ """Forward function for BasicVSR++.
275
+ Args:
276
+ lqs (tensor): Input low quality (LQ) sequence with
277
+ shape (n, t, c, h, w).
278
+ Returns:
279
+ Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
280
+ """
281
+
282
+ n, t, c, h, w = lqs.size()
283
+
284
+ # whether to cache the features in CPU
285
+ self.cpu_cache = True if t > self.cpu_cache_length else False
286
+
287
+ if self.is_low_res_input:
288
+ lqs_downsample = lqs.clone()
289
+ else:
290
+ lqs_downsample = F.interpolate(
291
+ lqs.view(-1, c, h, w), scale_factor=0.25, mode='bicubic').view(n, t, c, h // 4, w // 4)
292
+
293
+ # check whether the input is an extended sequence
294
+ self.check_if_mirror_extended(lqs)
295
+
296
+ feats = {}
297
+ # compute spatial features
298
+ if self.cpu_cache:
299
+ feats['spatial'] = []
300
+ for i in range(0, t):
301
+ feat = self.feat_extract(lqs[:, i, :, :, :]).cpu()
302
+ feats['spatial'].append(feat)
303
+ torch.cuda.empty_cache()
304
+ else:
305
+ feats_ = self.feat_extract(lqs.view(-1, c, h, w))
306
+ h, w = feats_.shape[2:]
307
+ feats_ = feats_.view(n, t, -1, h, w)
308
+ feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)]
309
+
310
+ # compute optical flow using the low-res inputs
311
+ assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, (
312
+ 'The height and width of low-res inputs must be at least 64, '
313
+ f'but got {h} and {w}.')
314
+ flows_forward, flows_backward = self.compute_flow(lqs_downsample)
315
+
316
+ # feature propgation
317
+ for iter_ in [1, 2]:
318
+ for direction in ['backward', 'forward']:
319
+ module = f'{direction}_{iter_}'
320
+
321
+ feats[module] = []
322
+
323
+ if direction == 'backward':
324
+ flows = flows_backward
325
+ elif flows_forward is not None:
326
+ flows = flows_forward
327
+ else:
328
+ flows = flows_backward.flip(1)
329
+
330
+ feats = self.propagate(feats, flows, module)
331
+ if self.cpu_cache:
332
+ del flows
333
+ torch.cuda.empty_cache()
334
+
335
+ return self.upsample(lqs, feats)
336
+
337
+
338
+ class SecondOrderDeformableAlignment(ModulatedDeformConvPack):
339
+ """Second-order deformable alignment module.
340
+ Args:
341
+ in_channels (int): Same as nn.Conv2d.
342
+ out_channels (int): Same as nn.Conv2d.
343
+ kernel_size (int or tuple[int]): Same as nn.Conv2d.
344
+ stride (int or tuple[int]): Same as nn.Conv2d.
345
+ padding (int or tuple[int]): Same as nn.Conv2d.
346
+ dilation (int or tuple[int]): Same as nn.Conv2d.
347
+ groups (int): Same as nn.Conv2d.
348
+ bias (bool or str): If specified as `auto`, it will be decided by the
349
+ norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
350
+ False.
351
+ max_residue_magnitude (int): The maximum magnitude of the offset
352
+ residue (Eq. 6 in paper). Default: 10.
353
+ """
354
+
355
+ def __init__(self, *args, **kwargs):
356
+ self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)
357
+
358
+ super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)
359
+
360
+ self.conv_offset = nn.Sequential(
361
+ nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
362
+ nn.LeakyReLU(negative_slope=0.1, inplace=True),
363
+ nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
364
+ nn.LeakyReLU(negative_slope=0.1, inplace=True),
365
+ nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
366
+ nn.LeakyReLU(negative_slope=0.1, inplace=True),
367
+ nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1),
368
+ )
369
+
370
+ self.init_offset()
371
+
372
+ def init_offset(self):
373
+
374
+ def _constant_init(module, val, bias=0):
375
+ if hasattr(module, 'weight') and module.weight is not None:
376
+ nn.init.constant_(module.weight, val)
377
+ if hasattr(module, 'bias') and module.bias is not None:
378
+ nn.init.constant_(module.bias, bias)
379
+
380
+ _constant_init(self.conv_offset[-1], val=0, bias=0)
381
+
382
+ def forward(self, x, extra_feat, flow_1, flow_2):
383
+ extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
384
+ out = self.conv_offset(extra_feat)
385
+ o1, o2, mask = torch.chunk(out, 3, dim=1)
386
+
387
+ # offset
388
+ offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
389
+ offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
390
+ offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1)
391
+ offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1)
392
+ offset = torch.cat([offset_1, offset_2], dim=1)
393
+
394
+ # mask
395
+ mask = torch.sigmoid(mask)
396
+
397
+ return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
398
+ self.dilation, mask)
399
+
400
+
401
+ # if __name__ == '__main__':
402
+ # spynet_path = 'experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth'
403
+ # model = BasicVSRPlusPlus(spynet_path=spynet_path).cuda()
404
+ # input = torch.rand(1, 2, 3, 64, 64).cuda()
405
+ # output = model(input)
406
+ # print('===================')
407
+ # print(output.shape)
r_basicsr/archs/dfdnet_arch.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torch.nn.utils.spectral_norm import spectral_norm
6
+
7
+ from r_basicsr.utils.registry import ARCH_REGISTRY
8
+ from .dfdnet_util import AttentionBlock, Blur, MSDilationBlock, UpResBlock, adaptive_instance_normalization
9
+ from .vgg_arch import VGGFeatureExtractor
10
+
11
+
12
+ class SFTUpBlock(nn.Module):
13
+ """Spatial feature transform (SFT) with upsampling block.
14
+
15
+ Args:
16
+ in_channel (int): Number of input channels.
17
+ out_channel (int): Number of output channels.
18
+ kernel_size (int): Kernel size in convolutions. Default: 3.
19
+ padding (int): Padding in convolutions. Default: 1.
20
+ """
21
+
22
+ def __init__(self, in_channel, out_channel, kernel_size=3, padding=1):
23
+ super(SFTUpBlock, self).__init__()
24
+ self.conv1 = nn.Sequential(
25
+ Blur(in_channel),
26
+ spectral_norm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
27
+ nn.LeakyReLU(0.04, True),
28
+ # The official codes use two LeakyReLU here, so 0.04 for equivalent
29
+ )
30
+ self.convup = nn.Sequential(
31
+ nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
32
+ spectral_norm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
33
+ nn.LeakyReLU(0.2, True),
34
+ )
35
+
36
+ # for SFT scale and shift
37
+ self.scale_block = nn.Sequential(
38
+ spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
39
+ spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)))
40
+ self.shift_block = nn.Sequential(
41
+ spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
42
+ spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)), nn.Sigmoid())
43
+ # The official codes use sigmoid for shift block, do not know why
44
+
45
+ def forward(self, x, updated_feat):
46
+ out = self.conv1(x)
47
+ # SFT
48
+ scale = self.scale_block(updated_feat)
49
+ shift = self.shift_block(updated_feat)
50
+ out = out * scale + shift
51
+ # upsample
52
+ out = self.convup(out)
53
+ return out
54
+
55
+
56
+ @ARCH_REGISTRY.register()
57
+ class DFDNet(nn.Module):
58
+ """DFDNet: Deep Face Dictionary Network.
59
+
60
+ It only processes faces with 512x512 size.
61
+
62
+ Args:
63
+ num_feat (int): Number of feature channels.
64
+ dict_path (str): Path to the facial component dictionary.
65
+ """
66
+
67
+ def __init__(self, num_feat, dict_path):
68
+ super().__init__()
69
+ self.parts = ['left_eye', 'right_eye', 'nose', 'mouth']
70
+ # part_sizes: [80, 80, 50, 110]
71
+ channel_sizes = [128, 256, 512, 512]
72
+ self.feature_sizes = np.array([256, 128, 64, 32])
73
+ self.vgg_layers = ['relu2_2', 'relu3_4', 'relu4_4', 'conv5_4']
74
+ self.flag_dict_device = False
75
+
76
+ # dict
77
+ self.dict = torch.load(dict_path)
78
+
79
+ # vgg face extractor
80
+ self.vgg_extractor = VGGFeatureExtractor(
81
+ layer_name_list=self.vgg_layers,
82
+ vgg_type='vgg19',
83
+ use_input_norm=True,
84
+ range_norm=True,
85
+ requires_grad=False)
86
+
87
+ # attention block for fusing dictionary features and input features
88
+ self.attn_blocks = nn.ModuleDict()
89
+ for idx, feat_size in enumerate(self.feature_sizes):
90
+ for name in self.parts:
91
+ self.attn_blocks[f'{name}_{feat_size}'] = AttentionBlock(channel_sizes[idx])
92
+
93
+ # multi scale dilation block
94
+ self.multi_scale_dilation = MSDilationBlock(num_feat * 8, dilation=[4, 3, 2, 1])
95
+
96
+ # upsampling and reconstruction
97
+ self.upsample0 = SFTUpBlock(num_feat * 8, num_feat * 8)
98
+ self.upsample1 = SFTUpBlock(num_feat * 8, num_feat * 4)
99
+ self.upsample2 = SFTUpBlock(num_feat * 4, num_feat * 2)
100
+ self.upsample3 = SFTUpBlock(num_feat * 2, num_feat)
101
+ self.upsample4 = nn.Sequential(
102
+ spectral_norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1)), nn.LeakyReLU(0.2, True), UpResBlock(num_feat),
103
+ UpResBlock(num_feat), nn.Conv2d(num_feat, 3, kernel_size=3, stride=1, padding=1), nn.Tanh())
104
+
105
+ def swap_feat(self, vgg_feat, updated_feat, dict_feat, location, part_name, f_size):
106
+ """swap the features from the dictionary."""
107
+ # get the original vgg features
108
+ part_feat = vgg_feat[:, :, location[1]:location[3], location[0]:location[2]].clone()
109
+ # resize original vgg features
110
+ part_resize_feat = F.interpolate(part_feat, dict_feat.size()[2:4], mode='bilinear', align_corners=False)
111
+ # use adaptive instance normalization to adjust color and illuminations
112
+ dict_feat = adaptive_instance_normalization(dict_feat, part_resize_feat)
113
+ # get similarity scores
114
+ similarity_score = F.conv2d(part_resize_feat, dict_feat)
115
+ similarity_score = F.softmax(similarity_score.view(-1), dim=0)
116
+ # select the most similar features in the dict (after norm)
117
+ select_idx = torch.argmax(similarity_score)
118
+ swap_feat = F.interpolate(dict_feat[select_idx:select_idx + 1], part_feat.size()[2:4])
119
+ # attention
120
+ attn = self.attn_blocks[f'{part_name}_' + str(f_size)](swap_feat - part_feat)
121
+ attn_feat = attn * swap_feat
122
+ # update features
123
+ updated_feat[:, :, location[1]:location[3], location[0]:location[2]] = attn_feat + part_feat
124
+ return updated_feat
125
+
126
+ def put_dict_to_device(self, x):
127
+ if self.flag_dict_device is False:
128
+ for k, v in self.dict.items():
129
+ for kk, vv in v.items():
130
+ self.dict[k][kk] = vv.to(x)
131
+ self.flag_dict_device = True
132
+
133
+ def forward(self, x, part_locations):
134
+ """
135
+ Now only support testing with batch size = 0.
136
+
137
+ Args:
138
+ x (Tensor): Input faces with shape (b, c, 512, 512).
139
+ part_locations (list[Tensor]): Part locations.
140
+ """
141
+ self.put_dict_to_device(x)
142
+ # extract vggface features
143
+ vgg_features = self.vgg_extractor(x)
144
+ # update vggface features using the dictionary for each part
145
+ updated_vgg_features = []
146
+ batch = 0 # only supports testing with batch size = 0
147
+ for vgg_layer, f_size in zip(self.vgg_layers, self.feature_sizes):
148
+ dict_features = self.dict[f'{f_size}']
149
+ vgg_feat = vgg_features[vgg_layer]
150
+ updated_feat = vgg_feat.clone()
151
+
152
+ # swap features from dictionary
153
+ for part_idx, part_name in enumerate(self.parts):
154
+ location = (part_locations[part_idx][batch] // (512 / f_size)).int()
155
+ updated_feat = self.swap_feat(vgg_feat, updated_feat, dict_features[part_name], location, part_name,
156
+ f_size)
157
+
158
+ updated_vgg_features.append(updated_feat)
159
+
160
+ vgg_feat_dilation = self.multi_scale_dilation(vgg_features['conv5_4'])
161
+ # use updated vgg features to modulate the upsampled features with
162
+ # SFT (Spatial Feature Transform) scaling and shifting manner.
163
+ upsampled_feat = self.upsample0(vgg_feat_dilation, updated_vgg_features[3])
164
+ upsampled_feat = self.upsample1(upsampled_feat, updated_vgg_features[2])
165
+ upsampled_feat = self.upsample2(upsampled_feat, updated_vgg_features[1])
166
+ upsampled_feat = self.upsample3(upsampled_feat, updated_vgg_features[0])
167
+ out = self.upsample4(upsampled_feat)
168
+
169
+ return out
r_basicsr/archs/dfdnet_util.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.autograd import Function
5
+ from torch.nn.utils.spectral_norm import spectral_norm
6
+
7
+
8
+ class BlurFunctionBackward(Function):
9
+
10
+ @staticmethod
11
+ def forward(ctx, grad_output, kernel, kernel_flip):
12
+ ctx.save_for_backward(kernel, kernel_flip)
13
+ grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1])
14
+ return grad_input
15
+
16
+ @staticmethod
17
+ def backward(ctx, gradgrad_output):
18
+ kernel, _ = ctx.saved_tensors
19
+ grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1])
20
+ return grad_input, None, None
21
+
22
+
23
+ class BlurFunction(Function):
24
+
25
+ @staticmethod
26
+ def forward(ctx, x, kernel, kernel_flip):
27
+ ctx.save_for_backward(kernel, kernel_flip)
28
+ output = F.conv2d(x, kernel, padding=1, groups=x.shape[1])
29
+ return output
30
+
31
+ @staticmethod
32
+ def backward(ctx, grad_output):
33
+ kernel, kernel_flip = ctx.saved_tensors
34
+ grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip)
35
+ return grad_input, None, None
36
+
37
+
38
+ blur = BlurFunction.apply
39
+
40
+
41
+ class Blur(nn.Module):
42
+
43
+ def __init__(self, channel):
44
+ super().__init__()
45
+ kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32)
46
+ kernel = kernel.view(1, 1, 3, 3)
47
+ kernel = kernel / kernel.sum()
48
+ kernel_flip = torch.flip(kernel, [2, 3])
49
+
50
+ self.kernel = kernel.repeat(channel, 1, 1, 1)
51
+ self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1)
52
+
53
+ def forward(self, x):
54
+ return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x))
55
+
56
+
57
+ def calc_mean_std(feat, eps=1e-5):
58
+ """Calculate mean and std for adaptive_instance_normalization.
59
+
60
+ Args:
61
+ feat (Tensor): 4D tensor.
62
+ eps (float): A small value added to the variance to avoid
63
+ divide-by-zero. Default: 1e-5.
64
+ """
65
+ size = feat.size()
66
+ assert len(size) == 4, 'The input feature should be 4D tensor.'
67
+ n, c = size[:2]
68
+ feat_var = feat.view(n, c, -1).var(dim=2) + eps
69
+ feat_std = feat_var.sqrt().view(n, c, 1, 1)
70
+ feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1)
71
+ return feat_mean, feat_std
72
+
73
+
74
+ def adaptive_instance_normalization(content_feat, style_feat):
75
+ """Adaptive instance normalization.
76
+
77
+ Adjust the reference features to have the similar color and illuminations
78
+ as those in the degradate features.
79
+
80
+ Args:
81
+ content_feat (Tensor): The reference feature.
82
+ style_feat (Tensor): The degradate features.
83
+ """
84
+ size = content_feat.size()
85
+ style_mean, style_std = calc_mean_std(style_feat)
86
+ content_mean, content_std = calc_mean_std(content_feat)
87
+ normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
88
+ return normalized_feat * style_std.expand(size) + style_mean.expand(size)
89
+
90
+
91
+ def AttentionBlock(in_channel):
92
+ return nn.Sequential(
93
+ spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
94
+ spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)))
95
+
96
+
97
+ def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True):
98
+ """Conv block used in MSDilationBlock."""
99
+
100
+ return nn.Sequential(
101
+ spectral_norm(
102
+ nn.Conv2d(
103
+ in_channels,
104
+ out_channels,
105
+ kernel_size=kernel_size,
106
+ stride=stride,
107
+ dilation=dilation,
108
+ padding=((kernel_size - 1) // 2) * dilation,
109
+ bias=bias)),
110
+ nn.LeakyReLU(0.2),
111
+ spectral_norm(
112
+ nn.Conv2d(
113
+ out_channels,
114
+ out_channels,
115
+ kernel_size=kernel_size,
116
+ stride=stride,
117
+ dilation=dilation,
118
+ padding=((kernel_size - 1) // 2) * dilation,
119
+ bias=bias)),
120
+ )
121
+
122
+
123
+ class MSDilationBlock(nn.Module):
124
+ """Multi-scale dilation block."""
125
+
126
+ def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True):
127
+ super(MSDilationBlock, self).__init__()
128
+
129
+ self.conv_blocks = nn.ModuleList()
130
+ for i in range(4):
131
+ self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias))
132
+ self.conv_fusion = spectral_norm(
133
+ nn.Conv2d(
134
+ in_channels * 4,
135
+ in_channels,
136
+ kernel_size=kernel_size,
137
+ stride=1,
138
+ padding=(kernel_size - 1) // 2,
139
+ bias=bias))
140
+
141
+ def forward(self, x):
142
+ out = []
143
+ for i in range(4):
144
+ out.append(self.conv_blocks[i](x))
145
+ out = torch.cat(out, 1)
146
+ out = self.conv_fusion(out) + x
147
+ return out
148
+
149
+
150
+ class UpResBlock(nn.Module):
151
+
152
+ def __init__(self, in_channel):
153
+ super(UpResBlock, self).__init__()
154
+ self.body = nn.Sequential(
155
+ nn.Conv2d(in_channel, in_channel, 3, 1, 1),
156
+ nn.LeakyReLU(0.2, True),
157
+ nn.Conv2d(in_channel, in_channel, 3, 1, 1),
158
+ )
159
+
160
+ def forward(self, x):
161
+ out = x + self.body(x)
162
+ return out
r_basicsr/archs/discriminator_arch.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn as nn
2
+ from torch.nn import functional as F
3
+ from torch.nn.utils import spectral_norm
4
+
5
+ from r_basicsr.utils.registry import ARCH_REGISTRY
6
+
7
+
8
+ @ARCH_REGISTRY.register()
9
+ class VGGStyleDiscriminator(nn.Module):
10
+ """VGG style discriminator with input size 128 x 128 or 256 x 256.
11
+
12
+ It is used to train SRGAN, ESRGAN, and VideoGAN.
13
+
14
+ Args:
15
+ num_in_ch (int): Channel number of inputs. Default: 3.
16
+ num_feat (int): Channel number of base intermediate features.Default: 64.
17
+ """
18
+
19
+ def __init__(self, num_in_ch, num_feat, input_size=128):
20
+ super(VGGStyleDiscriminator, self).__init__()
21
+ self.input_size = input_size
22
+ assert self.input_size == 128 or self.input_size == 256, (
23
+ f'input size must be 128 or 256, but received {input_size}')
24
+
25
+ self.conv0_0 = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1, bias=True)
26
+ self.conv0_1 = nn.Conv2d(num_feat, num_feat, 4, 2, 1, bias=False)
27
+ self.bn0_1 = nn.BatchNorm2d(num_feat, affine=True)
28
+
29
+ self.conv1_0 = nn.Conv2d(num_feat, num_feat * 2, 3, 1, 1, bias=False)
30
+ self.bn1_0 = nn.BatchNorm2d(num_feat * 2, affine=True)
31
+ self.conv1_1 = nn.Conv2d(num_feat * 2, num_feat * 2, 4, 2, 1, bias=False)
32
+ self.bn1_1 = nn.BatchNorm2d(num_feat * 2, affine=True)
33
+
34
+ self.conv2_0 = nn.Conv2d(num_feat * 2, num_feat * 4, 3, 1, 1, bias=False)
35
+ self.bn2_0 = nn.BatchNorm2d(num_feat * 4, affine=True)
36
+ self.conv2_1 = nn.Conv2d(num_feat * 4, num_feat * 4, 4, 2, 1, bias=False)
37
+ self.bn2_1 = nn.BatchNorm2d(num_feat * 4, affine=True)
38
+
39
+ self.conv3_0 = nn.Conv2d(num_feat * 4, num_feat * 8, 3, 1, 1, bias=False)
40
+ self.bn3_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
41
+ self.conv3_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
42
+ self.bn3_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
43
+
44
+ self.conv4_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
45
+ self.bn4_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
46
+ self.conv4_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
47
+ self.bn4_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
48
+
49
+ if self.input_size == 256:
50
+ self.conv5_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
51
+ self.bn5_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
52
+ self.conv5_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
53
+ self.bn5_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
54
+
55
+ self.linear1 = nn.Linear(num_feat * 8 * 4 * 4, 100)
56
+ self.linear2 = nn.Linear(100, 1)
57
+
58
+ # activation function
59
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
60
+
61
+ def forward(self, x):
62
+ assert x.size(2) == self.input_size, (f'Input size must be identical to input_size, but received {x.size()}.')
63
+
64
+ feat = self.lrelu(self.conv0_0(x))
65
+ feat = self.lrelu(self.bn0_1(self.conv0_1(feat))) # output spatial size: /2
66
+
67
+ feat = self.lrelu(self.bn1_0(self.conv1_0(feat)))
68
+ feat = self.lrelu(self.bn1_1(self.conv1_1(feat))) # output spatial size: /4
69
+
70
+ feat = self.lrelu(self.bn2_0(self.conv2_0(feat)))
71
+ feat = self.lrelu(self.bn2_1(self.conv2_1(feat))) # output spatial size: /8
72
+
73
+ feat = self.lrelu(self.bn3_0(self.conv3_0(feat)))
74
+ feat = self.lrelu(self.bn3_1(self.conv3_1(feat))) # output spatial size: /16
75
+
76
+ feat = self.lrelu(self.bn4_0(self.conv4_0(feat)))
77
+ feat = self.lrelu(self.bn4_1(self.conv4_1(feat))) # output spatial size: /32
78
+
79
+ if self.input_size == 256:
80
+ feat = self.lrelu(self.bn5_0(self.conv5_0(feat)))
81
+ feat = self.lrelu(self.bn5_1(self.conv5_1(feat))) # output spatial size: / 64
82
+
83
+ # spatial size: (4, 4)
84
+ feat = feat.view(feat.size(0), -1)
85
+ feat = self.lrelu(self.linear1(feat))
86
+ out = self.linear2(feat)
87
+ return out
88
+
89
+
90
+ @ARCH_REGISTRY.register(suffix='basicsr')
91
+ class UNetDiscriminatorSN(nn.Module):
92
+ """Defines a U-Net discriminator with spectral normalization (SN)
93
+
94
+ It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
95
+
96
+ Arg:
97
+ num_in_ch (int): Channel number of inputs. Default: 3.
98
+ num_feat (int): Channel number of base intermediate features. Default: 64.
99
+ skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
100
+ """
101
+
102
+ def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
103
+ super(UNetDiscriminatorSN, self).__init__()
104
+ self.skip_connection = skip_connection
105
+ norm = spectral_norm
106
+ # the first convolution
107
+ self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
108
+ # downsample
109
+ self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
110
+ self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
111
+ self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
112
+ # upsample
113
+ self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
114
+ self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
115
+ self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
116
+ # extra convolutions
117
+ self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
118
+ self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
119
+ self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
120
+
121
+ def forward(self, x):
122
+ # downsample
123
+ x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
124
+ x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
125
+ x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
126
+ x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
127
+
128
+ # upsample
129
+ x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
130
+ x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
131
+
132
+ if self.skip_connection:
133
+ x4 = x4 + x2
134
+ x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
135
+ x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
136
+
137
+ if self.skip_connection:
138
+ x5 = x5 + x1
139
+ x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
140
+ x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
141
+
142
+ if self.skip_connection:
143
+ x6 = x6 + x0
144
+
145
+ # extra convolutions
146
+ out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
147
+ out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
148
+ out = self.conv9(out)
149
+
150
+ return out
r_basicsr/archs/duf_arch.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from torch import nn as nn
4
+ from torch.nn import functional as F
5
+
6
+ from r_basicsr.utils.registry import ARCH_REGISTRY
7
+
8
+
9
+ class DenseBlocksTemporalReduce(nn.Module):
10
+ """A concatenation of 3 dense blocks with reduction in temporal dimension.
11
+
12
+ Note that the output temporal dimension is 6 fewer the input temporal dimension, since there are 3 blocks.
13
+
14
+ Args:
15
+ num_feat (int): Number of channels in the blocks. Default: 64.
16
+ num_grow_ch (int): Growing factor of the dense blocks. Default: 32
17
+ adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
18
+ Set to false if you want to train from scratch. Default: False.
19
+ """
20
+
21
+ def __init__(self, num_feat=64, num_grow_ch=32, adapt_official_weights=False):
22
+ super(DenseBlocksTemporalReduce, self).__init__()
23
+ if adapt_official_weights:
24
+ eps = 1e-3
25
+ momentum = 1e-3
26
+ else: # pytorch default values
27
+ eps = 1e-05
28
+ momentum = 0.1
29
+
30
+ self.temporal_reduce1 = nn.Sequential(
31
+ nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
32
+ nn.Conv3d(num_feat, num_feat, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True),
33
+ nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
34
+ nn.Conv3d(num_feat, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
35
+
36
+ self.temporal_reduce2 = nn.Sequential(
37
+ nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
38
+ nn.Conv3d(
39
+ num_feat + num_grow_ch,
40
+ num_feat + num_grow_ch, (1, 1, 1),
41
+ stride=(1, 1, 1),
42
+ padding=(0, 0, 0),
43
+ bias=True), nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
44
+ nn.Conv3d(num_feat + num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
45
+
46
+ self.temporal_reduce3 = nn.Sequential(
47
+ nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
48
+ nn.Conv3d(
49
+ num_feat + 2 * num_grow_ch,
50
+ num_feat + 2 * num_grow_ch, (1, 1, 1),
51
+ stride=(1, 1, 1),
52
+ padding=(0, 0, 0),
53
+ bias=True), nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum),
54
+ nn.ReLU(inplace=True),
55
+ nn.Conv3d(
56
+ num_feat + 2 * num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
57
+
58
+ def forward(self, x):
59
+ """
60
+ Args:
61
+ x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
62
+
63
+ Returns:
64
+ Tensor: Output with shape (b, num_feat + num_grow_ch * 3, 1, h, w).
65
+ """
66
+ x1 = self.temporal_reduce1(x)
67
+ x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1)
68
+
69
+ x2 = self.temporal_reduce2(x1)
70
+ x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1)
71
+
72
+ x3 = self.temporal_reduce3(x2)
73
+ x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1)
74
+
75
+ return x3
76
+
77
+
78
+ class DenseBlocks(nn.Module):
79
+ """ A concatenation of N dense blocks.
80
+
81
+ Args:
82
+ num_feat (int): Number of channels in the blocks. Default: 64.
83
+ num_grow_ch (int): Growing factor of the dense blocks. Default: 32.
84
+ num_block (int): Number of dense blocks. The values are:
85
+ DUF-S (16 layers): 3
86
+ DUF-M (18 layers): 9
87
+ DUF-L (52 layers): 21
88
+ adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
89
+ Set to false if you want to train from scratch. Default: False.
90
+ """
91
+
92
+ def __init__(self, num_block, num_feat=64, num_grow_ch=16, adapt_official_weights=False):
93
+ super(DenseBlocks, self).__init__()
94
+ if adapt_official_weights:
95
+ eps = 1e-3
96
+ momentum = 1e-3
97
+ else: # pytorch default values
98
+ eps = 1e-05
99
+ momentum = 0.1
100
+
101
+ self.dense_blocks = nn.ModuleList()
102
+ for i in range(0, num_block):
103
+ self.dense_blocks.append(
104
+ nn.Sequential(
105
+ nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
106
+ nn.Conv3d(
107
+ num_feat + i * num_grow_ch,
108
+ num_feat + i * num_grow_ch, (1, 1, 1),
109
+ stride=(1, 1, 1),
110
+ padding=(0, 0, 0),
111
+ bias=True), nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum),
112
+ nn.ReLU(inplace=True),
113
+ nn.Conv3d(
114
+ num_feat + i * num_grow_ch,
115
+ num_grow_ch, (3, 3, 3),
116
+ stride=(1, 1, 1),
117
+ padding=(1, 1, 1),
118
+ bias=True)))
119
+
120
+ def forward(self, x):
121
+ """
122
+ Args:
123
+ x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
124
+
125
+ Returns:
126
+ Tensor: Output with shape (b, num_feat + num_block * num_grow_ch, t, h, w).
127
+ """
128
+ for i in range(0, len(self.dense_blocks)):
129
+ y = self.dense_blocks[i](x)
130
+ x = torch.cat((x, y), 1)
131
+ return x
132
+
133
+
134
+ class DynamicUpsamplingFilter(nn.Module):
135
+ """Dynamic upsampling filter used in DUF.
136
+
137
+ Ref: https://github.com/yhjo09/VSR-DUF.
138
+ It only supports input with 3 channels. And it applies the same filters to 3 channels.
139
+
140
+ Args:
141
+ filter_size (tuple): Filter size of generated filters. The shape is (kh, kw). Default: (5, 5).
142
+ """
143
+
144
+ def __init__(self, filter_size=(5, 5)):
145
+ super(DynamicUpsamplingFilter, self).__init__()
146
+ if not isinstance(filter_size, tuple):
147
+ raise TypeError(f'The type of filter_size must be tuple, but got type{filter_size}')
148
+ if len(filter_size) != 2:
149
+ raise ValueError(f'The length of filter size must be 2, but got {len(filter_size)}.')
150
+ # generate a local expansion filter, similar to im2col
151
+ self.filter_size = filter_size
152
+ filter_prod = np.prod(filter_size)
153
+ expansion_filter = torch.eye(int(filter_prod)).view(filter_prod, 1, *filter_size) # (kh*kw, 1, kh, kw)
154
+ self.expansion_filter = expansion_filter.repeat(3, 1, 1, 1) # repeat for all the 3 channels
155
+
156
+ def forward(self, x, filters):
157
+ """Forward function for DynamicUpsamplingFilter.
158
+
159
+ Args:
160
+ x (Tensor): Input image with 3 channels. The shape is (n, 3, h, w).
161
+ filters (Tensor): Generated dynamic filters.
162
+ The shape is (n, filter_prod, upsampling_square, h, w).
163
+ filter_prod: prod of filter kernel size, e.g., 1*5*5=25.
164
+ upsampling_square: similar to pixel shuffle,
165
+ upsampling_square = upsampling * upsampling
166
+ e.g., for x 4 upsampling, upsampling_square= 4*4 = 16
167
+
168
+ Returns:
169
+ Tensor: Filtered image with shape (n, 3*upsampling_square, h, w)
170
+ """
171
+ n, filter_prod, upsampling_square, h, w = filters.size()
172
+ kh, kw = self.filter_size
173
+ expanded_input = F.conv2d(
174
+ x, self.expansion_filter.to(x), padding=(kh // 2, kw // 2), groups=3) # (n, 3*filter_prod, h, w)
175
+ expanded_input = expanded_input.view(n, 3, filter_prod, h, w).permute(0, 3, 4, 1,
176
+ 2) # (n, h, w, 3, filter_prod)
177
+ filters = filters.permute(0, 3, 4, 1, 2) # (n, h, w, filter_prod, upsampling_square]
178
+ out = torch.matmul(expanded_input, filters) # (n, h, w, 3, upsampling_square)
179
+ return out.permute(0, 3, 4, 1, 2).view(n, 3 * upsampling_square, h, w)
180
+
181
+
182
+ @ARCH_REGISTRY.register()
183
+ class DUF(nn.Module):
184
+ """Network architecture for DUF
185
+
186
+ Paper: Jo et.al. Deep Video Super-Resolution Network Using Dynamic
187
+ Upsampling Filters Without Explicit Motion Compensation, CVPR, 2018
188
+ Code reference:
189
+ https://github.com/yhjo09/VSR-DUF
190
+ For all the models below, 'adapt_official_weights' is only necessary when
191
+ loading the weights converted from the official TensorFlow weights.
192
+ Please set it to False if you are training the model from scratch.
193
+
194
+ There are three models with different model size: DUF16Layers, DUF28Layers,
195
+ and DUF52Layers. This class is the base class for these models.
196
+
197
+ Args:
198
+ scale (int): The upsampling factor. Default: 4.
199
+ num_layer (int): The number of layers. Default: 52.
200
+ adapt_official_weights_weights (bool): Whether to adapt the weights
201
+ translated from the official implementation. Set to false if you
202
+ want to train from scratch. Default: False.
203
+ """
204
+
205
+ def __init__(self, scale=4, num_layer=52, adapt_official_weights=False):
206
+ super(DUF, self).__init__()
207
+ self.scale = scale
208
+ if adapt_official_weights:
209
+ eps = 1e-3
210
+ momentum = 1e-3
211
+ else: # pytorch default values
212
+ eps = 1e-05
213
+ momentum = 0.1
214
+
215
+ self.conv3d1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
216
+ self.dynamic_filter = DynamicUpsamplingFilter((5, 5))
217
+
218
+ if num_layer == 16:
219
+ num_block = 3
220
+ num_grow_ch = 32
221
+ elif num_layer == 28:
222
+ num_block = 9
223
+ num_grow_ch = 16
224
+ elif num_layer == 52:
225
+ num_block = 21
226
+ num_grow_ch = 16
227
+ else:
228
+ raise ValueError(f'Only supported (16, 28, 52) layers, but got {num_layer}.')
229
+
230
+ self.dense_block1 = DenseBlocks(
231
+ num_block=num_block, num_feat=64, num_grow_ch=num_grow_ch,
232
+ adapt_official_weights=adapt_official_weights) # T = 7
233
+ self.dense_block2 = DenseBlocksTemporalReduce(
234
+ 64 + num_grow_ch * num_block, num_grow_ch, adapt_official_weights=adapt_official_weights) # T = 1
235
+ channels = 64 + num_grow_ch * num_block + num_grow_ch * 3
236
+ self.bn3d2 = nn.BatchNorm3d(channels, eps=eps, momentum=momentum)
237
+ self.conv3d2 = nn.Conv3d(channels, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
238
+
239
+ self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
240
+ self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
241
+
242
+ self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
243
+ self.conv3d_f2 = nn.Conv3d(
244
+ 512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
245
+
246
+ def forward(self, x):
247
+ """
248
+ Args:
249
+ x (Tensor): Input with shape (b, 7, c, h, w)
250
+
251
+ Returns:
252
+ Tensor: Output with shape (b, c, h * scale, w * scale)
253
+ """
254
+ num_batches, num_imgs, _, h, w = x.size()
255
+
256
+ x = x.permute(0, 2, 1, 3, 4) # (b, c, 7, h, w) for Conv3D
257
+ x_center = x[:, :, num_imgs // 2, :, :]
258
+
259
+ x = self.conv3d1(x)
260
+ x = self.dense_block1(x)
261
+ x = self.dense_block2(x)
262
+ x = F.relu(self.bn3d2(x), inplace=True)
263
+ x = F.relu(self.conv3d2(x), inplace=True)
264
+
265
+ # residual image
266
+ res = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True))
267
+
268
+ # filter
269
+ filter_ = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True))
270
+ filter_ = F.softmax(filter_.view(num_batches, 25, self.scale**2, h, w), dim=1)
271
+
272
+ # dynamic filter
273
+ out = self.dynamic_filter(x_center, filter_)
274
+ out += res.squeeze_(2)
275
+ out = F.pixel_shuffle(out, self.scale)
276
+
277
+ return out
r_basicsr/archs/ecbsr_arch.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from r_basicsr.utils.registry import ARCH_REGISTRY
6
+
7
+
8
+ class SeqConv3x3(nn.Module):
9
+ """The re-parameterizable block used in the ECBSR architecture.
10
+
11
+ Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
12
+ Ref git repo: https://github.com/xindongzhang/ECBSR
13
+
14
+ Args:
15
+ seq_type (str): Sequence type, option: conv1x1-conv3x3 | conv1x1-sobelx | conv1x1-sobely | conv1x1-laplacian.
16
+ in_channels (int): Channel number of input.
17
+ out_channels (int): Channel number of output.
18
+ depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1.
19
+ """
20
+
21
+ def __init__(self, seq_type, in_channels, out_channels, depth_multiplier=1):
22
+ super(SeqConv3x3, self).__init__()
23
+ self.seq_type = seq_type
24
+ self.in_channels = in_channels
25
+ self.out_channels = out_channels
26
+
27
+ if self.seq_type == 'conv1x1-conv3x3':
28
+ self.mid_planes = int(out_channels * depth_multiplier)
29
+ conv0 = torch.nn.Conv2d(self.in_channels, self.mid_planes, kernel_size=1, padding=0)
30
+ self.k0 = conv0.weight
31
+ self.b0 = conv0.bias
32
+
33
+ conv1 = torch.nn.Conv2d(self.mid_planes, self.out_channels, kernel_size=3)
34
+ self.k1 = conv1.weight
35
+ self.b1 = conv1.bias
36
+
37
+ elif self.seq_type == 'conv1x1-sobelx':
38
+ conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
39
+ self.k0 = conv0.weight
40
+ self.b0 = conv0.bias
41
+
42
+ # init scale and bias
43
+ scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
44
+ self.scale = nn.Parameter(scale)
45
+ bias = torch.randn(self.out_channels) * 1e-3
46
+ bias = torch.reshape(bias, (self.out_channels, ))
47
+ self.bias = nn.Parameter(bias)
48
+ # init mask
49
+ self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
50
+ for i in range(self.out_channels):
51
+ self.mask[i, 0, 0, 0] = 1.0
52
+ self.mask[i, 0, 1, 0] = 2.0
53
+ self.mask[i, 0, 2, 0] = 1.0
54
+ self.mask[i, 0, 0, 2] = -1.0
55
+ self.mask[i, 0, 1, 2] = -2.0
56
+ self.mask[i, 0, 2, 2] = -1.0
57
+ self.mask = nn.Parameter(data=self.mask, requires_grad=False)
58
+
59
+ elif self.seq_type == 'conv1x1-sobely':
60
+ conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
61
+ self.k0 = conv0.weight
62
+ self.b0 = conv0.bias
63
+
64
+ # init scale and bias
65
+ scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
66
+ self.scale = nn.Parameter(torch.FloatTensor(scale))
67
+ bias = torch.randn(self.out_channels) * 1e-3
68
+ bias = torch.reshape(bias, (self.out_channels, ))
69
+ self.bias = nn.Parameter(torch.FloatTensor(bias))
70
+ # init mask
71
+ self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
72
+ for i in range(self.out_channels):
73
+ self.mask[i, 0, 0, 0] = 1.0
74
+ self.mask[i, 0, 0, 1] = 2.0
75
+ self.mask[i, 0, 0, 2] = 1.0
76
+ self.mask[i, 0, 2, 0] = -1.0
77
+ self.mask[i, 0, 2, 1] = -2.0
78
+ self.mask[i, 0, 2, 2] = -1.0
79
+ self.mask = nn.Parameter(data=self.mask, requires_grad=False)
80
+
81
+ elif self.seq_type == 'conv1x1-laplacian':
82
+ conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
83
+ self.k0 = conv0.weight
84
+ self.b0 = conv0.bias
85
+
86
+ # init scale and bias
87
+ scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
88
+ self.scale = nn.Parameter(torch.FloatTensor(scale))
89
+ bias = torch.randn(self.out_channels) * 1e-3
90
+ bias = torch.reshape(bias, (self.out_channels, ))
91
+ self.bias = nn.Parameter(torch.FloatTensor(bias))
92
+ # init mask
93
+ self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
94
+ for i in range(self.out_channels):
95
+ self.mask[i, 0, 0, 1] = 1.0
96
+ self.mask[i, 0, 1, 0] = 1.0
97
+ self.mask[i, 0, 1, 2] = 1.0
98
+ self.mask[i, 0, 2, 1] = 1.0
99
+ self.mask[i, 0, 1, 1] = -4.0
100
+ self.mask = nn.Parameter(data=self.mask, requires_grad=False)
101
+ else:
102
+ raise ValueError('The type of seqconv is not supported!')
103
+
104
+ def forward(self, x):
105
+ if self.seq_type == 'conv1x1-conv3x3':
106
+ # conv-1x1
107
+ y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
108
+ # explicitly padding with bias
109
+ y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
110
+ b0_pad = self.b0.view(1, -1, 1, 1)
111
+ y0[:, :, 0:1, :] = b0_pad
112
+ y0[:, :, -1:, :] = b0_pad
113
+ y0[:, :, :, 0:1] = b0_pad
114
+ y0[:, :, :, -1:] = b0_pad
115
+ # conv-3x3
116
+ y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
117
+ else:
118
+ y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
119
+ # explicitly padding with bias
120
+ y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
121
+ b0_pad = self.b0.view(1, -1, 1, 1)
122
+ y0[:, :, 0:1, :] = b0_pad
123
+ y0[:, :, -1:, :] = b0_pad
124
+ y0[:, :, :, 0:1] = b0_pad
125
+ y0[:, :, :, -1:] = b0_pad
126
+ # conv-3x3
127
+ y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=self.bias, stride=1, groups=self.out_channels)
128
+ return y1
129
+
130
+ def rep_params(self):
131
+ device = self.k0.get_device()
132
+ if device < 0:
133
+ device = None
134
+
135
+ if self.seq_type == 'conv1x1-conv3x3':
136
+ # re-param conv kernel
137
+ rep_weight = F.conv2d(input=self.k1, weight=self.k0.permute(1, 0, 2, 3))
138
+ # re-param conv bias
139
+ rep_bias = torch.ones(1, self.mid_planes, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
140
+ rep_bias = F.conv2d(input=rep_bias, weight=self.k1).view(-1, ) + self.b1
141
+ else:
142
+ tmp = self.scale * self.mask
143
+ k1 = torch.zeros((self.out_channels, self.out_channels, 3, 3), device=device)
144
+ for i in range(self.out_channels):
145
+ k1[i, i, :, :] = tmp[i, 0, :, :]
146
+ b1 = self.bias
147
+ # re-param conv kernel
148
+ rep_weight = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
149
+ # re-param conv bias
150
+ rep_bias = torch.ones(1, self.out_channels, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
151
+ rep_bias = F.conv2d(input=rep_bias, weight=k1).view(-1, ) + b1
152
+ return rep_weight, rep_bias
153
+
154
+
155
+ class ECB(nn.Module):
156
+ """The ECB block used in the ECBSR architecture.
157
+
158
+ Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
159
+ Ref git repo: https://github.com/xindongzhang/ECBSR
160
+
161
+ Args:
162
+ in_channels (int): Channel number of input.
163
+ out_channels (int): Channel number of output.
164
+ depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1.
165
+ act_type (str): Activation type. Option: prelu | relu | rrelu | softplus | linear. Default: prelu.
166
+ with_idt (bool): Whether to use identity connection. Default: False.
167
+ """
168
+
169
+ def __init__(self, in_channels, out_channels, depth_multiplier, act_type='prelu', with_idt=False):
170
+ super(ECB, self).__init__()
171
+
172
+ self.depth_multiplier = depth_multiplier
173
+ self.in_channels = in_channels
174
+ self.out_channels = out_channels
175
+ self.act_type = act_type
176
+
177
+ if with_idt and (self.in_channels == self.out_channels):
178
+ self.with_idt = True
179
+ else:
180
+ self.with_idt = False
181
+
182
+ self.conv3x3 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=3, padding=1)
183
+ self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.in_channels, self.out_channels, self.depth_multiplier)
184
+ self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.in_channels, self.out_channels)
185
+ self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.in_channels, self.out_channels)
186
+ self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.in_channels, self.out_channels)
187
+
188
+ if self.act_type == 'prelu':
189
+ self.act = nn.PReLU(num_parameters=self.out_channels)
190
+ elif self.act_type == 'relu':
191
+ self.act = nn.ReLU(inplace=True)
192
+ elif self.act_type == 'rrelu':
193
+ self.act = nn.RReLU(lower=-0.05, upper=0.05)
194
+ elif self.act_type == 'softplus':
195
+ self.act = nn.Softplus()
196
+ elif self.act_type == 'linear':
197
+ pass
198
+ else:
199
+ raise ValueError('The type of activation if not support!')
200
+
201
+ def forward(self, x):
202
+ if self.training:
203
+ y = self.conv3x3(x) + self.conv1x1_3x3(x) + self.conv1x1_sbx(x) + self.conv1x1_sby(x) + self.conv1x1_lpl(x)
204
+ if self.with_idt:
205
+ y += x
206
+ else:
207
+ rep_weight, rep_bias = self.rep_params()
208
+ y = F.conv2d(input=x, weight=rep_weight, bias=rep_bias, stride=1, padding=1)
209
+ if self.act_type != 'linear':
210
+ y = self.act(y)
211
+ return y
212
+
213
+ def rep_params(self):
214
+ weight0, bias0 = self.conv3x3.weight, self.conv3x3.bias
215
+ weight1, bias1 = self.conv1x1_3x3.rep_params()
216
+ weight2, bias2 = self.conv1x1_sbx.rep_params()
217
+ weight3, bias3 = self.conv1x1_sby.rep_params()
218
+ weight4, bias4 = self.conv1x1_lpl.rep_params()
219
+ rep_weight, rep_bias = (weight0 + weight1 + weight2 + weight3 + weight4), (
220
+ bias0 + bias1 + bias2 + bias3 + bias4)
221
+
222
+ if self.with_idt:
223
+ device = rep_weight.get_device()
224
+ if device < 0:
225
+ device = None
226
+ weight_idt = torch.zeros(self.out_channels, self.out_channels, 3, 3, device=device)
227
+ for i in range(self.out_channels):
228
+ weight_idt[i, i, 1, 1] = 1.0
229
+ bias_idt = 0.0
230
+ rep_weight, rep_bias = rep_weight + weight_idt, rep_bias + bias_idt
231
+ return rep_weight, rep_bias
232
+
233
+
234
+ @ARCH_REGISTRY.register()
235
+ class ECBSR(nn.Module):
236
+ """ECBSR architecture.
237
+
238
+ Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
239
+ Ref git repo: https://github.com/xindongzhang/ECBSR
240
+
241
+ Args:
242
+ num_in_ch (int): Channel number of inputs.
243
+ num_out_ch (int): Channel number of outputs.
244
+ num_block (int): Block number in the trunk network.
245
+ num_channel (int): Channel number.
246
+ with_idt (bool): Whether use identity in convolution layers.
247
+ act_type (str): Activation type.
248
+ scale (int): Upsampling factor.
249
+ """
250
+
251
+ def __init__(self, num_in_ch, num_out_ch, num_block, num_channel, with_idt, act_type, scale):
252
+ super(ECBSR, self).__init__()
253
+ self.num_in_ch = num_in_ch
254
+ self.scale = scale
255
+
256
+ backbone = []
257
+ backbone += [ECB(num_in_ch, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)]
258
+ for _ in range(num_block):
259
+ backbone += [ECB(num_channel, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)]
260
+ backbone += [
261
+ ECB(num_channel, num_out_ch * scale * scale, depth_multiplier=2.0, act_type='linear', with_idt=with_idt)
262
+ ]
263
+
264
+ self.backbone = nn.Sequential(*backbone)
265
+ self.upsampler = nn.PixelShuffle(scale)
266
+
267
+ def forward(self, x):
268
+ if self.num_in_ch > 1:
269
+ shortcut = torch.repeat_interleave(x, self.scale * self.scale, dim=1)
270
+ else:
271
+ shortcut = x # will repeat the input in the channel dimension (repeat scale * scale times)
272
+ y = self.backbone(x) + shortcut
273
+ y = self.upsampler(y)
274
+ return y
r_basicsr/archs/edsr_arch.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+
4
+ from r_basicsr.archs.arch_util import ResidualBlockNoBN, Upsample, make_layer
5
+ from r_basicsr.utils.registry import ARCH_REGISTRY
6
+
7
+
8
+ @ARCH_REGISTRY.register()
9
+ class EDSR(nn.Module):
10
+ """EDSR network structure.
11
+
12
+ Paper: Enhanced Deep Residual Networks for Single Image Super-Resolution.
13
+ Ref git repo: https://github.com/thstkdgus35/EDSR-PyTorch
14
+
15
+ Args:
16
+ num_in_ch (int): Channel number of inputs.
17
+ num_out_ch (int): Channel number of outputs.
18
+ num_feat (int): Channel number of intermediate features.
19
+ Default: 64.
20
+ num_block (int): Block number in the trunk network. Default: 16.
21
+ upscale (int): Upsampling factor. Support 2^n and 3.
22
+ Default: 4.
23
+ res_scale (float): Used to scale the residual in residual block.
24
+ Default: 1.
25
+ img_range (float): Image range. Default: 255.
26
+ rgb_mean (tuple[float]): Image mean in RGB orders.
27
+ Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
28
+ """
29
+
30
+ def __init__(self,
31
+ num_in_ch,
32
+ num_out_ch,
33
+ num_feat=64,
34
+ num_block=16,
35
+ upscale=4,
36
+ res_scale=1,
37
+ img_range=255.,
38
+ rgb_mean=(0.4488, 0.4371, 0.4040)):
39
+ super(EDSR, self).__init__()
40
+
41
+ self.img_range = img_range
42
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
43
+
44
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
45
+ self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat, res_scale=res_scale, pytorch_init=True)
46
+ self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
47
+ self.upsample = Upsample(upscale, num_feat)
48
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
49
+
50
+ def forward(self, x):
51
+ self.mean = self.mean.type_as(x)
52
+
53
+ x = (x - self.mean) * self.img_range
54
+ x = self.conv_first(x)
55
+ res = self.conv_after_body(self.body(x))
56
+ res += x
57
+
58
+ x = self.conv_last(self.upsample(res))
59
+ x = x / self.img_range + self.mean
60
+
61
+ return x
r_basicsr/archs/edvr_arch.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ from r_basicsr.utils.registry import ARCH_REGISTRY
6
+ from .arch_util import DCNv2Pack, ResidualBlockNoBN, make_layer
7
+
8
+
9
+ class PCDAlignment(nn.Module):
10
+ """Alignment module using Pyramid, Cascading and Deformable convolution
11
+ (PCD). It is used in EDVR.
12
+
13
+ Ref:
14
+ EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
15
+
16
+ Args:
17
+ num_feat (int): Channel number of middle features. Default: 64.
18
+ deformable_groups (int): Deformable groups. Defaults: 8.
19
+ """
20
+
21
+ def __init__(self, num_feat=64, deformable_groups=8):
22
+ super(PCDAlignment, self).__init__()
23
+
24
+ # Pyramid has three levels:
25
+ # L3: level 3, 1/4 spatial size
26
+ # L2: level 2, 1/2 spatial size
27
+ # L1: level 1, original spatial size
28
+ self.offset_conv1 = nn.ModuleDict()
29
+ self.offset_conv2 = nn.ModuleDict()
30
+ self.offset_conv3 = nn.ModuleDict()
31
+ self.dcn_pack = nn.ModuleDict()
32
+ self.feat_conv = nn.ModuleDict()
33
+
34
+ # Pyramids
35
+ for i in range(3, 0, -1):
36
+ level = f'l{i}'
37
+ self.offset_conv1[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
38
+ if i == 3:
39
+ self.offset_conv2[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
40
+ else:
41
+ self.offset_conv2[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
42
+ self.offset_conv3[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
43
+ self.dcn_pack[level] = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
44
+
45
+ if i < 3:
46
+ self.feat_conv[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
47
+
48
+ # Cascading dcn
49
+ self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
50
+ self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
51
+ self.cas_dcnpack = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
52
+
53
+ self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
54
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
55
+
56
+ def forward(self, nbr_feat_l, ref_feat_l):
57
+ """Align neighboring frame features to the reference frame features.
58
+
59
+ Args:
60
+ nbr_feat_l (list[Tensor]): Neighboring feature list. It
61
+ contains three pyramid levels (L1, L2, L3),
62
+ each with shape (b, c, h, w).
63
+ ref_feat_l (list[Tensor]): Reference feature list. It
64
+ contains three pyramid levels (L1, L2, L3),
65
+ each with shape (b, c, h, w).
66
+
67
+ Returns:
68
+ Tensor: Aligned features.
69
+ """
70
+ # Pyramids
71
+ upsampled_offset, upsampled_feat = None, None
72
+ for i in range(3, 0, -1):
73
+ level = f'l{i}'
74
+ offset = torch.cat([nbr_feat_l[i - 1], ref_feat_l[i - 1]], dim=1)
75
+ offset = self.lrelu(self.offset_conv1[level](offset))
76
+ if i == 3:
77
+ offset = self.lrelu(self.offset_conv2[level](offset))
78
+ else:
79
+ offset = self.lrelu(self.offset_conv2[level](torch.cat([offset, upsampled_offset], dim=1)))
80
+ offset = self.lrelu(self.offset_conv3[level](offset))
81
+
82
+ feat = self.dcn_pack[level](nbr_feat_l[i - 1], offset)
83
+ if i < 3:
84
+ feat = self.feat_conv[level](torch.cat([feat, upsampled_feat], dim=1))
85
+ if i > 1:
86
+ feat = self.lrelu(feat)
87
+
88
+ if i > 1: # upsample offset and features
89
+ # x2: when we upsample the offset, we should also enlarge
90
+ # the magnitude.
91
+ upsampled_offset = self.upsample(offset) * 2
92
+ upsampled_feat = self.upsample(feat)
93
+
94
+ # Cascading
95
+ offset = torch.cat([feat, ref_feat_l[0]], dim=1)
96
+ offset = self.lrelu(self.cas_offset_conv2(self.lrelu(self.cas_offset_conv1(offset))))
97
+ feat = self.lrelu(self.cas_dcnpack(feat, offset))
98
+ return feat
99
+
100
+
101
+ class TSAFusion(nn.Module):
102
+ """Temporal Spatial Attention (TSA) fusion module.
103
+
104
+ Temporal: Calculate the correlation between center frame and
105
+ neighboring frames;
106
+ Spatial: It has 3 pyramid levels, the attention is similar to SFT.
107
+ (SFT: Recovering realistic texture in image super-resolution by deep
108
+ spatial feature transform.)
109
+
110
+ Args:
111
+ num_feat (int): Channel number of middle features. Default: 64.
112
+ num_frame (int): Number of frames. Default: 5.
113
+ center_frame_idx (int): The index of center frame. Default: 2.
114
+ """
115
+
116
+ def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
117
+ super(TSAFusion, self).__init__()
118
+ self.center_frame_idx = center_frame_idx
119
+ # temporal attention (before fusion conv)
120
+ self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
121
+ self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
122
+ self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
123
+
124
+ # spatial attention (after fusion conv)
125
+ self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
126
+ self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
127
+ self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
128
+ self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
129
+ self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
130
+ self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
131
+ self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
132
+ self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
133
+ self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
134
+ self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
135
+ self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
136
+ self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
137
+
138
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
139
+ self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
140
+
141
+ def forward(self, aligned_feat):
142
+ """
143
+ Args:
144
+ aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w).
145
+
146
+ Returns:
147
+ Tensor: Features after TSA with the shape (b, c, h, w).
148
+ """
149
+ b, t, c, h, w = aligned_feat.size()
150
+ # temporal attention
151
+ embedding_ref = self.temporal_attn1(aligned_feat[:, self.center_frame_idx, :, :, :].clone())
152
+ embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w))
153
+ embedding = embedding.view(b, t, -1, h, w) # (b, t, c, h, w)
154
+
155
+ corr_l = [] # correlation list
156
+ for i in range(t):
157
+ emb_neighbor = embedding[:, i, :, :, :]
158
+ corr = torch.sum(emb_neighbor * embedding_ref, 1) # (b, h, w)
159
+ corr_l.append(corr.unsqueeze(1)) # (b, 1, h, w)
160
+ corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1)) # (b, t, h, w)
161
+ corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w)
162
+ corr_prob = corr_prob.contiguous().view(b, -1, h, w) # (b, t*c, h, w)
163
+ aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob
164
+
165
+ # fusion
166
+ feat = self.lrelu(self.feat_fusion(aligned_feat))
167
+
168
+ # spatial attention
169
+ attn = self.lrelu(self.spatial_attn1(aligned_feat))
170
+ attn_max = self.max_pool(attn)
171
+ attn_avg = self.avg_pool(attn)
172
+ attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1)))
173
+ # pyramid levels
174
+ attn_level = self.lrelu(self.spatial_attn_l1(attn))
175
+ attn_max = self.max_pool(attn_level)
176
+ attn_avg = self.avg_pool(attn_level)
177
+ attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1)))
178
+ attn_level = self.lrelu(self.spatial_attn_l3(attn_level))
179
+ attn_level = self.upsample(attn_level)
180
+
181
+ attn = self.lrelu(self.spatial_attn3(attn)) + attn_level
182
+ attn = self.lrelu(self.spatial_attn4(attn))
183
+ attn = self.upsample(attn)
184
+ attn = self.spatial_attn5(attn)
185
+ attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1(attn)))
186
+ attn = torch.sigmoid(attn)
187
+
188
+ # after initialization, * 2 makes (attn * 2) to be close to 1.
189
+ feat = feat * attn * 2 + attn_add
190
+ return feat
191
+
192
+
193
+ class PredeblurModule(nn.Module):
194
+ """Pre-dublur module.
195
+
196
+ Args:
197
+ num_in_ch (int): Channel number of input image. Default: 3.
198
+ num_feat (int): Channel number of intermediate features. Default: 64.
199
+ hr_in (bool): Whether the input has high resolution. Default: False.
200
+ """
201
+
202
+ def __init__(self, num_in_ch=3, num_feat=64, hr_in=False):
203
+ super(PredeblurModule, self).__init__()
204
+ self.hr_in = hr_in
205
+
206
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
207
+ if self.hr_in:
208
+ # downsample x4 by stride conv
209
+ self.stride_conv_hr1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
210
+ self.stride_conv_hr2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
211
+
212
+ # generate feature pyramid
213
+ self.stride_conv_l2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
214
+ self.stride_conv_l3 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
215
+
216
+ self.resblock_l3 = ResidualBlockNoBN(num_feat=num_feat)
217
+ self.resblock_l2_1 = ResidualBlockNoBN(num_feat=num_feat)
218
+ self.resblock_l2_2 = ResidualBlockNoBN(num_feat=num_feat)
219
+ self.resblock_l1 = nn.ModuleList([ResidualBlockNoBN(num_feat=num_feat) for i in range(5)])
220
+
221
+ self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
222
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
223
+
224
+ def forward(self, x):
225
+ feat_l1 = self.lrelu(self.conv_first(x))
226
+ if self.hr_in:
227
+ feat_l1 = self.lrelu(self.stride_conv_hr1(feat_l1))
228
+ feat_l1 = self.lrelu(self.stride_conv_hr2(feat_l1))
229
+
230
+ # generate feature pyramid
231
+ feat_l2 = self.lrelu(self.stride_conv_l2(feat_l1))
232
+ feat_l3 = self.lrelu(self.stride_conv_l3(feat_l2))
233
+
234
+ feat_l3 = self.upsample(self.resblock_l3(feat_l3))
235
+ feat_l2 = self.resblock_l2_1(feat_l2) + feat_l3
236
+ feat_l2 = self.upsample(self.resblock_l2_2(feat_l2))
237
+
238
+ for i in range(2):
239
+ feat_l1 = self.resblock_l1[i](feat_l1)
240
+ feat_l1 = feat_l1 + feat_l2
241
+ for i in range(2, 5):
242
+ feat_l1 = self.resblock_l1[i](feat_l1)
243
+ return feat_l1
244
+
245
+
246
+ @ARCH_REGISTRY.register()
247
+ class EDVR(nn.Module):
248
+ """EDVR network structure for video super-resolution.
249
+
250
+ Now only support X4 upsampling factor.
251
+ Paper:
252
+ EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
253
+
254
+ Args:
255
+ num_in_ch (int): Channel number of input image. Default: 3.
256
+ num_out_ch (int): Channel number of output image. Default: 3.
257
+ num_feat (int): Channel number of intermediate features. Default: 64.
258
+ num_frame (int): Number of input frames. Default: 5.
259
+ deformable_groups (int): Deformable groups. Defaults: 8.
260
+ num_extract_block (int): Number of blocks for feature extraction.
261
+ Default: 5.
262
+ num_reconstruct_block (int): Number of blocks for reconstruction.
263
+ Default: 10.
264
+ center_frame_idx (int): The index of center frame. Frame counting from
265
+ 0. Default: Middle of input frames.
266
+ hr_in (bool): Whether the input has high resolution. Default: False.
267
+ with_predeblur (bool): Whether has predeblur module.
268
+ Default: False.
269
+ with_tsa (bool): Whether has TSA module. Default: True.
270
+ """
271
+
272
+ def __init__(self,
273
+ num_in_ch=3,
274
+ num_out_ch=3,
275
+ num_feat=64,
276
+ num_frame=5,
277
+ deformable_groups=8,
278
+ num_extract_block=5,
279
+ num_reconstruct_block=10,
280
+ center_frame_idx=None,
281
+ hr_in=False,
282
+ with_predeblur=False,
283
+ with_tsa=True):
284
+ super(EDVR, self).__init__()
285
+ if center_frame_idx is None:
286
+ self.center_frame_idx = num_frame // 2
287
+ else:
288
+ self.center_frame_idx = center_frame_idx
289
+ self.hr_in = hr_in
290
+ self.with_predeblur = with_predeblur
291
+ self.with_tsa = with_tsa
292
+
293
+ # extract features for each frame
294
+ if self.with_predeblur:
295
+ self.predeblur = PredeblurModule(num_feat=num_feat, hr_in=self.hr_in)
296
+ self.conv_1x1 = nn.Conv2d(num_feat, num_feat, 1, 1)
297
+ else:
298
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
299
+
300
+ # extract pyramid features
301
+ self.feature_extraction = make_layer(ResidualBlockNoBN, num_extract_block, num_feat=num_feat)
302
+ self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
303
+ self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
304
+ self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
305
+ self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
306
+
307
+ # pcd and tsa module
308
+ self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=deformable_groups)
309
+ if self.with_tsa:
310
+ self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_frame, center_frame_idx=self.center_frame_idx)
311
+ else:
312
+ self.fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
313
+
314
+ # reconstruction
315
+ self.reconstruction = make_layer(ResidualBlockNoBN, num_reconstruct_block, num_feat=num_feat)
316
+ # upsample
317
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
318
+ self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1)
319
+ self.pixel_shuffle = nn.PixelShuffle(2)
320
+ self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
321
+ self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
322
+
323
+ # activation function
324
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
325
+
326
+ def forward(self, x):
327
+ b, t, c, h, w = x.size()
328
+ if self.hr_in:
329
+ assert h % 16 == 0 and w % 16 == 0, ('The height and width must be multiple of 16.')
330
+ else:
331
+ assert h % 4 == 0 and w % 4 == 0, ('The height and width must be multiple of 4.')
332
+
333
+ x_center = x[:, self.center_frame_idx, :, :, :].contiguous()
334
+
335
+ # extract features for each frame
336
+ # L1
337
+ if self.with_predeblur:
338
+ feat_l1 = self.conv_1x1(self.predeblur(x.view(-1, c, h, w)))
339
+ if self.hr_in:
340
+ h, w = h // 4, w // 4
341
+ else:
342
+ feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))
343
+
344
+ feat_l1 = self.feature_extraction(feat_l1)
345
+ # L2
346
+ feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
347
+ feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
348
+ # L3
349
+ feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
350
+ feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))
351
+
352
+ feat_l1 = feat_l1.view(b, t, -1, h, w)
353
+ feat_l2 = feat_l2.view(b, t, -1, h // 2, w // 2)
354
+ feat_l3 = feat_l3.view(b, t, -1, h // 4, w // 4)
355
+
356
+ # PCD alignment
357
+ ref_feat_l = [ # reference feature list
358
+ feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
359
+ feat_l3[:, self.center_frame_idx, :, :, :].clone()
360
+ ]
361
+ aligned_feat = []
362
+ for i in range(t):
363
+ nbr_feat_l = [ # neighboring feature list
364
+ feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
365
+ ]
366
+ aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
367
+ aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w)
368
+
369
+ if not self.with_tsa:
370
+ aligned_feat = aligned_feat.view(b, -1, h, w)
371
+ feat = self.fusion(aligned_feat)
372
+
373
+ out = self.reconstruction(feat)
374
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
375
+ out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
376
+ out = self.lrelu(self.conv_hr(out))
377
+ out = self.conv_last(out)
378
+ if self.hr_in:
379
+ base = x_center
380
+ else:
381
+ base = F.interpolate(x_center, scale_factor=4, mode='bilinear', align_corners=False)
382
+ out += base
383
+ return out
r_basicsr/archs/hifacegan_arch.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from r_basicsr.utils.registry import ARCH_REGISTRY
7
+ from .hifacegan_util import BaseNetwork, LIPEncoder, SPADEResnetBlock, get_nonspade_norm_layer
8
+
9
+
10
+ class SPADEGenerator(BaseNetwork):
11
+ """Generator with SPADEResBlock"""
12
+
13
+ def __init__(self,
14
+ num_in_ch=3,
15
+ num_feat=64,
16
+ use_vae=False,
17
+ z_dim=256,
18
+ crop_size=512,
19
+ norm_g='spectralspadesyncbatch3x3',
20
+ is_train=True,
21
+ init_train_phase=3): # progressive training disabled
22
+ super().__init__()
23
+ self.nf = num_feat
24
+ self.input_nc = num_in_ch
25
+ self.is_train = is_train
26
+ self.train_phase = init_train_phase
27
+
28
+ self.scale_ratio = 5 # hardcoded now
29
+ self.sw = crop_size // (2**self.scale_ratio)
30
+ self.sh = self.sw # 20210519: By default use square image, aspect_ratio = 1.0
31
+
32
+ if use_vae:
33
+ # In case of VAE, we will sample from random z vector
34
+ self.fc = nn.Linear(z_dim, 16 * self.nf * self.sw * self.sh)
35
+ else:
36
+ # Otherwise, we make the network deterministic by starting with
37
+ # downsampled segmentation map instead of random z
38
+ self.fc = nn.Conv2d(num_in_ch, 16 * self.nf, 3, padding=1)
39
+
40
+ self.head_0 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
41
+
42
+ self.g_middle_0 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
43
+ self.g_middle_1 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
44
+
45
+ self.ups = nn.ModuleList([
46
+ SPADEResnetBlock(16 * self.nf, 8 * self.nf, norm_g),
47
+ SPADEResnetBlock(8 * self.nf, 4 * self.nf, norm_g),
48
+ SPADEResnetBlock(4 * self.nf, 2 * self.nf, norm_g),
49
+ SPADEResnetBlock(2 * self.nf, 1 * self.nf, norm_g)
50
+ ])
51
+
52
+ self.to_rgbs = nn.ModuleList([
53
+ nn.Conv2d(8 * self.nf, 3, 3, padding=1),
54
+ nn.Conv2d(4 * self.nf, 3, 3, padding=1),
55
+ nn.Conv2d(2 * self.nf, 3, 3, padding=1),
56
+ nn.Conv2d(1 * self.nf, 3, 3, padding=1)
57
+ ])
58
+
59
+ self.up = nn.Upsample(scale_factor=2)
60
+
61
+ def encode(self, input_tensor):
62
+ """
63
+ Encode input_tensor into feature maps, can be overridden in derived classes
64
+ Default: nearest downsampling of 2**5 = 32 times
65
+ """
66
+ h, w = input_tensor.size()[-2:]
67
+ sh, sw = h // 2**self.scale_ratio, w // 2**self.scale_ratio
68
+ x = F.interpolate(input_tensor, size=(sh, sw))
69
+ return self.fc(x)
70
+
71
+ def forward(self, x):
72
+ # In oroginal SPADE, seg means a segmentation map, but here we use x instead.
73
+ seg = x
74
+
75
+ x = self.encode(x)
76
+ x = self.head_0(x, seg)
77
+
78
+ x = self.up(x)
79
+ x = self.g_middle_0(x, seg)
80
+ x = self.g_middle_1(x, seg)
81
+
82
+ if self.is_train:
83
+ phase = self.train_phase + 1
84
+ else:
85
+ phase = len(self.to_rgbs)
86
+
87
+ for i in range(phase):
88
+ x = self.up(x)
89
+ x = self.ups[i](x, seg)
90
+
91
+ x = self.to_rgbs[phase - 1](F.leaky_relu(x, 2e-1))
92
+ x = torch.tanh(x)
93
+
94
+ return x
95
+
96
+ def mixed_guidance_forward(self, input_x, seg=None, n=0, mode='progressive'):
97
+ """
98
+ A helper class for subspace visualization. Input and seg are different images.
99
+ For the first n levels (including encoder) we use input, for the rest we use seg.
100
+
101
+ If mode = 'progressive', the output's like: AAABBB
102
+ If mode = 'one_plug', the output's like: AAABAA
103
+ If mode = 'one_ablate', the output's like: BBBABB
104
+ """
105
+
106
+ if seg is None:
107
+ return self.forward(input_x)
108
+
109
+ if self.is_train:
110
+ phase = self.train_phase + 1
111
+ else:
112
+ phase = len(self.to_rgbs)
113
+
114
+ if mode == 'progressive':
115
+ n = max(min(n, 4 + phase), 0)
116
+ guide_list = [input_x] * n + [seg] * (4 + phase - n)
117
+ elif mode == 'one_plug':
118
+ n = max(min(n, 4 + phase - 1), 0)
119
+ guide_list = [seg] * (4 + phase)
120
+ guide_list[n] = input_x
121
+ elif mode == 'one_ablate':
122
+ if n > 3 + phase:
123
+ return self.forward(input_x)
124
+ guide_list = [input_x] * (4 + phase)
125
+ guide_list[n] = seg
126
+
127
+ x = self.encode(guide_list[0])
128
+ x = self.head_0(x, guide_list[1])
129
+
130
+ x = self.up(x)
131
+ x = self.g_middle_0(x, guide_list[2])
132
+ x = self.g_middle_1(x, guide_list[3])
133
+
134
+ for i in range(phase):
135
+ x = self.up(x)
136
+ x = self.ups[i](x, guide_list[4 + i])
137
+
138
+ x = self.to_rgbs[phase - 1](F.leaky_relu(x, 2e-1))
139
+ x = torch.tanh(x)
140
+
141
+ return x
142
+
143
+
144
+ @ARCH_REGISTRY.register()
145
+ class HiFaceGAN(SPADEGenerator):
146
+ """
147
+ HiFaceGAN: SPADEGenerator with a learnable feature encoder
148
+ Current encoder design: LIPEncoder
149
+ """
150
+
151
+ def __init__(self,
152
+ num_in_ch=3,
153
+ num_feat=64,
154
+ use_vae=False,
155
+ z_dim=256,
156
+ crop_size=512,
157
+ norm_g='spectralspadesyncbatch3x3',
158
+ is_train=True,
159
+ init_train_phase=3):
160
+ super().__init__(num_in_ch, num_feat, use_vae, z_dim, crop_size, norm_g, is_train, init_train_phase)
161
+ self.lip_encoder = LIPEncoder(num_in_ch, num_feat, self.sw, self.sh, self.scale_ratio)
162
+
163
+ def encode(self, input_tensor):
164
+ return self.lip_encoder(input_tensor)
165
+
166
+
167
+ @ARCH_REGISTRY.register()
168
+ class HiFaceGANDiscriminator(BaseNetwork):
169
+ """
170
+ Inspired by pix2pixHD multiscale discriminator.
171
+ Args:
172
+ num_in_ch (int): Channel number of inputs. Default: 3.
173
+ num_out_ch (int): Channel number of outputs. Default: 3.
174
+ conditional_d (bool): Whether use conditional discriminator.
175
+ Default: True.
176
+ num_d (int): Number of Multiscale discriminators. Default: 3.
177
+ n_layers_d (int): Number of downsample layers in each D. Default: 4.
178
+ num_feat (int): Channel number of base intermediate features.
179
+ Default: 64.
180
+ norm_d (str): String to determine normalization layers in D.
181
+ Choices: [spectral][instance/batch/syncbatch]
182
+ Default: 'spectralinstance'.
183
+ keep_features (bool): Keep intermediate features for matching loss, etc.
184
+ Default: True.
185
+ """
186
+
187
+ def __init__(self,
188
+ num_in_ch=3,
189
+ num_out_ch=3,
190
+ conditional_d=True,
191
+ num_d=2,
192
+ n_layers_d=4,
193
+ num_feat=64,
194
+ norm_d='spectralinstance',
195
+ keep_features=True):
196
+ super().__init__()
197
+ self.num_d = num_d
198
+
199
+ input_nc = num_in_ch
200
+ if conditional_d:
201
+ input_nc += num_out_ch
202
+
203
+ for i in range(num_d):
204
+ subnet_d = NLayerDiscriminator(input_nc, n_layers_d, num_feat, norm_d, keep_features)
205
+ self.add_module(f'discriminator_{i}', subnet_d)
206
+
207
+ def downsample(self, x):
208
+ return F.avg_pool2d(x, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False)
209
+
210
+ # Returns list of lists of discriminator outputs.
211
+ # The final result is of size opt.num_d x opt.n_layers_D
212
+ def forward(self, x):
213
+ result = []
214
+ for _, _net_d in self.named_children():
215
+ out = _net_d(x)
216
+ result.append(out)
217
+ x = self.downsample(x)
218
+
219
+ return result
220
+
221
+
222
+ class NLayerDiscriminator(BaseNetwork):
223
+ """Defines the PatchGAN discriminator with the specified arguments."""
224
+
225
+ def __init__(self, input_nc, n_layers_d, num_feat, norm_d, keep_features):
226
+ super().__init__()
227
+ kw = 4
228
+ padw = int(np.ceil((kw - 1.0) / 2))
229
+ nf = num_feat
230
+ self.keep_features = keep_features
231
+
232
+ norm_layer = get_nonspade_norm_layer(norm_d)
233
+ sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, False)]]
234
+
235
+ for n in range(1, n_layers_d):
236
+ nf_prev = nf
237
+ nf = min(nf * 2, 512)
238
+ stride = 1 if n == n_layers_d - 1 else 2
239
+ sequence += [[
240
+ norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=stride, padding=padw)),
241
+ nn.LeakyReLU(0.2, False)
242
+ ]]
243
+
244
+ sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
245
+
246
+ # We divide the layers into groups to extract intermediate layer outputs
247
+ for n in range(len(sequence)):
248
+ self.add_module('model' + str(n), nn.Sequential(*sequence[n]))
249
+
250
+ def forward(self, x):
251
+ results = [x]
252
+ for submodel in self.children():
253
+ intermediate_output = submodel(results[-1])
254
+ results.append(intermediate_output)
255
+
256
+ if self.keep_features:
257
+ return results[1:]
258
+ else:
259
+ return results[-1]
r_basicsr/archs/hifacegan_util.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torch.nn import init
6
+ # Warning: spectral norm could be buggy
7
+ # under eval mode and multi-GPU inference
8
+ # A workaround is sticking to single-GPU inference and train mode
9
+ from torch.nn.utils import spectral_norm
10
+
11
+
12
+ class SPADE(nn.Module):
13
+
14
+ def __init__(self, config_text, norm_nc, label_nc):
15
+ super().__init__()
16
+
17
+ assert config_text.startswith('spade')
18
+ parsed = re.search('spade(\\D+)(\\d)x\\d', config_text)
19
+ param_free_norm_type = str(parsed.group(1))
20
+ ks = int(parsed.group(2))
21
+
22
+ if param_free_norm_type == 'instance':
23
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc)
24
+ elif param_free_norm_type == 'syncbatch':
25
+ print('SyncBatchNorm is currently not supported under single-GPU mode, switch to "instance" instead')
26
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc)
27
+ elif param_free_norm_type == 'batch':
28
+ self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)
29
+ else:
30
+ raise ValueError(f'{param_free_norm_type} is not a recognized param-free norm type in SPADE')
31
+
32
+ # The dimension of the intermediate embedding space. Yes, hardcoded.
33
+ nhidden = 128 if norm_nc > 128 else norm_nc
34
+
35
+ pw = ks // 2
36
+ self.mlp_shared = nn.Sequential(nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU())
37
+ self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw, bias=False)
38
+ self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw, bias=False)
39
+
40
+ def forward(self, x, segmap):
41
+
42
+ # Part 1. generate parameter-free normalized activations
43
+ normalized = self.param_free_norm(x)
44
+
45
+ # Part 2. produce scaling and bias conditioned on semantic map
46
+ segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
47
+ actv = self.mlp_shared(segmap)
48
+ gamma = self.mlp_gamma(actv)
49
+ beta = self.mlp_beta(actv)
50
+
51
+ # apply scale and bias
52
+ out = normalized * gamma + beta
53
+
54
+ return out
55
+
56
+
57
+ class SPADEResnetBlock(nn.Module):
58
+ """
59
+ ResNet block that uses SPADE. It differs from the ResNet block of pix2pixHD in that
60
+ it takes in the segmentation map as input, learns the skip connection if necessary,
61
+ and applies normalization first and then convolution.
62
+ This architecture seemed like a standard architecture for unconditional or
63
+ class-conditional GAN architecture using residual block.
64
+ The code was inspired from https://github.com/LMescheder/GAN_stability.
65
+ """
66
+
67
+ def __init__(self, fin, fout, norm_g='spectralspadesyncbatch3x3', semantic_nc=3):
68
+ super().__init__()
69
+ # Attributes
70
+ self.learned_shortcut = (fin != fout)
71
+ fmiddle = min(fin, fout)
72
+
73
+ # create conv layers
74
+ self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
75
+ self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
76
+ if self.learned_shortcut:
77
+ self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
78
+
79
+ # apply spectral norm if specified
80
+ if 'spectral' in norm_g:
81
+ self.conv_0 = spectral_norm(self.conv_0)
82
+ self.conv_1 = spectral_norm(self.conv_1)
83
+ if self.learned_shortcut:
84
+ self.conv_s = spectral_norm(self.conv_s)
85
+
86
+ # define normalization layers
87
+ spade_config_str = norm_g.replace('spectral', '')
88
+ self.norm_0 = SPADE(spade_config_str, fin, semantic_nc)
89
+ self.norm_1 = SPADE(spade_config_str, fmiddle, semantic_nc)
90
+ if self.learned_shortcut:
91
+ self.norm_s = SPADE(spade_config_str, fin, semantic_nc)
92
+
93
+ # note the resnet block with SPADE also takes in |seg|,
94
+ # the semantic segmentation map as input
95
+ def forward(self, x, seg):
96
+ x_s = self.shortcut(x, seg)
97
+ dx = self.conv_0(self.act(self.norm_0(x, seg)))
98
+ dx = self.conv_1(self.act(self.norm_1(dx, seg)))
99
+ out = x_s + dx
100
+ return out
101
+
102
+ def shortcut(self, x, seg):
103
+ if self.learned_shortcut:
104
+ x_s = self.conv_s(self.norm_s(x, seg))
105
+ else:
106
+ x_s = x
107
+ return x_s
108
+
109
+ def act(self, x):
110
+ return F.leaky_relu(x, 2e-1)
111
+
112
+
113
+ class BaseNetwork(nn.Module):
114
+ """ A basis for hifacegan archs with custom initialization """
115
+
116
+ def init_weights(self, init_type='normal', gain=0.02):
117
+
118
+ def init_func(m):
119
+ classname = m.__class__.__name__
120
+ if classname.find('BatchNorm2d') != -1:
121
+ if hasattr(m, 'weight') and m.weight is not None:
122
+ init.normal_(m.weight.data, 1.0, gain)
123
+ if hasattr(m, 'bias') and m.bias is not None:
124
+ init.constant_(m.bias.data, 0.0)
125
+ elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
126
+ if init_type == 'normal':
127
+ init.normal_(m.weight.data, 0.0, gain)
128
+ elif init_type == 'xavier':
129
+ init.xavier_normal_(m.weight.data, gain=gain)
130
+ elif init_type == 'xavier_uniform':
131
+ init.xavier_uniform_(m.weight.data, gain=1.0)
132
+ elif init_type == 'kaiming':
133
+ init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
134
+ elif init_type == 'orthogonal':
135
+ init.orthogonal_(m.weight.data, gain=gain)
136
+ elif init_type == 'none': # uses pytorch's default init method
137
+ m.reset_parameters()
138
+ else:
139
+ raise NotImplementedError(f'initialization method [{init_type}] is not implemented')
140
+ if hasattr(m, 'bias') and m.bias is not None:
141
+ init.constant_(m.bias.data, 0.0)
142
+
143
+ self.apply(init_func)
144
+
145
+ # propagate to children
146
+ for m in self.children():
147
+ if hasattr(m, 'init_weights'):
148
+ m.init_weights(init_type, gain)
149
+
150
+ def forward(self, x):
151
+ pass
152
+
153
+
154
+ def lip2d(x, logit, kernel=3, stride=2, padding=1):
155
+ weight = logit.exp()
156
+ return F.avg_pool2d(x * weight, kernel, stride, padding) / F.avg_pool2d(weight, kernel, stride, padding)
157
+
158
+
159
+ class SoftGate(nn.Module):
160
+ COEFF = 12.0
161
+
162
+ def forward(self, x):
163
+ return torch.sigmoid(x).mul(self.COEFF)
164
+
165
+
166
+ class SimplifiedLIP(nn.Module):
167
+
168
+ def __init__(self, channels):
169
+ super(SimplifiedLIP, self).__init__()
170
+ self.logit = nn.Sequential(
171
+ nn.Conv2d(channels, channels, 3, padding=1, bias=False), nn.InstanceNorm2d(channels, affine=True),
172
+ SoftGate())
173
+
174
+ def init_layer(self):
175
+ self.logit[0].weight.data.fill_(0.0)
176
+
177
+ def forward(self, x):
178
+ frac = lip2d(x, self.logit(x))
179
+ return frac
180
+
181
+
182
+ class LIPEncoder(BaseNetwork):
183
+ """Local Importance-based Pooling (Ziteng Gao et.al.,ICCV 2019)"""
184
+
185
+ def __init__(self, input_nc, ngf, sw, sh, n_2xdown, norm_layer=nn.InstanceNorm2d):
186
+ super().__init__()
187
+ self.sw = sw
188
+ self.sh = sh
189
+ self.max_ratio = 16
190
+ # 20200310: Several Convolution (stride 1) + LIP blocks, 4 fold
191
+ kw = 3
192
+ pw = (kw - 1) // 2
193
+
194
+ model = [
195
+ nn.Conv2d(input_nc, ngf, kw, stride=1, padding=pw, bias=False),
196
+ norm_layer(ngf),
197
+ nn.ReLU(),
198
+ ]
199
+ cur_ratio = 1
200
+ for i in range(n_2xdown):
201
+ next_ratio = min(cur_ratio * 2, self.max_ratio)
202
+ model += [
203
+ SimplifiedLIP(ngf * cur_ratio),
204
+ nn.Conv2d(ngf * cur_ratio, ngf * next_ratio, kw, stride=1, padding=pw),
205
+ norm_layer(ngf * next_ratio),
206
+ ]
207
+ cur_ratio = next_ratio
208
+ if i < n_2xdown - 1:
209
+ model += [nn.ReLU(inplace=True)]
210
+
211
+ self.model = nn.Sequential(*model)
212
+
213
+ def forward(self, x):
214
+ return self.model(x)
215
+
216
+
217
+ def get_nonspade_norm_layer(norm_type='instance'):
218
+ # helper function to get # output channels of the previous layer
219
+ def get_out_channel(layer):
220
+ if hasattr(layer, 'out_channels'):
221
+ return getattr(layer, 'out_channels')
222
+ return layer.weight.size(0)
223
+
224
+ # this function will be returned
225
+ def add_norm_layer(layer):
226
+ nonlocal norm_type
227
+ if norm_type.startswith('spectral'):
228
+ layer = spectral_norm(layer)
229
+ subnorm_type = norm_type[len('spectral'):]
230
+
231
+ if subnorm_type == 'none' or len(subnorm_type) == 0:
232
+ return layer
233
+
234
+ # remove bias in the previous layer, which is meaningless
235
+ # since it has no effect after normalization
236
+ if getattr(layer, 'bias', None) is not None:
237
+ delattr(layer, 'bias')
238
+ layer.register_parameter('bias', None)
239
+
240
+ if subnorm_type == 'batch':
241
+ norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True)
242
+ elif subnorm_type == 'sync_batch':
243
+ print('SyncBatchNorm is currently not supported under single-GPU mode, switch to "instance" instead')
244
+ # norm_layer = SynchronizedBatchNorm2d(
245
+ # get_out_channel(layer), affine=True)
246
+ norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
247
+ elif subnorm_type == 'instance':
248
+ norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
249
+ else:
250
+ raise ValueError(f'normalization layer {subnorm_type} is not recognized')
251
+
252
+ return nn.Sequential(layer, norm_layer)
253
+
254
+ print('This is a legacy from nvlabs/SPADE, and will be removed in future versions.')
255
+ return add_norm_layer
r_basicsr/archs/inception.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from https://github.com/mseitzer/pytorch-fid/blob/master/pytorch_fid/inception.py # noqa: E501
2
+ # For FID metric
3
+
4
+ import os
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ from torch.utils.model_zoo import load_url
9
+ from torchvision import models
10
+
11
+ # Inception weights ported to Pytorch from
12
+ # http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
13
+ FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
14
+ LOCAL_FID_WEIGHTS = 'experiments/pretrained_models/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
15
+
16
+
17
+ class InceptionV3(nn.Module):
18
+ """Pretrained InceptionV3 network returning feature maps"""
19
+
20
+ # Index of default block of inception to return,
21
+ # corresponds to output of final average pooling
22
+ DEFAULT_BLOCK_INDEX = 3
23
+
24
+ # Maps feature dimensionality to their output blocks indices
25
+ BLOCK_INDEX_BY_DIM = {
26
+ 64: 0, # First max pooling features
27
+ 192: 1, # Second max pooling features
28
+ 768: 2, # Pre-aux classifier features
29
+ 2048: 3 # Final average pooling features
30
+ }
31
+
32
+ def __init__(self,
33
+ output_blocks=(DEFAULT_BLOCK_INDEX),
34
+ resize_input=True,
35
+ normalize_input=True,
36
+ requires_grad=False,
37
+ use_fid_inception=True):
38
+ """Build pretrained InceptionV3.
39
+
40
+ Args:
41
+ output_blocks (list[int]): Indices of blocks to return features of.
42
+ Possible values are:
43
+ - 0: corresponds to output of first max pooling
44
+ - 1: corresponds to output of second max pooling
45
+ - 2: corresponds to output which is fed to aux classifier
46
+ - 3: corresponds to output of final average pooling
47
+ resize_input (bool): If true, bilinearly resizes input to width and
48
+ height 299 before feeding input to model. As the network
49
+ without fully connected layers is fully convolutional, it
50
+ should be able to handle inputs of arbitrary size, so resizing
51
+ might not be strictly needed. Default: True.
52
+ normalize_input (bool): If true, scales the input from range (0, 1)
53
+ to the range the pretrained Inception network expects,
54
+ namely (-1, 1). Default: True.
55
+ requires_grad (bool): If true, parameters of the model require
56
+ gradients. Possibly useful for finetuning the network.
57
+ Default: False.
58
+ use_fid_inception (bool): If true, uses the pretrained Inception
59
+ model used in Tensorflow's FID implementation.
60
+ If false, uses the pretrained Inception model available in
61
+ torchvision. The FID Inception model has different weights
62
+ and a slightly different structure from torchvision's
63
+ Inception model. If you want to compute FID scores, you are
64
+ strongly advised to set this parameter to true to get
65
+ comparable results. Default: True.
66
+ """
67
+ super(InceptionV3, self).__init__()
68
+
69
+ self.resize_input = resize_input
70
+ self.normalize_input = normalize_input
71
+ self.output_blocks = sorted(output_blocks)
72
+ self.last_needed_block = max(output_blocks)
73
+
74
+ assert self.last_needed_block <= 3, ('Last possible output block index is 3')
75
+
76
+ self.blocks = nn.ModuleList()
77
+
78
+ if use_fid_inception:
79
+ inception = fid_inception_v3()
80
+ else:
81
+ try:
82
+ inception = models.inception_v3(pretrained=True, init_weights=False)
83
+ except TypeError:
84
+ # pytorch < 1.5 does not have init_weights for inception_v3
85
+ inception = models.inception_v3(pretrained=True)
86
+
87
+ # Block 0: input to maxpool1
88
+ block0 = [
89
+ inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3,
90
+ nn.MaxPool2d(kernel_size=3, stride=2)
91
+ ]
92
+ self.blocks.append(nn.Sequential(*block0))
93
+
94
+ # Block 1: maxpool1 to maxpool2
95
+ if self.last_needed_block >= 1:
96
+ block1 = [inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2)]
97
+ self.blocks.append(nn.Sequential(*block1))
98
+
99
+ # Block 2: maxpool2 to aux classifier
100
+ if self.last_needed_block >= 2:
101
+ block2 = [
102
+ inception.Mixed_5b,
103
+ inception.Mixed_5c,
104
+ inception.Mixed_5d,
105
+ inception.Mixed_6a,
106
+ inception.Mixed_6b,
107
+ inception.Mixed_6c,
108
+ inception.Mixed_6d,
109
+ inception.Mixed_6e,
110
+ ]
111
+ self.blocks.append(nn.Sequential(*block2))
112
+
113
+ # Block 3: aux classifier to final avgpool
114
+ if self.last_needed_block >= 3:
115
+ block3 = [
116
+ inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c,
117
+ nn.AdaptiveAvgPool2d(output_size=(1, 1))
118
+ ]
119
+ self.blocks.append(nn.Sequential(*block3))
120
+
121
+ for param in self.parameters():
122
+ param.requires_grad = requires_grad
123
+
124
+ def forward(self, x):
125
+ """Get Inception feature maps.
126
+
127
+ Args:
128
+ x (Tensor): Input tensor of shape (b, 3, h, w).
129
+ Values are expected to be in range (-1, 1). You can also input
130
+ (0, 1) with setting normalize_input = True.
131
+
132
+ Returns:
133
+ list[Tensor]: Corresponding to the selected output block, sorted
134
+ ascending by index.
135
+ """
136
+ output = []
137
+
138
+ if self.resize_input:
139
+ x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False)
140
+
141
+ if self.normalize_input:
142
+ x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
143
+
144
+ for idx, block in enumerate(self.blocks):
145
+ x = block(x)
146
+ if idx in self.output_blocks:
147
+ output.append(x)
148
+
149
+ if idx == self.last_needed_block:
150
+ break
151
+
152
+ return output
153
+
154
+
155
+ def fid_inception_v3():
156
+ """Build pretrained Inception model for FID computation.
157
+
158
+ The Inception model for FID computation uses a different set of weights
159
+ and has a slightly different structure than torchvision's Inception.
160
+
161
+ This method first constructs torchvision's Inception and then patches the
162
+ necessary parts that are different in the FID Inception model.
163
+ """
164
+ try:
165
+ inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False, init_weights=False)
166
+ except TypeError:
167
+ # pytorch < 1.5 does not have init_weights for inception_v3
168
+ inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False)
169
+
170
+ inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
171
+ inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
172
+ inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
173
+ inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
174
+ inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
175
+ inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
176
+ inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
177
+ inception.Mixed_7b = FIDInceptionE_1(1280)
178
+ inception.Mixed_7c = FIDInceptionE_2(2048)
179
+
180
+ if os.path.exists(LOCAL_FID_WEIGHTS):
181
+ state_dict = torch.load(LOCAL_FID_WEIGHTS, map_location=lambda storage, loc: storage)
182
+ else:
183
+ state_dict = load_url(FID_WEIGHTS_URL, progress=True)
184
+
185
+ inception.load_state_dict(state_dict)
186
+ return inception
187
+
188
+
189
+ class FIDInceptionA(models.inception.InceptionA):
190
+ """InceptionA block patched for FID computation"""
191
+
192
+ def __init__(self, in_channels, pool_features):
193
+ super(FIDInceptionA, self).__init__(in_channels, pool_features)
194
+
195
+ def forward(self, x):
196
+ branch1x1 = self.branch1x1(x)
197
+
198
+ branch5x5 = self.branch5x5_1(x)
199
+ branch5x5 = self.branch5x5_2(branch5x5)
200
+
201
+ branch3x3dbl = self.branch3x3dbl_1(x)
202
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
203
+ branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
204
+
205
+ # Patch: Tensorflow's average pool does not use the padded zero's in
206
+ # its average calculation
207
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
208
+ branch_pool = self.branch_pool(branch_pool)
209
+
210
+ outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
211
+ return torch.cat(outputs, 1)
212
+
213
+
214
+ class FIDInceptionC(models.inception.InceptionC):
215
+ """InceptionC block patched for FID computation"""
216
+
217
+ def __init__(self, in_channels, channels_7x7):
218
+ super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
219
+
220
+ def forward(self, x):
221
+ branch1x1 = self.branch1x1(x)
222
+
223
+ branch7x7 = self.branch7x7_1(x)
224
+ branch7x7 = self.branch7x7_2(branch7x7)
225
+ branch7x7 = self.branch7x7_3(branch7x7)
226
+
227
+ branch7x7dbl = self.branch7x7dbl_1(x)
228
+ branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
229
+ branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
230
+ branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
231
+ branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
232
+
233
+ # Patch: Tensorflow's average pool does not use the padded zero's in
234
+ # its average calculation
235
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
236
+ branch_pool = self.branch_pool(branch_pool)
237
+
238
+ outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
239
+ return torch.cat(outputs, 1)
240
+
241
+
242
+ class FIDInceptionE_1(models.inception.InceptionE):
243
+ """First InceptionE block patched for FID computation"""
244
+
245
+ def __init__(self, in_channels):
246
+ super(FIDInceptionE_1, self).__init__(in_channels)
247
+
248
+ def forward(self, x):
249
+ branch1x1 = self.branch1x1(x)
250
+
251
+ branch3x3 = self.branch3x3_1(x)
252
+ branch3x3 = [
253
+ self.branch3x3_2a(branch3x3),
254
+ self.branch3x3_2b(branch3x3),
255
+ ]
256
+ branch3x3 = torch.cat(branch3x3, 1)
257
+
258
+ branch3x3dbl = self.branch3x3dbl_1(x)
259
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
260
+ branch3x3dbl = [
261
+ self.branch3x3dbl_3a(branch3x3dbl),
262
+ self.branch3x3dbl_3b(branch3x3dbl),
263
+ ]
264
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
265
+
266
+ # Patch: Tensorflow's average pool does not use the padded zero's in
267
+ # its average calculation
268
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
269
+ branch_pool = self.branch_pool(branch_pool)
270
+
271
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
272
+ return torch.cat(outputs, 1)
273
+
274
+
275
+ class FIDInceptionE_2(models.inception.InceptionE):
276
+ """Second InceptionE block patched for FID computation"""
277
+
278
+ def __init__(self, in_channels):
279
+ super(FIDInceptionE_2, self).__init__(in_channels)
280
+
281
+ def forward(self, x):
282
+ branch1x1 = self.branch1x1(x)
283
+
284
+ branch3x3 = self.branch3x3_1(x)
285
+ branch3x3 = [
286
+ self.branch3x3_2a(branch3x3),
287
+ self.branch3x3_2b(branch3x3),
288
+ ]
289
+ branch3x3 = torch.cat(branch3x3, 1)
290
+
291
+ branch3x3dbl = self.branch3x3dbl_1(x)
292
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
293
+ branch3x3dbl = [
294
+ self.branch3x3dbl_3a(branch3x3dbl),
295
+ self.branch3x3dbl_3b(branch3x3dbl),
296
+ ]
297
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
298
+
299
+ # Patch: The FID Inception model uses max pooling instead of average
300
+ # pooling. This is likely an error in this specific Inception
301
+ # implementation, as other Inception models use average pooling here
302
+ # (which matches the description in the paper).
303
+ branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
304
+ branch_pool = self.branch_pool(branch_pool)
305
+
306
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
307
+ return torch.cat(outputs, 1)
r_basicsr/archs/rcan_arch.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+
4
+ from r_basicsr.utils.registry import ARCH_REGISTRY
5
+ from .arch_util import Upsample, make_layer
6
+
7
+
8
+ class ChannelAttention(nn.Module):
9
+ """Channel attention used in RCAN.
10
+
11
+ Args:
12
+ num_feat (int): Channel number of intermediate features.
13
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
14
+ """
15
+
16
+ def __init__(self, num_feat, squeeze_factor=16):
17
+ super(ChannelAttention, self).__init__()
18
+ self.attention = nn.Sequential(
19
+ nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
20
+ nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid())
21
+
22
+ def forward(self, x):
23
+ y = self.attention(x)
24
+ return x * y
25
+
26
+
27
+ class RCAB(nn.Module):
28
+ """Residual Channel Attention Block (RCAB) used in RCAN.
29
+
30
+ Args:
31
+ num_feat (int): Channel number of intermediate features.
32
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
33
+ res_scale (float): Scale the residual. Default: 1.
34
+ """
35
+
36
+ def __init__(self, num_feat, squeeze_factor=16, res_scale=1):
37
+ super(RCAB, self).__init__()
38
+ self.res_scale = res_scale
39
+
40
+ self.rcab = nn.Sequential(
41
+ nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1),
42
+ ChannelAttention(num_feat, squeeze_factor))
43
+
44
+ def forward(self, x):
45
+ res = self.rcab(x) * self.res_scale
46
+ return res + x
47
+
48
+
49
+ class ResidualGroup(nn.Module):
50
+ """Residual Group of RCAB.
51
+
52
+ Args:
53
+ num_feat (int): Channel number of intermediate features.
54
+ num_block (int): Block number in the body network.
55
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
56
+ res_scale (float): Scale the residual. Default: 1.
57
+ """
58
+
59
+ def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1):
60
+ super(ResidualGroup, self).__init__()
61
+
62
+ self.residual_group = make_layer(
63
+ RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale)
64
+ self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
65
+
66
+ def forward(self, x):
67
+ res = self.conv(self.residual_group(x))
68
+ return res + x
69
+
70
+
71
+ @ARCH_REGISTRY.register()
72
+ class RCAN(nn.Module):
73
+ """Residual Channel Attention Networks.
74
+
75
+ Paper: Image Super-Resolution Using Very Deep Residual Channel Attention
76
+ Networks
77
+ Ref git repo: https://github.com/yulunzhang/RCAN.
78
+
79
+ Args:
80
+ num_in_ch (int): Channel number of inputs.
81
+ num_out_ch (int): Channel number of outputs.
82
+ num_feat (int): Channel number of intermediate features.
83
+ Default: 64.
84
+ num_group (int): Number of ResidualGroup. Default: 10.
85
+ num_block (int): Number of RCAB in ResidualGroup. Default: 16.
86
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
87
+ upscale (int): Upsampling factor. Support 2^n and 3.
88
+ Default: 4.
89
+ res_scale (float): Used to scale the residual in residual block.
90
+ Default: 1.
91
+ img_range (float): Image range. Default: 255.
92
+ rgb_mean (tuple[float]): Image mean in RGB orders.
93
+ Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
94
+ """
95
+
96
+ def __init__(self,
97
+ num_in_ch,
98
+ num_out_ch,
99
+ num_feat=64,
100
+ num_group=10,
101
+ num_block=16,
102
+ squeeze_factor=16,
103
+ upscale=4,
104
+ res_scale=1,
105
+ img_range=255.,
106
+ rgb_mean=(0.4488, 0.4371, 0.4040)):
107
+ super(RCAN, self).__init__()
108
+
109
+ self.img_range = img_range
110
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
111
+
112
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
113
+ self.body = make_layer(
114
+ ResidualGroup,
115
+ num_group,
116
+ num_feat=num_feat,
117
+ num_block=num_block,
118
+ squeeze_factor=squeeze_factor,
119
+ res_scale=res_scale)
120
+ self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
121
+ self.upsample = Upsample(upscale, num_feat)
122
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
123
+
124
+ def forward(self, x):
125
+ self.mean = self.mean.type_as(x)
126
+
127
+ x = (x - self.mean) * self.img_range
128
+ x = self.conv_first(x)
129
+ res = self.conv_after_body(self.body(x))
130
+ res += x
131
+
132
+ x = self.conv_last(self.upsample(res))
133
+ x = x / self.img_range + self.mean
134
+
135
+ return x
r_basicsr/archs/ridnet_arch.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from r_basicsr.utils.registry import ARCH_REGISTRY
5
+ from .arch_util import ResidualBlockNoBN, make_layer
6
+
7
+
8
+ class MeanShift(nn.Conv2d):
9
+ """ Data normalization with mean and std.
10
+
11
+ Args:
12
+ rgb_range (int): Maximum value of RGB.
13
+ rgb_mean (list[float]): Mean for RGB channels.
14
+ rgb_std (list[float]): Std for RGB channels.
15
+ sign (int): For subtraction, sign is -1, for addition, sign is 1.
16
+ Default: -1.
17
+ requires_grad (bool): Whether to update the self.weight and self.bias.
18
+ Default: True.
19
+ """
20
+
21
+ def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1, requires_grad=True):
22
+ super(MeanShift, self).__init__(3, 3, kernel_size=1)
23
+ std = torch.Tensor(rgb_std)
24
+ self.weight.data = torch.eye(3).view(3, 3, 1, 1)
25
+ self.weight.data.div_(std.view(3, 1, 1, 1))
26
+ self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
27
+ self.bias.data.div_(std)
28
+ self.requires_grad = requires_grad
29
+
30
+
31
+ class EResidualBlockNoBN(nn.Module):
32
+ """Enhanced Residual block without BN.
33
+
34
+ There are three convolution layers in residual branch.
35
+
36
+ It has a style of:
37
+ ---Conv-ReLU-Conv-ReLU-Conv-+-ReLU-
38
+ |__________________________|
39
+ """
40
+
41
+ def __init__(self, in_channels, out_channels):
42
+ super(EResidualBlockNoBN, self).__init__()
43
+
44
+ self.body = nn.Sequential(
45
+ nn.Conv2d(in_channels, out_channels, 3, 1, 1),
46
+ nn.ReLU(inplace=True),
47
+ nn.Conv2d(out_channels, out_channels, 3, 1, 1),
48
+ nn.ReLU(inplace=True),
49
+ nn.Conv2d(out_channels, out_channels, 1, 1, 0),
50
+ )
51
+ self.relu = nn.ReLU(inplace=True)
52
+
53
+ def forward(self, x):
54
+ out = self.body(x)
55
+ out = self.relu(out + x)
56
+ return out
57
+
58
+
59
+ class MergeRun(nn.Module):
60
+ """ Merge-and-run unit.
61
+
62
+ This unit contains two branches with different dilated convolutions,
63
+ followed by a convolution to process the concatenated features.
64
+
65
+ Paper: Real Image Denoising with Feature Attention
66
+ Ref git repo: https://github.com/saeed-anwar/RIDNet
67
+ """
68
+
69
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
70
+ super(MergeRun, self).__init__()
71
+
72
+ self.dilation1 = nn.Sequential(
73
+ nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True),
74
+ nn.Conv2d(out_channels, out_channels, kernel_size, stride, 2, 2), nn.ReLU(inplace=True))
75
+ self.dilation2 = nn.Sequential(
76
+ nn.Conv2d(in_channels, out_channels, kernel_size, stride, 3, 3), nn.ReLU(inplace=True),
77
+ nn.Conv2d(out_channels, out_channels, kernel_size, stride, 4, 4), nn.ReLU(inplace=True))
78
+
79
+ self.aggregation = nn.Sequential(
80
+ nn.Conv2d(out_channels * 2, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True))
81
+
82
+ def forward(self, x):
83
+ dilation1 = self.dilation1(x)
84
+ dilation2 = self.dilation2(x)
85
+ out = torch.cat([dilation1, dilation2], dim=1)
86
+ out = self.aggregation(out)
87
+ out = out + x
88
+ return out
89
+
90
+
91
+ class ChannelAttention(nn.Module):
92
+ """Channel attention.
93
+
94
+ Args:
95
+ num_feat (int): Channel number of intermediate features.
96
+ squeeze_factor (int): Channel squeeze factor. Default:
97
+ """
98
+
99
+ def __init__(self, mid_channels, squeeze_factor=16):
100
+ super(ChannelAttention, self).__init__()
101
+ self.attention = nn.Sequential(
102
+ nn.AdaptiveAvgPool2d(1), nn.Conv2d(mid_channels, mid_channels // squeeze_factor, 1, padding=0),
103
+ nn.ReLU(inplace=True), nn.Conv2d(mid_channels // squeeze_factor, mid_channels, 1, padding=0), nn.Sigmoid())
104
+
105
+ def forward(self, x):
106
+ y = self.attention(x)
107
+ return x * y
108
+
109
+
110
+ class EAM(nn.Module):
111
+ """Enhancement attention modules (EAM) in RIDNet.
112
+
113
+ This module contains a merge-and-run unit, a residual block,
114
+ an enhanced residual block and a feature attention unit.
115
+
116
+ Attributes:
117
+ merge: The merge-and-run unit.
118
+ block1: The residual block.
119
+ block2: The enhanced residual block.
120
+ ca: The feature/channel attention unit.
121
+ """
122
+
123
+ def __init__(self, in_channels, mid_channels, out_channels):
124
+ super(EAM, self).__init__()
125
+
126
+ self.merge = MergeRun(in_channels, mid_channels)
127
+ self.block1 = ResidualBlockNoBN(mid_channels)
128
+ self.block2 = EResidualBlockNoBN(mid_channels, out_channels)
129
+ self.ca = ChannelAttention(out_channels)
130
+ # The residual block in the paper contains a relu after addition.
131
+ self.relu = nn.ReLU(inplace=True)
132
+
133
+ def forward(self, x):
134
+ out = self.merge(x)
135
+ out = self.relu(self.block1(out))
136
+ out = self.block2(out)
137
+ out = self.ca(out)
138
+ return out
139
+
140
+
141
+ @ARCH_REGISTRY.register()
142
+ class RIDNet(nn.Module):
143
+ """RIDNet: Real Image Denoising with Feature Attention.
144
+
145
+ Ref git repo: https://github.com/saeed-anwar/RIDNet
146
+
147
+ Args:
148
+ in_channels (int): Channel number of inputs.
149
+ mid_channels (int): Channel number of EAM modules.
150
+ Default: 64.
151
+ out_channels (int): Channel number of outputs.
152
+ num_block (int): Number of EAM. Default: 4.
153
+ img_range (float): Image range. Default: 255.
154
+ rgb_mean (tuple[float]): Image mean in RGB orders.
155
+ Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
156
+ """
157
+
158
+ def __init__(self,
159
+ in_channels,
160
+ mid_channels,
161
+ out_channels,
162
+ num_block=4,
163
+ img_range=255.,
164
+ rgb_mean=(0.4488, 0.4371, 0.4040),
165
+ rgb_std=(1.0, 1.0, 1.0)):
166
+ super(RIDNet, self).__init__()
167
+
168
+ self.sub_mean = MeanShift(img_range, rgb_mean, rgb_std)
169
+ self.add_mean = MeanShift(img_range, rgb_mean, rgb_std, 1)
170
+
171
+ self.head = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
172
+ self.body = make_layer(
173
+ EAM, num_block, in_channels=mid_channels, mid_channels=mid_channels, out_channels=mid_channels)
174
+ self.tail = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
175
+
176
+ self.relu = nn.ReLU(inplace=True)
177
+
178
+ def forward(self, x):
179
+ res = self.sub_mean(x)
180
+ res = self.tail(self.body(self.relu(self.head(res))))
181
+ res = self.add_mean(res)
182
+
183
+ out = x + res
184
+ return out
r_basicsr/archs/rrdbnet_arch.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ from r_basicsr.utils.registry import ARCH_REGISTRY
6
+ from .arch_util import default_init_weights, make_layer, pixel_unshuffle
7
+
8
+
9
+ class ResidualDenseBlock(nn.Module):
10
+ """Residual Dense Block.
11
+
12
+ Used in RRDB block in ESRGAN.
13
+
14
+ Args:
15
+ num_feat (int): Channel number of intermediate features.
16
+ num_grow_ch (int): Channels for each growth.
17
+ """
18
+
19
+ def __init__(self, num_feat=64, num_grow_ch=32):
20
+ super(ResidualDenseBlock, self).__init__()
21
+ self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
22
+ self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
23
+ self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
24
+ self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
25
+ self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
26
+
27
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
28
+
29
+ # initialization
30
+ default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
31
+
32
+ def forward(self, x):
33
+ x1 = self.lrelu(self.conv1(x))
34
+ x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
35
+ x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
36
+ x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
37
+ x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
38
+ # Empirically, we use 0.2 to scale the residual for better performance
39
+ return x5 * 0.2 + x
40
+
41
+
42
+ class RRDB(nn.Module):
43
+ """Residual in Residual Dense Block.
44
+
45
+ Used in RRDB-Net in ESRGAN.
46
+
47
+ Args:
48
+ num_feat (int): Channel number of intermediate features.
49
+ num_grow_ch (int): Channels for each growth.
50
+ """
51
+
52
+ def __init__(self, num_feat, num_grow_ch=32):
53
+ super(RRDB, self).__init__()
54
+ self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
55
+ self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
56
+ self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
57
+
58
+ def forward(self, x):
59
+ out = self.rdb1(x)
60
+ out = self.rdb2(out)
61
+ out = self.rdb3(out)
62
+ # Empirically, we use 0.2 to scale the residual for better performance
63
+ return out * 0.2 + x
64
+
65
+
66
+ @ARCH_REGISTRY.register()
67
+ class RRDBNet(nn.Module):
68
+ """Networks consisting of Residual in Residual Dense Block, which is used
69
+ in ESRGAN.
70
+
71
+ ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
72
+
73
+ We extend ESRGAN for scale x2 and scale x1.
74
+ Note: This is one option for scale 1, scale 2 in RRDBNet.
75
+ We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
76
+ and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
77
+
78
+ Args:
79
+ num_in_ch (int): Channel number of inputs.
80
+ num_out_ch (int): Channel number of outputs.
81
+ num_feat (int): Channel number of intermediate features.
82
+ Default: 64
83
+ num_block (int): Block number in the trunk network. Defaults: 23
84
+ num_grow_ch (int): Channels for each growth. Default: 32.
85
+ """
86
+
87
+ def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
88
+ super(RRDBNet, self).__init__()
89
+ self.scale = scale
90
+ if scale == 2:
91
+ num_in_ch = num_in_ch * 4
92
+ elif scale == 1:
93
+ num_in_ch = num_in_ch * 16
94
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
95
+ self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
96
+ self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
97
+ # upsample
98
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
99
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
100
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
101
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
102
+
103
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
104
+
105
+ def forward(self, x):
106
+ if self.scale == 2:
107
+ feat = pixel_unshuffle(x, scale=2)
108
+ elif self.scale == 1:
109
+ feat = pixel_unshuffle(x, scale=4)
110
+ else:
111
+ feat = x
112
+ feat = self.conv_first(feat)
113
+ body_feat = self.conv_body(self.body(feat))
114
+ feat = feat + body_feat
115
+ # upsample
116
+ feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
117
+ feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
118
+ out = self.conv_last(self.lrelu(self.conv_hr(feat)))
119
+ return out
r_basicsr/archs/spynet_arch.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn as nn
4
+ from torch.nn import functional as F
5
+
6
+ from r_basicsr.utils.registry import ARCH_REGISTRY
7
+ from .arch_util import flow_warp
8
+
9
+
10
+ class BasicModule(nn.Module):
11
+ """Basic Module for SpyNet.
12
+ """
13
+
14
+ def __init__(self):
15
+ super(BasicModule, self).__init__()
16
+
17
+ self.basic_module = nn.Sequential(
18
+ nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
19
+ nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
20
+ nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
21
+ nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
22
+ nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3))
23
+
24
+ def forward(self, tensor_input):
25
+ return self.basic_module(tensor_input)
26
+
27
+
28
+ @ARCH_REGISTRY.register()
29
+ class SpyNet(nn.Module):
30
+ """SpyNet architecture.
31
+
32
+ Args:
33
+ load_path (str): path for pretrained SpyNet. Default: None.
34
+ """
35
+
36
+ def __init__(self, load_path=None):
37
+ super(SpyNet, self).__init__()
38
+ self.basic_module = nn.ModuleList([BasicModule() for _ in range(6)])
39
+ if load_path:
40
+ self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
41
+
42
+ self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
43
+ self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
44
+
45
+ def preprocess(self, tensor_input):
46
+ tensor_output = (tensor_input - self.mean) / self.std
47
+ return tensor_output
48
+
49
+ def process(self, ref, supp):
50
+ flow = []
51
+
52
+ ref = [self.preprocess(ref)]
53
+ supp = [self.preprocess(supp)]
54
+
55
+ for level in range(5):
56
+ ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False))
57
+ supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False))
58
+
59
+ flow = ref[0].new_zeros(
60
+ [ref[0].size(0), 2,
61
+ int(math.floor(ref[0].size(2) / 2.0)),
62
+ int(math.floor(ref[0].size(3) / 2.0))])
63
+
64
+ for level in range(len(ref)):
65
+ upsampled_flow = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0
66
+
67
+ if upsampled_flow.size(2) != ref[level].size(2):
68
+ upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 0, 0, 1], mode='replicate')
69
+ if upsampled_flow.size(3) != ref[level].size(3):
70
+ upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 1, 0, 0], mode='replicate')
71
+
72
+ flow = self.basic_module[level](torch.cat([
73
+ ref[level],
74
+ flow_warp(
75
+ supp[level], upsampled_flow.permute(0, 2, 3, 1), interp_mode='bilinear', padding_mode='border'),
76
+ upsampled_flow
77
+ ], 1)) + upsampled_flow
78
+
79
+ return flow
80
+
81
+ def forward(self, ref, supp):
82
+ assert ref.size() == supp.size()
83
+
84
+ h, w = ref.size(2), ref.size(3)
85
+ w_floor = math.floor(math.ceil(w / 32.0) * 32.0)
86
+ h_floor = math.floor(math.ceil(h / 32.0) * 32.0)
87
+
88
+ ref = F.interpolate(input=ref, size=(h_floor, w_floor), mode='bilinear', align_corners=False)
89
+ supp = F.interpolate(input=supp, size=(h_floor, w_floor), mode='bilinear', align_corners=False)
90
+
91
+ flow = F.interpolate(input=self.process(ref, supp), size=(h, w), mode='bilinear', align_corners=False)
92
+
93
+ flow[:, 0, :, :] *= float(w) / float(w_floor)
94
+ flow[:, 1, :, :] *= float(h) / float(h_floor)
95
+
96
+ return flow
r_basicsr/archs/srresnet_arch.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn as nn
2
+ from torch.nn import functional as F
3
+
4
+ from r_basicsr.utils.registry import ARCH_REGISTRY
5
+ from .arch_util import ResidualBlockNoBN, default_init_weights, make_layer
6
+
7
+
8
+ @ARCH_REGISTRY.register()
9
+ class MSRResNet(nn.Module):
10
+ """Modified SRResNet.
11
+
12
+ A compacted version modified from SRResNet in
13
+ "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"
14
+ It uses residual blocks without BN, similar to EDSR.
15
+ Currently, it supports x2, x3 and x4 upsampling scale factor.
16
+
17
+ Args:
18
+ num_in_ch (int): Channel number of inputs. Default: 3.
19
+ num_out_ch (int): Channel number of outputs. Default: 3.
20
+ num_feat (int): Channel number of intermediate features. Default: 64.
21
+ num_block (int): Block number in the body network. Default: 16.
22
+ upscale (int): Upsampling factor. Support x2, x3 and x4. Default: 4.
23
+ """
24
+
25
+ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=16, upscale=4):
26
+ super(MSRResNet, self).__init__()
27
+ self.upscale = upscale
28
+
29
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
30
+ self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat)
31
+
32
+ # upsampling
33
+ if self.upscale in [2, 3]:
34
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * self.upscale * self.upscale, 3, 1, 1)
35
+ self.pixel_shuffle = nn.PixelShuffle(self.upscale)
36
+ elif self.upscale == 4:
37
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
38
+ self.upconv2 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
39
+ self.pixel_shuffle = nn.PixelShuffle(2)
40
+
41
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
42
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
43
+
44
+ # activation function
45
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
46
+
47
+ # initialization
48
+ default_init_weights([self.conv_first, self.upconv1, self.conv_hr, self.conv_last], 0.1)
49
+ if self.upscale == 4:
50
+ default_init_weights(self.upconv2, 0.1)
51
+
52
+ def forward(self, x):
53
+ feat = self.lrelu(self.conv_first(x))
54
+ out = self.body(feat)
55
+
56
+ if self.upscale == 4:
57
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
58
+ out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
59
+ elif self.upscale in [2, 3]:
60
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
61
+
62
+ out = self.conv_last(self.lrelu(self.conv_hr(out)))
63
+ base = F.interpolate(x, scale_factor=self.upscale, mode='bilinear', align_corners=False)
64
+ out += base
65
+ return out
r_basicsr/archs/srvgg_arch.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn as nn
2
+ from torch.nn import functional as F
3
+
4
+ from r_basicsr.utils.registry import ARCH_REGISTRY
5
+
6
+
7
+ @ARCH_REGISTRY.register(suffix='basicsr')
8
+ class SRVGGNetCompact(nn.Module):
9
+ """A compact VGG-style network structure for super-resolution.
10
+
11
+ It is a compact network structure, which performs upsampling in the last layer and no convolution is
12
+ conducted on the HR feature space.
13
+
14
+ Args:
15
+ num_in_ch (int): Channel number of inputs. Default: 3.
16
+ num_out_ch (int): Channel number of outputs. Default: 3.
17
+ num_feat (int): Channel number of intermediate features. Default: 64.
18
+ num_conv (int): Number of convolution layers in the body network. Default: 16.
19
+ upscale (int): Upsampling factor. Default: 4.
20
+ act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
21
+ """
22
+
23
+ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
24
+ super(SRVGGNetCompact, self).__init__()
25
+ self.num_in_ch = num_in_ch
26
+ self.num_out_ch = num_out_ch
27
+ self.num_feat = num_feat
28
+ self.num_conv = num_conv
29
+ self.upscale = upscale
30
+ self.act_type = act_type
31
+
32
+ self.body = nn.ModuleList()
33
+ # the first conv
34
+ self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
35
+ # the first activation
36
+ if act_type == 'relu':
37
+ activation = nn.ReLU(inplace=True)
38
+ elif act_type == 'prelu':
39
+ activation = nn.PReLU(num_parameters=num_feat)
40
+ elif act_type == 'leakyrelu':
41
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
42
+ self.body.append(activation)
43
+
44
+ # the body structure
45
+ for _ in range(num_conv):
46
+ self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
47
+ # activation
48
+ if act_type == 'relu':
49
+ activation = nn.ReLU(inplace=True)
50
+ elif act_type == 'prelu':
51
+ activation = nn.PReLU(num_parameters=num_feat)
52
+ elif act_type == 'leakyrelu':
53
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
54
+ self.body.append(activation)
55
+
56
+ # the last conv
57
+ self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
58
+ # upsample
59
+ self.upsampler = nn.PixelShuffle(upscale)
60
+
61
+ def forward(self, x):
62
+ out = x
63
+ for i in range(0, len(self.body)):
64
+ out = self.body[i](out)
65
+
66
+ out = self.upsampler(out)
67
+ # add the nearest upsampled image, so that the network learns the residual
68
+ base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
69
+ out += base
70
+ return out
r_basicsr/archs/stylegan2_arch.py ADDED
@@ -0,0 +1,799 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ from r_basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
8
+ from r_basicsr.ops.upfirdn2d import upfirdn2d
9
+ from r_basicsr.utils.registry import ARCH_REGISTRY
10
+
11
+
12
+ class NormStyleCode(nn.Module):
13
+
14
+ def forward(self, x):
15
+ """Normalize the style codes.
16
+
17
+ Args:
18
+ x (Tensor): Style codes with shape (b, c).
19
+
20
+ Returns:
21
+ Tensor: Normalized tensor.
22
+ """
23
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
24
+
25
+
26
+ def make_resample_kernel(k):
27
+ """Make resampling kernel for UpFirDn.
28
+
29
+ Args:
30
+ k (list[int]): A list indicating the 1D resample kernel magnitude.
31
+
32
+ Returns:
33
+ Tensor: 2D resampled kernel.
34
+ """
35
+ k = torch.tensor(k, dtype=torch.float32)
36
+ if k.ndim == 1:
37
+ k = k[None, :] * k[:, None] # to 2D kernel, outer product
38
+ # normalize
39
+ k /= k.sum()
40
+ return k
41
+
42
+
43
+ class UpFirDnUpsample(nn.Module):
44
+ """Upsample, FIR filter, and downsample (upsampole version).
45
+
46
+ References:
47
+ 1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
48
+ 2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
49
+
50
+ Args:
51
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
52
+ magnitude.
53
+ factor (int): Upsampling scale factor. Default: 2.
54
+ """
55
+
56
+ def __init__(self, resample_kernel, factor=2):
57
+ super(UpFirDnUpsample, self).__init__()
58
+ self.kernel = make_resample_kernel(resample_kernel) * (factor**2)
59
+ self.factor = factor
60
+
61
+ pad = self.kernel.shape[0] - factor
62
+ self.pad = ((pad + 1) // 2 + factor - 1, pad // 2)
63
+
64
+ def forward(self, x):
65
+ out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad)
66
+ return out
67
+
68
+ def __repr__(self):
69
+ return (f'{self.__class__.__name__}(factor={self.factor})')
70
+
71
+
72
+ class UpFirDnDownsample(nn.Module):
73
+ """Upsample, FIR filter, and downsample (downsampole version).
74
+
75
+ Args:
76
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
77
+ magnitude.
78
+ factor (int): Downsampling scale factor. Default: 2.
79
+ """
80
+
81
+ def __init__(self, resample_kernel, factor=2):
82
+ super(UpFirDnDownsample, self).__init__()
83
+ self.kernel = make_resample_kernel(resample_kernel)
84
+ self.factor = factor
85
+
86
+ pad = self.kernel.shape[0] - factor
87
+ self.pad = ((pad + 1) // 2, pad // 2)
88
+
89
+ def forward(self, x):
90
+ out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad)
91
+ return out
92
+
93
+ def __repr__(self):
94
+ return (f'{self.__class__.__name__}(factor={self.factor})')
95
+
96
+
97
+ class UpFirDnSmooth(nn.Module):
98
+ """Upsample, FIR filter, and downsample (smooth version).
99
+
100
+ Args:
101
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
102
+ magnitude.
103
+ upsample_factor (int): Upsampling scale factor. Default: 1.
104
+ downsample_factor (int): Downsampling scale factor. Default: 1.
105
+ kernel_size (int): Kernel size: Default: 1.
106
+ """
107
+
108
+ def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1):
109
+ super(UpFirDnSmooth, self).__init__()
110
+ self.upsample_factor = upsample_factor
111
+ self.downsample_factor = downsample_factor
112
+ self.kernel = make_resample_kernel(resample_kernel)
113
+ if upsample_factor > 1:
114
+ self.kernel = self.kernel * (upsample_factor**2)
115
+
116
+ if upsample_factor > 1:
117
+ pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1)
118
+ self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1)
119
+ elif downsample_factor > 1:
120
+ pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1)
121
+ self.pad = ((pad + 1) // 2, pad // 2)
122
+ else:
123
+ raise NotImplementedError
124
+
125
+ def forward(self, x):
126
+ out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
127
+ return out
128
+
129
+ def __repr__(self):
130
+ return (f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}'
131
+ f', downsample_factor={self.downsample_factor})')
132
+
133
+
134
+ class EqualLinear(nn.Module):
135
+ """Equalized Linear as StyleGAN2.
136
+
137
+ Args:
138
+ in_channels (int): Size of each sample.
139
+ out_channels (int): Size of each output sample.
140
+ bias (bool): If set to ``False``, the layer will not learn an additive
141
+ bias. Default: ``True``.
142
+ bias_init_val (float): Bias initialized value. Default: 0.
143
+ lr_mul (float): Learning rate multiplier. Default: 1.
144
+ activation (None | str): The activation after ``linear`` operation.
145
+ Supported: 'fused_lrelu', None. Default: None.
146
+ """
147
+
148
+ def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
149
+ super(EqualLinear, self).__init__()
150
+ self.in_channels = in_channels
151
+ self.out_channels = out_channels
152
+ self.lr_mul = lr_mul
153
+ self.activation = activation
154
+ if self.activation not in ['fused_lrelu', None]:
155
+ raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
156
+ "Supported ones are: ['fused_lrelu', None].")
157
+ self.scale = (1 / math.sqrt(in_channels)) * lr_mul
158
+
159
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
160
+ if bias:
161
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
162
+ else:
163
+ self.register_parameter('bias', None)
164
+
165
+ def forward(self, x):
166
+ if self.bias is None:
167
+ bias = None
168
+ else:
169
+ bias = self.bias * self.lr_mul
170
+ if self.activation == 'fused_lrelu':
171
+ out = F.linear(x, self.weight * self.scale)
172
+ out = fused_leaky_relu(out, bias)
173
+ else:
174
+ out = F.linear(x, self.weight * self.scale, bias=bias)
175
+ return out
176
+
177
+ def __repr__(self):
178
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
179
+ f'out_channels={self.out_channels}, bias={self.bias is not None})')
180
+
181
+
182
+ class ModulatedConv2d(nn.Module):
183
+ """Modulated Conv2d used in StyleGAN2.
184
+
185
+ There is no bias in ModulatedConv2d.
186
+
187
+ Args:
188
+ in_channels (int): Channel number of the input.
189
+ out_channels (int): Channel number of the output.
190
+ kernel_size (int): Size of the convolving kernel.
191
+ num_style_feat (int): Channel number of style features.
192
+ demodulate (bool): Whether to demodulate in the conv layer.
193
+ Default: True.
194
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
195
+ Default: None.
196
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
197
+ magnitude. Default: (1, 3, 3, 1).
198
+ eps (float): A value added to the denominator for numerical stability.
199
+ Default: 1e-8.
200
+ """
201
+
202
+ def __init__(self,
203
+ in_channels,
204
+ out_channels,
205
+ kernel_size,
206
+ num_style_feat,
207
+ demodulate=True,
208
+ sample_mode=None,
209
+ resample_kernel=(1, 3, 3, 1),
210
+ eps=1e-8):
211
+ super(ModulatedConv2d, self).__init__()
212
+ self.in_channels = in_channels
213
+ self.out_channels = out_channels
214
+ self.kernel_size = kernel_size
215
+ self.demodulate = demodulate
216
+ self.sample_mode = sample_mode
217
+ self.eps = eps
218
+
219
+ if self.sample_mode == 'upsample':
220
+ self.smooth = UpFirDnSmooth(
221
+ resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size)
222
+ elif self.sample_mode == 'downsample':
223
+ self.smooth = UpFirDnSmooth(
224
+ resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size)
225
+ elif self.sample_mode is None:
226
+ pass
227
+ else:
228
+ raise ValueError(f'Wrong sample mode {self.sample_mode}, '
229
+ "supported ones are ['upsample', 'downsample', None].")
230
+
231
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
232
+ # modulation inside each modulated conv
233
+ self.modulation = EqualLinear(
234
+ num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
235
+
236
+ self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
237
+ self.padding = kernel_size // 2
238
+
239
+ def forward(self, x, style):
240
+ """Forward function.
241
+
242
+ Args:
243
+ x (Tensor): Tensor with shape (b, c, h, w).
244
+ style (Tensor): Tensor with shape (b, num_style_feat).
245
+
246
+ Returns:
247
+ Tensor: Modulated tensor after convolution.
248
+ """
249
+ b, c, h, w = x.shape # c = c_in
250
+ # weight modulation
251
+ style = self.modulation(style).view(b, 1, c, 1, 1)
252
+ # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
253
+ weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
254
+
255
+ if self.demodulate:
256
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
257
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
258
+
259
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
260
+
261
+ if self.sample_mode == 'upsample':
262
+ x = x.view(1, b * c, h, w)
263
+ weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size)
264
+ weight = weight.transpose(1, 2).reshape(b * c, self.out_channels, self.kernel_size, self.kernel_size)
265
+ out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
266
+ out = out.view(b, self.out_channels, *out.shape[2:4])
267
+ out = self.smooth(out)
268
+ elif self.sample_mode == 'downsample':
269
+ x = self.smooth(x)
270
+ x = x.view(1, b * c, *x.shape[2:4])
271
+ out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
272
+ out = out.view(b, self.out_channels, *out.shape[2:4])
273
+ else:
274
+ x = x.view(1, b * c, h, w)
275
+ # weight: (b*c_out, c_in, k, k), groups=b
276
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
277
+ out = out.view(b, self.out_channels, *out.shape[2:4])
278
+
279
+ return out
280
+
281
+ def __repr__(self):
282
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
283
+ f'out_channels={self.out_channels}, '
284
+ f'kernel_size={self.kernel_size}, '
285
+ f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
286
+
287
+
288
+ class StyleConv(nn.Module):
289
+ """Style conv.
290
+
291
+ Args:
292
+ in_channels (int): Channel number of the input.
293
+ out_channels (int): Channel number of the output.
294
+ kernel_size (int): Size of the convolving kernel.
295
+ num_style_feat (int): Channel number of style features.
296
+ demodulate (bool): Whether demodulate in the conv layer. Default: True.
297
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
298
+ Default: None.
299
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
300
+ magnitude. Default: (1, 3, 3, 1).
301
+ """
302
+
303
+ def __init__(self,
304
+ in_channels,
305
+ out_channels,
306
+ kernel_size,
307
+ num_style_feat,
308
+ demodulate=True,
309
+ sample_mode=None,
310
+ resample_kernel=(1, 3, 3, 1)):
311
+ super(StyleConv, self).__init__()
312
+ self.modulated_conv = ModulatedConv2d(
313
+ in_channels,
314
+ out_channels,
315
+ kernel_size,
316
+ num_style_feat,
317
+ demodulate=demodulate,
318
+ sample_mode=sample_mode,
319
+ resample_kernel=resample_kernel)
320
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
321
+ self.activate = FusedLeakyReLU(out_channels)
322
+
323
+ def forward(self, x, style, noise=None):
324
+ # modulate
325
+ out = self.modulated_conv(x, style)
326
+ # noise injection
327
+ if noise is None:
328
+ b, _, h, w = out.shape
329
+ noise = out.new_empty(b, 1, h, w).normal_()
330
+ out = out + self.weight * noise
331
+ # activation (with bias)
332
+ out = self.activate(out)
333
+ return out
334
+
335
+
336
+ class ToRGB(nn.Module):
337
+ """To RGB from features.
338
+
339
+ Args:
340
+ in_channels (int): Channel number of input.
341
+ num_style_feat (int): Channel number of style features.
342
+ upsample (bool): Whether to upsample. Default: True.
343
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
344
+ magnitude. Default: (1, 3, 3, 1).
345
+ """
346
+
347
+ def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)):
348
+ super(ToRGB, self).__init__()
349
+ if upsample:
350
+ self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
351
+ else:
352
+ self.upsample = None
353
+ self.modulated_conv = ModulatedConv2d(
354
+ in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
355
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
356
+
357
+ def forward(self, x, style, skip=None):
358
+ """Forward function.
359
+
360
+ Args:
361
+ x (Tensor): Feature tensor with shape (b, c, h, w).
362
+ style (Tensor): Tensor with shape (b, num_style_feat).
363
+ skip (Tensor): Base/skip tensor. Default: None.
364
+
365
+ Returns:
366
+ Tensor: RGB images.
367
+ """
368
+ out = self.modulated_conv(x, style)
369
+ out = out + self.bias
370
+ if skip is not None:
371
+ if self.upsample:
372
+ skip = self.upsample(skip)
373
+ out = out + skip
374
+ return out
375
+
376
+
377
+ class ConstantInput(nn.Module):
378
+ """Constant input.
379
+
380
+ Args:
381
+ num_channel (int): Channel number of constant input.
382
+ size (int): Spatial size of constant input.
383
+ """
384
+
385
+ def __init__(self, num_channel, size):
386
+ super(ConstantInput, self).__init__()
387
+ self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
388
+
389
+ def forward(self, batch):
390
+ out = self.weight.repeat(batch, 1, 1, 1)
391
+ return out
392
+
393
+
394
+ @ARCH_REGISTRY.register()
395
+ class StyleGAN2Generator(nn.Module):
396
+ """StyleGAN2 Generator.
397
+
398
+ Args:
399
+ out_size (int): The spatial size of outputs.
400
+ num_style_feat (int): Channel number of style features. Default: 512.
401
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
402
+ channel_multiplier (int): Channel multiplier for large networks of
403
+ StyleGAN2. Default: 2.
404
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
405
+ magnitude. A cross production will be applied to extent 1D resample
406
+ kernel to 2D resample kernel. Default: (1, 3, 3, 1).
407
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
408
+ narrow (float): Narrow ratio for channels. Default: 1.0.
409
+ """
410
+
411
+ def __init__(self,
412
+ out_size,
413
+ num_style_feat=512,
414
+ num_mlp=8,
415
+ channel_multiplier=2,
416
+ resample_kernel=(1, 3, 3, 1),
417
+ lr_mlp=0.01,
418
+ narrow=1):
419
+ super(StyleGAN2Generator, self).__init__()
420
+ # Style MLP layers
421
+ self.num_style_feat = num_style_feat
422
+ style_mlp_layers = [NormStyleCode()]
423
+ for i in range(num_mlp):
424
+ style_mlp_layers.append(
425
+ EqualLinear(
426
+ num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
427
+ activation='fused_lrelu'))
428
+ self.style_mlp = nn.Sequential(*style_mlp_layers)
429
+
430
+ channels = {
431
+ '4': int(512 * narrow),
432
+ '8': int(512 * narrow),
433
+ '16': int(512 * narrow),
434
+ '32': int(512 * narrow),
435
+ '64': int(256 * channel_multiplier * narrow),
436
+ '128': int(128 * channel_multiplier * narrow),
437
+ '256': int(64 * channel_multiplier * narrow),
438
+ '512': int(32 * channel_multiplier * narrow),
439
+ '1024': int(16 * channel_multiplier * narrow)
440
+ }
441
+ self.channels = channels
442
+
443
+ self.constant_input = ConstantInput(channels['4'], size=4)
444
+ self.style_conv1 = StyleConv(
445
+ channels['4'],
446
+ channels['4'],
447
+ kernel_size=3,
448
+ num_style_feat=num_style_feat,
449
+ demodulate=True,
450
+ sample_mode=None,
451
+ resample_kernel=resample_kernel)
452
+ self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, resample_kernel=resample_kernel)
453
+
454
+ self.log_size = int(math.log(out_size, 2))
455
+ self.num_layers = (self.log_size - 2) * 2 + 1
456
+ self.num_latent = self.log_size * 2 - 2
457
+
458
+ self.style_convs = nn.ModuleList()
459
+ self.to_rgbs = nn.ModuleList()
460
+ self.noises = nn.Module()
461
+
462
+ in_channels = channels['4']
463
+ # noise
464
+ for layer_idx in range(self.num_layers):
465
+ resolution = 2**((layer_idx + 5) // 2)
466
+ shape = [1, 1, resolution, resolution]
467
+ self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
468
+ # style convs and to_rgbs
469
+ for i in range(3, self.log_size + 1):
470
+ out_channels = channels[f'{2**i}']
471
+ self.style_convs.append(
472
+ StyleConv(
473
+ in_channels,
474
+ out_channels,
475
+ kernel_size=3,
476
+ num_style_feat=num_style_feat,
477
+ demodulate=True,
478
+ sample_mode='upsample',
479
+ resample_kernel=resample_kernel,
480
+ ))
481
+ self.style_convs.append(
482
+ StyleConv(
483
+ out_channels,
484
+ out_channels,
485
+ kernel_size=3,
486
+ num_style_feat=num_style_feat,
487
+ demodulate=True,
488
+ sample_mode=None,
489
+ resample_kernel=resample_kernel))
490
+ self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True, resample_kernel=resample_kernel))
491
+ in_channels = out_channels
492
+
493
+ def make_noise(self):
494
+ """Make noise for noise injection."""
495
+ device = self.constant_input.weight.device
496
+ noises = [torch.randn(1, 1, 4, 4, device=device)]
497
+
498
+ for i in range(3, self.log_size + 1):
499
+ for _ in range(2):
500
+ noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
501
+
502
+ return noises
503
+
504
+ def get_latent(self, x):
505
+ return self.style_mlp(x)
506
+
507
+ def mean_latent(self, num_latent):
508
+ latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
509
+ latent = self.style_mlp(latent_in).mean(0, keepdim=True)
510
+ return latent
511
+
512
+ def forward(self,
513
+ styles,
514
+ input_is_latent=False,
515
+ noise=None,
516
+ randomize_noise=True,
517
+ truncation=1,
518
+ truncation_latent=None,
519
+ inject_index=None,
520
+ return_latents=False):
521
+ """Forward function for StyleGAN2Generator.
522
+
523
+ Args:
524
+ styles (list[Tensor]): Sample codes of styles.
525
+ input_is_latent (bool): Whether input is latent style.
526
+ Default: False.
527
+ noise (Tensor | None): Input noise or None. Default: None.
528
+ randomize_noise (bool): Randomize noise, used when 'noise' is
529
+ False. Default: True.
530
+ truncation (float): TODO. Default: 1.
531
+ truncation_latent (Tensor | None): TODO. Default: None.
532
+ inject_index (int | None): The injection index for mixing noise.
533
+ Default: None.
534
+ return_latents (bool): Whether to return style latents.
535
+ Default: False.
536
+ """
537
+ # style codes -> latents with Style MLP layer
538
+ if not input_is_latent:
539
+ styles = [self.style_mlp(s) for s in styles]
540
+ # noises
541
+ if noise is None:
542
+ if randomize_noise:
543
+ noise = [None] * self.num_layers # for each style conv layer
544
+ else: # use the stored noise
545
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
546
+ # style truncation
547
+ if truncation < 1:
548
+ style_truncation = []
549
+ for style in styles:
550
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
551
+ styles = style_truncation
552
+ # get style latent with injection
553
+ if len(styles) == 1:
554
+ inject_index = self.num_latent
555
+
556
+ if styles[0].ndim < 3:
557
+ # repeat latent code for all the layers
558
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
559
+ else: # used for encoder with different latent code for each layer
560
+ latent = styles[0]
561
+ elif len(styles) == 2: # mixing noises
562
+ if inject_index is None:
563
+ inject_index = random.randint(1, self.num_latent - 1)
564
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
565
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
566
+ latent = torch.cat([latent1, latent2], 1)
567
+
568
+ # main generation
569
+ out = self.constant_input(latent.shape[0])
570
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
571
+ skip = self.to_rgb1(out, latent[:, 1])
572
+
573
+ i = 1
574
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
575
+ noise[2::2], self.to_rgbs):
576
+ out = conv1(out, latent[:, i], noise=noise1)
577
+ out = conv2(out, latent[:, i + 1], noise=noise2)
578
+ skip = to_rgb(out, latent[:, i + 2], skip)
579
+ i += 2
580
+
581
+ image = skip
582
+
583
+ if return_latents:
584
+ return image, latent
585
+ else:
586
+ return image, None
587
+
588
+
589
+ class ScaledLeakyReLU(nn.Module):
590
+ """Scaled LeakyReLU.
591
+
592
+ Args:
593
+ negative_slope (float): Negative slope. Default: 0.2.
594
+ """
595
+
596
+ def __init__(self, negative_slope=0.2):
597
+ super(ScaledLeakyReLU, self).__init__()
598
+ self.negative_slope = negative_slope
599
+
600
+ def forward(self, x):
601
+ out = F.leaky_relu(x, negative_slope=self.negative_slope)
602
+ return out * math.sqrt(2)
603
+
604
+
605
+ class EqualConv2d(nn.Module):
606
+ """Equalized Linear as StyleGAN2.
607
+
608
+ Args:
609
+ in_channels (int): Channel number of the input.
610
+ out_channels (int): Channel number of the output.
611
+ kernel_size (int): Size of the convolving kernel.
612
+ stride (int): Stride of the convolution. Default: 1
613
+ padding (int): Zero-padding added to both sides of the input.
614
+ Default: 0.
615
+ bias (bool): If ``True``, adds a learnable bias to the output.
616
+ Default: ``True``.
617
+ bias_init_val (float): Bias initialized value. Default: 0.
618
+ """
619
+
620
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
621
+ super(EqualConv2d, self).__init__()
622
+ self.in_channels = in_channels
623
+ self.out_channels = out_channels
624
+ self.kernel_size = kernel_size
625
+ self.stride = stride
626
+ self.padding = padding
627
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
628
+
629
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
630
+ if bias:
631
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
632
+ else:
633
+ self.register_parameter('bias', None)
634
+
635
+ def forward(self, x):
636
+ out = F.conv2d(
637
+ x,
638
+ self.weight * self.scale,
639
+ bias=self.bias,
640
+ stride=self.stride,
641
+ padding=self.padding,
642
+ )
643
+
644
+ return out
645
+
646
+ def __repr__(self):
647
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
648
+ f'out_channels={self.out_channels}, '
649
+ f'kernel_size={self.kernel_size},'
650
+ f' stride={self.stride}, padding={self.padding}, '
651
+ f'bias={self.bias is not None})')
652
+
653
+
654
+ class ConvLayer(nn.Sequential):
655
+ """Conv Layer used in StyleGAN2 Discriminator.
656
+
657
+ Args:
658
+ in_channels (int): Channel number of the input.
659
+ out_channels (int): Channel number of the output.
660
+ kernel_size (int): Kernel size.
661
+ downsample (bool): Whether downsample by a factor of 2.
662
+ Default: False.
663
+ resample_kernel (list[int]): A list indicating the 1D resample
664
+ kernel magnitude. A cross production will be applied to
665
+ extent 1D resample kernel to 2D resample kernel.
666
+ Default: (1, 3, 3, 1).
667
+ bias (bool): Whether with bias. Default: True.
668
+ activate (bool): Whether use activateion. Default: True.
669
+ """
670
+
671
+ def __init__(self,
672
+ in_channels,
673
+ out_channels,
674
+ kernel_size,
675
+ downsample=False,
676
+ resample_kernel=(1, 3, 3, 1),
677
+ bias=True,
678
+ activate=True):
679
+ layers = []
680
+ # downsample
681
+ if downsample:
682
+ layers.append(
683
+ UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size))
684
+ stride = 2
685
+ self.padding = 0
686
+ else:
687
+ stride = 1
688
+ self.padding = kernel_size // 2
689
+ # conv
690
+ layers.append(
691
+ EqualConv2d(
692
+ in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
693
+ and not activate))
694
+ # activation
695
+ if activate:
696
+ if bias:
697
+ layers.append(FusedLeakyReLU(out_channels))
698
+ else:
699
+ layers.append(ScaledLeakyReLU(0.2))
700
+
701
+ super(ConvLayer, self).__init__(*layers)
702
+
703
+
704
+ class ResBlock(nn.Module):
705
+ """Residual block used in StyleGAN2 Discriminator.
706
+
707
+ Args:
708
+ in_channels (int): Channel number of the input.
709
+ out_channels (int): Channel number of the output.
710
+ resample_kernel (list[int]): A list indicating the 1D resample
711
+ kernel magnitude. A cross production will be applied to
712
+ extent 1D resample kernel to 2D resample kernel.
713
+ Default: (1, 3, 3, 1).
714
+ """
715
+
716
+ def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)):
717
+ super(ResBlock, self).__init__()
718
+
719
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
720
+ self.conv2 = ConvLayer(
721
+ in_channels, out_channels, 3, downsample=True, resample_kernel=resample_kernel, bias=True, activate=True)
722
+ self.skip = ConvLayer(
723
+ in_channels, out_channels, 1, downsample=True, resample_kernel=resample_kernel, bias=False, activate=False)
724
+
725
+ def forward(self, x):
726
+ out = self.conv1(x)
727
+ out = self.conv2(out)
728
+ skip = self.skip(x)
729
+ out = (out + skip) / math.sqrt(2)
730
+ return out
731
+
732
+
733
+ @ARCH_REGISTRY.register()
734
+ class StyleGAN2Discriminator(nn.Module):
735
+ """StyleGAN2 Discriminator.
736
+
737
+ Args:
738
+ out_size (int): The spatial size of outputs.
739
+ channel_multiplier (int): Channel multiplier for large networks of
740
+ StyleGAN2. Default: 2.
741
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
742
+ magnitude. A cross production will be applied to extent 1D resample
743
+ kernel to 2D resample kernel. Default: (1, 3, 3, 1).
744
+ stddev_group (int): For group stddev statistics. Default: 4.
745
+ narrow (float): Narrow ratio for channels. Default: 1.0.
746
+ """
747
+
748
+ def __init__(self, out_size, channel_multiplier=2, resample_kernel=(1, 3, 3, 1), stddev_group=4, narrow=1):
749
+ super(StyleGAN2Discriminator, self).__init__()
750
+
751
+ channels = {
752
+ '4': int(512 * narrow),
753
+ '8': int(512 * narrow),
754
+ '16': int(512 * narrow),
755
+ '32': int(512 * narrow),
756
+ '64': int(256 * channel_multiplier * narrow),
757
+ '128': int(128 * channel_multiplier * narrow),
758
+ '256': int(64 * channel_multiplier * narrow),
759
+ '512': int(32 * channel_multiplier * narrow),
760
+ '1024': int(16 * channel_multiplier * narrow)
761
+ }
762
+
763
+ log_size = int(math.log(out_size, 2))
764
+
765
+ conv_body = [ConvLayer(3, channels[f'{out_size}'], 1, bias=True, activate=True)]
766
+
767
+ in_channels = channels[f'{out_size}']
768
+ for i in range(log_size, 2, -1):
769
+ out_channels = channels[f'{2**(i - 1)}']
770
+ conv_body.append(ResBlock(in_channels, out_channels, resample_kernel))
771
+ in_channels = out_channels
772
+ self.conv_body = nn.Sequential(*conv_body)
773
+
774
+ self.final_conv = ConvLayer(in_channels + 1, channels['4'], 3, bias=True, activate=True)
775
+ self.final_linear = nn.Sequential(
776
+ EqualLinear(
777
+ channels['4'] * 4 * 4, channels['4'], bias=True, bias_init_val=0, lr_mul=1, activation='fused_lrelu'),
778
+ EqualLinear(channels['4'], 1, bias=True, bias_init_val=0, lr_mul=1, activation=None),
779
+ )
780
+ self.stddev_group = stddev_group
781
+ self.stddev_feat = 1
782
+
783
+ def forward(self, x):
784
+ out = self.conv_body(x)
785
+
786
+ b, c, h, w = out.shape
787
+ # concatenate a group stddev statistics to out
788
+ group = min(b, self.stddev_group) # Minibatch must be divisible by (or smaller than) group_size
789
+ stddev = out.view(group, -1, self.stddev_feat, c // self.stddev_feat, h, w)
790
+ stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
791
+ stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
792
+ stddev = stddev.repeat(group, 1, h, w)
793
+ out = torch.cat([out, stddev], 1)
794
+
795
+ out = self.final_conv(out)
796
+ out = out.view(b, -1)
797
+ out = self.final_linear(out)
798
+
799
+ return out
r_basicsr/archs/swinir_arch.py ADDED
@@ -0,0 +1,956 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from https://github.com/JingyunLiang/SwinIR
2
+ # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
3
+ # Originally Written by Ze Liu, Modified by Jingyun Liang.
4
+
5
+ import math
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.utils.checkpoint as checkpoint
9
+
10
+ from r_basicsr.utils.registry import ARCH_REGISTRY
11
+ from .arch_util import to_2tuple, trunc_normal_
12
+
13
+
14
+ def drop_path(x, drop_prob: float = 0., training: bool = False):
15
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
16
+
17
+ From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
18
+ """
19
+ if drop_prob == 0. or not training:
20
+ return x
21
+ keep_prob = 1 - drop_prob
22
+ shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
23
+ random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
24
+ random_tensor.floor_() # binarize
25
+ output = x.div(keep_prob) * random_tensor
26
+ return output
27
+
28
+
29
+ class DropPath(nn.Module):
30
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
31
+
32
+ From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
33
+ """
34
+
35
+ def __init__(self, drop_prob=None):
36
+ super(DropPath, self).__init__()
37
+ self.drop_prob = drop_prob
38
+
39
+ def forward(self, x):
40
+ return drop_path(x, self.drop_prob, self.training)
41
+
42
+
43
+ class Mlp(nn.Module):
44
+
45
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
46
+ super().__init__()
47
+ out_features = out_features or in_features
48
+ hidden_features = hidden_features or in_features
49
+ self.fc1 = nn.Linear(in_features, hidden_features)
50
+ self.act = act_layer()
51
+ self.fc2 = nn.Linear(hidden_features, out_features)
52
+ self.drop = nn.Dropout(drop)
53
+
54
+ def forward(self, x):
55
+ x = self.fc1(x)
56
+ x = self.act(x)
57
+ x = self.drop(x)
58
+ x = self.fc2(x)
59
+ x = self.drop(x)
60
+ return x
61
+
62
+
63
+ def window_partition(x, window_size):
64
+ """
65
+ Args:
66
+ x: (b, h, w, c)
67
+ window_size (int): window size
68
+
69
+ Returns:
70
+ windows: (num_windows*b, window_size, window_size, c)
71
+ """
72
+ b, h, w, c = x.shape
73
+ x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
74
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
75
+ return windows
76
+
77
+
78
+ def window_reverse(windows, window_size, h, w):
79
+ """
80
+ Args:
81
+ windows: (num_windows*b, window_size, window_size, c)
82
+ window_size (int): Window size
83
+ h (int): Height of image
84
+ w (int): Width of image
85
+
86
+ Returns:
87
+ x: (b, h, w, c)
88
+ """
89
+ b = int(windows.shape[0] / (h * w / window_size / window_size))
90
+ x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
91
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
92
+ return x
93
+
94
+
95
+ class WindowAttention(nn.Module):
96
+ r""" Window based multi-head self attention (W-MSA) module with relative position bias.
97
+ It supports both of shifted and non-shifted window.
98
+
99
+ Args:
100
+ dim (int): Number of input channels.
101
+ window_size (tuple[int]): The height and width of the window.
102
+ num_heads (int): Number of attention heads.
103
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
104
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
105
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
106
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
107
+ """
108
+
109
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
110
+
111
+ super().__init__()
112
+ self.dim = dim
113
+ self.window_size = window_size # Wh, Ww
114
+ self.num_heads = num_heads
115
+ head_dim = dim // num_heads
116
+ self.scale = qk_scale or head_dim**-0.5
117
+
118
+ # define a parameter table of relative position bias
119
+ self.relative_position_bias_table = nn.Parameter(
120
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
121
+
122
+ # get pair-wise relative position index for each token inside the window
123
+ coords_h = torch.arange(self.window_size[0])
124
+ coords_w = torch.arange(self.window_size[1])
125
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
126
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
127
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
128
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
129
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
130
+ relative_coords[:, :, 1] += self.window_size[1] - 1
131
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
132
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
133
+ self.register_buffer('relative_position_index', relative_position_index)
134
+
135
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
136
+ self.attn_drop = nn.Dropout(attn_drop)
137
+ self.proj = nn.Linear(dim, dim)
138
+
139
+ self.proj_drop = nn.Dropout(proj_drop)
140
+
141
+ trunc_normal_(self.relative_position_bias_table, std=.02)
142
+ self.softmax = nn.Softmax(dim=-1)
143
+
144
+ def forward(self, x, mask=None):
145
+ """
146
+ Args:
147
+ x: input features with shape of (num_windows*b, n, c)
148
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
149
+ """
150
+ b_, n, c = x.shape
151
+ qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
152
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
153
+
154
+ q = q * self.scale
155
+ attn = (q @ k.transpose(-2, -1))
156
+
157
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
158
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
159
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
160
+ attn = attn + relative_position_bias.unsqueeze(0)
161
+
162
+ if mask is not None:
163
+ nw = mask.shape[0]
164
+ attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
165
+ attn = attn.view(-1, self.num_heads, n, n)
166
+ attn = self.softmax(attn)
167
+ else:
168
+ attn = self.softmax(attn)
169
+
170
+ attn = self.attn_drop(attn)
171
+
172
+ x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
173
+ x = self.proj(x)
174
+ x = self.proj_drop(x)
175
+ return x
176
+
177
+ def extra_repr(self) -> str:
178
+ return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
179
+
180
+ def flops(self, n):
181
+ # calculate flops for 1 window with token length of n
182
+ flops = 0
183
+ # qkv = self.qkv(x)
184
+ flops += n * self.dim * 3 * self.dim
185
+ # attn = (q @ k.transpose(-2, -1))
186
+ flops += self.num_heads * n * (self.dim // self.num_heads) * n
187
+ # x = (attn @ v)
188
+ flops += self.num_heads * n * n * (self.dim // self.num_heads)
189
+ # x = self.proj(x)
190
+ flops += n * self.dim * self.dim
191
+ return flops
192
+
193
+
194
+ class SwinTransformerBlock(nn.Module):
195
+ r""" Swin Transformer Block.
196
+
197
+ Args:
198
+ dim (int): Number of input channels.
199
+ input_resolution (tuple[int]): Input resolution.
200
+ num_heads (int): Number of attention heads.
201
+ window_size (int): Window size.
202
+ shift_size (int): Shift size for SW-MSA.
203
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
204
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
205
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
206
+ drop (float, optional): Dropout rate. Default: 0.0
207
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
208
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
209
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
210
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
211
+ """
212
+
213
+ def __init__(self,
214
+ dim,
215
+ input_resolution,
216
+ num_heads,
217
+ window_size=7,
218
+ shift_size=0,
219
+ mlp_ratio=4.,
220
+ qkv_bias=True,
221
+ qk_scale=None,
222
+ drop=0.,
223
+ attn_drop=0.,
224
+ drop_path=0.,
225
+ act_layer=nn.GELU,
226
+ norm_layer=nn.LayerNorm):
227
+ super().__init__()
228
+ self.dim = dim
229
+ self.input_resolution = input_resolution
230
+ self.num_heads = num_heads
231
+ self.window_size = window_size
232
+ self.shift_size = shift_size
233
+ self.mlp_ratio = mlp_ratio
234
+ if min(self.input_resolution) <= self.window_size:
235
+ # if window size is larger than input resolution, we don't partition windows
236
+ self.shift_size = 0
237
+ self.window_size = min(self.input_resolution)
238
+ assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'
239
+
240
+ self.norm1 = norm_layer(dim)
241
+ self.attn = WindowAttention(
242
+ dim,
243
+ window_size=to_2tuple(self.window_size),
244
+ num_heads=num_heads,
245
+ qkv_bias=qkv_bias,
246
+ qk_scale=qk_scale,
247
+ attn_drop=attn_drop,
248
+ proj_drop=drop)
249
+
250
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
251
+ self.norm2 = norm_layer(dim)
252
+ mlp_hidden_dim = int(dim * mlp_ratio)
253
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
254
+
255
+ if self.shift_size > 0:
256
+ attn_mask = self.calculate_mask(self.input_resolution)
257
+ else:
258
+ attn_mask = None
259
+
260
+ self.register_buffer('attn_mask', attn_mask)
261
+
262
+ def calculate_mask(self, x_size):
263
+ # calculate attention mask for SW-MSA
264
+ h, w = x_size
265
+ img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1
266
+ h_slices = (slice(0, -self.window_size), slice(-self.window_size,
267
+ -self.shift_size), slice(-self.shift_size, None))
268
+ w_slices = (slice(0, -self.window_size), slice(-self.window_size,
269
+ -self.shift_size), slice(-self.shift_size, None))
270
+ cnt = 0
271
+ for h in h_slices:
272
+ for w in w_slices:
273
+ img_mask[:, h, w, :] = cnt
274
+ cnt += 1
275
+
276
+ mask_windows = window_partition(img_mask, self.window_size) # nw, window_size, window_size, 1
277
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
278
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
279
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
280
+
281
+ return attn_mask
282
+
283
+ def forward(self, x, x_size):
284
+ h, w = x_size
285
+ b, _, c = x.shape
286
+ # assert seq_len == h * w, "input feature has wrong size"
287
+
288
+ shortcut = x
289
+ x = self.norm1(x)
290
+ x = x.view(b, h, w, c)
291
+
292
+ # cyclic shift
293
+ if self.shift_size > 0:
294
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
295
+ else:
296
+ shifted_x = x
297
+
298
+ # partition windows
299
+ x_windows = window_partition(shifted_x, self.window_size) # nw*b, window_size, window_size, c
300
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, c) # nw*b, window_size*window_size, c
301
+
302
+ # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
303
+ if self.input_resolution == x_size:
304
+ attn_windows = self.attn(x_windows, mask=self.attn_mask) # nw*b, window_size*window_size, c
305
+ else:
306
+ attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
307
+
308
+ # merge windows
309
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
310
+ shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c
311
+
312
+ # reverse cyclic shift
313
+ if self.shift_size > 0:
314
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
315
+ else:
316
+ x = shifted_x
317
+ x = x.view(b, h * w, c)
318
+
319
+ # FFN
320
+ x = shortcut + self.drop_path(x)
321
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
322
+
323
+ return x
324
+
325
+ def extra_repr(self) -> str:
326
+ return (f'dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, '
327
+ f'window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}')
328
+
329
+ def flops(self):
330
+ flops = 0
331
+ h, w = self.input_resolution
332
+ # norm1
333
+ flops += self.dim * h * w
334
+ # W-MSA/SW-MSA
335
+ nw = h * w / self.window_size / self.window_size
336
+ flops += nw * self.attn.flops(self.window_size * self.window_size)
337
+ # mlp
338
+ flops += 2 * h * w * self.dim * self.dim * self.mlp_ratio
339
+ # norm2
340
+ flops += self.dim * h * w
341
+ return flops
342
+
343
+
344
+ class PatchMerging(nn.Module):
345
+ r""" Patch Merging Layer.
346
+
347
+ Args:
348
+ input_resolution (tuple[int]): Resolution of input feature.
349
+ dim (int): Number of input channels.
350
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
351
+ """
352
+
353
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
354
+ super().__init__()
355
+ self.input_resolution = input_resolution
356
+ self.dim = dim
357
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
358
+ self.norm = norm_layer(4 * dim)
359
+
360
+ def forward(self, x):
361
+ """
362
+ x: b, h*w, c
363
+ """
364
+ h, w = self.input_resolution
365
+ b, seq_len, c = x.shape
366
+ assert seq_len == h * w, 'input feature has wrong size'
367
+ assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.'
368
+
369
+ x = x.view(b, h, w, c)
370
+
371
+ x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c
372
+ x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c
373
+ x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c
374
+ x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c
375
+ x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c
376
+ x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c
377
+
378
+ x = self.norm(x)
379
+ x = self.reduction(x)
380
+
381
+ return x
382
+
383
+ def extra_repr(self) -> str:
384
+ return f'input_resolution={self.input_resolution}, dim={self.dim}'
385
+
386
+ def flops(self):
387
+ h, w = self.input_resolution
388
+ flops = h * w * self.dim
389
+ flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim
390
+ return flops
391
+
392
+
393
+ class BasicLayer(nn.Module):
394
+ """ A basic Swin Transformer layer for one stage.
395
+
396
+ Args:
397
+ dim (int): Number of input channels.
398
+ input_resolution (tuple[int]): Input resolution.
399
+ depth (int): Number of blocks.
400
+ num_heads (int): Number of attention heads.
401
+ window_size (int): Local window size.
402
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
403
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
404
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
405
+ drop (float, optional): Dropout rate. Default: 0.0
406
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
407
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
408
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
409
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
410
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
411
+ """
412
+
413
+ def __init__(self,
414
+ dim,
415
+ input_resolution,
416
+ depth,
417
+ num_heads,
418
+ window_size,
419
+ mlp_ratio=4.,
420
+ qkv_bias=True,
421
+ qk_scale=None,
422
+ drop=0.,
423
+ attn_drop=0.,
424
+ drop_path=0.,
425
+ norm_layer=nn.LayerNorm,
426
+ downsample=None,
427
+ use_checkpoint=False):
428
+
429
+ super().__init__()
430
+ self.dim = dim
431
+ self.input_resolution = input_resolution
432
+ self.depth = depth
433
+ self.use_checkpoint = use_checkpoint
434
+
435
+ # build blocks
436
+ self.blocks = nn.ModuleList([
437
+ SwinTransformerBlock(
438
+ dim=dim,
439
+ input_resolution=input_resolution,
440
+ num_heads=num_heads,
441
+ window_size=window_size,
442
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
443
+ mlp_ratio=mlp_ratio,
444
+ qkv_bias=qkv_bias,
445
+ qk_scale=qk_scale,
446
+ drop=drop,
447
+ attn_drop=attn_drop,
448
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
449
+ norm_layer=norm_layer) for i in range(depth)
450
+ ])
451
+
452
+ # patch merging layer
453
+ if downsample is not None:
454
+ self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
455
+ else:
456
+ self.downsample = None
457
+
458
+ def forward(self, x, x_size):
459
+ for blk in self.blocks:
460
+ if self.use_checkpoint:
461
+ x = checkpoint.checkpoint(blk, x)
462
+ else:
463
+ x = blk(x, x_size)
464
+ if self.downsample is not None:
465
+ x = self.downsample(x)
466
+ return x
467
+
468
+ def extra_repr(self) -> str:
469
+ return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}'
470
+
471
+ def flops(self):
472
+ flops = 0
473
+ for blk in self.blocks:
474
+ flops += blk.flops()
475
+ if self.downsample is not None:
476
+ flops += self.downsample.flops()
477
+ return flops
478
+
479
+
480
+ class RSTB(nn.Module):
481
+ """Residual Swin Transformer Block (RSTB).
482
+
483
+ Args:
484
+ dim (int): Number of input channels.
485
+ input_resolution (tuple[int]): Input resolution.
486
+ depth (int): Number of blocks.
487
+ num_heads (int): Number of attention heads.
488
+ window_size (int): Local window size.
489
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
490
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
491
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
492
+ drop (float, optional): Dropout rate. Default: 0.0
493
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
494
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
495
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
496
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
497
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
498
+ img_size: Input image size.
499
+ patch_size: Patch size.
500
+ resi_connection: The convolutional block before residual connection.
501
+ """
502
+
503
+ def __init__(self,
504
+ dim,
505
+ input_resolution,
506
+ depth,
507
+ num_heads,
508
+ window_size,
509
+ mlp_ratio=4.,
510
+ qkv_bias=True,
511
+ qk_scale=None,
512
+ drop=0.,
513
+ attn_drop=0.,
514
+ drop_path=0.,
515
+ norm_layer=nn.LayerNorm,
516
+ downsample=None,
517
+ use_checkpoint=False,
518
+ img_size=224,
519
+ patch_size=4,
520
+ resi_connection='1conv'):
521
+ super(RSTB, self).__init__()
522
+
523
+ self.dim = dim
524
+ self.input_resolution = input_resolution
525
+
526
+ self.residual_group = BasicLayer(
527
+ dim=dim,
528
+ input_resolution=input_resolution,
529
+ depth=depth,
530
+ num_heads=num_heads,
531
+ window_size=window_size,
532
+ mlp_ratio=mlp_ratio,
533
+ qkv_bias=qkv_bias,
534
+ qk_scale=qk_scale,
535
+ drop=drop,
536
+ attn_drop=attn_drop,
537
+ drop_path=drop_path,
538
+ norm_layer=norm_layer,
539
+ downsample=downsample,
540
+ use_checkpoint=use_checkpoint)
541
+
542
+ if resi_connection == '1conv':
543
+ self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
544
+ elif resi_connection == '3conv':
545
+ # to save parameters and memory
546
+ self.conv = nn.Sequential(
547
+ nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
548
+ nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
549
+ nn.Conv2d(dim // 4, dim, 3, 1, 1))
550
+
551
+ self.patch_embed = PatchEmbed(
552
+ img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
553
+
554
+ self.patch_unembed = PatchUnEmbed(
555
+ img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
556
+
557
+ def forward(self, x, x_size):
558
+ return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
559
+
560
+ def flops(self):
561
+ flops = 0
562
+ flops += self.residual_group.flops()
563
+ h, w = self.input_resolution
564
+ flops += h * w * self.dim * self.dim * 9
565
+ flops += self.patch_embed.flops()
566
+ flops += self.patch_unembed.flops()
567
+
568
+ return flops
569
+
570
+
571
+ class PatchEmbed(nn.Module):
572
+ r""" Image to Patch Embedding
573
+
574
+ Args:
575
+ img_size (int): Image size. Default: 224.
576
+ patch_size (int): Patch token size. Default: 4.
577
+ in_chans (int): Number of input image channels. Default: 3.
578
+ embed_dim (int): Number of linear projection output channels. Default: 96.
579
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
580
+ """
581
+
582
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
583
+ super().__init__()
584
+ img_size = to_2tuple(img_size)
585
+ patch_size = to_2tuple(patch_size)
586
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
587
+ self.img_size = img_size
588
+ self.patch_size = patch_size
589
+ self.patches_resolution = patches_resolution
590
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
591
+
592
+ self.in_chans = in_chans
593
+ self.embed_dim = embed_dim
594
+
595
+ if norm_layer is not None:
596
+ self.norm = norm_layer(embed_dim)
597
+ else:
598
+ self.norm = None
599
+
600
+ def forward(self, x):
601
+ x = x.flatten(2).transpose(1, 2) # b Ph*Pw c
602
+ if self.norm is not None:
603
+ x = self.norm(x)
604
+ return x
605
+
606
+ def flops(self):
607
+ flops = 0
608
+ h, w = self.img_size
609
+ if self.norm is not None:
610
+ flops += h * w * self.embed_dim
611
+ return flops
612
+
613
+
614
+ class PatchUnEmbed(nn.Module):
615
+ r""" Image to Patch Unembedding
616
+
617
+ Args:
618
+ img_size (int): Image size. Default: 224.
619
+ patch_size (int): Patch token size. Default: 4.
620
+ in_chans (int): Number of input image channels. Default: 3.
621
+ embed_dim (int): Number of linear projection output channels. Default: 96.
622
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
623
+ """
624
+
625
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
626
+ super().__init__()
627
+ img_size = to_2tuple(img_size)
628
+ patch_size = to_2tuple(patch_size)
629
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
630
+ self.img_size = img_size
631
+ self.patch_size = patch_size
632
+ self.patches_resolution = patches_resolution
633
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
634
+
635
+ self.in_chans = in_chans
636
+ self.embed_dim = embed_dim
637
+
638
+ def forward(self, x, x_size):
639
+ x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c
640
+ return x
641
+
642
+ def flops(self):
643
+ flops = 0
644
+ return flops
645
+
646
+
647
+ class Upsample(nn.Sequential):
648
+ """Upsample module.
649
+
650
+ Args:
651
+ scale (int): Scale factor. Supported scales: 2^n and 3.
652
+ num_feat (int): Channel number of intermediate features.
653
+ """
654
+
655
+ def __init__(self, scale, num_feat):
656
+ m = []
657
+ if (scale & (scale - 1)) == 0: # scale = 2^n
658
+ for _ in range(int(math.log(scale, 2))):
659
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
660
+ m.append(nn.PixelShuffle(2))
661
+ elif scale == 3:
662
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
663
+ m.append(nn.PixelShuffle(3))
664
+ else:
665
+ raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
666
+ super(Upsample, self).__init__(*m)
667
+
668
+
669
+ class UpsampleOneStep(nn.Sequential):
670
+ """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
671
+ Used in lightweight SR to save parameters.
672
+
673
+ Args:
674
+ scale (int): Scale factor. Supported scales: 2^n and 3.
675
+ num_feat (int): Channel number of intermediate features.
676
+
677
+ """
678
+
679
+ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
680
+ self.num_feat = num_feat
681
+ self.input_resolution = input_resolution
682
+ m = []
683
+ m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
684
+ m.append(nn.PixelShuffle(scale))
685
+ super(UpsampleOneStep, self).__init__(*m)
686
+
687
+ def flops(self):
688
+ h, w = self.input_resolution
689
+ flops = h * w * self.num_feat * 3 * 9
690
+ return flops
691
+
692
+
693
+ @ARCH_REGISTRY.register()
694
+ class SwinIR(nn.Module):
695
+ r""" SwinIR
696
+ A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
697
+
698
+ Args:
699
+ img_size (int | tuple(int)): Input image size. Default 64
700
+ patch_size (int | tuple(int)): Patch size. Default: 1
701
+ in_chans (int): Number of input image channels. Default: 3
702
+ embed_dim (int): Patch embedding dimension. Default: 96
703
+ depths (tuple(int)): Depth of each Swin Transformer layer.
704
+ num_heads (tuple(int)): Number of attention heads in different layers.
705
+ window_size (int): Window size. Default: 7
706
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
707
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
708
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
709
+ drop_rate (float): Dropout rate. Default: 0
710
+ attn_drop_rate (float): Attention dropout rate. Default: 0
711
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
712
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
713
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
714
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
715
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
716
+ upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
717
+ img_range: Image range. 1. or 255.
718
+ upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
719
+ resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
720
+ """
721
+
722
+ def __init__(self,
723
+ img_size=64,
724
+ patch_size=1,
725
+ in_chans=3,
726
+ embed_dim=96,
727
+ depths=(6, 6, 6, 6),
728
+ num_heads=(6, 6, 6, 6),
729
+ window_size=7,
730
+ mlp_ratio=4.,
731
+ qkv_bias=True,
732
+ qk_scale=None,
733
+ drop_rate=0.,
734
+ attn_drop_rate=0.,
735
+ drop_path_rate=0.1,
736
+ norm_layer=nn.LayerNorm,
737
+ ape=False,
738
+ patch_norm=True,
739
+ use_checkpoint=False,
740
+ upscale=2,
741
+ img_range=1.,
742
+ upsampler='',
743
+ resi_connection='1conv',
744
+ **kwargs):
745
+ super(SwinIR, self).__init__()
746
+ num_in_ch = in_chans
747
+ num_out_ch = in_chans
748
+ num_feat = 64
749
+ self.img_range = img_range
750
+ if in_chans == 3:
751
+ rgb_mean = (0.4488, 0.4371, 0.4040)
752
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
753
+ else:
754
+ self.mean = torch.zeros(1, 1, 1, 1)
755
+ self.upscale = upscale
756
+ self.upsampler = upsampler
757
+
758
+ # ------------------------- 1, shallow feature extraction ------------------------- #
759
+ self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
760
+
761
+ # ------------------------- 2, deep feature extraction ------------------------- #
762
+ self.num_layers = len(depths)
763
+ self.embed_dim = embed_dim
764
+ self.ape = ape
765
+ self.patch_norm = patch_norm
766
+ self.num_features = embed_dim
767
+ self.mlp_ratio = mlp_ratio
768
+
769
+ # split image into non-overlapping patches
770
+ self.patch_embed = PatchEmbed(
771
+ img_size=img_size,
772
+ patch_size=patch_size,
773
+ in_chans=embed_dim,
774
+ embed_dim=embed_dim,
775
+ norm_layer=norm_layer if self.patch_norm else None)
776
+ num_patches = self.patch_embed.num_patches
777
+ patches_resolution = self.patch_embed.patches_resolution
778
+ self.patches_resolution = patches_resolution
779
+
780
+ # merge non-overlapping patches into image
781
+ self.patch_unembed = PatchUnEmbed(
782
+ img_size=img_size,
783
+ patch_size=patch_size,
784
+ in_chans=embed_dim,
785
+ embed_dim=embed_dim,
786
+ norm_layer=norm_layer if self.patch_norm else None)
787
+
788
+ # absolute position embedding
789
+ if self.ape:
790
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
791
+ trunc_normal_(self.absolute_pos_embed, std=.02)
792
+
793
+ self.pos_drop = nn.Dropout(p=drop_rate)
794
+
795
+ # stochastic depth
796
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
797
+
798
+ # build Residual Swin Transformer blocks (RSTB)
799
+ self.layers = nn.ModuleList()
800
+ for i_layer in range(self.num_layers):
801
+ layer = RSTB(
802
+ dim=embed_dim,
803
+ input_resolution=(patches_resolution[0], patches_resolution[1]),
804
+ depth=depths[i_layer],
805
+ num_heads=num_heads[i_layer],
806
+ window_size=window_size,
807
+ mlp_ratio=self.mlp_ratio,
808
+ qkv_bias=qkv_bias,
809
+ qk_scale=qk_scale,
810
+ drop=drop_rate,
811
+ attn_drop=attn_drop_rate,
812
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
813
+ norm_layer=norm_layer,
814
+ downsample=None,
815
+ use_checkpoint=use_checkpoint,
816
+ img_size=img_size,
817
+ patch_size=patch_size,
818
+ resi_connection=resi_connection)
819
+ self.layers.append(layer)
820
+ self.norm = norm_layer(self.num_features)
821
+
822
+ # build the last conv layer in deep feature extraction
823
+ if resi_connection == '1conv':
824
+ self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
825
+ elif resi_connection == '3conv':
826
+ # to save parameters and memory
827
+ self.conv_after_body = nn.Sequential(
828
+ nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
829
+ nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
830
+ nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
831
+
832
+ # ------------------------- 3, high quality image reconstruction ------------------------- #
833
+ if self.upsampler == 'pixelshuffle':
834
+ # for classical SR
835
+ self.conv_before_upsample = nn.Sequential(
836
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
837
+ self.upsample = Upsample(upscale, num_feat)
838
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
839
+ elif self.upsampler == 'pixelshuffledirect':
840
+ # for lightweight SR (to save parameters)
841
+ self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
842
+ (patches_resolution[0], patches_resolution[1]))
843
+ elif self.upsampler == 'nearest+conv':
844
+ # for real-world SR (less artifacts)
845
+ assert self.upscale == 4, 'only support x4 now.'
846
+ self.conv_before_upsample = nn.Sequential(
847
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
848
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
849
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
850
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
851
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
852
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
853
+ else:
854
+ # for image denoising and JPEG compression artifact reduction
855
+ self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
856
+
857
+ self.apply(self._init_weights)
858
+
859
+ def _init_weights(self, m):
860
+ if isinstance(m, nn.Linear):
861
+ trunc_normal_(m.weight, std=.02)
862
+ if isinstance(m, nn.Linear) and m.bias is not None:
863
+ nn.init.constant_(m.bias, 0)
864
+ elif isinstance(m, nn.LayerNorm):
865
+ nn.init.constant_(m.bias, 0)
866
+ nn.init.constant_(m.weight, 1.0)
867
+
868
+ @torch.jit.ignore
869
+ def no_weight_decay(self):
870
+ return {'absolute_pos_embed'}
871
+
872
+ @torch.jit.ignore
873
+ def no_weight_decay_keywords(self):
874
+ return {'relative_position_bias_table'}
875
+
876
+ def forward_features(self, x):
877
+ x_size = (x.shape[2], x.shape[3])
878
+ x = self.patch_embed(x)
879
+ if self.ape:
880
+ x = x + self.absolute_pos_embed
881
+ x = self.pos_drop(x)
882
+
883
+ for layer in self.layers:
884
+ x = layer(x, x_size)
885
+
886
+ x = self.norm(x) # b seq_len c
887
+ x = self.patch_unembed(x, x_size)
888
+
889
+ return x
890
+
891
+ def forward(self, x):
892
+ self.mean = self.mean.type_as(x)
893
+ x = (x - self.mean) * self.img_range
894
+
895
+ if self.upsampler == 'pixelshuffle':
896
+ # for classical SR
897
+ x = self.conv_first(x)
898
+ x = self.conv_after_body(self.forward_features(x)) + x
899
+ x = self.conv_before_upsample(x)
900
+ x = self.conv_last(self.upsample(x))
901
+ elif self.upsampler == 'pixelshuffledirect':
902
+ # for lightweight SR
903
+ x = self.conv_first(x)
904
+ x = self.conv_after_body(self.forward_features(x)) + x
905
+ x = self.upsample(x)
906
+ elif self.upsampler == 'nearest+conv':
907
+ # for real-world SR
908
+ x = self.conv_first(x)
909
+ x = self.conv_after_body(self.forward_features(x)) + x
910
+ x = self.conv_before_upsample(x)
911
+ x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
912
+ x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
913
+ x = self.conv_last(self.lrelu(self.conv_hr(x)))
914
+ else:
915
+ # for image denoising and JPEG compression artifact reduction
916
+ x_first = self.conv_first(x)
917
+ res = self.conv_after_body(self.forward_features(x_first)) + x_first
918
+ x = x + self.conv_last(res)
919
+
920
+ x = x / self.img_range + self.mean
921
+
922
+ return x
923
+
924
+ def flops(self):
925
+ flops = 0
926
+ h, w = self.patches_resolution
927
+ flops += h * w * 3 * self.embed_dim * 9
928
+ flops += self.patch_embed.flops()
929
+ for layer in self.layers:
930
+ flops += layer.flops()
931
+ flops += h * w * 3 * self.embed_dim * self.embed_dim
932
+ flops += self.upsample.flops()
933
+ return flops
934
+
935
+
936
+ if __name__ == '__main__':
937
+ upscale = 4
938
+ window_size = 8
939
+ height = (1024 // upscale // window_size + 1) * window_size
940
+ width = (720 // upscale // window_size + 1) * window_size
941
+ model = SwinIR(
942
+ upscale=2,
943
+ img_size=(height, width),
944
+ window_size=window_size,
945
+ img_range=1.,
946
+ depths=[6, 6, 6, 6],
947
+ embed_dim=60,
948
+ num_heads=[6, 6, 6, 6],
949
+ mlp_ratio=2,
950
+ upsampler='pixelshuffledirect')
951
+ print(model)
952
+ print(height, width, model.flops() / 1e9)
953
+
954
+ x = torch.randn((1, 3, height, width))
955
+ x = model(x)
956
+ print(x.shape)