import torch import torch.nn as nn import torch.nn.functional as F import torchvision import warnings from r_basicsr.archs.arch_util import flow_warp from r_basicsr.archs.basicvsr_arch import ConvResidualBlocks from r_basicsr.archs.spynet_arch import SpyNet from r_basicsr.ops.dcn import ModulatedDeformConvPack from r_basicsr.utils.registry import ARCH_REGISTRY @ARCH_REGISTRY.register() class BasicVSRPlusPlus(nn.Module): """BasicVSR++ network structure. Support either x4 upsampling or same size output. Since DCN is used in this model, it can only be used with CUDA enabled. If CUDA is not enabled, feature alignment will be skipped. Besides, we adopt the official DCN implementation and the version of torch need to be higher than 1.9. Paper: BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment Args: mid_channels (int, optional): Channel number of the intermediate features. Default: 64. num_blocks (int, optional): The number of residual blocks in each propagation branch. Default: 7. max_residue_magnitude (int): The maximum magnitude of the offset residue (Eq. 6 in paper). Default: 10. is_low_res_input (bool, optional): Whether the input is low-resolution or not. If False, the output resolution is equal to the input resolution. Default: True. spynet_path (str): Path to the pretrained weights of SPyNet. Default: None. cpu_cache_length (int, optional): When the length of sequence is larger than this value, the intermediate features are sent to CPU. This saves GPU memory, but slows down the inference speed. You can increase this number if you have a GPU with large memory. Default: 100. """ def __init__(self, mid_channels=64, num_blocks=7, max_residue_magnitude=10, is_low_res_input=True, spynet_path=None, cpu_cache_length=100): super().__init__() self.mid_channels = mid_channels self.is_low_res_input = is_low_res_input self.cpu_cache_length = cpu_cache_length # optical flow self.spynet = SpyNet(spynet_path) # feature extraction module if is_low_res_input: self.feat_extract = ConvResidualBlocks(3, mid_channels, 5) else: self.feat_extract = nn.Sequential( nn.Conv2d(3, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(mid_channels, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), ConvResidualBlocks(mid_channels, mid_channels, 5)) # propagation branches self.deform_align = nn.ModuleDict() self.backbone = nn.ModuleDict() modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2'] for i, module in enumerate(modules): if torch.cuda.is_available(): self.deform_align[module] = SecondOrderDeformableAlignment( 2 * mid_channels, mid_channels, 3, padding=1, deformable_groups=16, max_residue_magnitude=max_residue_magnitude) self.backbone[module] = ConvResidualBlocks((2 + i) * mid_channels, mid_channels, num_blocks) # upsampling module self.reconstruction = ConvResidualBlocks(5 * mid_channels, mid_channels, 5) self.upconv1 = nn.Conv2d(mid_channels, mid_channels * 4, 3, 1, 1, bias=True) self.upconv2 = nn.Conv2d(mid_channels, 64 * 4, 3, 1, 1, bias=True) self.pixel_shuffle = nn.PixelShuffle(2) self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1) self.conv_last = nn.Conv2d(64, 3, 3, 1, 1) self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False) # activation function self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) # check if the sequence is augmented by flipping self.is_mirror_extended = False if len(self.deform_align) > 0: self.is_with_alignment = True else: self.is_with_alignment = False warnings.warn('Deformable alignment module is not added. ' 'Probably your CUDA is not configured correctly. DCN can only ' 'be used with CUDA enabled. Alignment is skipped now.') def check_if_mirror_extended(self, lqs): """Check whether the input is a mirror-extended sequence. If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the (t-1-i)-th frame. Args: lqs (tensor): Input low quality (LQ) sequence with shape (n, t, c, h, w). """ if lqs.size(1) % 2 == 0: lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1) if torch.norm(lqs_1 - lqs_2.flip(1)) == 0: self.is_mirror_extended = True def compute_flow(self, lqs): """Compute optical flow using SPyNet for feature alignment. Note that if the input is an mirror-extended sequence, 'flows_forward' is not needed, since it is equal to 'flows_backward.flip(1)'. Args: lqs (tensor): Input low quality (LQ) sequence with shape (n, t, c, h, w). Return: tuple(Tensor): Optical flow. 'flows_forward' corresponds to the flows used for forward-time propagation (current to previous). 'flows_backward' corresponds to the flows used for backward-time propagation (current to next). """ n, t, c, h, w = lqs.size() lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w) lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w) flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w) if self.is_mirror_extended: # flows_forward = flows_backward.flip(1) flows_forward = flows_backward.flip(1) else: flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w) if self.cpu_cache: flows_backward = flows_backward.cpu() flows_forward = flows_forward.cpu() return flows_forward, flows_backward def propagate(self, feats, flows, module_name): """Propagate the latent features throughout the sequence. Args: feats dict(list[tensor]): Features from previous branches. Each component is a list of tensors with shape (n, c, h, w). flows (tensor): Optical flows with shape (n, t - 1, 2, h, w). module_name (str): The name of the propgation branches. Can either be 'backward_1', 'forward_1', 'backward_2', 'forward_2'. Return: dict(list[tensor]): A dictionary containing all the propagated features. Each key in the dictionary corresponds to a propagation branch, which is represented by a list of tensors. """ n, t, _, h, w = flows.size() frame_idx = range(0, t + 1) flow_idx = range(-1, t) mapping_idx = list(range(0, len(feats['spatial']))) mapping_idx += mapping_idx[::-1] if 'backward' in module_name: frame_idx = frame_idx[::-1] flow_idx = frame_idx feat_prop = flows.new_zeros(n, self.mid_channels, h, w) for i, idx in enumerate(frame_idx): feat_current = feats['spatial'][mapping_idx[idx]] if self.cpu_cache: feat_current = feat_current.cuda() feat_prop = feat_prop.cuda() # second-order deformable alignment if i > 0 and self.is_with_alignment: flow_n1 = flows[:, flow_idx[i], :, :, :] if self.cpu_cache: flow_n1 = flow_n1.cuda() cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1)) # initialize second-order features feat_n2 = torch.zeros_like(feat_prop) flow_n2 = torch.zeros_like(flow_n1) cond_n2 = torch.zeros_like(cond_n1) if i > 1: # second-order features feat_n2 = feats[module_name][-2] if self.cpu_cache: feat_n2 = feat_n2.cuda() flow_n2 = flows[:, flow_idx[i - 1], :, :, :] if self.cpu_cache: flow_n2 = flow_n2.cuda() flow_n2 = flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1)) cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1)) # flow-guided deformable convolution cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1) feat_prop = torch.cat([feat_prop, feat_n2], dim=1) feat_prop = self.deform_align[module_name](feat_prop, cond, flow_n1, flow_n2) # concatenate and residual blocks feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop] if self.cpu_cache: feat = [f.cuda() for f in feat] feat = torch.cat(feat, dim=1) feat_prop = feat_prop + self.backbone[module_name](feat) feats[module_name].append(feat_prop) if self.cpu_cache: feats[module_name][-1] = feats[module_name][-1].cpu() torch.cuda.empty_cache() if 'backward' in module_name: feats[module_name] = feats[module_name][::-1] return feats def upsample(self, lqs, feats): """Compute the output image given the features. Args: lqs (tensor): Input low quality (LQ) sequence with shape (n, t, c, h, w). feats (dict): The features from the propgation branches. Returns: Tensor: Output HR sequence with shape (n, t, c, 4h, 4w). """ outputs = [] num_outputs = len(feats['spatial']) mapping_idx = list(range(0, num_outputs)) mapping_idx += mapping_idx[::-1] for i in range(0, lqs.size(1)): hr = [feats[k].pop(0) for k in feats if k != 'spatial'] hr.insert(0, feats['spatial'][mapping_idx[i]]) hr = torch.cat(hr, dim=1) if self.cpu_cache: hr = hr.cuda() hr = self.reconstruction(hr) hr = self.lrelu(self.pixel_shuffle(self.upconv1(hr))) hr = self.lrelu(self.pixel_shuffle(self.upconv2(hr))) hr = self.lrelu(self.conv_hr(hr)) hr = self.conv_last(hr) if self.is_low_res_input: hr += self.img_upsample(lqs[:, i, :, :, :]) else: hr += lqs[:, i, :, :, :] if self.cpu_cache: hr = hr.cpu() torch.cuda.empty_cache() outputs.append(hr) return torch.stack(outputs, dim=1) def forward(self, lqs): """Forward function for BasicVSR++. Args: lqs (tensor): Input low quality (LQ) sequence with shape (n, t, c, h, w). Returns: Tensor: Output HR sequence with shape (n, t, c, 4h, 4w). """ n, t, c, h, w = lqs.size() # whether to cache the features in CPU self.cpu_cache = True if t > self.cpu_cache_length else False if self.is_low_res_input: lqs_downsample = lqs.clone() else: lqs_downsample = F.interpolate( lqs.view(-1, c, h, w), scale_factor=0.25, mode='bicubic').view(n, t, c, h // 4, w // 4) # check whether the input is an extended sequence self.check_if_mirror_extended(lqs) feats = {} # compute spatial features if self.cpu_cache: feats['spatial'] = [] for i in range(0, t): feat = self.feat_extract(lqs[:, i, :, :, :]).cpu() feats['spatial'].append(feat) torch.cuda.empty_cache() else: feats_ = self.feat_extract(lqs.view(-1, c, h, w)) h, w = feats_.shape[2:] feats_ = feats_.view(n, t, -1, h, w) feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)] # compute optical flow using the low-res inputs assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, ( 'The height and width of low-res inputs must be at least 64, ' f'but got {h} and {w}.') flows_forward, flows_backward = self.compute_flow(lqs_downsample) # feature propgation for iter_ in [1, 2]: for direction in ['backward', 'forward']: module = f'{direction}_{iter_}' feats[module] = [] if direction == 'backward': flows = flows_backward elif flows_forward is not None: flows = flows_forward else: flows = flows_backward.flip(1) feats = self.propagate(feats, flows, module) if self.cpu_cache: del flows torch.cuda.empty_cache() return self.upsample(lqs, feats) class SecondOrderDeformableAlignment(ModulatedDeformConvPack): """Second-order deformable alignment module. Args: in_channels (int): Same as nn.Conv2d. out_channels (int): Same as nn.Conv2d. kernel_size (int or tuple[int]): Same as nn.Conv2d. stride (int or tuple[int]): Same as nn.Conv2d. padding (int or tuple[int]): Same as nn.Conv2d. dilation (int or tuple[int]): Same as nn.Conv2d. groups (int): Same as nn.Conv2d. bias (bool or str): If specified as `auto`, it will be decided by the norm_cfg. Bias will be set as True if norm_cfg is None, otherwise False. max_residue_magnitude (int): The maximum magnitude of the offset residue (Eq. 6 in paper). Default: 10. """ def __init__(self, *args, **kwargs): self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10) super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs) self.conv_offset = nn.Sequential( nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1), ) self.init_offset() def init_offset(self): def _constant_init(module, val, bias=0): if hasattr(module, 'weight') and module.weight is not None: nn.init.constant_(module.weight, val) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) _constant_init(self.conv_offset[-1], val=0, bias=0) def forward(self, x, extra_feat, flow_1, flow_2): extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1) out = self.conv_offset(extra_feat) o1, o2, mask = torch.chunk(out, 3, dim=1) # offset offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1)) offset_1, offset_2 = torch.chunk(offset, 2, dim=1) offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1) offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1) offset = torch.cat([offset_1, offset_2], dim=1) # mask mask = torch.sigmoid(mask) return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, self.dilation, mask) # if __name__ == '__main__': # spynet_path = 'experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth' # model = BasicVSRPlusPlus(spynet_path=spynet_path).cuda() # input = torch.rand(1, 2, 3, 64, 64).cuda() # output = model(input) # print('===================') # print(output.shape)