|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
import warnings |
|
|
|
from r_basicsr.archs.arch_util import flow_warp |
|
from r_basicsr.archs.basicvsr_arch import ConvResidualBlocks |
|
from r_basicsr.archs.spynet_arch import SpyNet |
|
from r_basicsr.ops.dcn import ModulatedDeformConvPack |
|
from r_basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class BasicVSRPlusPlus(nn.Module): |
|
"""BasicVSR++ network structure. |
|
Support either x4 upsampling or same size output. Since DCN is used in this |
|
model, it can only be used with CUDA enabled. If CUDA is not enabled, |
|
feature alignment will be skipped. Besides, we adopt the official DCN |
|
implementation and the version of torch need to be higher than 1.9. |
|
Paper: |
|
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation |
|
and Alignment |
|
Args: |
|
mid_channels (int, optional): Channel number of the intermediate |
|
features. Default: 64. |
|
num_blocks (int, optional): The number of residual blocks in each |
|
propagation branch. Default: 7. |
|
max_residue_magnitude (int): The maximum magnitude of the offset |
|
residue (Eq. 6 in paper). Default: 10. |
|
is_low_res_input (bool, optional): Whether the input is low-resolution |
|
or not. If False, the output resolution is equal to the input |
|
resolution. Default: True. |
|
spynet_path (str): Path to the pretrained weights of SPyNet. Default: None. |
|
cpu_cache_length (int, optional): When the length of sequence is larger |
|
than this value, the intermediate features are sent to CPU. This |
|
saves GPU memory, but slows down the inference speed. You can |
|
increase this number if you have a GPU with large memory. |
|
Default: 100. |
|
""" |
|
|
|
def __init__(self, |
|
mid_channels=64, |
|
num_blocks=7, |
|
max_residue_magnitude=10, |
|
is_low_res_input=True, |
|
spynet_path=None, |
|
cpu_cache_length=100): |
|
|
|
super().__init__() |
|
self.mid_channels = mid_channels |
|
self.is_low_res_input = is_low_res_input |
|
self.cpu_cache_length = cpu_cache_length |
|
|
|
|
|
self.spynet = SpyNet(spynet_path) |
|
|
|
|
|
if is_low_res_input: |
|
self.feat_extract = ConvResidualBlocks(3, mid_channels, 5) |
|
else: |
|
self.feat_extract = nn.Sequential( |
|
nn.Conv2d(3, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
nn.Conv2d(mid_channels, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
ConvResidualBlocks(mid_channels, mid_channels, 5)) |
|
|
|
|
|
self.deform_align = nn.ModuleDict() |
|
self.backbone = nn.ModuleDict() |
|
modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2'] |
|
for i, module in enumerate(modules): |
|
if torch.cuda.is_available(): |
|
self.deform_align[module] = SecondOrderDeformableAlignment( |
|
2 * mid_channels, |
|
mid_channels, |
|
3, |
|
padding=1, |
|
deformable_groups=16, |
|
max_residue_magnitude=max_residue_magnitude) |
|
self.backbone[module] = ConvResidualBlocks((2 + i) * mid_channels, mid_channels, num_blocks) |
|
|
|
|
|
self.reconstruction = ConvResidualBlocks(5 * mid_channels, mid_channels, 5) |
|
|
|
self.upconv1 = nn.Conv2d(mid_channels, mid_channels * 4, 3, 1, 1, bias=True) |
|
self.upconv2 = nn.Conv2d(mid_channels, 64 * 4, 3, 1, 1, bias=True) |
|
|
|
self.pixel_shuffle = nn.PixelShuffle(2) |
|
|
|
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1) |
|
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1) |
|
self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False) |
|
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
|
|
|
|
self.is_mirror_extended = False |
|
|
|
if len(self.deform_align) > 0: |
|
self.is_with_alignment = True |
|
else: |
|
self.is_with_alignment = False |
|
warnings.warn('Deformable alignment module is not added. ' |
|
'Probably your CUDA is not configured correctly. DCN can only ' |
|
'be used with CUDA enabled. Alignment is skipped now.') |
|
|
|
def check_if_mirror_extended(self, lqs): |
|
"""Check whether the input is a mirror-extended sequence. |
|
If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the |
|
(t-1-i)-th frame. |
|
Args: |
|
lqs (tensor): Input low quality (LQ) sequence with |
|
shape (n, t, c, h, w). |
|
""" |
|
|
|
if lqs.size(1) % 2 == 0: |
|
lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1) |
|
if torch.norm(lqs_1 - lqs_2.flip(1)) == 0: |
|
self.is_mirror_extended = True |
|
|
|
def compute_flow(self, lqs): |
|
"""Compute optical flow using SPyNet for feature alignment. |
|
Note that if the input is an mirror-extended sequence, 'flows_forward' |
|
is not needed, since it is equal to 'flows_backward.flip(1)'. |
|
Args: |
|
lqs (tensor): Input low quality (LQ) sequence with |
|
shape (n, t, c, h, w). |
|
Return: |
|
tuple(Tensor): Optical flow. 'flows_forward' corresponds to the |
|
flows used for forward-time propagation (current to previous). |
|
'flows_backward' corresponds to the flows used for |
|
backward-time propagation (current to next). |
|
""" |
|
|
|
n, t, c, h, w = lqs.size() |
|
lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w) |
|
lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w) |
|
|
|
flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w) |
|
|
|
if self.is_mirror_extended: |
|
flows_forward = flows_backward.flip(1) |
|
else: |
|
flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w) |
|
|
|
if self.cpu_cache: |
|
flows_backward = flows_backward.cpu() |
|
flows_forward = flows_forward.cpu() |
|
|
|
return flows_forward, flows_backward |
|
|
|
def propagate(self, feats, flows, module_name): |
|
"""Propagate the latent features throughout the sequence. |
|
Args: |
|
feats dict(list[tensor]): Features from previous branches. Each |
|
component is a list of tensors with shape (n, c, h, w). |
|
flows (tensor): Optical flows with shape (n, t - 1, 2, h, w). |
|
module_name (str): The name of the propgation branches. Can either |
|
be 'backward_1', 'forward_1', 'backward_2', 'forward_2'. |
|
Return: |
|
dict(list[tensor]): A dictionary containing all the propagated |
|
features. Each key in the dictionary corresponds to a |
|
propagation branch, which is represented by a list of tensors. |
|
""" |
|
|
|
n, t, _, h, w = flows.size() |
|
|
|
frame_idx = range(0, t + 1) |
|
flow_idx = range(-1, t) |
|
mapping_idx = list(range(0, len(feats['spatial']))) |
|
mapping_idx += mapping_idx[::-1] |
|
|
|
if 'backward' in module_name: |
|
frame_idx = frame_idx[::-1] |
|
flow_idx = frame_idx |
|
|
|
feat_prop = flows.new_zeros(n, self.mid_channels, h, w) |
|
for i, idx in enumerate(frame_idx): |
|
feat_current = feats['spatial'][mapping_idx[idx]] |
|
if self.cpu_cache: |
|
feat_current = feat_current.cuda() |
|
feat_prop = feat_prop.cuda() |
|
|
|
if i > 0 and self.is_with_alignment: |
|
flow_n1 = flows[:, flow_idx[i], :, :, :] |
|
if self.cpu_cache: |
|
flow_n1 = flow_n1.cuda() |
|
|
|
cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1)) |
|
|
|
|
|
feat_n2 = torch.zeros_like(feat_prop) |
|
flow_n2 = torch.zeros_like(flow_n1) |
|
cond_n2 = torch.zeros_like(cond_n1) |
|
|
|
if i > 1: |
|
feat_n2 = feats[module_name][-2] |
|
if self.cpu_cache: |
|
feat_n2 = feat_n2.cuda() |
|
|
|
flow_n2 = flows[:, flow_idx[i - 1], :, :, :] |
|
if self.cpu_cache: |
|
flow_n2 = flow_n2.cuda() |
|
|
|
flow_n2 = flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1)) |
|
cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1)) |
|
|
|
|
|
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1) |
|
feat_prop = torch.cat([feat_prop, feat_n2], dim=1) |
|
feat_prop = self.deform_align[module_name](feat_prop, cond, flow_n1, flow_n2) |
|
|
|
|
|
feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop] |
|
if self.cpu_cache: |
|
feat = [f.cuda() for f in feat] |
|
|
|
feat = torch.cat(feat, dim=1) |
|
feat_prop = feat_prop + self.backbone[module_name](feat) |
|
feats[module_name].append(feat_prop) |
|
|
|
if self.cpu_cache: |
|
feats[module_name][-1] = feats[module_name][-1].cpu() |
|
torch.cuda.empty_cache() |
|
|
|
if 'backward' in module_name: |
|
feats[module_name] = feats[module_name][::-1] |
|
|
|
return feats |
|
|
|
def upsample(self, lqs, feats): |
|
"""Compute the output image given the features. |
|
Args: |
|
lqs (tensor): Input low quality (LQ) sequence with |
|
shape (n, t, c, h, w). |
|
feats (dict): The features from the propgation branches. |
|
Returns: |
|
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w). |
|
""" |
|
|
|
outputs = [] |
|
num_outputs = len(feats['spatial']) |
|
|
|
mapping_idx = list(range(0, num_outputs)) |
|
mapping_idx += mapping_idx[::-1] |
|
|
|
for i in range(0, lqs.size(1)): |
|
hr = [feats[k].pop(0) for k in feats if k != 'spatial'] |
|
hr.insert(0, feats['spatial'][mapping_idx[i]]) |
|
hr = torch.cat(hr, dim=1) |
|
if self.cpu_cache: |
|
hr = hr.cuda() |
|
|
|
hr = self.reconstruction(hr) |
|
hr = self.lrelu(self.pixel_shuffle(self.upconv1(hr))) |
|
hr = self.lrelu(self.pixel_shuffle(self.upconv2(hr))) |
|
hr = self.lrelu(self.conv_hr(hr)) |
|
hr = self.conv_last(hr) |
|
if self.is_low_res_input: |
|
hr += self.img_upsample(lqs[:, i, :, :, :]) |
|
else: |
|
hr += lqs[:, i, :, :, :] |
|
|
|
if self.cpu_cache: |
|
hr = hr.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
outputs.append(hr) |
|
|
|
return torch.stack(outputs, dim=1) |
|
|
|
def forward(self, lqs): |
|
"""Forward function for BasicVSR++. |
|
Args: |
|
lqs (tensor): Input low quality (LQ) sequence with |
|
shape (n, t, c, h, w). |
|
Returns: |
|
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w). |
|
""" |
|
|
|
n, t, c, h, w = lqs.size() |
|
|
|
|
|
self.cpu_cache = True if t > self.cpu_cache_length else False |
|
|
|
if self.is_low_res_input: |
|
lqs_downsample = lqs.clone() |
|
else: |
|
lqs_downsample = F.interpolate( |
|
lqs.view(-1, c, h, w), scale_factor=0.25, mode='bicubic').view(n, t, c, h // 4, w // 4) |
|
|
|
|
|
self.check_if_mirror_extended(lqs) |
|
|
|
feats = {} |
|
|
|
if self.cpu_cache: |
|
feats['spatial'] = [] |
|
for i in range(0, t): |
|
feat = self.feat_extract(lqs[:, i, :, :, :]).cpu() |
|
feats['spatial'].append(feat) |
|
torch.cuda.empty_cache() |
|
else: |
|
feats_ = self.feat_extract(lqs.view(-1, c, h, w)) |
|
h, w = feats_.shape[2:] |
|
feats_ = feats_.view(n, t, -1, h, w) |
|
feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)] |
|
|
|
|
|
assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, ( |
|
'The height and width of low-res inputs must be at least 64, ' |
|
f'but got {h} and {w}.') |
|
flows_forward, flows_backward = self.compute_flow(lqs_downsample) |
|
|
|
|
|
for iter_ in [1, 2]: |
|
for direction in ['backward', 'forward']: |
|
module = f'{direction}_{iter_}' |
|
|
|
feats[module] = [] |
|
|
|
if direction == 'backward': |
|
flows = flows_backward |
|
elif flows_forward is not None: |
|
flows = flows_forward |
|
else: |
|
flows = flows_backward.flip(1) |
|
|
|
feats = self.propagate(feats, flows, module) |
|
if self.cpu_cache: |
|
del flows |
|
torch.cuda.empty_cache() |
|
|
|
return self.upsample(lqs, feats) |
|
|
|
|
|
class SecondOrderDeformableAlignment(ModulatedDeformConvPack): |
|
"""Second-order deformable alignment module. |
|
Args: |
|
in_channels (int): Same as nn.Conv2d. |
|
out_channels (int): Same as nn.Conv2d. |
|
kernel_size (int or tuple[int]): Same as nn.Conv2d. |
|
stride (int or tuple[int]): Same as nn.Conv2d. |
|
padding (int or tuple[int]): Same as nn.Conv2d. |
|
dilation (int or tuple[int]): Same as nn.Conv2d. |
|
groups (int): Same as nn.Conv2d. |
|
bias (bool or str): If specified as `auto`, it will be decided by the |
|
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise |
|
False. |
|
max_residue_magnitude (int): The maximum magnitude of the offset |
|
residue (Eq. 6 in paper). Default: 10. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10) |
|
|
|
super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs) |
|
|
|
self.conv_offset = nn.Sequential( |
|
nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1), |
|
nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), |
|
nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), |
|
nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1), |
|
) |
|
|
|
self.init_offset() |
|
|
|
def init_offset(self): |
|
|
|
def _constant_init(module, val, bias=0): |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
nn.init.constant_(module.weight, val) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
_constant_init(self.conv_offset[-1], val=0, bias=0) |
|
|
|
def forward(self, x, extra_feat, flow_1, flow_2): |
|
extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1) |
|
out = self.conv_offset(extra_feat) |
|
o1, o2, mask = torch.chunk(out, 3, dim=1) |
|
|
|
|
|
offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1)) |
|
offset_1, offset_2 = torch.chunk(offset, 2, dim=1) |
|
offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1) |
|
offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1) |
|
offset = torch.cat([offset_1, offset_2], dim=1) |
|
|
|
|
|
mask = torch.sigmoid(mask) |
|
|
|
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, |
|
self.dilation, mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|